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Abstract Inventories of greenhouse gas (GHG) emissions from wildfire provide essential information to
the state of California, USA, and other governments that have enacted emission reductions. Wildfires can
release a substantial amount of GHGs and other compounds to the atmosphere, so recent increases in fire
activity may be increasing GHG emissions. Quantifying wildfire emissions however can be difficult due to
inherent variability in fuel loads and consumption and a lack of field data of fuel consumption by wildfire. We
compare a unique set of fuel data collected immediately before and after six wildfires in coniferous forests of
California to fuel consumption predictions of the first-order fire effects model (FOFEM), based on two different
available fuel characterizations. We found strong regional differences in the performance of different fuel
characterizations, with FOFEM overestimating the fuel consumption to a greater extent in the Klamath Mountains
than in the Sierra Nevada. Inaccurate fuel load inputs caused the largest differences between predicted and
observed fuel consumption. Fuel classifications tended to overestimate duff load and underestimate litter load,
leading to differences in predicted emissions for some pollutants. When considering total ground and surface
fuels, modeled consumption was fairly accurate on average, although the range of error in estimates of plot level
consumption was very large. These results highlight the importance of fuel load input to the accuracy of modeled
fuel consumption and GHG emissions from wildfires in coniferous forests.

1. Introduction

The State of California Global Warming Solutions Act of 2006 (AB 32) mandated the reduction of greenhouse
gas (GHG) emissions to the 1990 level by 2020. Part of the state inventory of GHG emissions is the
quantification of carbon emissions and removals by forests, grasslands, wetlands, and other natural lands. A
growing forest acts as a carbon sink because it removes CO2 from the atmosphere. On the other hand, a
forest experiencing high mortality due to insects and fire can act as a carbon source due to CO2 releases
[Canadell and Raupach, 2008; Kurz et al., 2008]. In California, wildfire emitted CO2 at an estimated rate of
18 Tg yr�1 in the period 2001–2008 [Wiedinmyer and Hurteau, 2010], contributing approximately 5% of the
total estimated state fossil fuel emissions [Wiedinmyer and Neff, 2007]. As higher temperatures due to climate
change contribute to increases in the frequency of large fires across the western U.S. [Westerling et al., 2006]
and the extent of high-severity fires in the Sierra Nevada [Miller and Safford, 2012; Miller et al., 2009], carbon
emissions may also increase. The densification of forests in the absence of fire, particularly in those forest
types historically associated with frequent fire, can increase net carbon stocks [Collins et al., 2011]. However,
often these increased stocks are less stable due to greater vulnerability to wildfire [Houghton et al., 2000;
Hurteau and Brooks, 2011; Hurteau and North, 2009; Rogers et al., 2011].

While the importance of GHG emissions from wildfires is well recognized, emissions are difficult to estimate
with precision [Wiedinmyer and Neff, 2007]. Estimates of emissions typically rely on the use of generalized fuel
characterizations to provide the necessary fuel inputs into fire effect programs. Errors in the estimates of fire
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emissions can come from an uncertainty in the burn perimeter [French et al., 2011; Urbanski et al., 2011], as well as
estimates of fuel quantity and consumption [French et al., 2004; Ottmar et al., 2008]. A large degree of uncertainty
also arises from inaccurate emission factors (the amount of a gas species emitted for a given amount of biomass
consumed) [Rosa et al., 2011]. Addressing these uncertainties associated with fuels not only requires accurate
mapping of prefire fuel loads but also quantifying the variation in fuel consumption across a wildfire [de Groot
et al., 2007]. The challenges of mapping and characterizing fuels contribute to uncertainties in emissions estimates
[Weise andWright, 2013]. In addition, the use of different fuel characterizations [e.g.,Ottmar et al., 2007] can lead to
substantially different estimates of emissions [Wiedinmyer et al., 2006].

Sampling in the same location before and after wildfire allows for accurate point measures of fire
consumption and effects [Campbell et al., 2007]. Fuel consumption directly correlates with emissions [Seiler
and Crutzen, 1980] and is therefore a reliable surrogate for comparing the accuracy of emission models.
Unfortunately, knowing locations and actually measuring fuels in advance of wildfire is extremely difficult. As
a result, much of the information on fuel consumption in wildfires comes from “fortuitous” burning of
previously established field plots. Prescribed fires offer another, more dependable opportunity to quantify
fuel consumption prior to and following fire. However, because prescribed fires generally burn under more
moderate fuel moisture and weather conditions, they do not exhibit the range in fire effects that is commonly
observed in wildfires [Collins et al., 2007; van Wagtendonk and Lutz, 2007].

In this study, we take advantage of a rare data set that consists of vegetation and fuel measurements on the
same plots taken just before and then immediately after six wildfires that occurred in California. We use this
data set to assess current approaches in predicting wildfire emissions, using the first-order fire effects model
(FOFEM). Our objectives were to (1) compare predicted fuel consumption for several fuel models to changes
observed in the prewildfire and postwildfire fuel loads; (2) determine if the differences betweenmodeled and
observed consumption were due to inaccuracy in estimates of the prefire fuel load or the proportion of fuel
consumed; (3) compare the accuracy of estimated fuel load and consumption between different fuel
components, regions, and cover types; and (4) present the predicted emissions of compounds relevant to
GHG inventories and air quality monitoring, both when using the field data as fuel inputs and when using the
generalized fuel characterizations. The choice of FOFEM is based on its use by the California Air Resources
Board, the agency responsible for GHG inventories under AB 32. Our intent was to examine readily accessible
or “out of the box” fuel characterizations that input into the FOFEM and identify the one that best
approximates the observed consumption. We do not evaluate potential modifications to improve the
performance of FOFEM itself (e.g., emission factors and combustion efficiency). It should also be noted that
this study only provides information about emissions from ground and surface fuels using FOFEM. We did not
address the contribution of canopy fuels to emissions or compare the effects of different consumption
models, which can also affect emission estimates [French et al., 2011].

2. Methods
2.1. Field Sampling

The six wildfires sampled were located in the Klamath Mountains and Sierra Nevada and burned mainly in
conifer-dominated forest types (Figure 1 and Table 1). Based on the relative differenced Normalized Burn
Ratio (RdNBR) [Miller and Thode, 2007], the six wildfires exhibited a range of fire effects. The Antelope and
Clover fires were predominantly high severity, while the other fires were predominantly low severity (Table 1).
All fires occurred in the summer or early fall (June to October). Field plots were located opportunistically
based on anticipated fire spread. The measurements of dead and downed surface fuels, live surface fuels,
ground fuels, and trees were taken in the same plots before and after burning by the Fire Behavior
Assessment Team of the U.S. Department of Agriculture (USDA) Forest Service (USFS). Prefire measurements
were generally taken 1–2 days prior to burning, and postfire measurements were taken within 1week
(typically 1–2 days) after burning. Trees were sampled using a variable radius approach determined by wedge
prisms [Bell and Dilworth, 1997]. The average plot radius was 10m, with a maximum of 49m. Tree species,
diameter at breast height (dbh, 1.37m), and status (live/dead) were recorded for each tallied tree of dbh
>2.54 cm. Litter, duff, and downed woody fuels (1, 10, 100, and 1000 h) data were collected along one or two
transects in each plot using the planar intersect technique [Brown, 1974]. Fuel load calculations were adjusted
using methods developed by van Wagtendonk et al. [1996, 1998]. Tree seedling, shrub, and herb fuels were
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sampled on transects, and fuel loads
were quantified using morphological
type, bulk density class, cover, depth,
and proportion living following
methods of Burgan and Rothermel
[1984]. Fuel components included in
the analyses were downed woody
fuels, litter, duff, shrub/seedling, and
herbaceous. The amount of fuel
consumed by the fire was calculated as
the difference between the prefire and
postfire data for each fuel component.

2.2. Modeled Fuel Consumption

Fuel consumption was modeled in
FOFEM version 6.0 using the
consumed emissions option [Lutes
et al., 2013]. FOFEM predicts woody
fuel and litter consumption using the
Burnup model. For duff, herbaceous
plants, and shrubs, FOFEM employs a
decision tree to choose an appropriate

consumption algorithm based on fuel model inputs [Lutes, 2012]. Based on the location of each plot (n=46),
we assigned corresponding fuel inputs from two fuel characterizations: the Fuel Characteristic Classification
System Fuelbeds (FCCS) [Ottmar et al., 2007] and a coupled existing vegetation—fuel model link previously
established by Clinton et al. [2006]. The latter fuel characterization uses the Society of American Foresters/
Society for Range Management (SAF/SRM) fuelbeds. These two fuel characterizations (FCCS and SAF/SRM)
were of interest because they were both available for all the six wildfires and both provide the necessary fuel
inputs for FOFEM. Furthermore, both of these fuel characterizations are continuous coverages that
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(Tahoe & El Dorado NF)
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(Six Rivers NF)

Bar Complex - 2006
(Shasta-Trinity NF) Antelope - 2007

(Plumas NF)

Crag - 2005; Clover 2008
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0 240120 km
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Figure 1. Map showing the location of wildfires included in the study.

Table 1. Summary of Fires Sampled

Fire Year Region Size (ha) Severitya Area (%) No. of Plots

Bake Oven 2006 Klamath 26,325 Unchanged 11.7 1
Low 44.6 6

Moderate 26.0 0
High 17.6 0

Somes 2006 Klamath 6,275 Unchanged 27.0 4
Low 58.3 3

Moderate 10.8 1
High 3.9 0

Antelope 2007 Northern Sierra 9,037 Unchanged 5.3 1
Low 13.1 0

Moderate 28.3 5
High 53.3 3

Ralston 2007 Northern Sierra 3,408 Unchanged 8.9 0
Low 52.4 9

Moderate 29.2 5
High 9.5 1

Crag 2005 Southern Sierra 6,389 Unchanged 20.8 0
Low 56.3 1

Moderate 19.0 0
High 3.9 0

Clover 2008 Southern Sierra 480 Unchanged 21.9 0
Low 13.0 2

Moderate 22.6 2
High 42.5 2

aBased on RdNBR values identified using the methods of Miller and Thode [2007].
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encompass large spatial extents, offering an efficient and consistent way to quantify fuels and predict emissions
across multiple fires.

In FOFEM, each SAF/SRM fuelbed has the option to select three fuel load levels: low, typical, and high. For FCCS, the
typical fuel load level was the only option. This resulted in a total of four fuel characterizations per plot. Fuel
moistures for FOFEM runs were based on the monthly average within each fire perimeter, developed from the
archival National Fire Danger Rating System dead fuel moisture data (available from http://www.wfas.net). The
decision to use coarser scale fuel moistures (monthly versus daily) is based onmodeling procedures that are used
for estimating criteria pollutant emissions for regional air quality modeling and emissions accounting under AB 32
(K. Scott, personal communication, California Air Resources Board).

In order to assess the performance of the four fuel characterizations (SAF/SRM low, typical, high, and FCCS)
with regard to emissions, we compared the predicted emissions to those predicted using custom fuel inputs
based on the prefire fuel loads for each plot. For these runs, the daily fuel moisture for 10 and 1000 h fuels was
used, as determined from the Remote Automatic Weather Station data corresponding to the area and the day
of burn for each plot. The day that each plot burned was determined from the daily progression maps of each
fire. As duff moisture was not available, its value was inferred as the corresponding value to the 10 and 1000 h
moistures used in FOFEM. The intent of this comparison was to investigate the extent to which the predicted
emissions using the coarser scale inputs (fuel characterizations andmonthly fuel moistures) overestimated or
underestimated those based on the finer scale inputs (field fuels and daily fuel moistures).

2.3. Analysis of Field Data and Fuel Characterizations

The magnitude of difference between observed and predicted fuel consumption for each plot was assessed
using regression trees. Regression tree analysis offers distinct advantages over traditional linear models
because it can handle nonlinear or discontinuous relationships between variables and high-order interactions
[Breiman et al., 1984]. In addition, the hierarchical structure and identification of potential threshold values for
independent variables are well suited for explaining ecological phenomena [De’ath and Fabricius, 2000]. The
regression tree is constructed by repeatedly splitting the data into increasingly homogenous groups based on
identified influential explanatory variables. We used the conditional inference tree technique (ctree) in the party
library, within the statistical package R [Hothorn et al., 2009]. This technique has been used to evaluate ecological
relationships in forested systems increasingly in recent years, with applications such as tree crown damage from
fire [Thompson and Spies, 2009], native tree regeneration [Vargas G et al., 2013], seedling mortality and growth at
treeline [Barbeito et al., 2011], and probability of future forest conversion and timber harvesting [Thompson et al.,
2011]. Influential explanatory variables are identified using a partitioning algorithm that is based on the lowest
statistically significant P value derived fromMonte Carlo simulations. This minimizes bias and prevents overfitting
of the data, which is a common problem with regression trees [Hothorn et al., 2006b]. The significance level for
each split was 0.05. As decision trees are sensitive to small changes in the input data [Strobl et al., 2009], we
assessed regression tree stability by examining the relative importance of predictor variables produced from
trees constructed from 15 randomly selected start seeds using the functions cforest and varimpAUC, also
available in the party package [Hothorn et al., 2006a; Janitza et al., 2013; Strobl et al., 2007]. For each start seed,
500 trees were constructed using bootstrapping without replacement and considering all variables as a
potential factor at each split. Variable importance values were normalized to the highest value for each seed
and then averaged across start seeds.

Predictor variables examined were related to fuel and vegetation conditions, topography, and fire
characteristics (Table 2). Topographic variables were determined from digital elevation models [Gesch, 2007;
Gesch et al., 2002] using ArcMap 10.0. The Topographic Relative Moisture Index (TRMI) was calculated using
topographic position, slope, aspect, and curvature [Parker, 1982]. Fire severity data were obtained from the
USFS Remote Sensing Applications Center and classified using the RdNBR [Miller and Thode, 2007]. Variables
were calculated for a zone within a 40m buffer around each plot, using the average for continuous variables
and the median for categorical variables. Conditional inference trees were also used to examine the effects of
plot attributes on the observed fuel consumption. In both cases, individual fuel components (e.g., litter, duff,
and classes of downed woody fuels), as well as total fuel load, were assessed.

We assessed the error associated with model predictions by calculating the percent difference from the field-
measured consumption, averaged by region. The average consumption observed in the field was subtracted
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from that predicted by models, and the
resulting difference was then divided by the
observed fuel consumption. Since this
equality is a ratio of two random variables,
the standard error was approximated using
the delta method [Rice, 2007]. The standard
error and 95% confidence limits were
estimated using the nonlinear mixed
procedure in SAS 9.3 [SAS Institute Inc., 2011].

3. Results
3.1. Fuel Loads

The differences in the prefire fuel loads
between fuel characterizations (SAF/SRM
and FCCS) and field data varied by fuel
component (Figure 2). All fuel
characterizations tended to underestimate
the prefire litter loads. Prefire duff and
1000 h fuel loads were generally
overestimated by fuel characterizations.
This overestimation was more
pronounced for the SAF/SRM high and
typical scenarios. These scenarios also
overestimated the 1–100 h fuel load.
Prefire shrub density was more variable in
the field data, but the predicted values
were relatively close to the median of the
field measurements (Figure 2). None of the
fuel characterizations accounted for areas
with very high shrub load observed in the
field data (8 out of 46 plots were outliers
with shrub load >35Mg ha�1). In general,
median postfire fuel loads were near or
equal to zero. However, the observed
postfire duff loads were lower than the
predicted values for all
fuel characterizations.

3.2. Consumption

The amount of fuel consumed was greater on average in the Sierra than in the Klamath region (Table 3).
Correspondingly, the fuelbeds representing the plots in the Klamath region tended to overestimate the fuel
consumption to a greater degree than those representing the plots in the Sierra Nevada (Figure 3). There
were no resulting splits in the regression trees assessing observed fuel consumption among the plots,
indicating that the differences in actual fuel consumption could not be attributed to any plot characteristics
we included in our models. This is likely due to the small number of plots included in the analysis. The
difference in observed consumption between regions may be due to a greater amount of fuel remaining
postfire in the plots in the Klamath region, rather than to the differences in initial fuel load (Figure 4).

After accounting for regional differences, fuel characterization explained most of the discrepancies between
the predicted consumption and the field data (Figure 3). Within the Klamath Mountains, the relationship of
similar modeled fuel consumption to observed was explained entirely by the characterization type. The FCCS
and the low-fuel load option for SAF/SRM had the closest prediction to the observed total fuel consumption,
although the models still overpredicted the consumption on average. In the northern and southern Sierra
Nevada, among most plots, the differences were still attributable to fuel characterization type, but the

Table 2. Predictor Variables Used in Regression Tree Analysis to Explain
the Differences Between Observed and Predicted Fuel Consumptiona

Variable Description

General
Fuel input SAF/SRM low, typical,

high, and FCCS
Region Klamath, northern Sierra Nevada,

and southern Sierra Nevada

Existing vegetation
Dominant fir, pine, and oakb

Tree size class seedling, small,
and medium/largec

Density class open, moderate, and densec

Fuel moistures (%)
Duff 20–40, X=22.6
10 hr 6–10, X=6.5
1000 hr 5–11, X=7.9

Topography
Elevation (m) 419–2657, X=1355
Slope (%) 2–84, X=31
Aspect (cosine transformed) 0–2, X=1.0
Topographic position lower slope, midslope, ridge,

and flat
TRMI 5–51, X=28.2

Fire variables
Severity unchanged, low, moderate,

and high
Distance-to-fire-edge (m) 12–1909, X=523

aRanges and means (X) for continuous variables and input levels
for discrete variables are also reported.

bBased on Calveg regional dominance classes (http://www.fs.
usda.gov/detail/r5/landmanagement/resourcemanagement/?cid =
fsbdev3_046815). Fir includes Douglas fir-ponderosa pine, Douglas
fir-white fir, mixed conifer-fir and red fir; pine includes eastside
pine, Jeffrey pine, and ponderosa pine; and oak includes canyon live
oak and black oak.

cClassifications from the California Wildlife Habitat Relationships
System [Mayer and Laudenslayer, 1988].
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Figure 2. Prefire and postfire fuel load of the five fuel load components for the field data and the four fuel model types
(SAF/SRM, low, typical and high, and FCCS). Box and whisker plots depict median (horizontal band), interquartile range
(white bar), range of data within 1.5 interquartile range of the lower and upper quartiles (vertical dashed lines) and outliers
(points). The data shown is for all plots with known spatial locations (n=46). Note breaks and scale changes in y axis for
shrubs and litter.

Table 3. Average (and Standard Deviation) of Field Plot Attributes Organized by Region and Dominant Tree Speciesa

Region/Dominant Type No. of Plots
TRMI

min–max
Consumption
(Mgha�1)

Basal Area
(m2 ha�1)

Density
(ha�1)

Klamath
Fir 12 10–41 29 (27) 160 (170) 3000 (7600)
Oak 2 18–36 48 (9.4) 220 (240) 2100 (1200)
Pine 1 36 100 25 540

Northern Sierra
Fir 8 9–39 130 (140) 98 (120) 1100 (1500)
Oak 5 5–31 71 (61) 55 (53) 460 (360)
Pine 11 17–51 62 (38) 63 (39) 1100 (620)

Southern Sierra
Fir 4 30–49 66 (89) 19 (5.5) 360 (320)
Juniper 1 32 82 15 600
Pine 2 28–37 88 (110) 29 (14) 740 (710)

aFir includes Abies concolor and Pseudotsuga meziesii; oak includes Quercus kelloggii and Q. chrysolepis; pine includes
Pinus lambertiana, P. jeffreyi, and P. ponderosa; and juniper includes Juniperus occidentalis.
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relationship to modeled consumption was more complicated than in the Klamath. Drier plots (those with very low
TRMI) tended to havemuch higher consumption thanwas predicted by all fuel characterizations. In addition, among
the remaining plots, those with a cover type dominated by fir tended to have consumption overpredicted by the
high-fuel load SAF/SRM fuelbeds. The predictions of this fuel characterization were closer to the field data for the
plots dominated by pine or oak. These relationships were corroborated by the assessment of tree stability, in which
region and fuel input types, followed by TRMI, were consistently ranked as the most important variables (with
normalized average importance values of 1, 0.84, and 0.31, respectively). Forest type was almost the next
most important variable (importance value of 0.04), but ranked just below aspect (0.05).

The average predicted fuel consumption based on the FCCS and the low and typical variations of SAF/SRM fuelbeds
were closer to the observed consumption regardless of forest type, although there was a fair amount of variation
within this group (Figure 3). Although predictions based on these three fuel characterizations were not differentiated
by the regression tree analysis, the low SAF/SRM had a lower median prefire fuel load than the field measurements
(Figure 4). In contrast, the fuel load estimates of SAF/SRM typical and FCCS were closer to the observed values;
however, these two characterizations did have slightly greater postfire fuel load than was present in the field plots.

Within each region, all fuel characterizations had wide confidence intervals for the percent difference from the
field data in the total fuel consumption (Table 4). As shown in the regression tree analysis, for the plots in the
Klamath bioregion, there was a large difference between different fuel characterizations in the percent
difference from the observed consumption, with fuelbeds within the FCCS and the low-fuel load version of
SAF/SRM having closer predictions to the observed consumption. Consumption was overpredicted on
average using all fuel characterizations. In the Sierras, average predicted consumption was closer to the
field data. The high-fuel load variation of the SAF/SRM fuelbeds resulted in too much predicted
consumption, while the other fuel characterizations generally resulted in too little predicted consumption.

Region
p < 0.001

Northern, southern
Sierra Nevada

SAR/SRM-
high

FCCS, 
SAF/SRM-low,

SAF/SRM-typical

Fuel type
p < 0.001

SAF/SRM-
typical

FCCS,
SAF/SRM-low

TRMI
p < 0.001

>9

Fuel type
p < 0.001

Forest type
p = 0.018

yellow pine,
oak-dominated

Klammath
Mountains

p < 0.001
Fuel type

n = 15
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200
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n = 14 n = 14 n = 84

Figure 3. Conditional inference tree of the difference in the total ground and surface fuel consumption (Mgha�1) between
each model and the corresponding plot data. The difference was calculated as the consumption predicted by a model
minus the observed consumption for each plot. Positive values therefore indicate that the models predicted more con-
sumption than was observed in the field data, while negative values indicate less consumption predicted than observed.
Total fuel load includes litter, duff, shrubs, herbaceous, and all size classes of downed woody fuels.
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3.3. Emissions

Assessing the data for both regions, the comparisons of emissions predicted by FOFEM for the prefire field data
to that predicted for the four fuel characterizations had a similar pattern to the comparisons of fuel consumption.
For all emitted compounds, the amount produced from flaming was greater in the field data than in the models
(Figure 5 and Table 5). The predicted CO2 emissions for fuelbeds within FCCS were closest to the level predicted
from the prefire field data (Figure 5). For CH4 emissions, both the FCCS and low SAF/SRM fuelbeds were similar to
that predicted using the field data. Amongmost emission species of concern to air quality, the same trends were

present (i.e., SAF/SRM high and typical led to
higher predicted emissions, while SAF/SRM low
and FCCS were closer to the predictions
generated from the field data). An exception
to this trend was NOx; the predicted NOx

emissions were greater in the field data than in
all other models as this compound is only
produced during flaming combustion (Table 5).

4. Discussion

Our study used a unique data set to compare
field measurements of surface and ground
fuel consumption to that predicted by
modeling. While this study provides valuable
insight into fuel consumption from wildfire, a
potential shortcoming is the opportunistic
rather than the designed nature of the field
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Figure 4. Comparison of field data tomodels, showing prefire and postfire fuel load for each terminal node in the conditional
inference tree presented in Figure 3. Box and whisker plots depict median (horizontal band), interquartile range (white bar),
range of data within 1.5 interquartile range of the lower and upper quartiles (vertical dashed lines), and outliers (points).

Table 4. Average Percent Difference Between Modeled and
Observed Consumption of the Total Surface and Ground Fuels,
With Standard Error (SE) and 95% Confidence Interval (CI)a

Difference (%) SE Lower CI Upper CI

Klamath
S high 780 630 �480 2000
S typical 370 250 �140 880
S low 110 100 �100 310
FCCS 48 85 �120 220

Sierra
S high 44 31 �18 110
S typical �18 13 �45 9.0
S low �62 5.7 �74 �51
FCCS �28 12 �53 �3.3

aPositive values indicate overprediction, and negative values
indicate underprediction.
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sampling. Although we treat the plots as a random
sample, they do not evenly represent the range of burn
severity observed, particularly for some fires (Table 1).
Field data were skewed toward representing lower fire
severity areas (46% of the plots) and therefore may not
adequately characterize the consumption associated
with higher-severity burning (13% of the plots). Despite
this limitation, the work presented still addresses a
critical area where knowledge is lacking. While previous
studies that measured or inferred forest floor
consumption bywildfire in boreal forests have provided
valuable information to the field [e.g., Ottmar and Baker,
2007; Turetsky et al., 2011], the only similar study we are
aware of looking at prewildfire and postwildfire data
from a temperate forest examined only one fire inwhich
the prefire data were collected several (5–9) years prior
to burn and did not contain preburn measurements of
all fuel components [Campbell et al., 2007].

Discrepancies in predicted and observed fuel
consumption tended to be due to the fuel models
assigning a higher amount of fuel prefire than was
measured in the field, with the postfire fuel load being
more similar to the measured data (Figures 2 and 4).
This result agrees with Keane et al. [2013], who found
poor agreement between several fuel characterizations,
including FCCS, and a large data set of fuel loads
derived from forest inventory and analysis plots. In
particular, the fuel characterizations we tested tended
to overestimate the prefire duff and 1000h fuel loads,
especially those from the high and typical SAF/SRM.
Previous work looking at uncertainty in emissions
estimates also found that inaccurate predictions of fuel
consumption tend to be driven by error in estimates of
prefire fuel loads [Urbanski et al., 2011; Wiedinmyer
et al., 2006]. The problems associated with inaccurate
characterizations of surface fuels are not limited to
wildfire emission modeling and can be attributed to
their inherent spatial and temporal heterogeneity [Hall
et al., 2006; Keane et al., 2012; Keane et al., 2013] and
the general inability of aerial imagery to directly detect
surface fuel loads [Jakubowksi et al., 2013].

In contrast to the general overestimation of prefire fuel loads, the fuel characterizations we tested
estimated much lower prefire litter loads than that observed in the field plots. Campbell et al. [2007]
similarly found that litter load was lower in the FCCS fuel inputs than in the prefire field data, attributing
this discrepancy to the differences on how litter and duff were defined (however, note that subsequent
revision of the FCCS fuel map improved estimates of observed fuel load in the Biscuit fire) [see French et al.,
2011].The fact that we found a consistent underrepresentation of litter load coupled with a general
tendency to overpredict duff load across fuel models likely contributed to the differences observed in the
predicted emissions of some compounds. As litter is mostly consumed in flaming combustion and duff
tends to be consumed in smoldering combustion, which is less efficient, this discrepancy in prefire litter
versus duff loads can lead to inaccurate attribution of emissions (e.g., greater emissions of constituents
associated with smoldering (particulates) rather than flaming (oxides of nitrogen)) [French et al., 2004,
2011; Hardy et al., 2001; Sandberg et al., 2002].
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One aspect of fuelbeds that characterizations cannot
account for at current resolutions is the significant
variability that exists within a fuelbed type [Keane, 2013].
As was found in this study, the range of fuel loads prior to
burning is typically much greater than that available in
simulations [Weise and Wright, 2013]. Fuel maps for
mountainous terrain may be less accurate due to the
effects of topography on fuel load variability [French et al.,
2011; Jakubowksi et al., 2013]. In addition, fuel particle size
classes vary at different spatial scales, and this scaling may
also vary by cover type [Keane et al., 2012]. It is difficult to
capture realistic ranges in fuel loads with current modeling
approaches, which tend to represent average conditions.
This is reflected in the high standard errors and wide
intervals of prediction accuracy for fuel consumption in all
fuel classification types (Table 4). Perhaps building in
stochastic variability or some type of dynamic association
with other variables (e.g., topography and canopy cover)
could be incorporated in future model development.

Based on the prewildfire and postwildfire data collected,
high variability existed in the observed consumption as
well as in the prefire fuel loads. The total surface and
ground fuel consumed ranged from 0% to 100%, with a
mean of 68%. All plots showed evidence of burning, even
those located within areas classified as unchanged by
RdNBR, which is an acknowledged outcome for surface
burns that leave the overstory unchanged [Kolden et al.,
2012]. Although postfire litter load was zero in the majority
of the field plots, in many instances, not all litter was
consumed. In contrast, FOFEM predicted 100% litter
consumption for all fuel models, representing more
homogenous burning. When scaling up to assess the total
emissions from a wildfire, the FOFEM results can be
adjusted for patchy burns by weighting the results by the

percentage of area burned [Lutes, 2012]. However, this could be problematic when usingmeasures such as RdNBR,
where surface burn patternsmay be obscured by the overstory canopy. Comparing the consumption predicted by
models to that observed in prescribed fires, Hollis et al. [2010] also found greater variation in the observed
consumption than in the modeled consumption; the models failed to represent the occurrences of extremely low
or high consumption. Incorporating this variability in consumption is a challenge; however, failing to account for
fire severity can lead to inaccurate estimates of wildfire emissions [Veraverbeke and Hook, 2013].

Postfire duff loadwas also zero in themajority of the plots; however, models typically predicted some duff remaining
after fire. Spatial differences in duff consumption have been linked to the influence of canopy cover on duff
moisture [Hille and Stephens, 2005], at least for prescribed burns. Other studies in California forests have found that
duff moisture is related to canopy cover; however, litter andwoody fuels tend to have ubiquitously low-fuel moisture
that does not depend on overstory structure [Banwell et al., 2013; Bigelow and North, 2012; Estes et al., 2012].

Shrub load was another highly variable fuel component that was generally misrepresented by the fuel
characterizations tested. While overall shrub density has decreased in contemporary forests with dense
overstories, they do occur in fairly concentrated pockets when present [Nagel and Taylor, 2005]. The fuel
models we tested generally predicted a very low shrub load, which is representative of the majority (72%) of
the plots we sampled. However, 17% of our plots had a very high shrub density, corresponding with live fuel
loads ranging from 38 to 210Mgha�1. This demonstrates that patches of high shrub density that may occur
within predominantly forested cover types can contribute a significant proportion to the total fuel
consumption and thus emissions, which may be overlooked by fuel classifications.

Table 5. Emissions of Concern to Air Qualitya

Flaming Smoldering

Particulate matter (PM2.5)
Field 85 (110) 970 (820)
S high 54 (37) 3600 (2300)
S typical 21 (9.5) 2100 (1300)
S low 7.6 (3.6) 950 (600)
FCCS 44 (14) 990 (580)

PM10
Field 100 (130) 1100 (970)
S high 63 (43) 4300 (2700)
S typical 24 (11) 2400 (1500)
S low 9.1 (4) 1100 (710)
FCCS 52 (16) 1200 (690)

CO
Field 210 (280) 13000 (11000)
S high 130 (91) 48000 (31000)
S typical 51 (23) 28000 (17000)
S low 19 (8.7) 13000 (8000)
FCCS 110 (34) 13000 (7800)

NOx
Field 100 (140) 0 (0)
S high 66 (45) 0 (0)
S typical 25 (12) 0 (0)
S low 9.4 (4.3) 0 (0)
FCCS 54 (16) 0 (0)

SO2
Field 33 (43) 43 (36)
S high 21 (14) 160 (100)
S typical 7.8 (3.6) 92 (58)
S low 2.8 (1.4) 42 (27)
FCCS 17 (5.1) 44 (26)

aEmission levels are in kgha�1 and show average
(and standard deviation) of the FOFEM predictions
for the field data and each model type.
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5. Conclusions

In order to account for wildfire emissions across large spatial scales, agencies rely on wildfire emissionmodels
coupled with remote sensing-based fuel characterizations. Based on our results, it appears that the FOFEM
coupled with either fuel classification type we analyzed (FCCS or SAF/SRM) can perform reasonably well for
predicting surface and ground fuel consumption by wildfire. For the total surface and ground fuel consumption,
the FCCS and the low-fuel loading option for SAF/SRM performed very well in both regions on average. It should
be noted that in the Sierra Nevada, the typical fuel load option for SAF/SRM also provided predictions close
to actual consumption. Perhaps combining the fuel components compensated for fuelbed errors among
different fuel load components (i.e., low predictions of litter load may have been compensated for by high
predictions of duff load). While these models were fairly accurate on average, the confidence intervals
associated with the percent accuracy in our data set were very large. Therefore, predictions at the level of
an individual plot may err considerably, but when assessing a larger area, the predicted consumption may
be closer to what was observed in our data.

Among the pine and oak-dominated sites in the Sierra Nevada, the high-fuel load SAF/SRM option also gave
fairly accurate estimates of consumption. A limitation to our analysis is the lack of fuel data associated with
oak-dominated cover types for the SAF/SRM classifications in FOFEM. These fuelbeds are provided in FOFEM
only as a customizable option with user-defined inputs, with “default” values of zero. We chose to run the
model as it was (i.e., no fuel load prior to burn). Although only six plots in our data set were categorized with
an oak-dominated cover type under SAF/SRM, this still may have affected our results. Because of this
limitation, when site-specific information is lacking, the FCCS cover types may be preferable for generating
estimates of emissions for oak-dominated areas.

The estimates of GHG emissions (CO2 and CH4) using the FCCS or the low-fuel load scenario for the SAF/SRM
fuelbeds were also close to that predicted using the field data as the FOFEM inputs. Some differences existed
for predictions of emissions of compounds more exclusively associated with either flaming or smoldering,
particularly among the SAF/SRM classifications. The FCCS fuelbeds had a higher estimated litter load than
those in the SAF/SRM characterizations and were therefore closer to the field data, so the emissions predicted
using these fuelbeds were closer in general to those estimated using the field data.

Although California is one of the few states that require GHG inventories, interest in emissions accounting
elsewhere is broad. Wildfires can contribute a substantial quantity of GHG emissions although the
contribution is generally pulsed and unpredictable. While it is clear that some error is associated with
predictions generated from the modeling framework evaluated in this study, it is important to understand
how much error there may be and what potential adjustments can be made to minimize it. This study only
examinedmodeled consumption and emissions in conifer forests. Future work should be done to get a better
representation of fuel consumption in different vegetation types (e.g., chaparral). A better understanding of
the discrepancies between modeling efforts and wildfire effects can improve the ability of agencies to
inventory GHG emissions.
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