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Abstract. In two of our recent systems biology studies of forest trees 
we reconstructed gene networks active in wood tissue development for 
an undomesticated tree genus, Populus. In the first study, we used time 
series data to determine gene expression dynamics underlying wood for-
mation in response to gravitational stimulus. In the second study, we inte-
grated data from newly generated and publicly available transcriptome 
profiling, transcription factor binding, DNA accessibility and genome-
wide association mapping experiments, to identify relationships among 
genes expressed during wood formation. We demonstrated that these 
approaches can be used for dissecting complex developmental responses 
in trees, and can reveal gene clusters and mechanisms influencing poorly 
understood developmental processes. Combining orthogonal approaches 
can yield better resolved gene networks, but the resulting network mod-
ules may contain large numbers of genes. This limitation reflects the 
difficulty in creating a variety of experimental conditions that can reveal 
expression and functional differences among genes within a module, thus 
imposing limits on the resolving power of network models in practice. 
To resolve networks at a finer level we are now adding a complementary 
approach to our work: using cross-species gene network inference. In this 
approach, transcriptome assemblies of two or more species are considered 
together to identify expression responses common to all species and also 
responses that are species specific. To that end here we present a new 
tool, fastOC, for identifying gene co-expression networks across multiple 
species. We provide initial evidence that the tool works effectively in cal-
culating co-expression modules with minimal computing requirements, 
thus making cross-species gene network comparison practical. 
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1 Introduction 

Transcription is a primary regulatory point in gene regulation. The expression 
level of a gene reflects in part the regulation from upstream genes encoding 
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transcription factors (TFs), that bind to the regulatory cis-elements in the pro-
moters of downstream gene targets [8,15]. The specific and combinatorial bind-
ing of transcription factors to target gene promoters contributes to spatial, and 
temporal regulation, as well as rates of transcription [8,11]. Additional levels of 
regulation include the stability and rates of degradation of gene mRNA tran-
scripts. When RNA sequencing is used to measure mRNA transcripts, the com-
bined influence of gene expression regulation and transcript stability properties 
is being observed. 

Gene regulatory networks describe the links between the regulator genes and 
their targets. In aggregate these networks are extremely complex and in prac-
tice incompletely modeled, even for model species [11]. However, it appears that 
basic properties of these networks are shared by all organisms surveyed to date. 
For example, similar to what has been described in animals, yeast and bacteria, 
a gene regulatory network model in Arabidopsiswas characterized by hierarchical 
relationships among regulators, with top-level master regulator TFs controlling 
expression of lower order TFs that in turn regulate expression of structural genes 
encoding proteins involved in building new cell components [5,24]. Additional 
regulatory features such as feed forward loops are also shared between the Ara-
bidopsisand other gene regulatory networks [24]. Together these results suggest 
that concepts and approaches developed for modeling gene-based regulatory net-
works in model eukaryotic and prokaryotic species can be extended to plants [19]. 
We are exploring how to further extend gene regulatory network concepts and 
approaches further still, to undomesticated tree species. 

Developmental processes in trees are complex, and are controlled through 
the interactions of thousands of genes [23]. Network modeling concepts and 
approaches thus hold promise to transcend simple gene-gene interactions to more 
comprehensively and realistically describe functional processes. Advances in net-
work science and network analytics allow the understanding of gene networks in 
terms of their modularity [1,13], stability [6,26], controllability [18], and other 
emergent properties [2,3], some of which can be directly mapped onto pheno-
typic traits [9,21]. However, the difficulty has been in learning those networks 
in forest trees and other non-model organisms. Indeed for forest trees, there 
are thousands of species of ecological or economic importance, presenting the 
additional challenge of understanding how traits of interest vary across many 
species. 

Advances in sequencing technologies now make gene expression and co-
expression analyses tractable in non-model organisms. Projects such as oneKP 
are generating transcriptome assemblies for 1,000 undomesticated plants across 
the plant kingdom [20]. A major challenge is how to now leverage these types 
of data sets from individual and even multiple species to enable new analysis 
that provide insight into the regulation of complex traits both within and across 
species. 

Co-expression networks provide a framework for integrating data types from 
multiple experiments [22,25]. Conceptually, gene transcript levels assayed across 
multiple conditions and developmental tissues can be clustered into groups of 
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genes (i.e. modules) that show highly correlated expression. Overlaying such 
modules with functional annotations (e.g. Gene Ontology [7]) and correlations 
with phenotypes can provide insight into the biological pathways influencing 
developmental processes and the dissection of complex traits [29]. 

Calculating co-expression networks across species within a phylogenetic 
framework presents additional opportunities and challenges. On the one hand, 
the analysis of co-expression modules that show specific phylogenetic relation-
ship can be extremely informative. For example, co-expression modules that are 
conserved across wide phylogenetic distance could represent signal from evo-
lutionarily ancient regulatory mechanisms. On the other hand, these analyses 
are conceptually and computationally demanding. For example, the homologous 
relationships among genes must be established across all species being analyzed, 
and can include one to one, one to many, or many to many relationships among 
orthologs. A very practical challenge is thus to establish both orthologous rela-
tionships as well as co-expression relationships across multiple species in a com-
putationally tractable way. 

2 Our Recent Work on Trees 

Plants modify their growth and development in response to external stimuli. As 
trees grow, they integrate environmental and developmental signals using com-
plex but poorly defined transcriptional gene networks, allowing trees to produce 
woody tissues appropriate to diverse environmental conditions. Here, we sum-
marize two of our recent studies that illustrate the different approaches we have 
undertaken to elucidate gene networks of forest trees [28,29]. 

2.1 Recent Study #1: Time Series of Gene Expression 

Plants respond to gravity to produce new growth that is properly oriented in 
space. For example, gravistimulation of leaning stems in angiosperm trees such as 
Populus results in modifications of wood development, to produce tension wood 
that pulls leaning stems upright (see Fig. 1, top row) [12]. This response pro-
vides an experimental system to perturb gene expression, and can be temporally 
calibrated against tissue development and stem movements. 

In our recent work, we used gravistimulation and tension wood response to 
dissect the temporal changes in gene expression underlying wood formation in 
Populus stems [28]. 

Using time series analysis of transcriptome sequences at seven time points 
over a 14-day experiment, we identified 8,919 genes that were differentially 
expressed between tension wood (upper) and opposite wood (lower) sides of 
leaning stems. Clustering of differentially expressed genes showed four major 
transcriptional responses, including gene clusters whose transcript levels were 
associated with two types of tissue-specific impulse responses that peaked at 
about 24 to 48 h, and gene clusters with sustained changes in transcript levels 
that persisted until the end of the 14-day experiment. Our approach is illustrated 
in Fig. 1. 
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Fig. 1. The steps in our experimental and computational analysis of gene expression 
of different types of woody tissue in poplar trees, over 14 days [28]. The results include 
lists of differentially expressed genes (DEGs) over time, clusters of genes coexpressed 
over time, and functional annotation of those clusters from the GO database [7]. 

Functional enrichment analysis of those clusters suggested they reflect tem-
poral changes in pathways associated with hormone regulation, protein localiza-
tion, cell wall biosynthesis and epigenetic processes. Time series analysis of gene 
expression is an underutilized approach for dissecting complex developmental 
responses in plants, and can reveal gene clusters and mechanisms influencing 
development. 
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2.2 Recent Study #2: Integrating Data from Different Sources 

Trees modify wood formation through integration of environmental and devel-
opmental signals in complex but poorly defined transcriptional networks, allow-
ing trees to produce woody tissues appropriate to diverse environmental condi-
tions. Basic, conceptual questions include whether multiple environmental inputs 
impinge upon common regulatory mechanisms, or if individual environmen-
tal inputs connect directly to independent regulatory mechanisms controlling 
growth. 

Fig. 2. Flow chart depicting the experimental approach for modeling co-expression net-
works underlying wood development using data integration and consensus clustering. 
Original figure appeared in New Phytologist [29]. 

In order to identify relationships among genes expressed during wood for-
mation, in another recent study [29] we integrated data from our own and pub-
licly available data sets in Populus. These data sets were generated from woody 
tissues and include transcriptome profiling, transcription factor binding, DNA 
accessibility and genome-wide association mapping experiments. Co-expression 
modules were calculated, each of which contains genes showing similar expression 
patterns across experimental conditions, genotypes and treatments. Conserved 
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gene co-expression modules (four modules totaling 8,398 genes) were identified 
that were highly preserved across diverse environmental conditions and genetic 
backgrounds. Figure 2 illustrates our approach. 

Functional annotations as well as correlations with specific experimental 
treatments associated individual conserved modules with distinct biological pro-
cesses underlying wood formation, such as cell-wall biosynthesis, meristem devel-
opment and epigenetic pathways. Module genes were also enriched for DNase I 
hypersensitivity footprints and binding from four transcription factors associ-
ated with wood formation. The conserved modules are excellent candidates for 
modeling core developmental pathways common to wood formation in diverse 
environments and genotypes, and serve as testbeds for hypothesis generation 
and testing for future studies. 

3 Toward Higher Resolution Network Inference: 
Multi-species Approaches 

More systemically, comparison of co-expression networks across multiple species 
can identify gene modules in common to all of them (i.e. ancestral) and mod-
ules unique to specific lineages. This approach allows additional inference of 
the evolutionary history and other features of co-expression modules through 
consideration of their orthologous features. Functional annotation of modules 
and association with phenotypic traits that vary across the lineages surveyed 
can provide important insights into the evolutionary history of modules, asso-
ciated molecular mechanisms, and traits that they regulate. This type of com-
parison is emerging as an important task in systemic analyses, with existing 
approaches developed to align protein-protein interaction networks [10,14,17] 
and co-expression networks [27] across species. 

Computationally, there are some important challenges that need to be 
addressed to allow adoption of evolutionary co-expression network approaches. 
Network comparison is computationally expensive because of the tens of thou-
sands of genes expressed within each species and the super-linear growth of pos-
sible relationships among them. Similarly, determination of orthologous relation-
ships across species is a challenging task. Additionally, there can be complications 
working with multiple non-model species, for which high quality transcriptomes 
must be established without the aid of guiding genomic sequence. 

An existing state-of-the art approach, OrthoClust [27], e.g., is prohibitively 
slow on mammalian or plant size genomes, and can only work with two species at 
a time. Here we present a modified approach, fastOC, that eliminates those lim-
itations and enables the construction and comparison of co-expression networks 
of multiple tree species, in tractable time and on typical hardware. 

3.1 Results 

We implemented fastOC, an extension of OrthoClust v1.0 [27], which works on 
two or more species, and is orders of magnitude faster. Both packages use a 
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multi-layer network approach to compute co-expression networks across multi-
ple species. These methods cluster genes based on the correlation of expression 
patterns within species and align networks across species using orthologous gene 
relationships. The within species co-expression relationships are defined by each 
gene and the top-N gene neighbors based on Pearson correlations. 

The interactions of genes across species are defined as an orthologous weight 
that accounts for complex orthologous relationships, such as one-to-one, one-to-
many and many-to-many relationships. The main difference between fastOC and 
OrthoClust v1.0, is that fastOC performs clustering of the entire multi-layer 
network using the Louvain community detection algorithm [4], instead of the 
original approach of simulated annealing. The Louvain algorithm is a heuristic 
approach that assigns genes (nodes) to communities to optimize community 
modularity. Using many Louvain runs, we calculate how often genes co-appear 
in the same Louvain communities, and identify both the gene modules conserved 
across species and those unique to specific lineages. Gene modules represent 
groups of genes that display high co-appearance in Louvain communities. We 
provide functions for module detection using dynamic tree cutting of hierarchical 
dendrograms [16]. Figure 3 illustrates the main steps in the fastOC program. 

Fig. 3. The three steps in the cross-species co-expression analysis in fastOC. 

We implemented fastOC as an R package and the source code is available 
at https://github.com/mzinkgraf/fastOC under a GPL-3 license. The package 
includes functions for (1) generating co-expression networks from expression 
data, (2) calculating orthologous weights, (3) summarizing expression of mod-
ule genes, and (4) visualization of results. In addition, we developed functions 
to include parallel processing options to leverage the multi-core functionality of 
many modern computers. For example, the Louvain clustering function allows 
for parallel processing using the foreach and doParallel packages in R, to further 
increase computational efficiency and decrease run times. 

https://github.com/mzinkgraf/fastOC
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4 Conclusion 
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Table 1 shows the comparison of running times between our tool, fastOC, and 
the existing OrthoClust using a single thread on typical hardware. In addition 
to being between two and three orders of magnitude faster, our examination of 
the results showed that fastOC finds similar modules in the worm-fly data set as 
those described in Yan et al. [27]. Specifically, the modules found by fastOC had 
statistically significant overlap with those found by OrthoClusts (χ 2 = 711. 8; 
df = 462; p-value = 6. 244 × 10−13). 

Table 1. Comparison of run times for OrthoClust and fastOC. Run times for each 
method were calculated using 20 runs on a single CPU thread on MacBook Pro 
with a 3.0 GHz Intel Core i7, and 16 GB RAM. The Simulated and Worm-Fly data 
sets were obtained from https://github.com/gersteinlab/OrthoClust/. The 3 Woody 
Species data set is available at https://github.com/mzinkgraf/fastOC/. 

Simulated Worm vs. Fly 3 Woody Species 

# Genes 800 34K 83K 

# Edges  13K 147K 625K 

OrthoClust v.1 6.5 s 2,308.3 s Not implemented 

fastOC 0.1 s 1.8 s 7.6 s 

Our past work demonstrated that combining different data types can help resolve 
gene networks, as can time series gene expression experiments. However, the sizes 
of resulting functional modules can still be large. 

Here we described a tool, fastOC, to complement those approaches by 
enabling co-expression analyses across related species. fastOC is an almost real-
time interactive tool for multi-species co-expression network comparison. It can 
make possible studies of the evolution of genomic function based on how genes 
interact in complex regulatory networks. Furthermore, fastOC can efficiently 
work with more than two species. As of this writing, we are using this tool on 
13 tree species containing 291,375 genes and 4,642,738 edges in a multi-layer 
network. 
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