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High-resolution carbon mapping on the
million-hectare Island of Hawaii
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Current markets and international agreements for reducing emissions from deforestation and forest degrada-
tion (REDD) rely on carbon (C) monitoring techniques. Combining field measurements, airborne light detection
and ranging (LiDAR)-based observations, and satellite-based imagery, we developed a 30-meter-resolution map
of aboveground C density spanning 40 vegetation types found on the million-hectare Island of Hawaii. We esti-
mate a total of 28.3 teragrams of C sequestered in aboveground woody vegetation on the island, which is 56%
lower than Intergovernmental Panel on Climate Change estimates that do not resolve C variation at fine spatial
scales. The approach reveals fundamental ecological controls over C storage, including climate, introduced
species, and land-use change, and provides a fourfold decrease in regional costs of C measurement over field

sampling alone.
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Voluntary markets and developing international
agreements to credit nations for reducing emissions
from deforestation and forest degradation (REDD) are
increasingly relying on large-scale ecosystem monitoring.
To support REDD activities, the Intergovernmental
Panel on Climate Change (IPCC) issued guidelines to
assist with carbon (C) assessment methodologies
(Eggleston et al. 2006). These guidelines are organized
into three tiers, each successively supporting increased
accuracy and confidence to facilitate greater accountabil-
ity, assurance, and potentially higher financial returns for
monitoring and verifying C emissions. The most general
approach (Tier I) is based on estimated biome-level vari-
ation in C stocks calculated from published values and
other sources, which will undoubtedly generate major
uncertainty and lower reliability for C stock and emis-
sions information (Gibbs et al. 2007; Angelsen 2008).
Although Tier I is designed to empower anyone to partic-
ipate in programs requiring C accounting, there is sub-
stantial pressure to reach or exceed Tiers Il and 1, which
provide increased detail on C stocks and emissions
through the use of field-plot inventories, satellite map-
ping, and simulation models. Many REDD projects
already call for much more detailed C mapping to reduce
the potential for errors in performance reporting. Beyond
REDD, improved C mapping is requisite to understand-
ing the ecological processes that govern C dynamics as
well as the human impacts on ecosystems.

Two kinds of data are required to effectively map above-
ground C stocks across large, heterogeneous regions: (1)
vegetation type and condition, including deforestation
and degradation, and (2) the amount of C stored in differ-
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ent vegetation types (“C density” in megagrams [Mg] C
per hectare). Various satellites measure vegetation cover
and some aspects of vegetation structure (Chambers et al.
2007), but no existing satellite technology directly mea-
sures C density (GOFC-GOLD 2008). Traditionally, C
density has been estimated by means of field-based inven-
tory plots. Plots are important, but they are also expensive,
time consuming, and inherently limited in geographic rep-
resentativeness. Airborne mapping offers an effective
alternative method for C assessment. The latest
approaches, especially light detection and ranging
(LiDAR) combined with field calibration plots, can reli-
ably estimate aboveground C stocks over relatively large
areas (Lefsky et al. 2002; Gonzalez et al. 2010), but even
these approaches remain limited in terms of geographic
coverage. To address this limitation, we integrated satel-
lite-monitoring techniques with aircraft-based LiDAR
mapping and a modest number of field plots to develop
high-resolution C basemaps over spatially heterogeneous
regions. Here we present a modification of the approach,
originally developed by Asner (2009) and tested in the
humid tropical forests of Amazonia (Asner et al. 2010), in
an effort to cover a much wider range of ecosystems and
vegetation types — from sparse shrublands to dense rainfor-
est — on the one-million-hectare Island of Hawaii. We
then focus on the ecological patterns revealed and on
sources of uncertainty, and describe how a C basemap for
Hawaii could be used to improve our understanding of C
dynamics over time.

M Methods

Study area

We selected the Island of Hawaii because its pronounced
gradients of environmental, biotic, and land-use factors
allowed us to test the efficacy of our approach across a
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forest, alien tree woodland) and condition
(eg degraded, deforested) by combining a
vegetation map with satellite-based data
on forest cover; (2) stratified regional sam-
pling of woody vegetation structure using
airborne LiDAR; (3) conversion of LIDAR
structural data to C estimates using a lim-
ited number of field calibration plots; and
(4) integration of the regional maps with
the airborne LiDAR data to yield island-

wide aboveground C stock estimates.

Step 1: vegetation classification and
satellite mapping

We used a vegetation map provided by the
Hawaii Gap Analysis Program (GAP) to
partition the landscape into ecologically
relevant categories for subsequent airborne
and field measurements (www.csc.noaa.
gov/crs/lca/Hawaii.html; Figure 1a). Most
vegetation maps, including the Hawaii
GAP map, do not contain detailed infor-
mation on vegetation condition, such as
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the degree and spatial extent of degrada-
tion. Yet mapping such detail is critical to
maximize geographic information for
REDD and similar programs. Degradation
(eg caused by logging, fuelwood collection,
fire) is particularly difficult to map because
it often occurs diffusely over wide areas.
The Carnegie Landsat Analysis System-
Lite (CLASlite; http://claslite.ciw.edu/en/
index.html) is an automated approach that
maps both deforestation and forest degra-
dation. We used CLASlite to map forest
cover at 30-m spatial resolution, using a

Figure 1. (a) Vegetation stratification of Hawaii Island, based on the Hawaii
Gap Analysis Program; (b) green area indicates forest cover detected by
CLASlite; (c) blue areas indicate coverage of the Carnegie Airborne Observatory
(CAO) LiDAR; red dots indicate location of field calibration plots.

mosaic of nine Landsat and three
Advanced Spaceborne Thermal Emission
and Reflection (ASTER) images collected
between February 2002 and January 2003.

wide variety of ecosystems. Volcanic terrain, high moun-
tains, and nearly constant northeasterly winds create an
array of environmental conditions, with mean annual
rainfall varying from 180 to 11 000 mm and mean temper-
atures ranging from 5° to 27° C (Armstrong 1983; Giam-
belluca et al. 1986). The Island of Hawaii contains 25 of the
35 Holdridge (1947) life zones (Asner et al. 2005), includ-
ing alpine tundra, dry to wet sub-tropical forest, mesic
woodlands and shrublands, and arid grasslands. These occur
across a mosaic of different-aged lava flows, resulting in a
diverse set of vegetation communities spanning a wide vari-
ety of developmental stages (Vitousek 2004).

We took four steps to produce a high-resolution C map
of Hawaii: (1) whole-island characterization of vegeta-
tion type (eg Metrosideros polymorpha forest, Acacia koa

Details on CLASIite algorithms are avail-
able in Asner et al. (2009b).

The CLASIite map indicated that approximately
332212 ha (32%) of Hawaii Island is forested, whereas
712027 ha (68%) is non-forested (eg barren lava flows,
open scrubland, grasslands, infrastructure; Figure 1b). Most
of the island’s forests are closed-canopy M polymorpha
(28%), A koa (26%), and a mix of these two forest types
(10%). Forests dominated by introduced species, including
plantations, cover an additional 10% of the island.

Step 2: airborne LiDAR sampling

We collected LiDAR data with the Carnegie Airborne
Observatory (CAQ; Asner et al. 2007) over 253 744 ha,

or about one-quarter of the island (Figure 1c; WebPanel
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Panel 1. What is LiDAR?

LiDAR (light detection and ranging) sys- T 40 40 40

tems emit high-frequency laser pulses at |5 Lowland Mid-elevation Montane
target landscapes and measure the elapsed | S 30 forest 39| forest 30 forest
time for pulses to return in order to calcu- %
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LiDAR energy passes through foliage 0 s 1015 0 5 1015 0 S 10 15
whereas some is reflected. As a result, LiDAR returns (%) LiDAR returns (%) LiDAR returns (%)
LIDAR detects many levels of the forest

canopy, and reproduces vertical structure
in detail. We organized the laser returns
into small rectangular cubes (5 m length,
5 m width, | m height) to examine the ver-

Figure 2. Example of airborne LiDAR canopy wvertical profiles of Metrosideros
polymorpha-dominated lowland, mid-elevation, and montane forests. Dark green
indicates the mean wertical profile, and light green indicates the standard deviation of
the profiles in each forest type.

tical distribution of vegetation, essentially

creating a vertical histogram of laser returns in each 5 m x 5 m spatial cell. These histograms provided the underlying parameters (eg
“canopy vertical profile”) that we related to ground-based estimates of C density (Figure 2).

1). Coverage strategically sampled the major vegetation
types with and without woody vegetation cover, and
across a wide range of climatic and soil conditions as indi-
cated in step 1. We analyzed the resulting LiDAR data
(Panel 1), and mapped vegetation height and vertical

canopy profile using the techniques described by Asner et
al. (2009a).

Step 3: linking field-based C density with LIDAR data

We established 126 field plots within the LiDAR cover-
age (Figure 1c), directing the plots to capture the maxi-
mum vegetation variability across Hawaii Island. We used
LiDAR-derived canopy height maps to identify and sam-
ple the broadest structural range possible (ie short to tall
canopies) within the most common vegetation types. In
each 30-m-radius plot, we measured and identified all
woody stems = 5 cm in diameter at breast height (1.37 m
above the ground; taxonomy follows that of Wagner et al.
[1999]). Tree ferns (Cibotium spp) with stems =1.37 m tall
were measured in a 9-m-radius plot nested within the
larger plot. We used a combination of local and general-
ized allometric equations to estimate the aboveground C
density of each plot (WebAppendix 1). We used a global
positioning system receiver (Leica GS-50 with differen-
tial correction; Leica Geosystems Inc) to locate all plots
within the LiDAR data.

To correlate plot and airborne data, we examined a
suite of LiDAR metrics that capture forest structure,
including height and the vertical profile of the canopy
(WebPanel 2). LiDAR-derived mean canopy profile
height (MCH, ie the centroid of the vertical canopy pro-
file; Lefsky et al. 2002) consistently predicted above-
ground C density among vegetation types in six distinct

climatic regions, including canopies dominated by both
native and introduced species. To assess the sensitivity of
the LiDAR-to-C regression to the number of field plots
measured, we tested the variability of the regression
results by randomly excluding samples and recalculating
the standard error of the estimate (SEE) and root mean
square error (RMSE). This analysis suggested that no
more than 20% (or 24) of the field plots were needed to
stabilize the SEE and reduce the RMSE of the C-density
estimates from LiDAR (WebPanel 3).

Step 4: integration of LiDAR and satellite data

Our final step combined the island-wide maps of vegeta-
tion type and forest cover with LiDAR-derived, above-
ground C-density estimates. First, we calculated the
median aboveground C density for undisturbed areas of
each vegetation type. We then assigned these values to
each 30-m pixel, after correcting for satellite-derived
canopy fractional cover (WebPanel 4). For example, a
pixel that appeared half-forested in our satellite analysis
with CLASIlite was assigned half of the LiDAR-derived
median undisturbed aboveground C-density value for its
vegetation type.

1 Results and discussion

Our LiDAR coverage of approximately one-quarter of the
island revealed enormous variation in aboveground C
density. Figure 3 depicts several sources of C-density vari-
ation for an area of lowland (upper right) to montane
(lower left) rainforest. First, there is a background gradi-
ent of generally decreasing C density as elevation
increases. Second, the colonization and spread of intro-
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Mg C ha™

>400

the eastern flanks of Mauna Kea, north-
eastern Kohala, and the southeastern and
western flanks of Mauna Loa, where soils
are generally older and well developed.
Climate also exerts strong control over C
distributions in Hawaii. Prevailing winds
from the northeast are forced upward by the
volcanoes, producing high rainfall areas on
windward exposures and resulting in high
C density on the northeastern flanks of
Mauna Loa, Mauna Kea, and Kohala. In
contrast, drier, leeward portions of Hawaii
exhibit low C densities, except in higher
elevation areas where localized increases in
precipitation occur. The marked decline in
C density with the passage from the wind-
ward to the leeward side of Kohala clearly
illustrates the role of precipitation — com-
bined with past and current land use (eg
ranching) — in determining C stocks.
Interactions between climate and soil fac-
tors are also evident. A large area of high C
density (the fin-shaped region on the wind-
ward side of Mauna Kea) occurs on well-
developed, fertile soils with high precipita-
tion, but encircles a large area of relatively
low C values that is characterized by poorly
drained soils supporting stunted forest and

Figure 3. This 100-km® subset shows the detail with which aboveground C
densities can be mapped by airborne LiDAR. It also highlights many of the sources
of variation in aboveground C stocks that occur on the Island of Hawaii: (i) old-
growth native forest; (ii) native submontane forest; (iii) invasion by high-biomass
species; (iv) secondary regrowth and old lava flows; (v) deforestation for cattle
pasture; (vi) managed plantations; (vii) forest degradation from selective logging;
(viii) terrain-mediated bog formation; and (ix) invasion by low-biomass species.

The white bar indicates one km.

bog vegetation (also highlighted in Figure
3). Low temperatures and reduced precipi-
tation strongly limit C stocks on the sum-
mits of Mauna Loa and Mauna Kea, which
extend above the trade wind inversion
layer (~2000 m; Giambelluca et al. 1986).
Past land use also has a profound influ-
ence on C patterns throughout Hawaii.

duced species alter C density both positively and nega-
tively, depending on the species involved (see Asner et al.
2009a). There are also areas of degraded forest resulting
from selective logging operations and the conversion of
forests to open woodlands and cattle pasture. These pat-
terns are driven by decision making linked to road access,
topography, wind direction, and other factors.

Our island-wide, high-resolution map also revealed
detailed variation in aboveground C density and demon-
strated the strong and often combined influence of soil
and climatic conditions, as well as past and present land
use, on aboveground C storage (Figure 4). The effects of
substrate age and ecosystem development on C stocks are
particularly evident. Basalt substrates range from days to
several hundred thousand years old (Wolfe and Morris
1996), and the C map clearly tracks this variation. Areas
of low C density (gray-blue) occur on young lava flows
with little or no soil layer and very limited nutrients, such
as the observed striations on the slopes of Mauna Loa.
Areas of relatively high C density (yellow—red) occur on

The eastern lower reaches of Mauna Kea,
long converted from forest to sugarcane (Saccharum spp)
cultivation (Cuddihy and Stone 1990), exhibit an abrupt
decline in C density below ~700 m elevation. The lower
plains on the northwest flank of Mauna Kea also carry the
marks of past land use. Here, extensive sandalwood
(Santalum spp) forests were cleared during the 1800s
(Barrera and Kelly 1974). This deforestation, combined
with ranching and the spread of non-native, fire-prone
grasses, has produced a landscape with very low C densi-
ties. The planting of introduced trees, which peaked at
some four million trees per year during the Great
Depression (circa 1920s to 1930s; Woodcock 2003), has
also altered C densities across the island. The highest C
densities occur in plantations at mid-elevations along the
windward and, to a lesser extent, the leeward sides of
Hawaii, and contain a median of 200 Mg C ha™".

The total aboveground C for the island was estimated
at 28.3 teragrams, which is 56% lower than the value esti-
mated by IPCC Tier | methods (WebPanel 5). The reason
behind this difference is made clear by comparing our
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high-resolution map with the Tier I
map in Figure 4. First, we found that
widespread forest degradation, which
is distributed diffusely across the
region, goes unaccounted for in the
Tier I approach. Moreover, LiDAR
sampling revealed much more varia-
tion in the C density of intact forests
than that which is depicted in Tier I
estimates. Tier | was not designed to
resolve the effects of degradation or
such detail in actual C densities, but
the importance of doing so is made
obvious here.

We compiled various sources of
uncertainty from each step of the
project (Table 1). Uncertainty in the
Hawaii GAP vegetation map is
unknown, but we noted various dis-
crepancies during field validation
exercises. These errors are non-ran-
dom and often associated with a par-
ticular vegetation class in a particular
location. Extensive field validation
work indicated CLASlite errors of
3.7% for false-positive and 6.2% for
false-negative detections of forest
cover (including degraded forest).
Plot-level biomass estimation errors
range from 20 to 30% (Chave et al.
2004). Contributions from the
LiDAR measurements are low as
compared with other sources of error

(<4%), and the LiDAR-to-C con-

version generated C-density prediction uncertainties of
18-23%. Apart from LiDAR-to-C errors in planted forests
(WebPanel 2), these estimated uncertainties are compara-
ble with — or even lower than — those found in much more

geographically limited, ground-based
methods when attempting to esti-
mate C density. These errors are also
nested within one another, and are
not necessarily compounding (Asner
etal. 2010; Table 1).

Although there are considerable
up-front costs associated with
deploying LiDAR platforms, the
cost per hectare in this case was four
orders of magnitude lower than that
associated with field plots. For
this one-million-hectare analysis —
including LiDAR operation, data
analysis, and satellite and LiDAR
synthesis — the C-density map cost
approximately $0.16 per ha to cre-
ate. By comparison, the cost of field
plots for just 39 ha of sampling,

Kohala

Hualalai

Median carbon
density
Mg C ha™
M 191-200
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M 171180
M 161-170
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M 141-150
B 131-140
B 121-130
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[1101-110
[]91-100
[181-90
[171-80
[Je1-70
[ 51-60
[ 41-50
B 31-40
M 21-30
M 1120
M o-10

1 | Kilometers

25

Kilauea

Tier 1 carbon

Figure 4. Median values of aboveground C density throughout Hawaii Island, in units of
Mg C ha™', mapped at 30-m spatial resolution through a combination of airborne LIDAR
and satellite vegetation mapping. Inset shows aboveground C density estimated via IPCC

Tier 1 data and methods (see WebPanel 5).

including personnel, supplies, and transportation, aver-
aged about $1500 per ha. Field plots are essential to cali-
brate and validate LIDAR measurements to C density,
but only a small number of plots are needed to accom-

Table 1. Overview of types of errors introduced through our approach

Step Error source

Uncertainty

Source

(a) Vegetation map Classification

Unknown but various
discrepancies noted

HI-GAP Program

(b) Forest-cover map Fractional cover

3.6-6.2%

This study

(CLASlite) and classification
(c) LiDAR vegetation- Instrumentation < 4% Asner et al. (2009a,b)
structure metrics  analysis
(d) Plot C estimation Measurements, 20-30% Chave et al. (2004)
allometric models
(e) LiDAR-to-C Combined effects  18-23% This study

conversion of (c) and (d) plus
additional factors,

including LiDAR

sensitivity to biomass

and LiDAR-to-plot

co-location
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plish this task. Indeed, our error analysis (WebPanel 3)
suggested that fewer than 24 of our 126 plots would have
been sufficient to calibrate the non-planted forests.
Effectively sampling C-density variation at a landscape
scale with field plots alone in an area as large as Hawaii
[sland would almost certainly prove too costly. Another
factor to consider is the amount of LiDAR sampling
required to assess C-density distributions for each vegeta-
tion type. We purposely over-sampled to facilitate analy-
sis but, in the end, found that a 1% sampling of vegeta-
tion types was sufficient in most cases. However, the
project benefitted from the pre-existence of a vegetation
map, which may not always be available.

LiDAR also provides unique opportunities for C
accounting and research in remote areas that may be
exceedingly difficult to access on the ground. On Hawaii
[sland, for example, we measured C density in the
Hakalau National Wildlife Refuge, which is closed to the
public and includes many endangered bird and plant
species (WebPanel 6). Nearby, on lands dominated by
old-growth M polymorpha forest, we measured the largest
standing C density on the entire island. With future
LiDAR flights, it will be possible to study these ancient
forests without setting foot in them, providing new
insights into old-growth forest dynamics.

A key advantage of our approach is that LIDAR will be
needed only in a limited capacity to monitor future C
stocks and emissions. After the development of a high-res-
olution C basemap, it will then be straightforward to mon-
itor the effects of future deforestation and degradation
through the use of freely available satellite data (Asner
2009). With many types of satellite imagery (eg Landsat),
one can simply subtract C from the C basemap when for-
est losses are detected. This approach could support end-
users from many sectors — including science, conservation,
and resource management — to monitor emissions over
time, providing transparent information flow to support C
accounting and REDD-type projects and programs.
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WebPanel 1

Airborne light detection and ranging (LiDAR) flights were conducted in two different modes: (1)
High-resolution: 1000 m above ground level, 0.56 m LiDAR spot spacing, 24 degree field of view,
70 kHz pulse repetition frequency; and (2) Low-resolution: 2000 m above ground level, 1.12 m
LiDAR spot spacing, 30 degree field of view, 50 kHz pulse repetition frequency. For both flight
modes, the aircraft maintained a ground speed of less than 85 knots. LiDAR spatial error was
less than 0.15 m vertically and less than 0.36 m horizontally (RMSE). Flights were planned to
sample forest (and other) vegetation using parallel flight lines with 50% overlap to ensure full

and consistent coverage.

WebPanel 2

We tested various LiDAR metrics, including MCH (mean canopy profile height), QVICH
(quadratic mean canopy height), and CH (top-of-canopy height) (described by Lefsky et al.
2002). Within the footprint of one field plot (a 30-m radius circle), each LiDAR metric was
computed at 5-m spatial resolution and 1-m vertical resolution. In each case, LiDAR data
strongly predicted aboveground C density, although separate models were required to account
for variation in natural forests (both native and introduced) and planted forests (WebFigures 1
and 2). We note that errors in the prediction of carbon density among planted forests
substantially increase at higher values of any LiDAR metric tested (WebFigure 1). This elevated

degree of heteroskedasticity in planted forests appears to be due to variations in stocking rate



or basal area among plantations with similar height and/or vertical canopy profile structure.
The LiDAR metrics used in this study are more sensitive to variations in canopy height and

vertical profile and not basal area.

WebPanel 3

To assess the sensitivity of the LiDAR-to-C relationship to the number of field plots measured,
we tested the variability of the regression results by randomly leaving multiples of 5% of the
samples out of the regression and calculating the standard error of the estimate (SEE) for each
resulting regression equation. We repeated this 1000 times, with each run removing and
adding back a random set of six field plots. This allowed for characterization of the error
inherent in the model with larger sample numbers. The SEE initially increases as the sample
number increases in the regression model (WebFigure 3). It reaches a plateau at about 12,
suggesting that additional samples do not significantly improve the relationship between the
LiDAR metric and aboveground C. The predictive power of the regression was then assessed by
calculating the root mean squared error (RMSE) of a set of independent (n = 7) samples, which
were not used in developing the regression equation. We repeated this analysis 1000 times
with regression models that increased in sample size from 5% to 95% of the original data set.
WebFigure 3 (red line) indicates an initial rapid decline in RMSE from 38 Mg C ha™ when 5% (7
plots) are used in the regression to 31 Mg C ha™* when 20% (24 plots) are used. Thereafter, as

the number of plots is increased, the predictive error only decreases to 30.5 Mg C ha™™.



WebPanel 4

Median LiDAR-based values were extracted for undisturbed canopies in each vegetation class.
This was made possible by excluding recently deforested and degraded areas mapped with
CLASIlite from the LiDAR data. Aboveground C density (ACD) was then mapped at 30-m
resolution in each vegetation class by applying the median undisturbed ACD down-scaled using

the fractional canopy cover from CLASlite:

ACD(X,Y)vegzy = ACDmedianyegz) * PV(X,Y)ciasiite (1)

where ACD(X,Y)veg(2) is the aboveground C density of pixel x,y in vegetation type z; ACDmedian is
the median ACD of undisturbed forest derived from airborne LiDAR mapping of vegetation type
z; and PV(x,Y)cLasiite is the fractional (0.0-1.0) cover of photosynthetic vegetation of pixel x,y
derived from CLASlite. PV fraction in forests is equivalent to canopy fractional cover, which is
highly correlated with canopy damage, disturbance and degradation (Asner et al. 2005; Asner
et al. 2006; Broadbent et al. 2008). To provide maps of ACD uncertainty by vegetation type and
condition with respect to degradation, the entire procedure was repeated using the standard

deviation of LiDAR-based ACD values for undisturbed canopies in each vegetation type.



WebPanel 5

We compared our high-resolution mapping approach to the standard IPCC Tier-I analysis of
aboveground C stocks for Hawaii Island. To identify land-cover type, Holdridge Life Zones for
the Island of Hawaii (Asner et al. 2005) were reclassified to Global Ecological Zones (GEZ)
according to the methodology developed for the FAO’s Forest Resources Assessment 2000 (FAO
2000). Areas of bare exposed rock were cut from the GEZ polygons using a land-cover map
provided the state of Hawaii. The GEZ were then stratified in a geographic information system
by a land-cover mask generated from a globally available, low-resolution land cover dataset
(1000 m) (GLC 2000). To create the land-cover mask, we reclassified the data as forest or non-
forest using classes of GLC 2000 (Gibbs et al. 2007). For our study area, these classes were
limited to “broadleaved, evergreen tree cover” and “mosaic: tree cover/other natural
vegetation” (GLC 2000). Aboveground C density was calculated for forested areas by GEZ using

generic IPCC values (IPCC 2006).

WebPanel 6

Airborne LiDAR provides a non-intrusive means to assess forest structure and aboveground
carbon density in protected or remote areas, such as the Hakalau National Wildlife Refuge,
which is closed to the public to protect several critically endangered birds and plants

(WebFigure 4).



WebAppendix 1. Supplemental field methods and allometric models

General approach

The IPCC recommends that species-specific variation be incorporated into estimates of
aboveground biomass (AGB) where possible (IPCC 2006). For a given tree, a species-specific
diameter-to-AGB allometric equation is preferable to a general model based on multiple
species. However, the high diversity of tropical forests precludes the possibility of constructing
species-specific models for all species, and thus general models are required. Chave et al.
(2005) produced six general models for three forest types: wet (> 3500 mm mean annual
precipitation), moist (1500—3500), and dry (< 1500). For each forest type, the “Chave 1” model
requires inputs of diameter, wood density, and height. Another model (“Chave 2”) requires
only inputs of diameter and wood density. In either case, species-specific wood density can be
sampled or taken from the literature. While height measurements are preferred, height can
also be estimated from diameter using allometric models correlating diameter to height, and
this method of correcting for height variation has shown to improve AGB estimates dramatically
(Nogueira et al. 2008).

We used a hierarchical approach to estimate AGB, accounting for as much species-
specific and regional variation as possible with a 4-tier system. At the first tier, we used locally
derived species-specific diameter-to-AGB models for seven common species, including the
three most abundant species in the study region: Metrosideros polymorpha, Psidium
cattleianum, and Morella faya (WebTable 1). At the second tier, we used genera- or life-form-
specific models (WebTable 1). Models for tree ferns and dead trees require height inputs which

were measured in the field using a combination of diameter and height measurements. In most



cases, the diameter-to-AGB models had limited diameter ranges (due to limitations of the
harvest datasets upon which the models were based), and the AGB of larger individuals was
estimated using the methods described for general Chave et al. models. At the third tier, we
estimated AGB using general Chave et al. models (according to forest type classifications
described below), coupled with locally derived species-, or genera-specific diameter-to-height
models (WebTable 2). Finally, at the fourth tier, we used a combination of general Chave et al.
models and general diameter-to-height models (WebTable 2). Where the Chave et al. models
were employed, we used a combination of locally sampled wood density estimates and values
taken from a global wood density database (Chave et al. 2009). If no wood density estimate
was available for a given species, we used a genera-specific value. If this was not available, we
used a default value of 0.50 g cm™. A species-level accounting of the assignment of diameter-
to-AGB models, diameter-to-height models, and wood density values was used to produce plot-

level AGB estimates (WebTable 3).

Diameter-to-height models

We measured the diameter and height of 3362 individual trees (39 species) and 3356 individual
tree ferns (4 species) on Hawaii Island using a combination of tape measurements, laser range
finders, and clinometers. We sampled in wet, moist, and dry forest types in three distinct
physiographic provinces: Puna (wet, moist), Laupahoehoe (moist), and Pu’u Wa’a Wa’a (PWW;
dry). We sampled lowland areas in Puna, primarily in forest reserves with nutrient-limited
basalt lava flows (50 — 3000 years old, with most flows < 200 years old), where mean annual

precipitation (MAP) ranges from 2000 to 4000 mm. We sampled mid-elevation zones in the



Laupahoehoe section of the Hilo Forest Reserve, characterized by nutrient-rich, clayey soils
derived from weathered basalt flows (20,000 and 65,000+ years old) with MAP ranges from
2500-3500 mm. We also sampled low to mid elevation areas across the dry leeward PWW unit
of the Hawaii Experimental Tropical Forest. Here relatively young lava flows range in age from
200 to 10000 years old; MAP from 250 — 1000 mm. Native forests are dominated by
Metrosideros polymorpha, with co-dominance by Acacia koa in Laupahoehoe and PWW, while
stands of introduced trees are dominated primarily by Falcataria moluccana, Psidium
cattleianum, and Prosopis pallida among many others (Litton et al. 2006; Mascaro et al. 2008;
Zimmerman et al. 2008; see also www.csc.noaa/gov/crs/Ica/hawaii.html).

Of the 41 species in our diameter-to-height dataset, 10 species were encountered
infrequently and did not generate species-specific diameter-to-height relationships, while 27
species that were confined to either wet or dry regions generated significant models (WebTable
2). For the four remaining species, we compared relationships among provinces and found that
they did not fundamentally differ between the wet provinces of Puna and Laupahoehoe;
however, the relationships differed strongly between the wet region (Puna + Laupahoehoe) and
the dry region (PWW) (WebFigure A1). Thus, for these species we generated both wet and dry
diameter-to-height models. We generated regional diameter-to-height models from our full
tree datasets (e.g., without tree ferns) for both the wet and dry regions, as well as a genera-
specific model for Cibotium spp that served as a general tree fern model. We also developed
genera-specific Eucalyptus relationships, and excluded Eucalyptus data from our general tree
models because these species grow significantly taller than all other species on Hawaii (Wagner

et al. 1999).



For each of the 39 total models, we compared four different types of allometric
relationships between tree diameter and height. We first applied a linear fit to In-transformed
diameter and height of the form:

In(H) =a + b In(D) (1)
where H = height (m), D = diameter (cm) at 1.37 m from the ground or above buttresses, and a
and b are regression coefficients. We next applied a quadratic fit to In-transformed diameter
and height of the form:

In(H) = a + b In(D) + ¢ In(D)? (2)
where c is an additional regression coefficient. Equations 1 and 2 were back-transformed, and
in each case a correction factor was calculated to account for the back-transformation of the
regression error (Baskerville 1972). We also applied a non-linear exponential rise-to-maximum
(ERTM) fit to diameter and height of the form:

H=a(1-exp(-b+D)) (3)
where a and b are regression coefficients. Finally, we considered a variant of Eq. 3 that includes
an additional scaling coefficient:

H=c+a(l-exp(-b+D)) (4)

The relative fit of each equation was compared, and a best fit was determined based on
the ability of the equation to consistently predict height across the range of diameters sampled
(as assessed by a visual examination of the residuals) and on the goodness-of-fit (r p-value,
and mean squared error). In cases where multiple models were comparable in their predictive
power, ERTM models were given preference, as the ERTM relationship is thought to be an

accurate mathematical representation of tree growth (Niklas 1995). However, we observed



that ERTM models often departed substantially from the observed data at small diameters (e.g.,
where individual points have the least influence on goodness-of-fit), and in such cases ERTM
models were rejected. All model fits were preformed in SigmaPlot 10.0 (Systat Software Inc,

San Jose, CA, 2006).

Classification of forest types

The Chave et al. (2005) suite of general models requires classification of forest types according
to three climate zones: wet, moist, and dry. Approximations of mean annual precipitation
(MAP) and mean annual temperature (MAT) were derived from GIS layers provided by the state
government of Hawaii (Giambelluca et al. 1986; www.ncdc.noaa.gov.html). These layers were

intersected using ArcGIS 9.3 (2007) to produce a map of the combined classes (WebTable 4).



WebTable 1. Diameter-to-biomass models used to estimate aboveground biomass (AGB). Assignment of models
to particular species and diameter ranges can be found in WebTable 3. Omitted descriptive statistics were not
provided in the primary source. D is diameter (cm) at 1.37 m from the ground or above buttress; BD is diameter
(cm) around the base; H is height (m); p is wood density (g cm); regions of origin are (1) Hawaii, (2) Canary
Islands, (3) Peru, and (4) Mexico; model types are (1) linear, (2) power-law, and (3) multivariable.

7 Qs Origin Type Diam‘eter-to-AGB model (calculates 2 M[;n MDax n Ref!
AGB in kg) Gl (el

1 Acacia koa 1 1 exp(-2.3270+2.3500*In(D))*1.0171 099 15 30.0 1
2 Dodonaea viscosa’ 1 2 0.13*(BD*10)*°°)/1000 095 05 2920 2
3 Metrosideros polymorpha 1 1 exp(-2.1311+2.5011*In(D))*1.0671 098 1.8 33.024 3
4 Morellafay03 2 1 exp(-1.3412+2.1628*In(D)) 0.99 4
5 Prosopis pallida® 3 1 exp(-1.0188+2.1079*In(BD))*1.0378 0.92 12.7 487 17 5
6 Psidium cattleianum 1 1 exp(-1.9096+2.5763*In(D))*1.0084 099 1.7 18219 6
7 Fraxinus uhdei (wood)3'4 1 1 exp(-2.7339+2.5974*In(D)) 0.99 91.6 7
7 Fraxinus uhdei (leaves)™ 1 1 exp(-5.921+2.243*In(D)) 0.81 91.6 7
8 General dead trees<10cm 4 1  exp(4.6014+1.1204*In(D%))*1.11*10° 0.95 9.9 8
9 General dead trees>10cm n/a’ 3 PI*(D/2)**H*100*0.5/1000 n/a’

10 General tree ferns n/a 3 PI*(D/Z)Z*H*IOO*p/looo n/a’

!(1) Scowcroft and Fujii unpublished data, (2) Litton and Kauffman (2008), (3) CM Litton unpublished data, (4)
Aboal et al. (2005), (5) raw harvest data from Padron and Navarro (2004), (6) RF Hughes unpublished data, (7) D
Rothstein and PM Vitousek unpublished data, (8) Hughes et al. (1999), (9) RF Hughes unpublished data.

’Model estimates AGB based on basal diameter (cm).
*A correction factor is incorporated.
*Results of models for wood and leaf tissues were combined to estimate total AGB.

>AGB for dead trees and tree ferns was estimated using the volume of a cylinder, with measurements of tree
diameter, height, and wood density.
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WebTable 2. Species-specific and general diameter-to-height models used to estimate height according to the
assigned model numbers in WebTable 3. D is diameter (cm) at 1.37 m from the ground or above buttress; H is
height (m); region (Reg) is either dry (D), wet (W), or island-wide (1); model types are (1) linear, (2) quadratic, (3)

exponential rise-to-maximum, and (4) exponential rise-to-maximum with an additional scaling coefficient.

. . Min Min M M
Diameter-to-height model (calculates 2 ih Wiin - AaxfViax

# species Reg Type .. D H D H n
Hinm
’ (cm) (m) (cm) (m)
. exp(0.0367+0.9886*In(D)-
1 Acacia koa D 2 0.0871*|n(D)2)*1.0219 0.82 2.2 2.1 130.2 204 115
. exp(0.1795+1.0160*In(D)-
2 Acacia koa w 2 0.0800*|n(D)2)*1.0156 0.84 1.7 2.4 1404 28.0 198
3 Antidesma platyphyllum W 4 1.1240+8.5503*(1-exp(-0.1079*D)) 080 1.1 1.8 137 89 60
4 Casuarina equisetifolia W 3 28.6202*(1-exp(-0.0517*D)) 0.80 2.3 3.3 748 354 47
5 Cecropia obtusifolia W 3 23.0165*(1-exp(-0.0678*D)) 0.87 09 1.7 355244 85
6 Cheirodendron trigynum W 3 12.6477*(1-exp(-0.1365*D)) 063 13 2.0 450179 91
o L exp(0.6457+1.5932*
7 Cibotium chamissoi 1 In(D))*1.2763/100 0.74 1.7 0.0 475 63 174
L exp(-0.6277+1.6910*
8 Cibotium glaucum I 1 In(D))*1.1386/100 0.72 2.0 0.0 58.0 6.0 2142
L . exp(-0.6549+1.8683*
9 Cibotium menziesii I 1 In(D))*1.1705/100 0.72 28 0.1 652 9.0 856
Y exp(-0.4531+1.6955*
10 Cibotium spp | 1 In(D))*1.2071/100 0.67 1.7 0.0 65.2 9.0 3172
11 Coprosma spp W 3 10.2252*(1-exp(-0.2257*D)) 0.57 1.0 2.2 19.6 148 108
12 Diospyros sandwicensis D 3 6.0846*(1-exp(-0.1010*D)) 0.29 9.2 2.7 350 7.9 72
13 Diospyros sandwicensis W 4 -2.1177+15.9999*(1-exp(-0.1178*D)) 0.80 2.0 1.7 539 158 36
14 Eucalyptus robusta W 3 51.8735*%(1-exp(-0.0181*D)) 0.81 3.4 3.5149.4 620 35
15 Eucalyptus saligna W 3 63.2135%(1-exp(-0.0163*D)) 0.78 4.6 8.6 149.0 71.0 89
16 Falcataria moluccana W 1 exp(0.5900+0.6234*In(D))*1.0559 0.88 0.8 1.2 188.7 54.6 136
. . exp(0.7336+0.6960*In(D)-
17 Ficus rubiginosa w 2 0.049O*In(D)2)*1.0215 0.80 0.9 1.7 150.3 253 69
. . exp(0.5863+0.8932*In(D)-
18 Fraxinus uhdei w2 0.0585*In(D)?)*1.0109 0.97 13 2.1 165.0 359 107
19 Grevillea robusta D 3 13.9201*(1-exp(-0.0682*D)) 083 19 19 58.0 180 59
20 Ilex anomala W 3 13.0821*(1-exp(-0.1339*D)) 0.81 1.1 2.0 84.217.8 88
21 Jacaranda mimosifolia D 3 8.7021*(1-exp(-0.0847*D)) 063 53 24 424 9.7 30
22 Metrosideros polymorpha D 3 14.1340*(1-exp(-0.0573*D)) 0.63 2.6 2.2 983215 129
23 Metrosideros polymorpha W 3 22.9975*(1-exp(-0.0452*D)) 090 1.0 1.4 983 33.3 664
24 Myrsine lanaiensis D 4 1.9314+14.0107*(1-exp(-0.0238*D)) 0.69 2.0 2.0 54.4 12.7 162
25 Myrsine sandwicensis D 4 2.1002+8.1291*(1-exp(-0.0489*D)) 0.55 3.4 2.8 43.0 115 17
26 Perrottetia sandwicensis W 4 1.3360+11.8919*(1-exp(-0.0772*D)) 0.79 0.5 1.3 16.2 11.6 90
27 Pouteria sandwicensis D 3 13.2782*(1-exp(-0.0453*D)) 0.26 20.1 6.0 49.8 14.2 31
28 Prosopis pallida D 1 exp(0.3744+0.5194*In(D))*1.0235 0.74 2.0 2.0 82.018.7 170
29 Psidium cattleianum W 3 12.4891*(1-exp(-0.1569*D)) 0.81 0.2 14 26.7 153 281
30 Psychotria hawaiiensis W 3 9.2527*(1-exp(-0.1863*D)) 053 0.8 1.5 199 12.8 63

11



31 Psydrax odorata

32 Psydrax odorata

33 Santalum paniculatum
34 Sapindus saponaria

35 Schefflera actinophylla
36 Sophora chrysophylla

37 Trema orientalis

38 General Dry

39 General Wet

S UsSoOUUOUsoOo

A W WWE ww

6.5422*(1-exp(-0.1832*D))
7.4929*(1-exp(-0.2472*D))
exp(0.4386+0.3883*In(D))*1.0265
10.7959*(1-exp(-0.0402*D))
16.1354*(1-exp(-0.0800*D))
5.3775*(1-exp(-0.2262*D))

0.7823+25.5680* (1-exp(-0.0258*D))

exp(0.3480+0.6056*In(D)-
0.0246*In(D)*)*1.0514

exp(0.5120+0.7583*In(D)-
0.0322*In(D)?)*1.0409

0.42
0.75
0.49
0.31
0.79
0.29

0.95

0.63

0.86

33 22 151 7.2
08 19 9.6 8.7
22 23 252 8.0
20.7 5.2 62.8 12.2
2.8 3.0 241 145
24 19 241 85

1.5 1.8 735 26.4

19 1.8 130.2 21.5

30
44
29
29
32
34

30

981

0.2 1.2 188.7 54.6 2257
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WebTable 3. Estimates of wood density (WD, g cm 3, oven-dried weight over green volume) by species or genus,
assignment of diameter-to-AGB (aboveground biomass) and diameter-to-height models by species, and the
frequency of species in the Hawaii database. Diameter-to-AGB models are found in WebTable 1, diameter-to-
height models are found in WebTable 2. Wood density samples from the field were averaged from sections of at
least six trees. Additional wood density values were taken from a global wood density database (Chave et al.
2009), and a default value of 0.5 g cm™ was used when no field sample or literature value was available.

. Diame.ter- Diameter-
Species a LTEELC WD Dlameter-tol- to-height to-height Reference
stems AGB model model
(wet) model (dry)

Acacia koa 2247 0.55 1 (£30cm dbh) 2 1 Field
Acacia melanoxylon 48 0.53 39 38 Chave
Aleurites moluccana 1 0.38 39 38 Chave
Antidesma platyphyllum 217 0.67 3 38 Field
Broussaisia arguta 1 0.21 39 38 Field
Casuarina equisetifolia 1110 0.81 4 38 Chave
Cecropia obtusifolia 40 0.31 5 38 Chave
Chamaesyce celastroides 10 0.50 39 38 Default
Chamaesyce olowaluana 208 0.50 39 38 Default
Charpentiera ovata 52 0.50 39 38 Default
Cheirodendron trigynum 2787 0.47 6 38 Field
Cibotium chamissoi 90 0.19 10 7 7 Field
Cibotium glaucum 942 0.22 10 8 8 Field
Cibotium menziesii 430 0.21 10 9 9 Field
Cibotium spp 182 0.21 10 10 10 Field
Coprosma pubens 1 0.48 11 38 Field
Coprosma rhyncocarpa 1 0.48 11 38 Field
Coprosma spp 1196 0.48 11 38 Field
Cyrtandra spp 3 0.50 39 38 Default
Diospyros sandwicensis 319 0.74 13 12 Field
Dodonea viscose 267 0.50 2 39 38 Default
Eucalyptus grandis 1 0.66 15 38 Chave
Eucalyptus robusta 1165 0.64 14 38 Chave
Eucalyptus saligna 801 0.74 15 38 Chave
Eucalyptus spp 399 0.83 15 38 Chave
Falcataria moluccana 5 0.43 16 38 Field
Ficus macrophylla 1 0.41 17 38 Chave
Ficus nota 76 0.41 39 38 Chave
Ficus rubiginosa 145 0.43 19 38 Field
Ficus spp 21 0.41 39 38 Chave
Flindersia brayleyana 39 0.48 39 38 Chave
Fraxinus uhdei 2445 0.48 7 18 38 Field
Grevillea robusta 1546 0.52 39 19 Chave
Hedyotis hillebrandii 51 0.38 39 38 Field
Hedyotis spp 75 0.38 39 38 Field
Hedyotis terminalis 15 0.38 39 38 Field
llex anomala 1466 0.48 20 38 Field
Jacaranda mimosifolia 19 0.49 38 21 Chave
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Kokia drynarioides

Melastoma septemnervium

Melastoma spp
Melicope clusifolia
Melicope pseudoanisata
Melicope spp

Melicope volcanica
Melochia umbellata
Metrosideros polymorpha
Morella faya

Morinda citrifolia
Myoporum sandwicense
Myrsine lanaiensis
Myrsine lessertiana
Myrsine sandwicensis
Myrsine spp

Nestegis sanwicensis
Nicotiana glauca

Olea europaea
Osteomeles anthyllidifolia
Pandanus tectorius
Perrottetia sandwicensis
Pipturus albidus

Pisonia umbellifera
Pittosporum gayanum
Pleomele hawadiiensis
Pouteria sandwicensis
Prosopis pallida

Psidium cattleianum
Psidium guajava
Psychotria hawaiiensis
Psydrax odorata
Sadleria spp

Santalum paniculatum
Sapindus saponaria
Schefflera actinophylla
Schinus terebinthifolius
Sophora chrysophylla
Styphelia tameiameiae
Syzygium cumini
Syzygium jambos

Toona ciliata

Trema orientalis
unknown

Wikstroemia spp
Xylosma hawaiiense

Total number of stems:

Fraction with WD estimate:

26
103
19

11
21373
3015
17
2093
176
139
16
30

46

28

347
22

o

13
389
7616
41
674
32

22
126
224

22
692
107

2

10
156

77

1680
3
1

57813

90.66%

0.50
0.46
0.46
0.50
0.50
0.50
0.50
0.32
0.69
0.50
0.63
0.88
0.53
0.53
0.53
0.53
0.50
0.50
0.81
0.50
0.50
0.41
0.30
0.28
0.61
0.50
0.69
0.88
0.69
0.65
0.54
0.87
0.50
0.72
0.71
0.41
0.59
0.64
0.50
0.67
0.70
0.38
0.35
0.50
0.50
0.66

3 (£30cm dbh)
4

5
6 (£20cm dbh)

39
39
39
39
39
39
39
39

39
39
39
39
39
39
39
39
39
39
39
39
26
39
39
39
39
39
39
29
39
30
32
39
39
39
35
39
39
39
39
39
39
37
39
39
39

38
38
38
38
38
38
38
38
22
38
38
38
24
38
25
38
38
38
38
38
38
38
38
38
38
38
27
28
38
38
38
31
38
33
34
38
38
36
38
38
38
38
38
38
38
38

Default
Field
Field
Chave
Chave
Chave
Chave
Chave
Field
Chave
Chave
Chave
Field
Field
Field
Field
Default
Default
Chave
Default
Default
Field
Field
Chave
Chave
Default
Chave
Chave
Field
Chave
Field
Chave
Default
Chave
Chave
Chave
Chave
Chave
Default
Chave
Chave
Chave
Chave
Default
Default
Chave

"Models 8,9 used for all standing dead trees



WebTable 4. Forest type classifications based on GIS mapping of mean annual precipitation (MAP) and mean
annual temperature (MAT). Units for precipitation and temperature are represented in millimeters and °C,
respectively.

Class name MAP/MAT regions
Moist-Montane 1500 < MAP < 3500 and MAT < 18
Moist-Lowland 1500 < MAP < 3500 and MAT > 18
Dry-Montane MAP < 1500 and MAT < 18
Dry-Lowland MAP < 1500 and MAT > 18
Wet-Montane MAP > 3500 and MAT < 18

Wet-Lowland MAP > 3500 and MAT > 18




400

300

Aboveground Carbon (Mg ha)

400

300

Aboveground Carbon (Mg ha')

400

300

Aboveground Carbon (Mg ha”)

WebFigure 1. Relationships between various LiDAR-derived metrics and aboveground carbon
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WebFigure 2. Relationship between LiDAR-derived mean canopy profile height and plot-level
aboveground carbon (C) density. The model was highly significant (p < 0.0001) and
explained C density variation among seven distinct physiographic provinces in Hawaii:
savannas and successional forests in Hawaii Volcanoes National Park (HAVO), dense
closed-canopy forest in the Laupahoehoe section of the Hilo Forest Reserve (LAU), a
successional gradient along the Mauna Loa Matrix (MLM), savannas and dry forest in
the Pohakuloa Training Area (PTA), wet native and introduced successional forests in
Puna (PUNA), savannas and dry forests in Pu’'u Waa’ Waa’ (PWW), and closed-canopy
forests of introduced trees in the Waiakea Management Area (WAI).
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WebFigure 3. Error analysis of LIiDAR-to-carbon relationship.
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WebFigure 4. Hawaiian rainforests within the Hakalau National Wildlife Refuge as seen by
Google Earth (top), compared with LiDAR-based carbon mapping (bottom). The white
bars indicate 500 m of distance.
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WebFigure Al. Diameter-to-height relationships for the two most common native tree species
on Hawaii Island: (A) Metrosideros polymorpha, and (B) Acacia koa. As with two additional
species not shown (Diospyros sandwicensis, Psydrax odorata), height increased more steeply
with diameter in ecosystems on the wet side of the island.
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