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ABSTRACT

Occupancy modeling based on detection/non-detection data has become a common approach for monitoring
changes in the populations of both sensitive and invasive species, with emerging bioacoustic technology en-
hancing opportunities for implementing such programs at landscape-scales. Statistical power, however, to detect
small but biologically meaningful changes in site occupancy as part of landscape-scale monitoring is typically
low, with large — yet hereto unknown - sampling efforts likely required for rigorous inference. Therefore, we (i)
assessed sampling levels and detection probabilities needed to detect small changes in site occupancy driven by
both intrinsic trends and management effects, and (ii) evaluated the feasibility of using bioacoustics to si-
multaneously monitor a common but declining species and a rare but increasing invasive competitor within a
site occupancy framework. Simulation-based power analyses indicated that detection/non-detection data col-
lected at large numbers of sites (500-1500) can yield high statistical power (> 80%) to detect =2% annual

declines in site occupancy within 10 years, but depended on the number of visits per site, initial occupancy rates,
and detection probabilities. Statistical power to detect =30% declines in local survival rates in 10 years was also
high. Based on ~ 6-night passive-acoustic surveys, site occupancy and detection probabilities were 0.43 and
0.50, respectively, for the common but declining species (the spotted owl), and 0.09 and 0.67, respectively, for
the rare but increasing competitor (the barred owl). Simulations parameterized with these empirically-derived
rates indicated that 2% annual declines in spotted owl site occupancy could be detected with high statistical
power in 10 years with 1,000 sites surveyed three times per season (year) or 1500 sites surveyed two times per
season. Statistical power to detect 4% annual increases in site occupancy for expanding barred owl populations
with this sampling scheme was also high. Thus, our study yielded the novel finding that passive-acoustic
monitoring can be used to detect small but potentially biologically meaningful changes in site occupancy for
multiple species with very different population dynamics with high confidence. More broadly, as computational
improvements bring acoustic-based whole-community identification into the realm of possibility, our approach
will allow managers to rapidly assess the statistical power attainable for each species: systematic and statistically
robust monitoring of entire faunal communities within a unified framework at a landscape scale may become a

reality.
1. Introduction programs for species of conservation concern (Marsh and Trenham,
2008). Trend estimates can have important implications for assigning
Estimating population trends and understanding the factors re- protected status to declining species (IUCN, 2012), while the globally
sponsible for changes in abundance are key components of monitoring pervasive phenomena of increasing range shifts (Dornelas et al., 2014)
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has made tracking and understanding the expansion of non-native
species a critical conservation task (Gutiérrez et al., 2007; Phillips et al.,
2007). In both cases, understanding the drivers of population change is
essential to implementing effective conservation strategies, whether
they are designed to facilitate the recovery of endangered species, avert
further declines of threatened species, or control invasive species
(Caughley and Sinclair, 1994; Peery et al., 2004; Russell et al., 2017).
Population changes over time have typically been quantified using
costly and labor-intensive abundance estimation and demographic ap-
proaches (e.g., capture-recapture). However, the more recent develop-
ment of site occupancy modeling approaches has facilitated the im-
plementation of population monitoring programs based on detection/
non-detection data while taking into account imperfect detection
(MacKenzie et al., 2002, 2003; Tyre et al., 2003). A key consideration
for designing and implementing occupancy-based monitoring programs
involves determining what level of sampling effort will yield sufficient
statistical power to detect biologically meaningful changes in site oc-
cupancy and thus support robust inferences (Mackenzie and Royle,
2005).

Despite the common application of occupancy approaches to
monitor populations, statistical power to detect temporal trends and
management effects on site occupancy is low under typical sampling
designs and efforts (Rhodes et al., 2006; Popescu et al., 2012). Gains in
statistical power within an occupancy framework can be achieved by
increasing the number of sites sampled, the duration of the monitoring
program, the number of visits per site (secondary sampling periods) in
each primary sampling period, and detection probability (1 - the false
negative rate; Rhodes et al., 2006; Popescu et al., 2012; Steenweg et al.,
2016). However, the sampling effort required to achieve “acceptable”
statistical power (typically 0.80) to detect small changes with a viable
sampling design incorporating imperfect detection has not been estab-
lished (Popescu et al., 2012; for large declines see Rhodes et al., 2006).

Recent advances in passive-acoustic recording technologies have the
potential to increase the feasibility of detecting small changes in site
occupancy as part of landscape-scale population monitoring for
acoustically active species (Kalan et al., 2015; Shonfield and Bayne,
2017; Shonfield et al., 2018; Hill et al., 2018). Autonomous recording
units (ARUs) passively record sound for long periods of times (days to
months) and the resulting acoustic data can be analyzed to produce the
detection/non-detection information at the core of occupancy modeling
approaches (MacKenzie et al., 2002, 2003; Campos-Cerqueira and Aide,
2016). ARUs reduce the need for trained observers and potentially per-
survey costs, which could allow for more frequent and spatially ex-
tensive surveys than traditional observer-based approaches (Borker
et al., 2015; Shonfield et al., 2018; Hill et al., 2018). As a result, ARUs
have been used to survey a broad range of marine and terrestrial species
(Delport et al., 2002; Hartwig, 2005; Walters et al., 2012; Penone et al.,
2013; Helble et al., 2013). Furthermore, the performance of ARUs
compared to trained human observers in avian studies has been eval-
uated in a wide range of habitats and although the two approaches have
different advantages and disadvantages, inferences regarding para-
meters of interest are generally comparable (Zwart et al., 2014). While
bioacoustic approaches are rapidly gaining momentum as a research
tool, their capacity to detect small population changes with high sta-
tistical power as part of a landscape-scale monitoring program has not
yet been evaluated (Rhodes et al., 2006).

Both site-specific sampling considerations and acoustic data pro-
cessing procedures can influence detection probabilities and thus the
statistical power of an acoustics-based monitoring program (e.g., Helble
et al., 2013). From a sampling perspective, deploying more units for
longer secondary sampling periods can increase detection probabilities
(Hagens et al., 2018) and thus increase statistical power for detecting
changes in occupancy (Popescu et al., 2012). The effects of acoustic
analyses stem from the fundamental task of extracting target signals,
typically focal species vocalizations, from massive amounts of raw
audio data: if too few of the vocalizations that have been recorded are
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successfully extracted, detection will likely decrease. There are gen-
erally two stages of extraction: identifying potential target signals, or
regions of interest (ROI), and classifying those regions of time as either
true focal species vocalizations (i.e., detections) or non-detections (i.e.,
false alarms). Optimizing the identification process entails balancing
the proportion of all true target signals that are correctly identified as
ROI (i.e., recall; measured using a library of known calls) and the
proportion of ROI that truly represent focal species vocalizations (i.e.,
precision) (Mellinger et al., 2016). Choices that increase recall - such as
setting a low threshold for what constitutes a ROI — may increase de-
tection, but also tend to decrease precision and thus increase the
amount of processing time required to classify ROI. Managing trade-offs
during both acoustic analyses and sampling considerations that may
affect detection have important consequences for population mon-
itoring programs given the sensitivity of statistical power to detection
probabilities within a site occupancy framework (Popescu et al., 2012).

Here, we evaluated the extent to which acoustic detection/non-de-
tection data analyzed within a dynamic occupancy modeling frame-
work can be used to monitor populations at broad temporal and spatial
scales as an alternative to more labor-intensive demographic or ob-
server-based occupancy approaches. Dynamic occupancy models have
become a widely-used tool for monitoring populations because they
incorporate the processes of site colonization and extinction through
time (MacKenzie et al., 2003; Martin et al., 2010; Ahumada et al., 2013;
Comer et al., 2018). We first explored sampling efforts and detection
probabilities needed to detect population trends and potential effects of
landscape management activities with high statistical power. We then
used California spotted owls (Strix occidentalis occidentalis) and barred
owls (S. varia) in the Sierra Nevada, USA as a case study to evaluate the
extent to which changes site occupancy for the two species with dif-
ferent population dynamics can be monitored with passive-acoustic
surveys.

Spotted owls and barred owls are ideal model organisms for asses-
sing passive-acoustic surveys as a tool to monitor populations because
they both use vocalizations for pair bonding and territory maintenance
activities (Ganey, 1990; Van Lanen et al., 2011). Local spotted owl
populations are currently monitored using demographic methods
(Franklin et al., 1996), and these studies have provided considerable
insights into population dynamics within local study areas (Wiens et al.,
2014; Tempel et al., 2016; Jones et al., 2018). However, spotted owls
reside at the epicenter of landscape-scale forest management debates,
and are threatened by factors that transcend demographic study areas
and are difficult to manage, particularly impacts of the invasive barred
owl (Wiens et al., 2014). As a result of their westerly range expansion
over the last several decades, barred owls are now sympatric with
northern spotted owls (S. o. caurina) (Livezey, 2009) and are colonizing
the range of the California spotted owl in the Sierra Nevada (Keane,
2017). Barred owls are competitively dominant to spotted owls and are
believed to pose an existential threat to both subspecies (Gutiérrez
et al., 2007; Wiens et al., 2014). Therefore, a cost-effective monitoring
program with the statistical power to detect small population changes
in both spotted owls and barred owls at landscape scales and to detect
population responses of both species to management activities would be
an important conservation achievement. More broadly, as species range
shifts and action ecosystem management become more prevalent
(Dornelas et al., 2014; Suding et al., 2015), the framework for such a
program would provide a foundation upon which other studies could be
developed to provide insight into the population dynamics and re-
sponses to management of both threatened and invasive species at
previously unattainable spatial scales.

2. Methods
2.1. Estimating statistical power for a site occupancy monitoring program

Using simulations, we estimated statistical power to detect both
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Table 1

Input parameter values for simulation-based analyses conducted to estimate
statistical power to detect (i) management effects on local survival and (ii)
trends in occupancy based on a 10-year monitoring program employing a dy-
namic occupancy study design.

Parameter Scenario Values
Management and trend analyses
Detection probability General 0.4, 0.8
Spotted owl 0.5
Barred owl 0.67
Sites per year All 500, 1000, 1500
Visits per site All 2,3
Annual variation (CV) in colonization General 0.01
Spotted owl 0.01
Barred owl 0
Annual variation (CV) in survival All 0.04
Management analysis
Initial occupancy General 0.375
Spotted owl 0.43
Barred owl 0.09
Proportion of sites treated All 0.5
Proportional reduction in survival All 0.1, 0.3, 0.5
Trend analysis
Initial occupancy General 0.375, 0.667
Spotted owl 0.43
Barred owl 0.09
Annual change in occupancy General -0.02, -0.04
Spotted owl -0.02, -0.04
Barred owl 0.04

temporal trends in site occupancy as well as effects of generic, hy-
pothetical management activities (e.g. fuel reduction treatments to re-
duce fire risk in the Sierra Nevada, USA; Collins et al., 2011) on site
occupancy. Specifically, we simulated site occupancy datasets using
random but known properties, and ran dynamic occupancy using sev-
eral different parameterizations to evaluate statistical power. We did so
for a range of different plausible (i) initial site occupancy rates (ii)
detection probabilities, (iii) levels of sampling effort (number of sites
sampled, number of visits/site, and study duration), and (iv) effect sizes
(rates of yearly changes in occupancy and overall management impacts
on site occupancy) (Table 1). We simulated multi-season detection/
non-detection datasets following a robust sampling design with mul-
tiple secondary sampling periods (visits) in each primary sampling
period (e.g., year) as is typically done for many species (Kendall et al.,
1997). Simulated datasets were an expression of site occupancy dy-
namics as a state process based on (i) the probability of an occupied site
continuing to be occupied from one season to the next (i.e., site sur-
vival), and (ii) the probability of a site unoccupied in time t becoming
occupied in time t+1 (i.e., site colonization). We simulated occupancy
dynamics for sites occupied in year t using local (site) survival rather
than site extinction (i.e., site survival = 1 — site extinction), following
(Popescu et al., 2012), as survival is a demographic parameter com-
monly used in management and conservation applications. We simu-
lated local survival and colonization events for each site using Bernoulli
trials. Conditional on the true site occupancy state, we simulated the
observed occupancy state in each secondary sampling period based the
probability of detection (Royle and Kéry, 2007). We simulated 300 data
sets for each combination of initial occupancy, detection probability,
sampling effort, and effect size using program R 2.13 (R Core
Development Team, 2014), and quantified statistical power as de-
scribed below (see Appendix 1 for R code).

2.1.1. Simulation scenarios
Under equilibrium, the probability that site i is occupied can be
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expressed as:

__ %
wl }’i+€i

where ¢; and y, are site-specific probabilities of extinction and coloni-
zation, respectively. When simulating datasets to evaluate temporal
trends in occupancy, we set ¢, to 0.375 or 0.667 to evaluate the ability
to detect site occupancy trends in uncommon and common species,
respectively. Under equilibrium, ¢, = 0.375 yields ¢; = 0.20 (i.e., local
survival = 0.80) and ¥ = 0.12, and 3, = 0.667 yields ¢ = 0.20 (i.e.,
local survival = 0.80) and 3 = 0.40. We simulated 2% and 4% annual
declines in site occupancy which reflected 17% and 31% total declines,
respectively, over a 10-year monitoring program. Detecting of declines
of these magnitudes can have important policy implications (IUCN,
2012), and provide opportunities to arrest declines before they sig-
nificantly threaten population and species viability. We limited ana-
lyses to a 10-year monitoring program given that longer programs (e.g.,
20 years) are less likely to garner support during project development.
In addition, we ran sets of simulations with 0% reduction in local
survival and colonization to estimate the Type I error rates, as these
rates may be sensitive to different model parameterizations (Popescu
et al., 2012).

Directly projecting temporal trends in occupancy rates in simulated
datasets was not possible given that occupancy histories were generated
using a dynamic occupancy approach where occupied sites became
unoccupied according to & and unoccupied sites became occupied ac-
cording to y. Therefore, we simulated annual increases in extinction
rates (decrease in local survival) and decreases in colonization rates
that were expected to yield 2% and 4% annual declines in occupancy.
Simple recursive calculations indicated that for an initial occupancy of
¥, = 0.375, an annual increase of 2.3% in extinction coupled with an
annual decrease of 2.3% in colonization led to a 2% annual decline in

the mean annual change in site occupancy (4,) over a 10-year simu-
lation. For 3, = 0.667, the yearly extinction and colonization rates
changed 3.2% annually to achieve the same decline. To achieve a 4%

decline in the mean annual change in site occupancy (4,) with an initial
occupancy of 3, = 0.375, we used an annual increase of 4.2% in ex-
tinction coupled with an annual decline of 4.2% in colonization; for
¥, = 0.667, the yearly rates of change in extinction and colonization
were 5.9%. However, annual variation in site occupancy occurs in
natural populations and will reduce power to detect changes in occu-
pancy. Therefore, we allowed local survival and colonization in each
year to vary by adding a normally distributed random value with
mean = 0 and standard deviation (SD) = 0.04 and 0.01, respectively,
which represented the approximate level of variation in these para-
meters for spotted owls (Tempel et al., 2016).

We estimated statistical power assuming 500, 1000, or 1500 sites
were surveyed per year with either 2 or 3 visits per site in each year of
the study. We focused on large numbers of sampling sites because of our
emphasis on landscape-scale monitoring of widely distributed species.
We limited our exploration to a relatively small number of visits per
year given the inevitable constraints associated with visiting many
dispersed sites on multiple occasions. Finally, we estimated statistical
power assuming detection probability was 0.40 or 0.80 to bracket a
reasonable range of values that could affect the ability of a monitoring
program to assess population trends. Variation in several not-simulated
factors could affect detection, including focal species’ intrinsic vocali-
zation rates, number of ARUs deployed and duration of deployment,
choices affecting the precision—recall trade-off made during the target
signal extraction phase of acoustic analyses, and other hardware and
software features, but were beyond the scope of these simulations.

When estimating statistical power to detect management effects on
local survival, we modeled occupancy histories assuming a true equi-
librium occupancy state in t = 1, where ¢, = 0.375. Thus, in our case,
g = 0.20 (i.e., local survival = 0.80) and y, = 0.12 in the absence of
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management. We simulated 10-year occupancy datasets with 10, 30
and 50% reductions in local survival and, for simplicity, assumed
management actions did not affect site colonization. This represents a
generic case in which management actions are detrimental to a focal
species while perhaps successful by other metrics (e.g., Fraser et al.,
2017; Wood et al., 2018), or an invasive species removal program
(Hauser and McCarthy, 2009). However, as described below (2.1.2), we
were also equally capable of detecting management-driven increases in
occupancy (Popescu et al., 2012), representing the success of a con-
servation-oriented management action. For each management effect
size, we estimated statistical power assuming 50% of the sites were
actively managed over the life of a 10-year study period. We simulated
management effects in a staggered manner, where an equal number of
sites was subject to active management each year under two scenarios:
25% or 50% of all sites managed, because management activities are
unlikely be conducted at large numbers of sites in a given year. Any
given site i was only subject to management once and the management
effect persisted at those sites until the end of the study. As with the
population trends analysis, we simulated data sets assuming 500, 1000
or 1500 sites were surveyed per year, 2 or 3 visits per site each year,
and that detection probability was 0.4 or 0.8.

2.1.2. Testing hypotheses with simulated data

Package unmarked 0.9-2 (Fiske and Chandler, 2011) only fits dy-
namic occupancy models parameterized with the initial site occupancy
rate, extinction, and colonization, and does thus not directly allow for
the testing of trends in site occupancy rates over time. Therefore, we fit
initial occupancy, colonization, and extinction models to each simu-
lated dataset and estimated derived annual occupancy rates (z,,b\[) re-
cursively (MacKenzie et al., 2003; Tempel and Gutiérrez, 2013). We
then estimated annual rates of change in occupancy as 4, = ¢, /% and

the geometric mean of the rate of change as 1, = (Hlei[)%. We esti-

mated sampling variance associated with A, using the delta method
(Powell, 2007) based on 25 non-parametric bootstraps of the occupancy
model fitted in package unmarked. We decided to run 25 bootstraps per
simulation because fitting the occupancy models was time-prohibitive
for large number of sites (n = 1500), and because the outputs for
n =100 and n = 500 bootstraps for a range of models did not yield
different results outputs for n = 25 bootstrapi When testing for tem-

poral trends in site occupancy, we compared 4, to 1 (i.e., stationarity)

and inferred significance if the upper 95% confidence limit for A,
was < 1 (Tempel and Gutiérrez, 2013). We calculated statistical power
as the proportion of simulations (out of 300) which met our significance
criterion. By only considering tests to be statistically significant when

A < 1, we effectively conducted a one-tailed test. By effectively set-
ting a = 0.05, we provided estimates of power to detect overall changes
in occupancy at the landscape level, thus allowing for the possibility of
testing of increases in occupancy as part of the actual monitoring pro-
gram.

We tested for management effects on local survival rates using
BACI-structured dynamic occupancy models following the framework
developed by Popescu et al. (2012), a process facilitated by the ability
to fit occupancy models to a large number of simulated datasets in the
package unmarked. Using the colext function, we first indicated Control
and Impact (i.e., management) sites with a site-specific variable, Si-
teMgmt = ‘Control’ and ‘Impact’, respectively. Next, we allowed site
survival and colonization to vary across seasons (years) using seasonal
site-specific variables, Season = “1”, “2,” ... “N”. Thus, the SiteMgmt
factor had only two levels, whereas the Season variable had as many
levels as there were seasons in the study (n = 10). We then indicated
site-season combinations that represented impact sites after manage-
ment application with a seasonal site-specific variable, SeasonSi-
teMgmt. This variable had level Control for the three subsets of the data
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set that were not subject to management (i.e., Control-Before, Con-
trol-After, and Impact-Before), and level Impact for the subset that
were subject to management (i.e., Impact-After). SeasonSiteMgmt
provided flexibility to fit models where management actions were
conducted for in different years across sites. To test for a management
effect, a model representing the (alternative) hypothesis of a manage-
ment effect on site survival was represented as [e(Si-
teMgmt + Season + SeasonSiteMgmt)] and compared to the null model
of no management effect expressed as [e(SiteMgmt + Season)]. While
site colonization was held constant in the simulated dataset, we used
the most general colonization model when testing for changes in site
extinction [y(SiteMgmt + Season SeasonSiteMgmt)] given that changes
in colonization are of management interest and should be evaluated as
part of an actual monitoring program (Ringold et al., 1996).
Maximum likelihood methods are used to estimate parameters for
initial occupancy, detection, extinction and colonization; as such,
likelihood ratio tests (LRT) are useful for testing hypotheses regarding
the relative level of support for certain parameters using nested models
(MacKenzie et al., 2005; Royle and Dorazio, 2008). Nesting means that
a less general model (associated with the null hypothesis Hy) can be
obtained by restricting some parameters of a more complex model
(associated with the alternative hypothesis H,). The likelihood ratio is:

_ LG
L(6aly)

The likelihood ratio statistic is then computed as —2 log(A), and if
the null is true, it asymptotically follows a chi-squared distribution,
xz(v), where degrees of freedom v is the difference in the number of
parameters to be estimated under H, and Hy (Royle and Dorazio, 2008).
If Hy rejection occurs, it suggests that the more general model better
describe the ecological process, and thus the additional effects have a
significant impact on estimating model parameters. We calculated sta-
tistical power as the proportion of simulations (out of 300) for which H,
was rejected.

2.2. Monitoring spotted owls and barred owls with passive-acoustic surveys

2.2.1. Fieldwork and bioacoustics

We conducted passive-acoustic surveys for spotted owls and barred
owls using ARUs deployed in the northern Sierra Nevada, USA, from
May through August of 2017, a period that combined safe site access
and relatively high owl vocal activity (Ganey, 1990). Seventy-four
hexagonal grid cells 400-ha in size (i.e., sites), the approximate size of
spotted owl territories in that region (Tempel et al., 2016) and likely
somewhat larger than barred owl territories (Wiens et al., 2014), were
each surveyed twice. Sites were randomly located in the Lassen and
Plumas National Forests, but were non-contiguous to minimize non-
independence among sites (Fig. 1). Each survey consisted of a 5- to 7-
night deployment of 2 or 3 ARUs, and surveys were separated by at
least one month. ARUs were deployed within each cell without
knowledge of spotted owl occupancy history. ARUs (Swift recorder,
Bioacoustics Research Program, Cornell Lab of Ornithology) had one
omni-directional microphone and were programmed to record con-
tinuously at a sample rate of 32kHz, bit depth of 16, and gain of
+38dB to an internal SD card.

We used the Template Detector feature of Raven 2.0 (Bioacoustics
Research Program, Cornell Lab of Ornithology, 2017) to extract target
signals from the acoustic data, in this case spotted owl and barred owl
territorial vocalizations. Briefly, the template detector identifies regions
of interest (ROI) by matching patterns in the data to user-defined
templates (Mellinger and Clark, 2000), in our case high-quality re-
cordings of territorial calls we collected within and outside our study
area (Fig. 2). Because occupancy data requires only one true positive
detection (see 2.2.2), we optimized our templates to identify at least
one vocalization from any given bout of calling bout-level recall was
high for both species (Rg_gotted owt = 0.96; Rp.parred owt = 0.94; Fig. 3; see
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Fig. 1. The Lassen and Plumas National Forests in the northern Sierra Nevada, in California, USA, with sampling sites shown in black at three spatial scales.

Appendix 2 for a complete description of the template detector devel-
opment process). Therefore, we were confident that detection was not
substantially influenced by missed vocalizations. We applied both
species’ templates to all acoustic data collected from 20:00 to 06:00
local time at the 74 survey sites to identify spotted owl and barred owl
vocalizations.

2.2.2. Occupancy modeling

For each species we registered a detection for a site during a given
secondary sampling period if any of the ARUs deployed there recorded
a focal species vocalization on at least one night. Possible detection
histories were thus coded as 0-0, 1-1, 0-1, and 1-0. We used single-
species, single-season occupancy models without site covariates (i.e.,
uniform occupancy and detection) to estimate the initial occupancy and
detection probabilities needed to parameterize simulation-based power
analyses for spotted owl and barred owls. We did not test more complex
models because including site covariates in the simulations would have
vastly increased their complexity. These analyses were conducted using
the package unmarked (Fiske and Chandler, 2011) in program R (R Core
Development Team, 2014).

2.2.3. Statistical power analyses

We estimated the statistical power to detect both temporal trends in
and impacts of management on site occupancy for spotted owls and
barred owls using estimates of occupancy and detection probabilities
derived from the analyses described above (2.2.2). Specifically, we
treated estimates of site occupancy as initial occupancy rates and as-
sumed that estimated detection probabilities would be constant through
the simulated 10-year monitoring program. Following the procedures
described above (2.1.2), we estimated statistical power to detect a si-
mulated 2% annual decrease in spotted owl occupancy over 10 years,
which is consistent with current estimates (Jones et al. 2018), from
¥, = 0.43, by specifying a 2.4% annual increase in extinction and 2.4%
annual decrease in colonization from initial values of 0.80 and 0.15,
respectively, which yielded the current, acoustic-based estimate of oc-
cupancy under the assumption of equilibrium (see 2.2.2). We estimated
statistical power to detect a simulated 4% annual increase in barred owl
occupancy over 10 years from %, = 0.09, by specifying a 1% annual
decrease in extinction and a 11% annual increase in colonization from
initial values of 0.90 and 0.01, respectively, which yielded the current,
acoustic-based estimate occupancy (see 2.2.2). Our rationale for testing
for increases in barred owl site occupancy was to determine sampling
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Fig. 2. Spectrograms of spotted owl vocalizations with high (a, c¢) and low (b, d) signal strength, and high (c, d) and low (a, b) noise. These vocalizations were all
identified by the spotted owl template group; signal (a) is qualitatively similar to the merged spotted owl template vocalization (Hann window, 3 dB

bandwidth = 21.2 Hz, 4096-sample DFT).

effort needed to detect population growth in the absence of manage-
ment intervention. We also estimated statistical power to detect 0, 10,
30, and 50% reductions in site survival for both owl species. Though
this framework was designed to detect management-driven declines, it
also had the capability to detect increases in occupancy (Popescu et al.,
2012). We did not simulate yearly variation in local survival and co-
lonization for barred owls because the models failed to converge when
additional variation was added, likely because of the low initial occu-
pancy rate. Our rationale for testing for reductions in site survival for
barred owls was to determine sampling needs to detect the effects of
management actions, should they be employed, to limit the abundance
and spread of this invading species under a BACI experimental design.
For all analyses, we simulated monitoring programs with 500, 1000, or
1500 sites, and with 2 or 3 sampling periods to provide a real-world
example of the range of possibilities simulated in Section 2.1 Detection
probability was 0.50 for spotted owls and 0.67 for barred owls.

3. Results
3.1. Statistical power

3.1.1. Power to detect trends

Statistical power to detect 4% annual declines (31% total declines
over a 10-year period) in site occupancy was high, always exceeding
0.80 when detection probability was 0.4 and always exceeding 0.90
when detection probability was 0.8 (data not shown). Statistical power
to detect 2% annual declines in site occupancy (17% total decline over a
10-year period) increased as a function of the number of sites surveyed,
numbers of visits, detection probability, and initial occupancy (Fig. 4a).
Statistical power to detect 2% declines was particularly sensitive to
initial site occupancy with, for example, power increasing from 0.37 to
0.78 when initial occupancy was increased from 0.38 to 0.67 with 500
sites visited 3 times each and a detection probability of 0.40. Indeed,
statistical power to detect a 2% annual decline in site occupancy did not
reach 0.80 when initial occupancy was 0.375 and detection probability
was 0.4 (Fig. 4a); moreover, power to detect a 2% annual decline when
initial site occupancy was 0.375 required 1500 sites visited 3 times each
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Fig. 3. Performance of the spotted owl template at different minimum
Template Detector scores. Recall (dashed blue lines) decreased as precision
(orange line) increased; bout-level recall (dark blue), or the proportion of bouts
of calling in which at least one vocalization was correctly identified, was higher
than call-level recall (light blue). The number of potential signals of interest per
hour (dark yellow lines, each of which represents survey sites from a different
time/place in the study) decreased as precision increased. We evaluated all
potential signals of interest (i.e., instances that matched the spotted owl tem-
plate) with a score of 0.80 or greater.

even when detection probability was 0.80 (Fig. 4b). Statistical power to
detect 2% annual declines in site occupancy was > 0.80 and often >
0.90 with an initial site occupancy of 0.67, except when surveys were
limited to 500 sites visited twice and detection probability was 0.40
(Fig. 4a and b). In all cases the simulated declines matched the declines
predicted by the dynamic occupancy models, denoting good model fit.

3.1.2. Power to detect management effects

As expected, statistical power to detect hypothetical management
effects, manifested as reductions in local survival at managed sites,
increased with the number of sites surveyed, numbers of visits, and
detection probabilities (Fig. 4c and d). Statistical power to detect
management effects was very high (0.91-1.00) when local survival was
reduced at sites subject to management by 50% for all combinations of
the number of sites surveyed, numbers of visits, detection probabilities,
and proportion of sites subject to management (data not shown). Sta-
tistical power to detect a 30% reduction in local survival was also high
(> 0.80) for all sampling schemes considered, except when only 25% of
sites were subject to management, the number of sites surveyed was
small (n =500) and detection probability (p) was low (p = 0.40;
Fig. 4c). In contrast, statistical power to detect 10% reductions in local
survival was low, reaching a maximum of 0.68 when 1500 sites were
surveyed 3 times each and detection probability was 0.8 (Fig. 4d). In
some cases, increasing the number of sites from 500 to 1000 or from
1000 to 1500 resulted in considerable increases in statistical power
(e.g., 0.20-0.27), but gains were small when the number of visits per
site was increased from 2 to 3 (Fig. 4c and d). For all sampling schemes
considered, the proportion of simulated data sets yielding statistically
significant effects of management even when no management impacts
on local survival were simulated (nominal Type I error rate) was ap-
proximately 0.05.
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3.2. Surveying spotted and barred owls

3.2.1. Occupancy and detection estimates

We deployed 2-3 ARUs per site (approximately 50% of the sites had
2 ARUs and 50% had 3 ARUs) for an average of 5.7 nights per survey at
the 74 sampling sites. Spotted owl vocalizations were identified in the
data at 24 sites (naive occupancy = 0.32), and barred owl vocalizations
were identified in the data at 6 sites (naive occupancy = 0.081). Recall
decreased as precision increased for spotted owls (Fig. 3), but bout-level
recall remained very high for both species (Table A1). There was sub-
stantial variation in the rate of ROI per hour, and as expected that rate
declined as precision increased (Fig. 3).

Based on single-season occupancy models, in which we assumed
uniform occupancy and detection probabilities, we estimated that
spotted owl site occupancy and detection probabilities were 0.43 and
0.50, respectively (Standard Errors = 0.10 and 0.11). As detection
probabilities apply to secondary sampling periods, our detection esti-
mate translated to a cumulative probability of 0.75 with two secondary
sampling periods per season. We estimated that barred owl site occu-
pancy probability was 0.09 (SE = 0.040), indicating that barred owls
were approximately five times less abundant than spotted owls in our
study area. We estimated that barred owl detection probability was
0.67 (SE = 0.18), which translated to a cumulative probability of 0.89
across two visits.

3.2.2. Statistical power to detect spotted and barred owl occupancy trends

Statistical power to detect a 2% annual decline in site occupancy for
spotted owls increased with both the number of sites sampled and the
number of visits per site (Fig. 5a). Statistical power = 0.80 was only
achieved when 1500 sites were visited 3 times per season. However,
statistical power approached this level when 1000 sites were visited 3
times per season or 1500 sites were visited 2 times per season
(power = 0.79 and 0.77, respectively). Statistical power for these levels
of sampling efforts translated to 0.87 and 0.86, respectively, when we
conducted post-hoc power analyses for a 12-year monitoring program.
Statistical power to detect a 4% annual increase in site occupancy for
barred owls increased considerably with the number of sites sampled
and, to a lesser degree, the number of visits per site (Fig. 5b). Achieving
statistical power = 0.80 required surveying at least 1000 sites 2 times
per year.

4. Discussion

One of main challenges when monitoring threatened species over
large spatial extents is to detect small but biologically meaningful
changes in population size (Rhodes et al., 2006; Steenweg et al., 2016).
Such assessments become even more challenging when novel threats,
such as the spread of invasive species or effects of landscape manage-
ment actions (e.g., forestry), have the potential to affect background
population dynamics. Our simulation analyses showed that high sta-
tistical power (> 80%) to detect small annual declines in site occu-
pancy (2%) and modest reductions in site survival (30%) resulting from
management activities can be achieved by collecting detection/non-
detection data at large numbers of sampling sites (500-1500). In con-
trast, previous assessments of statistical power were either limited to
sample sizes that yielded low power to detect potentially important
changes in species site occupancy rates (Rhodes et al., 2006; Popescu
et al., 2012) or assumed that detection was perfect (i.e., 1). Our field
effort demonstrated that emerging bioacoustic methods facilitate the
ability to cost-efficiently monitor a vocally active species at large spatial
scales. The collected data provides a powerful means for monitoring
changes in population levels of interest over space and time within a
dynamic occupancy modeling framework. Notably, the statistical power
analyses conducted for spotted and barred owls were based on esti-
mates of site occupancy and detection probabilities derived directly
from acoustic surveys for these species. Thus, our results indicated that
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it is possible to detect small changes in populations — both trends and
responses to management — of relatively common, but declining species
(Tempel et al., 2016), as well as relatively rare, but invading species
using passive-acoustic approaches.

The number of sites needed to detect small annual population de-
clines (from 500 to 1500) may seem ambitiously large in the context of
resources typically available to monitor populations and species, but
large-scale monitoring programs using human observers to collect
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detection/non-detection data suitable for occupancy modeling can in-
volve surveys of many more sites (Hines et al., 2014) and the cost of
ARUs is rapidly decreasing (Hill et al., 2018). Passive-acoustic surveys
can readily be scaled up to the levels we simulated: while we only
surveyed 74 sites on two occasions for the occupancy analyses pre-
sented here, we are currently surveying 350 sites three times each as
part of a larger-scale pilot study. Processing this volume of data
(~168,000h of nighttime audio data, compared to the ~33,700h
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Fig. 5. Statistical power to detect 2% annual declines in site occupancy for spotted owls (a) and 4% annual increases in site occupancy for barred owls (b) as a
function of the number of sampling sites and surveys per site when detection probability is 0.5 and 0.67, respectively, over a 10-year monitoring study. Initial

occupancy was 0.43 for spotted owls and 0.09 for barred owls.
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analyzed here) is greatly facilitated by the capacity to extract focal
species vocalizations (i.e., identify ROI and classify them as either de-
tections or false alarms) during the field season as the data is collected.
Achieving this level of spatial coverage and survey intensity with call-
based surveys would entail substantial costs, logistical challenges, and
safety concerns. Practically, this demonstrates the efficacy of bioa-
coustics as a cost-effective approach to landscape-scale surveys (see
also: Hill et al., 2018). Ecologically, it broadens the possibilities for
monitoring across broad ecological gradients (Mennitt and Fristrup,
2016). Thus, spatially-extensive monitoring programs based on passive-
acoustic surveys have the potential to provide considerable insight into
the ecological processes that drive spatial and temporal variation in
populations, in addition to estimates of temporal trends and manage-
ment effects.

4.1. Strategies for increasing statistical power within an acoustic survey
framework

As expected, statistical power to detect changes in site occupancy
increased with detection probability; developing survey methods and
bioacoustic approaches that result in high detectability will thus in-
crease the strength of inferences supported by occupancy-based mon-
itoring programs. Patterns in the intrinsic vocalization rates of the focal
species — which are likely an unknown but potentially measurable
parameter (e.g., through tagging) — will determine the relative im-
portance of those factors (Hagens et al., 2018). In landscape-scale
monitoring efforts, ARUs are generally deployed with little knowledge
of focal species occupancy at any given site. Consequently, detection is
likely to be sensitive to sampling considerations such as the duration of
secondary sampling periods and the number of ARUs deployed per site
when vocalization rates are low (but sufficiently high for passive-
acoustic monitoring to be a reasonable methodology). Of course, with a
fixed budget, increasing both survey duration and the number of units
deployed will come at the expense of other aspects of sampling effort,
such as the number of surveys per site and the number of sites surveyed.
While reducing the number of sites can reduce statistical power to
detect changes in site occupancy considerably, in our simulations
power was less sensitive to the number of surveys per site (Figs. 4 and
5). Thus, increasing detection probabilities via longer survey periods or
deploying more units can be an effective way to increase statistical
power without increasing project costs.

Alternatively, managing the precision—recall trade-off (and thus
the false alarm rate) can be an effective strategy for increasing detection
probabilities. Generally, maximizing recall will minimize the likelihood
of the species going undetected during a given secondary sampling
period. Increasing recall can be as simple as accepting lower precision
and thus spending more effort classifying ROI (i.e., moving left along
the x-axis in Fig. 3). Such a strategy, however, can quickly become
intractable. For example, increasing recall from 0.60 to 0.67 in our
spotted owl training dataset would have increased the rate of ROI/hour
from 0.25 to 0.43. Because we had > 37,000 h of data, that modest
improvement in recall would have come at a very high cost in terms of
time spent classifying ROI. The process of classifying ROI as detections
or false alarms can be highly automated (Chambert et al., 2017; Banner
et al., 2018), but may be hindered the fact that landscape-scale mon-
itoring results in considerable heterogeneity in the types and quantity
of sounds in sampled soundscapes. For example, proximity to human
settlement or resource extraction may suppress biological sounds (e.g.,
reduced “dawn chorus”; (Burivalova et al., 2018), while introducing
many others (e.g., barking dogs, vehicles; see the range of ROI/hour in
Fig. 3). The magnitude of the precision—recall trade-off can be at least
partially mitigated by investing the time to develop high-quality tem-
plates and testing their performance across the sampling array.

Implementing landscape-scale monitoring programs employing
passive-acoustic surveys entails a range of choices in survey design
(e.g., duration of secondary sampling periods) and acoustic analyses
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(e.g., precision—recall trade-off) which will need to be addressed
within the context of project objectives and constrains. Statistical power
analyses such as those we conducted can help inform those choices after
pilot work provides initial estimates of occupancy and detection.
Combining those parameters with the population changes that man-
agers want to detect (e.g., a 2% annual decline, or the effect of man-
agement activities that result in changes in local survival) can help
refine the survey design. The number of surveyed sites or number of
secondary sampling periods could be increased to meet project objec-
tives, or methods of increasing detection could be prioritized.

4.2. Implications for monitoring the invasive barred owl

Spotted owl populations have been monitored throughout its wes-
tern United States range for several decades using field-intensive de-
mographic studies of marked individuals within study areas that are
typically a few hundred km? in size (Seamans et al., 1999; Wiens et al.,
2014; Tempel et al., 2016). These studies have provided a wealth of
information related to population trends, the ecological processes that
influence population dynamics, and catalyzed the development of de-
mographic methods that have become the cornerstones of population
analyses in ecological research (Noon and Franklin, 2002; Gutiérrez,
2008). However, they have some potential weaknesses. First, the de-
clining status of spotted owl populations throughout their ranges,
particularly where barred owls have invaded, has limited the ability to
mark owls, thus undermining a fundamental methodological require-
ment. Second, spotted owl demographic studies only encompass a
fraction of the species’ range and were non-randomly selected, limiting
the ability to draw inferences about population trends and dynamics
beyond study area boundaries (Franklin et al., 2004). This is particu-
larly problematic in the face of landscape-scale processes such as forest
management and the barred owl invasion. Third, survey methods were
designed to locate and identify spotted owls (Franklin et al., 1996);
conducting additional surveys to locate barred owls incurs additional
costs and reductions to spatial coverage (Wiens et al., 2014). Yet un-
derstanding barred owl population trends will be critical for spotted
owl conservation (Gutiérrez et al., 2007; Wiens et al., 2014). Passive-
acoustic surveys provide an opportunity to monitor spotted owl and
barred owl site occupancy at larger spatial scales than demographic
studies. In the case of California spotted owls, this potentially includes
the entire Sierra Nevada, which harbors the largest population of this
subspecies. Assuming an appropriate sampling design, estimates of site
occupancy rates can reasonably be inferred for the entire population.
Moreover, passive-acoustic surveys allow for the simultaneous mon-
itoring of both owl species, including population trends, responses to
management, and interspecific interactions.

A key consideration when using passive-acoustic surveys to monitor
spotted and barred owls is the potential for detecting of individuals at
more than one sampling site and thus upwardly biasing estimates of
occupancy (Berigan et al., 2018). Importantly, this phenomena may
occur particularly frequently in declining populations (where occu-
pancy rates are low) and following disturbance events that displace
resident individuals (Berigan et al., 2018). The potential for this type of
false positive detection in spotted and barred owls is increased in pas-
sive-acoustic surveys because the precise location of the detection is
uncertain and the identity of the detected individual is unknown.
However, several practical measures can be taken to reduce the fre-
quency of false detections and their impacts on estimates of site occu-
pancy. First, sampled sites can be constrained in space such that they
are separated by a sufficient distance to reduce the likelihood a site is
visited by individuals from more than one pair (e.g., based on GPS tag
data). Second, acoustic data can be constrained to include only time
periods when false detections are relatively unlikely, in the case of owls
around dawn and dusk when they typically are near their activity
centers (i.e., nesting and roosting sites). Third, it may be possible to
identify individuals based on their vocal characteristics (Delport et al.,
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2002; Rognan et al., 2009; Odom et al., 2013). This could allow wide-
ranging individuals to be identified and their detections attributed to a
single site (Berigan et al., 2018). It could also help address another
potential shortcoming of occupancy-based monitoring program: that
site occupancy may be less sensitive to population perturbations than
demographic measures such as survival and recruitment rates
(Rockweit et al., 2017). Vocal identity could be used to test for site
turnover and other demographic parameters that are impossible to es-
timate in traditional occupancy approaches with unmarked individuals.
These considerations must be carefully considered and addressed in
order to minimize potential biases if landscape-scale acoustic mon-
itoring programs are to achieve their demonstrated potential.

4.3. Conclusions

Passive-acoustic surveys can provide a rigorous approach for mon-
itoring changes in populations of declining or invasive species within a
site occupancy framework at broad spatial scales. They also have con-
siderable potential to provide insight to effects of management actions
on focal species. Although acoustic monitoring systems do not currently
allow robust automatic identification of individuals, the potential for
doing so is present if species have individual-specific vocalizations and
these are quantified. Thus, passive-acoustic monitoring has the poten-
tial not only to capture community dynamics at landscape scales but
also to capture demographic change should “vocal signature” become a
surrogate for mark-recapture of individuals. Furthermore, refinements
in bioacoustic approaches that allow efficient simultaneous identifica-
tion of multiple species can provide a framework for monitoring entire
biological communities (Shonfield et al., 2018; Kahl et al., 2018), not

Ecological Indicators 98 (2019) 492-507

just a few focal species. When this occurs, the framework we present
here will allow managers to rapidly assess the statistical power at-
tainable for each species: systematic and statistically robust monitoring
of entire faunal communities at a landscape scale within a single unified
framework may become a reality.
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Appendix 1: R code for simulating treatment effects on local survival, trends in occupancy, and models fitted with package ‘unmarked’

1. R code for simulating occupancy data (detection/non-detection) using treatment impacts in a Before-After Control-Impact framework with

treatments implemented in a staggered manner.

dataset < - function (phi_T, psil, nyear, n_sites, site_T, n_vis, phi, sd.phi, r, sd.r, p) {

### The following parameters are given to the function:

### phi_T = decrease in local survival following treatment

### psil = initial occupancy

### nyear = number of years or study seasons

### n_sites = number of sites

### n_vis = number of visits per site per year (or season)

### phi = local survival in year 1

### sd.phi = sd of random normal variable introducing a Season effect
### on local survival

### r = colonization in year 1

### sd.r = sd of random normal variable introducing a Season effect
### on colonization

### p = probability of detection

### Define matrix tocc (true territory occupancy state)
tocc < - matrix(rep(0, nyear*n_sites), ncol = nyear)
tocc < - as.data.frame(tocc)

names(tocc) < - paste(“t”, 1:nyear, sep="“")

### Define the matrix obsocc that contains the observations. The first j
### columns will contain observed occupancy states for the first year on
### the 1...j visits, the j + 1 column will contain the observations of
### the first visit in the second year, and so forth.

obsocc < - matrix(rep(0, nyear*n_sites*n_vis), ncol = (nyear*n_vis), dimnames = list(paste(“site”, 1:n_sites, sep =“”), paste(“Yr”, rep(1:nyear, each = n_vis), “v

obsocc < - as.data.frame(obsocc)

### simulate seasonal effects on local survival and colonization(using an
### additive term on the logit scale drawn from N(0,sd.phi) and N(0,sd.r)
### year effects on survival

logit.phi.mean < - qlogis(phi)

year.effect.phi < - rnorm((nyear-1), 0, sd.phi)

phi_year < - plogis(logit.phi.mean + year.effect.phi)

### year effects on colonization
logit.r.mean < - qlogis(r)

year.effect.r < - rnorm((nyear-1), 0, sd.r)
r_year < - plogis(logit.r.mean + year.effect.r)
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### Simulate tocc and obsocc from t = 1 to t = nyear
### First use the Control paramater values for all sites
for(i in 1:n_sites) {

tocc[i,1] = rbinom(1, 1, psil)

obsocc[i,1:n_vis] = rbinom(n_vis, 1, tocc[i,1]*p)

### the first transition (yrl to yr2) is parameterized with the initial phi
### and r values
for(t in 2:nyear) {
if (toce[i,t-1] == 1) {
tocc[i,t] < - rbinom(1,1,phi year[t-1])
} else if (tocc[it-1] == 0){
tocc[i,t] < - rbinom(1,1,r_year[t-1])
}
for(j in 1:n_vis) {
obsocc[i,((t-1)*n_vis) +j] < - rbinom(1,1,tocc[i,t]*p)
}
¥
}

### Then simulate the impact of the experimental treatment on local survival
### in the Treatment subset of matrices tocc and obsocc using a staggered
### treatment; equal number of sites treated per year; last year does not
### receive a treatment

site_T_year = round(site_T/(nyear-2))

### loop through the sites for first treatment year
for(i in 1:site_T year) {
for(tt in 2:nyear) {
if (toce[i,tt-1] == 1) {
tocc[i,tt] < - rbinom(1,1,(phi_year[tt-1]*(1-phi_T)))
} else {
tocc[i,tt] < - rbinom(1,1,r_year[tt-1])
}
for(j in 1:n_vis) {
obsocc[i,((tt-1)*n_vis) +j] < - rbinom(1,1,tocc[i,tt]*p)
}
}
}

### apply the treatments for sites for subsequent years (no treatment applied
### in last year)
for(k in 1:(nyear-3)) {
for(i in (k*site_T_year+1):((k + 1)*site_T_year)) {
for(tt in (k + 2):nyear) {
if (tocc[i,tt-1] == 1) {
tocc[i,tt] < - rbinom(1,1,(phi_year[tt-1]*(1-phi_T)))
} else {
tocc[i,tt] < - rbinom(1,1,r_year[tt-1])
}
for(j in 1:n_vis) {
obsocel[i,((tt-1)*n_vis) +j] < - rbinom(1,1,tocc[i,tt]*p)
}
}
}
}

### Add a column to observed data for site type (treated or non-treated)
obsocc$Treat = factor(c(rep(‘Treat, site_T _year*(nyear-2)), rep('Control', n_sites-site_T_year*(nyear-2))))

### Create the matrix of seasonal site covariates Year and Control/Treatment.
### IMPORTANT ###: Occupancy at t = 1 is psil, so there are (nSeason-1)
### transitions between seasons for modeling colonization and extinction
### The function colext (Fiske and Chandler, 2011) requires the full set of
### parameters (nyear), but the last column of the matrix is unnecessary
### for modeling colonization and extinction. Therefore we fill the last

### column (i.e., last year) with the attribute ‘Null’.

### Create a matrix of yearly site covariates containing Year as factor

years < - matrix(rep(seq(1:(nyear-1)), n_sites), ncol = nyear-1, byrow = T,

dimnames = list(paste(“site”, 1:n_sites, sep =“"), paste(“Yr”, rep(1:(nyear-1)), sep="“")))
yrs.Junk < - matrix(rep(“Null”, n_sites*1), ncol = 1)

years < - cbind(years,yrs.Null)

colnames(years) < - paste(“Yr”, rep(1:nyear), sep="“")

years < - as.data.frame(years)

years < - data.frame(lapply(years, as.factor))

### Create a matrix of SeasonSiteTreat variables (levels “Treat” / “Control”)
### start with empty matrix
Control < - matrix(rep(0, n_sites*(nyear-1)), ncol = nyear-1)

### assign Treatment (1) and Control (0) values to each site and year
### combination using code similar to implementing staggered treatments

### loop through the sites for first treatment year
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for(i in 1:site_T year) {
for(tt in 2:(nyear-1)) {
Control[i,tt] <-1
}
}

### loop through the sites for subsequent treatment years
for(k in 1:(nyear-3)) {
for(i in (k*site_T_year+1):((k + 1)*site_T_year)) {
for(tt in (k + 2):(nyear-1)) {
Control[i,tt] <-1

}
}
}
### replace 0 and 1 woth Control and Treatment
Control[Control == 0] < - “CONTROL”
Control[Control == 1] < - “TREAT”

### add value Null for last column of SeasonSiteTreat
trt.Null < - matrix(rep(“Null”, n_sites*1), ncol = 1)

### combine data into a SeasonSiteTreat dataframe
treat.year < - cbind(Control, trt.Null)
treat.year < - as.data.frame(treat.year)

colnames(treat.year) < - paste(“Year”, rep(1l:nyear), sep="")

### Combine the observed P/A data, the yearly covariates, treatments (Years)
obsoccl < - cbind(obsocc, years, treat.year)

### Return observed territory occupancy matrix, i.e. the observations
return(data.frame(obsocc1))

}

2. R code for fitting dynamic occupancy models for detection/non-detection data using the R package unmarked 0.9-2 (Fiske, 1., and R. Chandler.
2011. unmarked: an R package for fitting hierarchical models of wildlife occurrence and abundance, Journal of Statistical Software 43:1-23)

library(unmarked)
analysis = function(dataset, nyear, n_vis) {

### Prepare data for 'unmarked', multi-season colext model
### (MacKenzie et al., 2003)

### Matrix for detection/non-detection data
yMat < - PAdata[,1:(nyear*n_vis)]

### Matrix for Year covariate
yearMat < - PAdata[,((nyear*n_vis) +2):((nyear * n_vis) +nyear + 1)]

### Matrix for Treatment/Control yearly covariate
TRTyearMat < - PAdata[,((nyear*n_vis) + nyear + 2):((nyear*n_vis) + 2 * nyear + 1)]

# Combine all the yearly site covariates into a dataframe
yearlies < - data.frame(

year = matrix(t(yearMat), ncol = 1),

TRTyear = matrix(t(TRTyearMat), ncol = 1))

# prepare the unmarked multi-year colext dataframe
oUMF < - unmarkedMultFrame(
y = yMat,
siteCovs = PAdata[,“Treat”, drop = F],
yearlySiteCovs = yearlies,
numPrimary = nyear)

### Run models (the order for parameterizing colext models is: 1st season
### occupancy(psi), colonization(gamma), extinction(epsilon), detection(p))

# Models for testing treatment effect on extinction and colonization
Null.fit < - colext(psilformula = ~1, gammaformula = ~Treat + year, epslonformula = ~Treat + year, pformula ~ 1, oUMF)
Alt.fit < - colext(~1, ~TRTyear + year + Treat, ~TRTyear + year + Treat, ~1, oUMF)

# Combine the model results to a list
list(Null.fit = Null.fit, Alt.fit = Alt.fit)
}

3. R code for simulating occupancy data (detection/non-detection) with a declining trend in occupancy through time.

dataset < - function (perc_red, psil, nyear, n_sites, n_vis, phi, sd.phi, r, sd.r, p) {

### perc_red = percent yearly reduction in local survival and
### colonization across 10 years for a 2% or 4% annual decline
### in occupancy

### psil = initial occupancy

### nyear = number of years or study seasons

### n_sites = number of sites
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### n_vis = number of visits per site per year (or season)

### phi = local survival in year 1

### sd.phi = sd of random normal variable introducing a Season effect
### on local survival

### r = colonization in year 1

### sd.r = sd of random normal variable introducing a Season effect
### on colonization

### p = probability of detection

### Define matrix tocc (true territory occupancy state)
tocc < - matrix(rep(0, nyear*n_sites), ncol = nyear)
toce < - as.data.frame(tocc)

names(tocc) < - paste(“t”, 1:nyear, sep=“")

### Define the matrix obsocc that contains the observations. The first j

### columns will contain observed occupancy states for the first year on

### the 1...j visits, the j + 1 column will contain the observations of

### the first visit in the second year, and so forth.

obsocc < - matrix(rep(0, nyear*n_sites*n_vis), ncol = (nyear*n_vis), dimnames = list(paste(“site”, 1:n_sites, sep =“"), paste(“Yr”, rep(1l:nyear, each = n_vis), “v”, 1:n_vis, sep="“")))
obsocc < - as.data.frame(obsocc)

# simulate yearly decreases in local survival and colonization
year_phi = rep(0,nyear-1)
year_r = rep(0,nyear-1)

year_phi[1] = phi
yearr[1] =r

for (j in 2:(nyear-1)) {
year_phi[j] = 1 - ((1-year_phi[j-11) + (1-year_phi[j-11)*perc_red)
year_r[j] = year_r[j-1] - year_r[j-1]*perc_red

}

year_phi
year_r

### simulate yearly effects on local survival and colonization using values
### drawn from N(phi, sd.phi) and N(r, sd.r)

year.effect.phi = rep(0,nyear-1)
year.effect.r = rep(0,nyear-1)

for (i in 1:(nyear-1)) {
year.effect.phi[i] < - rnorm(1, year_phi[i], sd.phi)
year.effect.r[i] < - rnorm(1, year_r[i], sd.r)

b

year.effect.phi
year.effect.r

### Simulate tocc and obsocc from t = 1 to t = nyear
### First simulate site occupancy and observed data in year 1
for(i in 1:n_sites) {

tocc[i,1] = rbinom(1, 1, psil)

obsocc[i,1:n_vis] = rbinom(n_vis, 1, tocc[i,1]*p)

### the first transition (yrl to yr2) is parameterized with the initial phi
### and r values; subsequent transitions see a percent decrease in
### colonization and local survival per year
for(t in 2:nyear) {
if (toce[i,t-1] == 1) {
tocc[i,t] < - rbinom(1,1,year.effect.phi[t-1])
} else if (tocc[i,t-1] == 0){
tocc[i,t] < - rbinom(1,1,year.effect.r[t-1])
}
for(j in 1:n_vis) {
obsocc[i,((t-1)*n_vis)+j] < - rbinom(1,1,tocc[i,t]*p)
}
}
}

#head(tocc)
#rowSums(tocc)
#head(obsocc)

### Create a matrix of yearly site covariates containing Year as factor

### IMPORTANT ###: Occupancy at t = 1 is psil, so there are (nSeason—1)
### transitions between seasons for modeling colonization and extinction
### The function colext (Fiske and Chandler, 2011) requires the full set of

### parameters (nyear), but the last column of the matrix is unnecessary
### for modeling colonization and extinction. Therefore we fill the last
### column (i.e., last year) with the attribute ‘Null’.

years < - matrix(rep(seq(1:(nyear-1)), n_sites), ncol = nyear-1, byrow = T, dimnames = list(paste(“site”, 1:n_sites, sep =“"), paste(“Yr”, rep(1:(nyear-1)), sep="")))
yrs.Junk < - matrix(rep(“Null”, n_sites*1), ncol = 1)

years < - cbind(years,yrs.Null)

colnames(years) < - paste(“Yr”, rep(1:nyear), sep=*“")
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years < - as.data.frame(years)
years < - data.frame(lapply(years, as.factor))

### Combine the observed P/A data, the yearly covariates
obsoccl < - cbind(obsocc, years)

### Return observed territory occupancy matrix, i.e. the observations
return(data.frame(obsocc1))

b

4. R code for fitting dynamic occupancy models for detection/non-detection data using the R package unmarked 0.9-2 (Fiske, 1., and R. Chandler.
2011. unmarked: an R package for fitting hierarchical models of wildlife occurrence and abundance, Journal of Statistical Software 43:1-23), and
approximate the variance if the geometric mean of population change (lambda) via Delta Method (Tempel, D.J., Gutiérrez, R.J., 2013. Relation
between occupancy and abundance for a territorial species, the California spotted owl. Conservation Biology 27: 1087-1095)

library(unmarked)
analysis = function(dataset, nyear, n_vis) {

### prepare the matrix for observed P/A data
yMat < - PAdata[,1:(nyear*n_vis)]
yearMat < - PAdata[,((nyear*n_vis) + 1):((nyear*n_vis) +nyear)]

### prepare the matrix for yearly covariates (Year)
yearlies < - data.frame(
year = matrix(t(yearMat), ncol = 1))

### prepare the unmarked multi-year colext data.frame
oUMF < - unmarkedMultFrame(
y = yMat,
#siteCovs = obsoccl[, c(“ActivCenter”), drop = F],
yearlySiteCovs = yearlies,
numPrimary = nyear)

### fit the dynamic occupancy model
Model.fit < - colext(~1, ~year, ~year, ~1, se = T, oUMF)

### use 25 non-parametric bootstraps to estimate standard errors for yearly
### occupancy
Model.fit < - nonparboot(Model.fit, B = 25)

psis_SEs = cbind(smoothed = smoothed(Model.fit)[2,], SE = Model.fit@smoothed.mean.bsse[2,])
psis_SEs

psis = as.vector(psis_SEs[,1])

SEs = as.vector(psis_SEs[,2])

### evaluate change in occupancy through time
occ_change = rep(0,nyear-1)
for (i in 1:nyear-1) {
occ_change[i] = psis[i + 1]/psis[i]
}

occ_change

### calculate geometric mean of change in occupancy through time
delta_occ = prod(occ_change)
delta_occ

geom_lambda_occ = delta_occ™(1/9)
geom_lambda_occ

### calculate variance of geometric mean of change in occupancy through time
lambda = psis[nyear]/psis[1]
lambda

sdevl = SEs[1]*sqrt(nyear)
sdevl0 = SEs[nyear]*sqrt(nyear)
var_lambda = (lambda"2) * ((sdev10"2/(psis[nyear]"2)) + (sdev1"2/(psis[1]°2)))

var_lambda

dLamGeom_dLamMean = (lambda"((2-nyear)/(nyear-1)))/(nyear-1)
dLamGeom_dLamMean

var_geom_lambda_occ = var_lambda*(dLamGeom_dLamMean"2)
var_geom_lambda_occ

SD_lambda_occ = sqrt(var_geom_lambda_occ)
SD_lambda_occ

SE_lambda_occ = SD_lambda_occ/sqrt(nyear)
SE_lambda_occ

### calculate 95% confidence interval around the geometric mean of change in
### occupancy through time

upper_lambda_occ = geom _lambda_ occ + 1.96*SE_lambda_occ
lower_lambda_occ = geom_lambda_occ - 1.96*SE _lambda_occ

upper_lambda_occ
lower_lambda_occ
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Table Al

High precision contributes to efficient signal extraction, and high recall at a bout level contributes to high detection. Precision is the proportion
of regions of interest (ROI) in the data that represent true focal species vocalizations; Recallc,y is the proportion of all true target signals (i.e.,
focal species vocalizations) that are correctly identified by one of the focal species templates as a region of interest in the data (ROI); Recallp,, is
the proportion of all bouts of focal species calling in which at least one vocalization (call) is correctly identified by one of the focal species
templates as a ROI (Mellinger et al. 2016). Warping the original, merged template for each species (n = 5 different spotted owls; n = 2 different
barred owls) a different number of steps across different amounts of time resulted in different numbers of total templates for each species.

Species (total templates) Precision Recallc,y (calls) Recallp,y, (bouts)
Spotted owl (17) 0.82 0.60 (N = 568) 0.94 (N = 52)
Barred owl (13) 0.51 0.66 (N = 279) 0.95 (N = 19)
‘Sparred’ owl (13*) 0.80 0.072 (N = 108) 0.19(N=5)

* barred owl templates

geom_lambda_occ

list(lambda = geom _lambda_occ, lower.lambda = lower_lambda_occ, upper.lambda = upper_lambda_occ, psis = smoothed(Model.fit)[2,])

}

Appendix 2:. Template detector parameters

We used the Template Detector feature of Raven 2.0 (Bioacoustics Research Program, Cornell Lab of Ornithology, 2017) to extract target signals
from the acoustic data, in this case spotted owl and barred owl territorial vocalizations. The template detector identifies regions of interest (RO i.e.,
potential target signals) by matching patterns in the data to user-defined templates (Mellinger and Clark, 2000), in our case high-quality recordings
of territorial calls we collected within and outside our study area (Fig. 2). To develop the templates, we manually reviewed randomly selected data
that spanned the spatial and temporal extent of our study and compiled vocalizations given by spotted owls (n = 568 in 52 bouts of calling) and
barred owls (n = 279 in 19 bouts). We then selected in- and out-of-sample vocalizations that had high signal-to-noise ratios (Fig. 2a) to serve as
template calls both species.

The spotted owl template was based on the last three notes of the “four-note” territorial call (e.g., Fig. 2a). We merged the calls of seven
individuals, four males and three females, to create one average call. The merged template was then warped in time +/—30% in eight steps
resulting 17 templates (i.e., —30%, —26.2%, ... 0%, +3.8%, ..., +30%), which allowed for the identification of vocalizations that were longer or
shorter than the original merged template. The loose matching feature was enabled, which blurred and expanded the edges of the notes in the
merged, stretched vocalizations to create even more generalized templates. All 17 spotted owl templates were applied to the raw audio data with a
frequency buffer of +/—200Hz, which allowed the template to search high and low enough to detect both female and male calls (merging calls
resulted in a template with an intermediate frequency).

The barred owl template was based on the first four notes of the “who cooks for you” territorial call from two different individuals. The calls were
merged, stretched +/—15% in six steps, and loose matching was enabled. The template was and applied with a frequency buffer of +/—37 Hz,
which we later found was occasionally too narrow a range to capture higher-pitched female vocalizations. Barred x spotted hybrids, or “sparred”
owls, make distinctive vocalizations (A. Franklin, pers. comm.), which the barred owl templates could identify despite having been optimized for a
different signal (i.e., “who cooks for you”).

We prioritized precision when developing our templates because low precision results in a high proportion of ROI that are not focal species
vocalizations (i.e., “false alarms”). We had > 33,700 h of nighttime audio, so low precision would have made the classification process (manual
review) extremely time-consuming (Fig. 3). However, we defined sites as occupied if one or more focal species vocalizations was recorded and
identified there, allowing us to miss many vocalizations provided we detected at least one. This meant that low recall of individual vocalizations
(Rcan) was acceptable if at least one vocalization in each bout of vocalization was correctly identified (Rp,,.). For our precisions-oriented templates,
Rpoue Was high (> 0.9) for spotted and barred owls (measured with the call libraries; Table A1), meaning that we likely identified most instances of
focal species vocalizations, and therefore detection was not substantially influenced by the choices we made during the acoustic analyses.

We applied both species’ templates to all acoustic data collected from 20:00 to 06:00 local time at the 74 survey sites to identify spotted owl and
barred owl vocalizations. Because occupancy models assume no false positive detections (MacKenzie et al., 2002), two independent observers
reviewed all ROI that had been tentatively classified as focal species vocalizations to confirm or reject the purported detection.
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