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Is logarithmic transformation necessary in allometry?
Ten, one-hundred, one-thousand-times yes
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In a recent analysis, Packard (2013) re-examined
several allometric model-fitting techniques for
Metrosideros polymorpha (Mascaro et al., 2011), a
tropical tree endemic to Hawaii, asking: is logarith-
mic transformation necessary in allometry? Packard
(2013) used three fitting techniques (Table 1) to arrive
at the theoretically ideal power-law relation-
ship between aboveground tree biomass and stem
diameter:

Y X= a b, (1)

where Y is the aboveground tree biomass, X is the
stem diamter, and a and b are constants to be esti-
mated empirically. The power-law equation has been
a stalwart in allometry for nearly a century (Huxley,
1932; Baskerville, 1972; Jenkins, Birdsey & Pan,
2001; Niklas, 2006). Packard (2013) concluded that
‘the traditional allometric method is not well suited
for fitting statistical models to data expressed in the
arithmetic scale’. ‘Traditional’ in this context refers
to linear fitting to logarithmically transformed
biomass and diameter data, and back-transformation
to a power-law form (see ‘method 2’ in Table 1). Con-
trasted were two nonlinear fitting techniques, the

first assuming homoscedastic errors (‘method 1’)
and the next assuming heteroscedastic errors
(‘method 3’).

Packard sees the approach to allometry described
by Mascaro et al. (2011) as misguided. ‘Where did
Mascaro et al. [and others] go wrong?’ he asks.
Packard has previously suggested that the logarith-
mic transformation leads to biased results (Packard &
Boardman, 2008; but see Kerkhoff & Enquist, 2009).
In the current article, however, Packard seems deter-
mined to banish the logarithm from allometry.
Readers of his current paper are left with the tacit
impression that Mascaro et al. (2011) considered only
the time-tested traditional method. In fact, we
considered the exact same three power-law fitting
techniques that Packard employs, comparing the per-
formance of each method against one another. We
came to very different conclusions, however, and to
understand this friendly disagreement we must
revisit Packard’s most recent analysis.

Packard begins by applying nonlinear fitting of the
power-law model assuming homoscedastic error struc-
ture (‘method 1’ in Table 1), noting that ‘the mean
function generally follows the path of the observa-
tions, albeit the line departs slightly from that path
for plants with a stem diameter of 8–12 cm’; however,
this is not the case. The model is biased for all but one*Corresponding author. E-mail: jmascaro@stanford.edu
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tree < 14 cm diameter at breast height, reaching a
bias of 400%, as we showed originally for these small-
diameter individuals. Packard cannot observe the
bias because he examines only the arithmetic scale
(Fig. 1a–d).

Packard then presents what he calls a ‘back-
transformed OLS’ model as the ‘traditional method’;
however, he plots the model without applying the
correction factor for back-transformation of the
regression error (sensu Baskerville, 1972). Plotting
the uncorrected model (shown by the dashed line in
Fig. 1) and implying that this is what we originally
presented (shown by the solid line in Fig. 1) misrep-
resents our original article. Packard also considers
generalized linear modelling as an alternative to the
correction-factor approach (shown by the dotted line
in Fig. 1), but this too is a poorer fit than the back-
transformed model that we originally presented. Once
the correction factor is applied, as in recent practice
(Chave et al., 2005; Schnitzer, DeWalt & Chave,
2006), the model produces much better predictions
(Fig. 1e–h).

Next, Packard plots the (incorrectly constructed)
traditional method on the geometric scale, arguing
that it ‘does not follow the path of the observations’,
but fails to do so for the other methods. When the
models are properly compared, as in Figure 1 here, it
becomes clear that methods 2 and 3 fit the data much
better than method 1. This is impossible to determine
from Packard’s analysis because panels C, D, K, and
L are absent from his analysis.

Most disappointingly, Packard ignores the central
conclusion of our original article that nonlinear fitting
with the assumption of homoscedastic errors may
lead to biases in excess of 100%, particularly for
small-diameter individuals (which have low leverage
in the fitting routine), and that nonlinear fitting
assuming heteroscedastic errors can mitigate this
problem. Our article was the first published use of

method 3 in plant allometry that we know of, and we
even noted specifically that this method ‘may be more
reliable’ than the traditional method.

Packard’s last point deserves added attention.
Looking at the data in geometric space, Packard
argues that the curvilinearity obviates logarithmic
transformation because the ‘transformation failed to
linearize the distribution’. Indeed, the data are curvi-
linear in geometric space. We did not discuss this issue
in our original article, and we appreciate Packard
calling attention to it; however, Packard jumps to a
conclusion that is favourable with his argument
without looking at the whole picture. Power-law equa-
tions, irrespective of model-fitting technique, are
linear in geometric space. Thus, the key question is
ecological rather than statistical in this case: why do
the Metrosideros data not perfectly follow theoretical
allometric scaling at very small diameters?

Metrosideros was among several trees that dis-
played a small degree of curvilinearity in geometric
space, in all cases very near the lowest diameter
range sampled (i.e. 0.2–3.0 cm in diameter, depending
on the species; Mascaro et al., 2011: fig. 1). The likely
explanation for this curvilinearity is that consistent
forest sampling protocol is not constrained to perfect
allometric scaling. For both general forest sampling
and biomass harvests, the position of the standard
point-of-measurement for diameter at breast height is
typically 1.3 m from the ground, with exceptions for
malformations such as buttresses (e.g. ‘1.3 m or above
buttress’). With shorter and shorter trees, this posi-
tion moves closer to the meristem of the tree, result-
ing in a lower diameter estimate than what would be
expected around the ‘bole’ of very small trees. This is
easy to see in the abstract: before a tree reaches 1.3 m
in height and enters a field census or harvest data
set, it effectively has an apparent diameter of zero
and positive biomass. This departure from the power
law in no way contradicts power-law allometric

Table 1. Fitting techniques used to produce power-law models relating plant biomass and stem diameter for Metrosideros
polymorpha by Mascaro et al. (2011), and subsequently reanalysed by Packard (2013)

Method 1. Nonlinear fitting using the assumption of homoscedastic errors (i.e. the default of most statistical
packages commonly used by ecologists and foresters, including R, SAS, and JMP):

Yi = aXi
b + εi εI∼ N(0, σ2)

Method 2. Linear fitting to logarithmically transformed biomass and diameter data, followed by back-transformation
of the fitted model. In this case, the arithmetic error in the logarithms must be adjusted via a correction factor
[e(MSE/2)], where MSE is the mean squared error of the fitted linear model (sensu Baskerville, 1972), a step that
Packard omits:

ln(Yi) = ln(a) + bln(Xi) + εi εI∼ N(0, σ2)
where back-transforming gives the equation: Y = aXb * exp(MSE/2)

or Yi = aXi
b * exp(εi) εI∼ N(0, σ2)

Method 3. Nonlinear fitting using the assumption of heteroscedastic errors:
Yi = aXi

b + εi εi∼ N[0, (σ2 * Xi
k)]
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scaling, however. Instead, it reflects a decoupling of
the measurement of the ‘apparent’ diameter of a tree
from its ‘real’ diameter. For purposes of scaling theory,
the allometrically constrained diameter of interest
will be closer to the ground for very small trees.

An analogy can be made to curvilinearity in geo-
metric space detected by Chave et al. (2005) and
Muller-Landau et al. (2006) in biomass–diameter
relationships for the largest tropical trees. At very
high diameters (and particularly with old age), tropi-

cal trees experience crown breakage, bole rot, and
other bruising associated with longevity. Most ail-
ments result in lower tree biomass, but little if any
effect on apparent diameter, and thus biomass begins
to decline relative to the power-law expectation.
Again, allometric scaling theory has not been broken
in this case. Rather, the ‘apparent’ diameter has been
decoupled from the ‘real’ diameter: within the tree’s
bole, the bundle of xylem cells that governs water flow
(and thus biomass) is also in decline.
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Figure 1. Three fitting techniques for the power-law model architecture of Metrosideros polymorpha. A–D, nonlinear
fitting to the untransformed data with the assumption of homoscedastic errors (‘method 1’ in Table 1), which Packard
(2013) argued ‘followed the path of the observations’. E–H, linear fitting to the log-transformed diameter and biomass
data, followed by back-transformation (‘method 2’ or the traditional method). The relative residual reflects the fraction
(percentage) of the residual compared with the observed value. The dashed line represents the equation Packard (2013)
plotted for this fitting technique, for which he excluded the requisite correction factor (i.e. Baskerville, 1972), which is
necessary to properly back-transform the error structure with this fitting method. The dotted line represents a generalized
linear modelling result offered by Packard as a substitute for the correction factor technique that we originally used. I–L,
nonlinear fitting to the untransformed data with the assumption of heteroscedastic errors (‘method 3’). Mascaro et al.
(2011) considered all three fitting techniques and concluded that methods 2 and 3 (second and third rows) were preferred
within the confines of power-law architecture.
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Thus many, if not all, trees harvested from the
seedling stage to very old age will be slightly
sigmoidal in their biomass–diameter relationships, or
curvilinear in geometric space. Contrary to Packard’s
implication, curvilinearity in geometric space can be
an ecological and methodological phenomenon, and
may have nothing to do with logarithmic transforma-
tion. In practice, curvilinearity in geometric space can
be dealt with by bisecting the data to create separate
models for smaller and larger trees (via methods 2 or
3), or applying polynomial models using logarithmi-
cally transformed data (requiring a correction factor,
e.g. Chave et al., 2005). As direct nonlinear fitting
with non-arithmetic errors is increasingly used in
allometry or allometry-type problems (e.g. Asner
et al., 2012), alternative sigmoidal model architec-
tures such as the Weibull may be fitted with
heteroscedastic errors. Even in these cases, the fun-
damental issue is not whether one uses the logarith-
mic transformation in model fitting, but whether
one examines allometric scaling in geometric space
(Glazier, 2013). The logarithmic transformation
remains an obvious and reasonable tool in this effort.
Packard (2013) used the logarithmic transformation
for this exact purpose. In the end, he validated its role
in allometry.
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