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Since Darwin’s observation that secondary woodiness is common on islands, the evolution of woody plants from 
herbaceous ancestors has been documented in numerous angiosperm groups. However, the evolutionary processes 
that give rise to this phenomenon are poorly understood. To begin addressing this we have used a range of 
approaches to study the anatomical and genetic changes associated with the evolution and development of 
secondary woodiness in a tractable group. Begonia is a large, mainly herbaceous, pantropical genus that shows 
multiple shifts towards secondarily woody species inhabiting mainly tropical montane areas throughout the world. 
Molecular phylogenies, including only a sample of the woody species in Begonia, indicated at least eight instances 
of a herbaceous–woody transition within the genus. Wood anatomical observations of the five woody species 
studied revealed protracted juvenilism that further support the secondary derived origin of wood within Begonia. 
To identify potential genes involved in shifts towards secondary woodiness, stem transcriptomes of wood 
development in B. burbidgei were analysed and compared with available transcriptome datasets for the non-woody 
B. venustra, B. conchifolia, and Arabidopsis, and with transcriptome datasets for wood development in Populus. 
Results identified a number of potential regulatory genes as well as variation in expression of key biosynthetic 
enzymes. © 2015 The Authors. Biological Journal of the Linnean Society published by John Wiley & Sons Ltd 
on behalf of Linnean Society of London, Biological Journal of the Linnean Society, 2016, 117, 121–138. 
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INTRODUCTION 

Charles Darwin was one of the first scientists to 
mention the occurrence of woodiness in some island 
species belonging to otherwise herbaceous plant 
groups (Darwin, 1859). He identified ‘insular woodi­
ness’ as a derived or secondary state, which evolved 
after ancestral herbaceous progenitor populations 
reached the islands. For many of these woody island 
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species this shift in habit was later confirmed by 
molecular phylogenetics, and anatomical studies 
revealed that the wood in such species was charac­
terized by protracted juvenilism (Carlquist, 1974, 
2012; Givnish, 1998; Whittaker andez-Pala­& Ferna

cios, 2007; Lens et al., 2009, 2013a). There is grow­
ing evidence that evolutionary shifts towards the 
woody habit occur convergently within families, on 
single islands, but also in continental areas with at 
least some consecutive dry months per year (Carl­
quist, 1974; Lens et al., 2013a; F. Lens, in prep). 

Distinguishing between herbaceousness and woodi­
ness is not always easy due to the continuous 
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variation between both growth forms. Plants from 
most dicotyledonous angiosperm lineages – including 
herbaceous groups – retain the ability to produce a 
limited amount of wood in the basal parts of their 
stems (Dulin & Kirchoff, 2010; Lens et al., 2012a; 
Lens, Smets & Melzer, 2012b). The limited wood for­
mation in these herbaceous lineages may contribute 
biomechanical strength to the stem, and could 
explain the retention of wood forming genes in her­
baceous groups. In addition, pleiotropic activity of 
cambium genes in shoot apical meristem function 
may also contribute to their retention (Robischon 
et al., 2012; Zhang et al., 2014). The potential genetic 
simplicity of a habit switch from herbaceousness 
back to the ancestral woody habit in angiosperms is 
supported in Arabidopsis by the 2-gene model of Mel­
zer et al. (2008). In this case, loss of function in two 
MADS box transcription factors enable the herba­
ceous wild-type to develop into a woody shrub. 

Secondary woodiness appears to be correlated with 
extreme conditions in at least some groups. Drier hab­
itats and competition have been suggested as drivers 
(Lens et al., 2013a, b) and different drivers appear to 
operate even within the same clade (Lens et al., 2009). 
It has also been suggested that woody growth is a 
response to more favourable climatic environments 
(especially lack of frost; Carlquist, 1974) or to promote 
outcrossing (B€ohle, Hilger & Martin, 1996), and that 
flexible developmental genetics allowing lineages to 
switch between herbaceous and woody forms may 
have contributed to the evolutionary success of angio­
sperms (Bond, 1989). A better understanding of the 
evolution of secondary woodiness will help us assess 
the advantages that the woody habit confers. 

Genomic and molecular tools are becoming avail­
able to study the environmental drivers and proxi­
mal genetic causes of this derived wood formation in 
otherwise herbaceous lineages in a wide array of an­
giosperms. In particular, transcriptome sequencing 
can reveal useful information about biosynthetic 
pathways, regulatory pathways and targets of selec­
tion even in non-model species (e.g. Wu et al., 2014; 
Xu et al., 2014; Zhu et al., 2014). Comparative trans­
criptomics allows us to identify potential candidate 
genes regulating or driving the production of wood in 
secondarily woody species. This descriptive approach 
can only provide a ‘snap shot’ of the situation, but it 
is a valuable first step in identifying the developmen­
tal pathways and changes involved. 

The pantropical genus Begonia provides an ideal 
group to investigate the evolution of secondary wood­
iness. Begonia contains at least 1550 species com­
prising mostly herbaceous species, but also a number 
of species that grow as woody shrubs (Doorenbos, 
Sosef & de Wilde, 1998). The derived nature of Bego­
nia wood was described by Carlquist (1985) who 

studied the wood anatomy of four woody South 
American species and observed characters demon­
strating protracted juvenilism, namely the presence 
of tall multiseriate rays with mainly upright ray 
cells and wide scalariform intervessel pitting. The 
estimated number of woody begonias is difficult to 
assess because of incomplete collection efforts in 
some regions combined with the lack of thorough 
regional flora treatments in these areas, but up to 
ca. 50 woody species might be possible. In published 
phylogenies, only three woody African, one woody 
Asian, and six woody neotropical Begonia species are 
included, and these woody species represent at least 
seven independent shifts towards secondary woodi­
ness, suggesting this is a fairly labile trait within 
Begonia (Plana, 2003; Forrest, Hughes & Hollings­
worth, 2005; Goodall-Copestake et al., 2010; Thomas 
et al., 2011; Moonlight et al., 2015). 

Most of the woody Begonia species are native to 
wet tropical mountain peaks of SE Asia (Beaman, 
Anderson & Beaman, 2001; Hughes & Pullan, 2007), 
Andean South American (Mark Tebbitt, pers. comm.), 
moist East African montane forests (Reitsma, 1984; 
Plana, Sands & Beentje, 2006) or moist tropical West 
African islands ao e Principe).(S~ Toma and Conse­
quently, for a majority of the woody begonias, drought 
stress is definitely not involved in wood formation, 
although this has been suggested by recent experi­
mental results based on embolism resistance mea­
sures in stems of herbaceous and woody Arabidopsis 
thaliana individuals (Lens et al., 2013b). Neverthe­
less, for some other woody begonias drought stress is 
an issue, such as some of the South East Asian woody 
begonias native to dry coralline limestone hills with 
low water-holding capacity (Kiew, 1998, 2001), and 
some neotropical woody species inhabiting dry habi­
tats in the Andes. It even appears that the woody 
Andean species in these drier areas are woodier than 
the ones growing in more mesic Andean habitats, 
such as the narrow Peruvian endemic B. gorgonea 
exhibiting strikingly woody rhizomes in xeric envi­
ronments (Mark Tebbitt, pers. comm.). 

The occurrence of secondarily woody species in both 
wet and dry climates, makes this an excellent model 
genus to investigate the diverse array of factors that 
may drive shifts to secondary woodiness (Kiew, 1998, 
2001; Beaman et al., 2001; Hughes & Pullan, 2007). 
Begonia also has the advantage of having an array of 
genomic resources including a draft genome sequence, 
transcriptome datasets, and genetic maps (Brennan 
et al., 2012; C. Kidner in prep), making questions 
about the genetic underpinnings of the evolution and 
development of secondary woodiness tractable. 

Here we take an interdisciplinary approach using 
three methods to investigate the evolution and devel­
opment of secondary woodiness in Begonia: (1) we 
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describe detailed stem anatomical differences 
between mainly herbaceous and woody species from 
Borneo; (2) use an updated phylogenetic analysis 
focusing on Bornean species to provisionally estimate 
the number of shifts towards secondary woodiness in 
Borneo and world-wide; and (3) characterize gene 
expression in wood forming tissues of the secondarily 
woody B. burbidgei Stapf native to Borneo. These 
results provide us with preliminary data to inform 
further discussion on the diversity of environmental 
and abiotic factors that might be associated with sec­
ondary woodiness in Begonia. 

MATERIAL AND METHODS
 

DEFINITION OF WOODINESS VS. HERBACEOUSNESS
 

We recognize the fuzzy boundary between woodiness
 
and herbaceousness creates difficulties (Dulin &
 
Kirchoff, 2010; Lens et al., 2012a, b, 2013a). We are
 
only interested in the evolutionary processes that
 
underlie the dramatic transition from ancestral ‘her­
baceous’ species with no or limited wood formation to
 
derived woody shrubs with extensive wood develop­
ment. A strict botanical definition of a woody species
 
is lacking, but in practice there are striking differ­
ences among groups including ‘herbaceous’ and
 
‘woody’ begonias (Figs 1, 2). We define secondarily
 
woody species as shrubs producing a distinct wood
 
cylinder extending towards the upper stem parts as
 
shown in Figure 4. This criterion only applies to the
 
following species in our sampling: B. burbidgei,
 
B. beryllae Ridl., B. fruticosa A. DC. and two species 
new to science found in Crocker Range Park (Malay­
sia; Begonia sp. nov. spec. 2 and spec. 3). Based on 
this definition, all the 45 Begonia species that were 
investigated by Lee’s study of stem anatomy in 
Begonia (Lee, 1974) should be called herbaceous, 
although the author mentioned ‘considerable second­
ary growth’ in some species studied. We aim here to 
investigate the switch to production of a robust wood 
cylinder extending throughout the stems in some 
woody species. 

TAXONOMIC SAMPLING, SEQUENCING PROTOCOL AND 

PHYLOGENETIC ANALYSIS 

During the September 2012 expedition to Mount Ki­
nabalu and Crocker Range Park, the corresponding 
author collected material from 14 Begonia species 
including four woody species and three new to sci­
ence. The frequency of the woody growth habit in 
this locality suggested this would be a good starting 
point for investigating the evolution of woody growth 
within the genus. Voucher material is deposited in 
the herbaria of Sabah Parks (Sabah, Malaysia) and 

the Forest Research Institute Malaysia, voucher data 
are presented in Table S1. 

To understand the phylogenetic context of the 
woody species, the species collected in Borneo were 
incorporated into a plastid phylogeny of South East 
Asian begonias (Thomas et al., 2011, 2012). Three 
non-coding plastid DNA regions (ndhA intron, ndhF– 
rpl32 spacer, rpl32–trnL spacer), which were shown 
to be of considerable phylogenetic utility at the inter-
and infrasectional level in Begonia were amplified 
(Thomas et al., 2011, 2012; Moonlight et al., 2015). 
In total, the ingroup comprised 105 accessions sam­
pled broadly from all major Asian Begonia sections. 
A focus was put on accessions of the large section Pe­
termannia (> 250 species), which includes several 
distinctly woody species. Accessions of the woody 
B. beryllae, B. burbidgei Stapf, B. vaccinioides and 
B. spec. 2, all of which were derived from our 
recently collected material, were included. Accessions 
of seven herbaceous species from Kinabalu, from 
which 19 species have been described in total 
(Hughes, 2008), as well as accessions of an additional 
42 species from the entire geographic range of sec­
tion Petermannia were included in the analyses. Two 
African species, Begonia dregei Otto and Dietr. and 
Begonia sutherlandii Hook, were selected as out-
group based relationships indicated in previous 
molecular phylogenetic studies (Plana et al., 2004; 
Goodall-Copestake et al., 2010). DNA sequences gen­
erated in previous studies (Thomas et al., 2011, 
2012) were downloaded from the nucleotide database 
of the National Centre for Biotechnology Information 
(http://www.ncbi.nlm.nih.gov/), and 55 sequences 
were newly generated for this study (GenBank acces­
sion numbers are listed in Table S2). 

Total genomic data was extracted from living 
material or silica gel dried material using the innu-
Prep Plant DNA Kit (Analytika Jena, Jena, Ger­
many) according to the manufacturer’s protocols. 
Primers and amplification protocols for the three 
chloroplast markers were the same as in Thomas 
et al. (2011). Sequencing polymerase chain reaction 
(PCR) products were purified and sequenced by 
MACROGEN (Amsterdam) using an AB 3730 DNA 
Analyser (Applied Biosystems). 

Sequences were assembled and edited using Gene­
ious v6.1.7 (Drummond et al., 2010). The sequences 
were pre-aligned using the multiple sequence align­
ment software MUSCLE (Edgar, 2004) implemented 
in Geneious using default settings, and subsequently 
manually checked and optimized in Geneious. Inver­
sions were identified in the ndhF-rpl32 spacer region 
of all Philippine samples of Begonia section Diploc­
linium (309–355 bp), the rpl32-trnL spacer of 
Begonia pendula Ridl. (37 bp), as well as in the 
rpl32-trnL spacer of six distantly related species 
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Figure 1. Overview of variation in herbaceousness (A–C) and distinct woodiness (C, D) among Asian begonias, and 

growth habits with reference to specialised organs: tuberous (A), rhizomatous (B), non-tuberous/rhizomatous (C–E). A, 

Begonia tenuifolia Dryand, Begonia obovoidea Craib (Lens and Tisun 62). C, Begonia gambutensis Ardi and DC Thomas 

D, Begonia vaccinioides Sands (photography credit Rogier van Vugt). E, Begonia sp. nov. (Lens and Tisun 78). 
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Figure 2. Light microscope sections of Begonia stems showing marked anatomical diversity between herbaceous species 

(A, B) and woody species (C–E). A, Begonia chlorocarpa, cross-section showing intact primary vascular bundles, interfasci­

cular cambium is developing (arrows). B, Begonia aff. cauliflora, cross-section through basal stem part showing narrow 

wood cylinder (arrow). C, Begonia sp. nov. (Lens and Tisun 78), cross-section at the stem base showing marked wood cylin­

der with tall rays. D, Begonia sp. nov. (Lens and Tisun 82), tangential section illustrating tall rays with mainly upright 

ray cells (arrows). E, Begonia fruticosa, tangential section showing wide gaping scalariform intervessel pitting (arrows). 
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(11 bp, see Thomas et al., 2011). These inversions 
were reverse-complemented, thereby retaining sub­
stitution information in the fragments. 

Bayesian phylogenetic reconstructions were per­
formed using the XSEDE application of MrBayes 
v3.2.2 (Ronquist & Huelsenbeck, 2003) provided by 
the CIPRES Science Gateway (Miller, Pfeiffer & Sch­
wartz, 2010). Three partitions based on spacer and 
intron identity (ndhA intron, ndhF-rpl32 spacer, 
rpl32-trnL spacer) were defined a priori. Models of 
sequence evolution of each nucleotide sequence parti­
tion were determined using MrModelTest (Nylander, 
2004) under the Akaike Information Criterion (AIC). 
Parameters for character state frequencies, substitu­
tion rates of nucleotide substitution models, and rate 
variation among sites were unlinked across parti­
tions. The mean branch length prior was set from 
the default mean (0.1) to 0.01 to reduce the likeli­
hood of stochastic entrapment in local tree length 
optima (Brown et al., 2010; Marshall, 2010). Four 
independent Metropolis-coupled MCMC analyses 
were run. Each search of 10 million generations used 
four chains, a temperature parameter setting of 0.6 
and was sampled every 1000 generations. Conver­
gence was assessed by using the standard deviation 
of split frequencies with values < 0.005 interpreted 
as indicating good convergence. Tracer v1.5 (Ram­
baut & Drummond, 2009) was used to check for sta­
tionary and adequate effective sample sizes for each 
parameter (ESS > 200). Convergence of posterior 
probabilities of splits from different runs were 
checked using the Compare and Cumulative func­
tions of AWTY (Nylander et al., 2008). The initial 
25% of samples of each run were discarded as burnin 
and the remaining trees were summarized as 50% 
majority-rule consensus tree with nodal support 
summarized as posterior probabilities. 

STEM ANATOMY 

Stem samples of the four woody species collected on 
Mount Kinabalu (B. beryllae, B. burbidgei, B. sp2 
and B. sp3) were compared to stem samples from 
herbaceous species in the same area and sampled 
more widely across SE Asia. A stem sample from a 
fifth woody species, the large liana B. fruticosa (Sao 
Paolo, Brazil), was included to address the range of 
wood anatomy in Begonia. In total, eight wood sam­
ples from the five species investigated were sectioned 
using a sliding microtome. Wood sections were col­
oured with safranin-alcian blue mix and mounted 
with euparal (standardized protocol explained in 
Lens et al., 2007). Nine samples representing the 
basal stem part of herbaceous species were embed­
ded in LR White resin (hard grade, London Resin, 
UK), sectioned with a rotary microscope, and stained 

with toluidine blue according to the protocol 
described in Hamann, Smets & Lens (2011). Trans­
verse sections and longitudinal sections were made 
for the woody species, while the herbaceous species 
were represented by transverse sections only. 

STEM TRANSCRIPTOME ANALYSIS 

Samples from a woody B. burbidgei individual were 
collected on the Mount Kinabalu summit trail at 
2870 m asl in ultramaphic soils (Lens and Tisun 51, 
Fig. 3, see Table S1 for detailed voucher data). 
Green and more basal woody stem samples were col­
lected (Fig. 4A), sliced longitudinally into smaller 
fragments, and stored immediately in RNA later 
(Ambion). Samples from the same regions of the 
same stems were also collected for histological analy­
sis. Figure 4B shows the green tissue sample with 
cambial growth just initiating and Figure 4C shows 
much more wood formation in the woody stem sam­
ple. Material used for transcriptome sequencing was 
from the same stem section as for the histological 
analysis. 

Due to the difficulty in determining the cambial 
layer in the preserved tissue sections, material from 
the entire stem cylinder (as shown in Fig. 4a, c) was 
used for the RNA preps. RNA was extracted using 
Invitrogen’s Plant RNA extraction solution with 
modifications to the protocol to include an acid phe­
nol extraction after the chloroform extraction and a 
final LiCl precipitation. Illumina-compatible sequenc­
ing libraries were made using the Illumina Truseq 
RNA Sample Preparation Kit according to the manu­
facturer’s protocol. Samples were multiplexed 6 per 
lane of HighSeq 2000. 161 874 378 raw reads were 
generated from the two samples. Reads were quality 
trimmed using FASTQ groomer in Galaxy (cut-off 
value 20, minimum percentage 90; Blankenberg 
et al., 2010) and the cambial stage (28 221 304 
reads) and woody stage (49 756 127 reads) reads 
were jointly assembled into 98 258 contigs using 
Trinity (Haas et al., 2013). 24 707 contigs were over 
1 kb, 1525 over 3 kb. 280 chloroplast and mitochon­
drial sequences were removed by comparison to the 
Begonia chloroplast genomes and previously identi­
fied mitochrondrial sequences (Brennan et al., 2012; 
Harrison, 2012). Reads were mapped back to the 
assembly using bowtie 2.0 (Langmead & Salzberg, 
2012). We used blast matches to the draft Begonia 
conchifolia A. Dietr. genome (C. Kidner, unpub­
lished) to the TAIR set of Arabidopsis thaliana pro­
teins (TAIR10_pep_20101214_updated at http:// 
www.arabidopsis.org) and the Populus trichocarpus 
Torr. and A. Gray protein dataset from phytozome 
(http://www.phytozome.com, Ptrichocarpa_210_pro­
tein.fa.gz) to annotate the sequences. 54 030 
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Figure 4. Woody Begonia burbidgei individual that was used for stem transcriptome analysis (A) and its stem develop­

mental stages (B, C) sampled in RNA later in the field (mount Kinabalu summit trail, Sabah, Borneo). A, Habit (Lens 

and Tisun 51). B, Cross-section through inflorescence stem that has initiated a vascular cambium (arrows, yellow cross 

in A) – cambial stage transcriptome. C, Cross-section through more basal stem part showing extensive wood formation 

(yellow circle in A) – wood stage transcriptome. 

sequences had a blastn hit at 1e-40 or better in the 
Begonia conchifolia draft genome to 17 743 unique 
ORFs. As B. conchifolia is a distant relative of 
B. burbidgei (Thomas et al., 2012), we expect this set 
to include conserved Begonia genes. 25 042 
sequences had a blastx hit at 1e-10 or better to 
10 423 unique TAIR proteins. The TAIR hits were 
used to annotate the B. burbidgei sequences. RSEM 
and edge-R were used to detect genes differentially 
expressed between the cambium stage and wood 
stage samples (Robinson, McCarthy & Smyth, 2010; 
Li & Dewey, 2011; Haas et al., 2013). 

We compared coding sequences for orthologous 
genes in B. burbidgei and the herbaceous B. venu­
stra, for which a transcriptome dataset from vegeta­
tive buds has already been published (Brennan 
et al., 2012) using custom scripts produced by K. Em­

elianova (available on request). To run Reciprocal 
Best BLAST Hits to identify orthologs in the two 
species, longest open reading frames were extracted 
from ortholog pairs using getORF (Rice, Longden & 
Bleasby, 2000) and translationally aligned using MA­
FFT (Katoh & Standley, 2013), Virtual Ribosome 
(Wernersson, 2006) and RevTrans (Wernersson & 
Pedersen, 2003). Translational alignments were used 
as input to the Codeml package of PAML (Yang, 
2007). The site test was used in Codeml to test for 
positive selection, using the one-ratio model, produc­
ing values of kN, kS and kN/kS for each orthologous 
pair. Orthologs which were more than 75% divergent 
and thus unsuitable for the NG86 method were not 
included in the final results. The ortholog pairs with 
indications of positive selection were annotated by 
blastx to Arabidopsis proteins; only those with a 
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match of at least 1e-10 or better were included in the 
rest of the analysis. 

We used reciprocal tblastx to identify orthologs 
between the Begonia burbidgei and Populus tricho­
carpus sequences from a published cambium tran­
scriptome (Liu et al., 2014), and compared relative 
expression levels by reads per million reads per kb of 
the Populus coding sequence (as Begonia burbidgei 
sequences were often not the full coding sequence) 
(Table S6). 

RESULTS
 

VARIATION IN HABIT
 

Secondarily woody Begonia species are characterized
 
by a shrubby growth habit and can usually be easily
 
distinguished from herbaceous relatives (Figs 1, 3).
 
In general, herbaceous species have semi-succulent
 
stems, and may have specialized storage organs such
 
as tubers (Fig. 1A) or rhizomes (Fig. 1B) (Figs 1C,
 
3). In contrast, secondarily woody species are shrubs
 
(Fig. 1D, E) characterized by wood formation extend­
ing towards the upper parts of the stem; rhizomes or
 
tubers are generally absent in the Bornean clade we
 
examined, though they seem to occur in some neo­
tropical woody Begonia (Carlquist, 1985; Fig. 3; see
 
also Materials and Methods for further discussion
 
about the definition between woodiness vs. herbac­
eousness). 

DESCRIPTION OF WOOD ANATOMY IN BEGONIA 

In order to develop a clade of Bornean Begonia as a 
model for understanding the secondary evolution of 
woodiness we investigated mature wood anatomy in 
detail for four of these woody species from samples 
collected in the field (B. burbidgei Stapf (Lens and 
Tisun 44), B. beryllae Ridl. (Lens and Tisun 71), B. 
sp. nov. 2 and 3 (Lens and Tisun 78 and 82). The 
only pre-existing description of wood anatomy in 
Begonia is for three neotropical species and a hybrid 
(Carlquist, 1985). We included the large neotropical 
liana B. fruticosa A. DC. to allow direct comparisons 
of our South East Asian species with an unrelated 
woody species from a parallel radiation (Fig. 2, 
Table S1). The wood description for all these samples 
is similar and can be summarized as follows: 

Growth ring boundaries absent. Wood diffuse porous. 
Vessels concentrated in the intrafascicular regions, 
(7)-17-59-(82)/mm2, usually solitary, sometimes in 
short radial multiples of 2–3 and occasionally in 
short tangential multiples of 2-(3), vessel outline 
angular. Vessel perforation plates simple. Lateral 
wall pitting typically wide gaping scalariform 

(Fig. E), pits with minute borders, pit cavities 18– 
50 lm in horizontal size, non-vestured. Tangential 
vessel diameter (20)-30-100-(130). Vessel elements 
(150)-220-380-(470) lm long. Length-on-age curve of 
vessel elements flat or slightly decreasing. Tyloses 
present in B. fruticosa and occasionally in B. sp. nov. 
3. Tracheids absent. Fibres sometimes septate, occa­
sionally septate in B. fruticosa, thin-walled, (250)­
430-520-(680) lm long, with mostly simple to occa­
sionally minutely bordered pits distributed in radial 
and tangential walls. Axial parenchyma scanty para­
tracheal, 2-4-(5) cells per strand. Rays exclusively 
multiseriate and confined to the interfascicular 
regions, (16)-20-30-(36) cells wide, and very tall 
(Fig. 2C, D), at least 1500 lm but often much higher 
than the length of the sections, 0–2 rays/mm2. Exclu­
sively upright ray cells present in B. burbidgei, 
B. beryllae and B. sp. nov. 2 and 3 (Fig. 2D), but 
mainly procumbent to sometimes also square to 
upright in B. fruticosa. Sometimes thick-walled 
sclereids in the tall rays. Sheath cells and mineral 
inclusions not observed. A tendency towards layering 
in fibres, vessels elements and axial parenchyma 
strands in B. fruticosa. 

MOLECULAR PHYLOGENETICS 

Three non-coding plastid DNA regions (ndhA intron, 
ndhF–rpl32 spacer, rpl32–trnL spacer) from 105 
Asian species and two African species were used for 
a Bayesian phylogenetic reconstruction of the sam­
pled Bornean Begonia species (Table S2; Fig. 3). Sec­
ondarily woody species native to Borneo, all of which 
are assigned to Begonia section Petermannia, are 
retrieved in two distantly related clades of Bornean 
begonias: clades A and B. The strongly supported 
clade A (posterior probability, PP: 1) includes acces­
sions of the woody species B. burbidgei and B. vacci­
nioides Sands, the woody species B. beryllae Ridl. 
and accessions of the herbaceous species B. imbri­
cata Sands and B. spec. 1. Clade B (PP: 0.98) 
includes the woody species B. spec. 2, as well as sev­
eral herbaceous species (B. chlorosticta Sands, B. aff. 
erythrogyna Sands, B. mamutensis Sands, B. oblon­
gifolia Stapf, B. inostegia Stapf). 

STEM TRANSCRIPTOMICS OF BEGONIA BURBIDGEI 

Tissue from young and older stages of a stem of one 
B. burbidgei individual was collected from a mature 
Mount Kinabalu individual (Fig 4A, Lens and Tisun 
5, see Table S2 for more details on individual and 
locality), and total RNA was extracted. Histology of 
the samples showed that the younger sample had 
just initiated cambial growth (shown in Fig. 4B) and 
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the older sample had extensive woody growth 
(Fig. 4C). Transcriptomes were produced from each 
sample (all tissues in a cross-section of the stem) and 
annotated by comparison to Arabidopsis thaliana 
Heynh proteins and Populus trichocarpa Torr and A. 
Grey. 

We used three search strategies to mine this data 
for information on the molecular wood development 
in this species. The first approach was to use RSEM 
and edge-R (Robinson et al., 2010; Li & Dewey, 2011; 
Haas et al., 2013) to detect genes differentially 
expressed between the initiating and fully woody 
stems of B. burbidgei. These genes are expected to 
include those promoting vascular cambium activities 
vs. wood differentiation in Begonia. The second 
approach was to compare coding sequences for orthol­
ogous genes in B. burbidgei and the herbaceous 
B. venustra, for which a transcriptome dataset from 
vegetative buds has already been published (Brennan 
et al., 2012). Genes showing a high Ks/Kn ratio in 
this comparison are expected to include the targets of 
selection during the evolution of woody growth. Our 
third approach was to compare the genes expressed 
in the primarily woody Populus trichocarpa cambium 
with those found in secondarily woody B. burbidgei 
stems. Genes found in P. trichocarpa but missing 
from the B. burbidgei sample are expected to include 
those which are involved in cambium activity in the 
primarily woody P. trichocarpa but not in the second­
arily woody B. burbidgei. We also examined the 
expression levels in B. burbidgei of genes which had 
been implicated in secondary growth and lignin bio­
synthesis in a range of model species. 

COMPARATIVE TRANSCRIPTOMICS OF WOOD AND 

CAMBIUM STAGE B. BURBIDGEI STEMS 

Edge-R analysis produced a list of 577 contigs showing 
differential expression between wood and cambium 
stage stems by more than two-fold and a P-value of 
less than 1e-3. These contigs were annotated by blastx 
matches to the Arabidopsis thaliana and the P. tricho­
carpa protein databases (Table S1). 287 of these 577 
contigs had no good blastx match (at 1e-10 or better) 
in Arabidopsis or poplar. These sequences will require 
further analysis to determine function. 

The genes with best support for differential expres­
sion between the wood and cambium stage of Bego­
nia burbidgei stems and with good annotation 
include a number involved in meristem determinacy 
(REBELOTE AT3G55510.1), growth (the expansin 
AT1G26770.1), cell wall biosynthesis (xyloglucan en­
dotransglycosylase AT4G25820.1), many lipid metab­
olism associated genes including HOTHEAD 
(AT4G25820.1) and FIDDLEHEAD (AT2G26250.1) 
as well as some genes thought to be involved in 

secondary cell wall synthesis such as the FASCI-
CLIN-like arabinogalactan protein 8 (FLA8) 
(AT2G45470.1) (Table S3). 

The Gene Ontology (GO) terms of the differentially 
expressed annotated contigs were counted and com­
pared to the annotations for all B. burbidgei 
sequences using agriGO (Du et al., 2010). 26 GO 
terms were enriched in the differentially expressed 
set (Table 1). These include carbohydrate transport­
ers, cell wall associated genes and serine-type exo­
peptidases. 

COMPARATIVE TRANSCRIPTOMICS OF THE WOODY B. 
BURBIDGEI AND THE HERBACEOUS B. VENUSTRA 

B. venustra King is an herbaceous species from 
Malaysia, not closely related to the woody B. burbid­
gei (Thomas et al., 2012). A transcriptome for vegeta­
tive buds of B. venustra had been previously 
analysed (Brennan et al., 2012). The vegetative bud 
sample includes some young stem tissue but the 
range of cell types present differ too much from the 
B. burbidgei stem samples for differential expression 
analysis to be useful. However, comparison of the 
sequences suggests some interesting variation 
between these two species. 

A python pipeline was used to analyse sequence 
variation between orthologous genes from the woody 
B. burbidgei and the herbaceous B. venustra. The 
256 orthologs showing kN/kS ratios exceeding 1 – 
suggestive of positive selection – are listed in 
Table S4. This set includes interesting candidate reg­
ulators of woody growth such as orthologs of two 
myb transcription factors (AT5G41020 and 
AT1G26780 (LOF1)). It also includes orthologs of 
genes that may be linked to growth on ultramafic 
soil such as AT4G34050, an enzyme involved in 
response to cadmium, and orthologs of secondary 
metabolism enzymes such as caffeoyl coenzyme A O­
methyltransferase 1 (AT4G34050) (Table S4). The 
GO terms for those with a Kn/Ks over 1 were com­
pared to the annotations for all pairs using agriGO 
(Du et al., 2010). No significantly over-represented 
term was identified. We find no evidence supporting 
the hypothesis that the evolution of woody growth in 
B. burbidgei involved concerted protein sequence 
change for genes in a particular pathway. 

COMPARATIVE TRANSCRIPTOMICS OF B. BURBIDGEI
 

AND POPULUS TRICHOCARPA
 

To compare wood development in B. burbidgei to 
that in model wood forming species, we used the 
genetic resources of P. trichocarpa (Tuskan et al., 
2006). 3974 B. burbidgei contigs had a blastx hit to a 
P. trichocarpa protein but did not have matches (at 
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Table 1. Gene Ontology (GO) terms enriched in the set of genes differentially expressed between cambium stage and 

wood samples of B. burbidgea stems 

Count in 

significantly Count in 

differentially B. burbidgei 
GO term Description expressed list transcriptome P-value FDR 

GO:0015295 Solute:hydrogen symporter activity 13 70 6.90E–11 6.90E–09 
GO:0005402 Cation:sugar symporter activity 13 70 6.90E–11 6.90E–09 
GO:0005351 Sugar:hydrogen symporter activity 13 70 6.90E–11 6.90E–09 
GO:0051119 Sugar transmembrane transporter activity 13 80 4.00E–10 2.90E–08 
GO:0015144 Carbohydrate transmembrane transporter 13 85 8.60E–10 5.10E–08 

activity 

GO:0015293 Symporter activity 13 91 2.00E–09 8.70E–08 
GO:0015294 Solute:cation symporter activity 13 90 1.80E–09 8.70E–08 
GO:0015291 Secondary active transmembrane 14 188 1.90E–06 7.20E–05 

transporter activity 

GO:0008236 Serine-type peptidase activity 9 88 9.80E–06 0.00029 

GO:0017171 Serine hydrolase activity 9 88 9.80E–06 0.00029 

GO:0022892 Substrate-specific transporter activity 25 624 3.00E–05 0.0008 

GO:0022891 Substrate-specific transmembrane 22 534 5.50E–05 0.0014 

transporter activity 

GO:0015075 Ion transmembrane transporter activity 18 392 6.20E–05 0.0014 

GO:0008324 Cation transmembrane transporter 15 293 7.20E–05 0.0015 

activity 

GO:0070008 Serine-type exopeptidase activity 5 30 8.90E–05 0.0016 

GO:0008238 Exopeptidase activity 6 48 9.50E–05 0.0016 

GO:0022857 Transmembrane transporter activity 25 672 9.30E–05 0.0016 

GO:0004185 Serine-type carboxypeptidase activity 5 30 8.90E–05 0.0016 

GO:0004180 Carboxypeptidase activity 5 32 0.00012 0.0019 

GO:0022804 Active transmembrane transporter 17 399 0.00023 0.0033 

activity 

GO:0005215 Transporter activity 29 880 0.00022 0.0033 

GO:0070011 Peptidase activity, acting on L-amino 11 266 0.0032 0.044 

acid peptides 

GO:0005576 Extracellular region 11 97 3.80E–07 7.80E–05 
GO:0048046 Apoplast 8 63 6.00E–06 0.00062 

GO:0030312 External encapsulating structure 12 213 0.00015 0.0077 

GO:0005618 Cell wall 12 209 0.00012 0.0077 

1e-40) in the B. conchifolia genome. This set of 
potential wood-associated genes comprised matches 
to 2522 P. trichocarpa genes including meristem 
regulatory genes such as a ZPR2 ortholog (Po­
tri.002G149600) and arabinogalactans (Table S5). 

We used expression data from P. trichocarpa cam­
bium (Liu et al., 2014) to find genes expressed during 
wood development in P. trichocarpa that are differ­
entially expressed or missing in the wood of B. bur­
bidgei (Table S6). A number of interesting genes 
were differentially expressed in this comparison. Po­
tri.014G015600, an ortholog of the myb transcription 
factor NtLIM, required for full activation of the phe­
nylpropanoid pathway (Kawaoka & Ebinuma, 2001), 
is expressed at over 1000-fold higher in P. trichocar­
pa cambium than in B. burbidgei stems. 

Agusti et al. (2011) identified MOL1 and RUL1 as 
opposing regulators of secondary growth. These two 
genes are expressed at similar levels in the cambium 
stage stem and the woody stem of B. burbidgei and 
the P. trichocarpa cambium sample, but orthologs of 
three of the targets identified in Agusti et al. (2011) 
– At1g46480 (WOX1), At1g52340 (ABA2) and 
At5g57130 – are upregulated in the Begonia samples, 
suggesting this pathway may also be modified in 
B. burbidgei wood development. 

This analysis also highlighted a set of genes 
expressed in the P. trichocarpa cambium sample 
but not recovered from the B. burbidgei transcripto­
mes. Most of these genes are not annotated in 
P. trichocarpa but some suggest interesting differ­
ences between Populus and Begonia wood. Some 
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Table 2. The reads per kilobase per million reads (RPKM) for genes encoding enzymes in the lignin biosynthetic path­

way for Begonia burbidgei (wood and cambium stage samples) compared to a sample of Populus trichocarpus cambium 

Enzyme Wood Cambium Poplar 

Enzyme Direction code stage stage cambium 

Phenylalanine ammonia-lyase To lignin 4.3.1.24 333.6 281.76 474.6 

Trans-cinnamate 4-monooxygenase To lignin 1.14.13.11 522.97 388.13 1466.45 

4-Coumarate-CoA ligase To lignin 6.2.1.12 175.85 118.93 2.44 

Caffeoyl shikimate esterase To lignin 3.1.1.5 59.69 63.27 60.1 

Shikimate O-hydroxycinnamoyltransferase To lignin 2.3.1.133 95.01 73.58 438.17 

Caffeoyl-CoA O-methyltransferase To lignin 2.1.1.104 11.63 9.35 1857.5 

Cinnamyl-alcohol dehydrogenase To lignin 1.1.1.195 3.78 5.61 83.9 

Peroxidase To lignin 1.11.1.7 645.27 484.26 1130.42 

4-Coumarate-CoA ligase Away from lignin 6.2.1.12 175.85 118.93 2.44 

Beta-glucosidase Away from lignin 3.2.1.21 114.89 147.88 8.34 

Coniferyl-aldehyde dehydrogenase Away from lignin 1.2.1.68 43.88 45.26 16.63 

arabinogalactans, in particular FASCICLIN-like 
arabinogalactan proteins were not recovered from 
the Begonia samples though they were expressed at 
a high level in Populus cambium, as were a number 
of calmodulin-like proteins (Table S7). 

To provide an overview of the biosynthetic path­
ways that differed between the B. burbidgei and 
P. trichocarpa samples, we summed the reads per 
kilobase per million reads (RPKMs) for each enzyme 
class (EC); these data are presented in Table S8. A 
key enzyme in the lignin biosynthetic pathway, Caf­
feoyl-CoA O-methyltransferase, is one of the enzymes 
much more highly expressed in Populus cambium 
than in the wood or cambium Begonia stem samples, 
whereas 4-coumarate-CoA ligase, one of the earlier 
enzymes in the pathway is expressed at much higher 
levels in the B. burbidgei samples. 

To focus on the lignin pathway, we compared 
expression levels of all genes from this biosynthetic 
pathway we could recover from B. burbidgei, includ­
ing the newly identified lignin biosynthetic gene Caf­
feoyl shikimate esterase (Vanholme et al., 2013). The 
RPKM for genes encoding enzymes in the lignin bio­
synthetic pathway are listed in Table 2. B. burbidgei 
wood expresses many of the lignin biosynthetic 
enzymes, but at a lower level than in the P. tricho­
carpa cambium sample, particularly at the distal end 
of the pathway, whereas the expression level of 
enzymes leading away from lignin is higher. 

Some genes have been proposed as regulators of 
wood synthesis (reviewed in Andersson-Gunneraas 
et al., 2006). Of the 22 genes listed in Andersson-
Gunneraas et al. (2006), including many myb tran­
scription factors and some cellulose synthase genes, 
B. burbidgei orthologs were identified for 17 but 
none of these showed any significant difference in 
expression levels between our cambium and wood 
samples (data not shown). 

DISCUSSION 

HIGH NUMBER OF CONVERGENT SHIFTS TOWARDS 

SECONDARY WOODINESS WITHIN BEGONIA 

Our phylogenetic analysis is in agreement with other 
available molecular phylogenies showing that all 
woody Begonia species have been derived from her­
baceous relatives (Plana, 2003; Forrest et al., 2005; 
Goodall-Copestake et al., 2010; Thomas et al., 2011, 
2012). The derived origins of woodiness in Begonia 
species is also supported by the wood anatomy of the 
five species studied in this paper and the four neo­
tropical Begonia shrubs investigated by Carlquist 
(1985). All these wood samples show protracted ju­
venilism, as demonstrated by the tall rays with 
mainly upright ray cells, wide gaping scalariform in­
tervessel pitting, and the flat length-on-age curve for 
vessel elements (Fig. 2; Carlquist, 1985, 2009, 2012). 
However, protracted juvenilism in wood is not 
always associated with secondary woodiness, as some 
studies have indicated a strong link between pro­
tracted juvenilism in wood and specific growth form 
types in primarily as well as secondarily woody an­
giosperms (Carlquist, 2009; Dulin & Kirchoff, 2010; 
Lens et al., 2013a). 

The number of shifts towards secondary woodiness 
in Begonia is still unknown. The densest phyloge­
netic sampling of South East Asian begonias (in total 
ca. 650 species) published to date includes only one 
woody species, B. burbidgei from Borneo (Thomas 
et al., 2012). Our analysis adds the woody B. vacci­
nioides, B. beryllae, an unknown woody species col­
lected in the Crocker Range (Begonia sp. 2, Lens and 
Tisun 78), and additional accessions of B. burbidgei 
(Fig. 3), together with original sequences from nine 
herbaceous Bornean species. Based on our increased 
sampling, B. burbidgei falls together with B. vacci­
nioides and B. beryllae in the same Bornean clade, 
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while Begonia sp. 2 is placed in an unrelated Bor­
nean clade. In the first clade, we hypothesize that 
these three woody species represent one shift 
towards secondary woodiness, although B. beryllae 
seems to be more closely related to the herbaceous 
B. imbricata and an unknown herbaceous species in 
the Crocker Range (Lens and Tisun 62) than to 
B. vaccinioides and B. burbidgei. Further increasing 
the Bornean sampling – more than 100 Bornean 
Begonia species are currently accepted (Hughes, 
2008; Sang, Kiew & Geri, 2013) – will identify 
whether the two herbaceous species are secondarily 
herbaceous or whether this first Bornean clade 
includes more than one shift towards secondary 
woodiness. In the second Bornean clade, the woody 
Begonia sp. nov. 2 clusters together with herbaceous 
species, with B. erythrogyna Sands and B. chlorost­
icta as closest relatives (Fig. 3). It is likely that more 
shifts in SE Asia have occurred, because there are 
several other potentially woody Asian species such 
as B. keithii Kiew (Borneo) and B. merrittii Merr. 
(Philippines), for which DNA sequence data are not 
available to date. B. merrittii, native to moist mon­
tane forests in the Philippines (Hughes & Pullan, 
2007), is definitely woody, but for B. keithii and sev­
eral other species anatomical observations are 
required to assess whether these species represent 
truly woody shrubs, or whether wood formation is 
only limited to the base of the stem as is the case for 
many herbaceous species (see definition of woodiness 
vs herbaceousness in Methods section). 

Besides the two shifts found in the SE Asian clade, 
there are also two clear shifts towards secondary wood­
iness in the African clade (Plana, 2003), the continent 
on which Begonia initially diversified (ca. 160 sp.). One 
shift leads to the tall shrubs B. baccata Hook and 
B. crateris Exell native to the tropical West African 
islands Sao~ Tomae and Principe (Reitsma, 1984), and 
the second shift is represented by the woody climber 
B. meyeri-johannis Engl. inhabiting moist montane 
East African forests (Plana et al., 2006). 

In South America, the situation is more complex 
due to the high number of species (ca. 690 sp.), the 
abundance of woody species (possibly up to ca. 30 
sp.; Mark Tebbitt, pers. comm.), the lack of taxo­
nomic revisions or detailed stem anatomical observa­
tions, and the variation in habit ranging from 
herbaceous species, towards different types of woody 
growth forms, such as acaulescent suffrutescent 
growth forms with thick woody rhizomes (e.g. 
B. gorgonea Tebbitt), woody shrub-like species (e.g. 
B. parviflora Schott), and even tall woody lianas 
reaching the canopy (B. fruticosa). In the recent phy­
logenetic analysis of neotropical begonias (Moonlight 
et al., 2015), six woody species are included, leading 
to at least four additional shifts towards secondary 

woodiness. Again, this number is likely an underesti­
mation and a much denser sampling together with a 
detailed anatomical survey is desired to obtain a 
more realistic view on the plasticity of growth forms 
within Begonia. 

TOWARDS UNRAVELLING THE REGULATION OF WOOD 

FORMATION IN BEGONIA 

After the Helianthus (Asteraceae) transcriptome 
dataset of seedlings (Moyers & Rieseberg, 2013), our 
Begonia burbidgei transcriptome dataset is the sec­
ond study that performs an RNA-seq experiment in 
stems of a secondarily woody species. While our sam­
pling is limited, our work serves as an initial investi­
gation into the genetic changes which accompany the 
development of wood in this species. 

The induction of genes associated with secondary 
growth, such as expansins and xyloglucans, is to be 
expected during the establishment of wood formation 
in B. burbidgei and we do see such changes 
(Table S3). The differential expression of lipid metab­
olism genes is more surprising, though some trees 
produce wood with substantial amounts of lipids 
(Hoch, Richter & Körner, 2003) and lipid vesicles are 
involved in transport of lignin precursors to the cell 
wall. Alternatively, the differences in lipid-related 
gene expression may be due to changes in tissues 
other than the cambium. As the stem matures, 
changes would also be expected in the periderm 
(Fig. 4C) and this suberized tissue is a likely location 
for products of the lipid metabolic pathway. 

One aim of our work was to identify potential can­
didate genes for the control and development of sec­
ondary growth in Begonia burbidgei. Due to 
sampling constraints we cannot establish strong cor­
relations between particular regulators and wood 
development, but by using a variety of approaches 
we have a short list of six sets of genes worthy of 
further investigation. Firstly, an ortholog of REBEL­
OTE is upregulated in wood stages of the B. burbid­
gei stem (Table S3). This gene promotes meristem 
determinacy in Arabidopsis redundantly with ULTR­
APETALA and SQUINT (Prunet et al., 2008). In 
Begonia conchifolia six loci encode REBELOTE-like 
genes, only one of which has any transcripts in the 
vegetative bud transcriptome, and that at a very low 
level. Based on alignments of the coding regions, this 
paralog expressed in the vegetative bud is likely the 
ortholog of the REBELOTE gene expressed at high 
levels in the wood sample of B. burbidgei. This or­
tholog is unlikely to have the same role in terminat­
ing meristems as its Arabidopsis ortholog as the 
vegetative buds it is expressed in are active. A 
change in role could be related to the lack of ULTR­
APETALA and SQUINT co-expression in Begonia. 
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None of the 37 Arabidopsis genes co-expressed with 
REBELOTE according to GeneMANIA (genema­
nia.org) have B. burbidgei orthologs with signifi­
cantly differential expression between the two 
samples (P < 0.05), suggesting the B. burbidgei or­
tholog of REBELOTE is active in a different pathway 
to the Arabidopsis original. 

A second gene that could be involved in the main­
tenance of an active cambium is the ortholog of 
ZPR2 found in B. burbidgei and P. trichocarpa but 
not in the genome of the herbaceous B. conchifolia 
(Table S5). ZPR2 is part of a gene family, which 
interacts with HD-ZIPIII proteins to regulate meri­
stem function in Arabidopsis (Wenkel et al., 2007). 
Association of expression variation in these genes 
and woody growth would establish whether these 
regulators are key points in the evolution of woody 
growth in Begonia. 

Another of the differentially expressed genes in 
the woody B. burbidgei without orthologs in the gen­
ome of the herbaceous B. conchifolia is an ortholog 
of AT5G23960, TERPENE SYNTHASE 21 (TPS21). 
This gene encodes a sesquiterpene synthase involved 
in generating all of the group A sesquiterpenes found 
in the Arabidopsis floral volatile blend. Its B. burbid­
gei ortholog (comp104430_c1_seq1) is expressed at 
very high levels in the vascular cambium stem stage, 
but goes down in the woody stage. The Begonia 
ortholog could be involved in generating secondary 
products associated with woody tissue. 

Fourthly, orthologs of two myb transcription fac­
tors (AT5G41020 and AT1G26780 (LOF1)) show 
signs of sequence divergence between the herbaceous 
B. venustra and woody B. burbidgei (Table S4). Such 
divergence could change their targets or their co-reg­
ulators and so completely change their effects. Myb 
transcription factors that regulate wood development 
have already been characterized in a number of spe­
cies (Goicoechea et al., 2005; Zhang et al., 2014). 
Further analysis of this pair through transgenic 
experiments could show if they have the capacity to 
affect wood development. 

Another potential regulator of B. burbidgei wood is 
an ortholog of NtLIM, which is expressed at a much 
lower level in B. burbidgei than in P. trichocarpa 
(Table S5). In Nicotiana, this gene regulates the phe­
nylpropanoid pathway (Kawaoka & Ebinuma, ). The 
first steps of this pathway are shared with the lignin 
biosynthetic pathway, but expression levels for bio­
synthetic enzymes from this level of the pathway are 
not downregulated in the B. burbidgei sample in 
comparison to P. trichocarpa. 

A final set of regulators worth examining are 
downstream targets of MOL1 and RUL1 (Agusti 
et al., 2011). Though not significantly differentially 
expressed themselves, three of their targets are upreg­

ulated in B. burbidgei samples relative to P. tricho­
carpa suggesting this pathway too may be involved in 
the production of secondarily woody stems. 

COMPARING WOOD REGULATION IN BEGONIA WITH 

POPULUS 

Our B. burbidgei transcriptomes show lower expres­
sion of biosynthetic genes leading to lignin compared 
to the situation in Populus. This is to be expected, 
because apart from the fact that Populus has pri­
mary woodiness and Begonia secondary woodiness, 
the wood anatomy of Begonia and Populus is very 
different. For instance, fibre walls in Populus wood 
are more heavily lignified than in Begonia wood, and 
Begonia has much more unlignified parenchyma in 
its wood (especially tall rays) compared with Populus 
(Figs 2, 4, S1). Some of the differences between Pop­
ulus and Begonia lignification could be due to 
sequence variation in lignin biosynthetic genes such 
as that identified in an ortholog of caffeoyl coenzyme 
A O-methyltransferase 1 by PAML analysis 
(Table S4). The differential expression analysis also 
suggests potential differences in lipid and terpenoid 
biochemistry in Begonia wood (Table S3). 

Fasciclin-like arabinogalactans have been impli­
cated in shoot growth (Johnson et al., 2011), fibre 
extension (Huang et al., 2013; Liu et al., 2013) and 
secondary wall synthesis and wood formation 
(reviewed in MacMillan et al., 2010). They are 
thought to act through modification to the cell wall’s 
elasticity. This could also contribute to the differ­
ences seen between Begonia and Populus wood. Or­
thologs of some FASCICLIN-like arabinogalactans 
are differentially expressed in wood and cambium 
stages of B. burbidgei stems (Table S3). Other arabi­
nogalactans are found in B. burbidgei but not in the 
genome of herbaceous B. conchifolia (Table S5), and 
some are not recovered from Begonia samples though 
they are expressed at high levels in Populus cam­
bium (Table S7). Further analysis of this group of 
proteins may reveal interesting differences between 
the formation of wood between Begonia and Populus. 

POTENTIAL ABIOTIC VARIABLES TRIGGERING SECOND­

ARY WOODINESS IN BEGONIA 

A comprehensive explanation why secondary woodi­
ness has evolved across Begonia is not possible from 
this initial analysis, but it is clear that a complex 
mix of different factors is involved. Our Bornean col­
lections point to a strong relationship between 
increased woodiness, altitude and soil type. All our 
woody Begonia collections were found in montane 
areas between 1800–2900 m above sea level, and sev­
eral of these grow on ultramafic rocks, which is also 
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confirmed for the two known populations of B. vacci­
nioides, the woodiest species of Borneo (Rimi Repin, 
pers. comm.), and for B burbidgei collected along the 
mountain trail of Mount Kinabalu at 2870 m asl 
(Lens and Tisun 51, Fig. 4A). Ultramafic rocks and 
the derived serpentine soils are edaphically stressful 
for plant growth due to their nutrient deficiencies 
(especially Ca), low water-holding capacity, and high 
levels of heavy metals and Mg (Brady, Kruckeberg & 
Bradshaw, 2005). The combination of poisonous soils 
and low water-holding capacity must cause stress to 
the plant, which could lead to wood formation in 
analogy to the drought stress hypothesis. However, 
the flora native to serpentine soils (in e.g. California) 
is mainly composed of herbaceous or primarily woody 
genera, indicating that only these specific soil condi­
tions are not sufficient to trigger wood formation 
(Anacker et al., 2010; Anacker & Harrison, 2012). 

In conclusion, woody Begonia species are derived 
from herbaceous relatives and this trait has evolved 
independently numerous times across Begonia. The 
selective pressures behind these events remain 
unclear. Precipitation, altitude and soil conditions 
may play a role, but it seems more likely that a mix 
of these factors combined with other abiotic and 
environmental cues can promote the expression of 
the wood pathway in Begonia. Novel gene expression 
features of Begonia wood in comparison with Popu­
lus wood (changes in the lignin biosynthetic path­
way, changes in FASCICLIN-like arabinogalactans) 
may be related to the differences in wood anatomy 
observed. This variation suggests lines of research to 
better understand the different properties of the 
wood of primarily and secondarily woody species. 
The transcriptomes we have generated also provide a 
number of candidate genes for regulation of wood 
formation in Begonia burbidgei through modification 
of meristematic activity and cellular anatomy which 
are worth investigating in other secondarily woody 
species both in Begonia and other genera. The genus 
Begonia offers an excellent opportunity to test the 
importance of these candidate genes through exami­
nation of expression and sequence variation in phylo­
genetically matched sets of woody and herbaceous 
species pairs. 
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SUPPORTING INFORMATION 

Additional Supporting Information may be found in the online version of this article at the publisher’s web­
site:
 

Figure S1. Transverse (A) and tangential (B) wood section of Populus trichocarpa showing more lignified tis­
sue, smaller alternate intervessel pitting (long arrows), and narrower and shorter rays (short arrows) com­
pared to Begonia burbidgei.
 

Table S1. List of specimens used in this paper, with reference to their voucher data, place of origin and habi­
tat. Voucher material is deposited in Sabah Parks (Sabah, Malaysia) and Forest Research Institute Malaysia.
 
Species with an asterisk are woody.
 

Table S2. GenBank accession numbers. GenBank accession numbers in bold font indicate sequences newly
 
generated for this study. All other sequences were downloaded from the nucleotide database of the National
 
Centre for Biotechnology Information (http://www.ncbi.nlm.nih.gov/).
 

Table S3. Sequences differentially expressed between cambium stage and wood stage Begonia burbidgei sam­
ples.
 

Table S4. Sequences with high divergence between woody Begonia burbidgei and herbaceous Begonia venu­
stra.
 

Table S5. Begonia burbidgei sequences with matches in Populus trichocarpa but no matches in the genome of
 
herbaceous Begonia conchifolia.
 

Table S6. Sequences with differential expression between Begonia burbidgei stems and Populus trichocarpa
 
cambium.
 

Table S7. Sequences present in a transcriptome from Populus trichocarpa cambium but not in the Begonia
 
burbidgei transcriptome.
 

Table S8. Relative expression levels for each enzyme class between Begonia burbidgei and Populus trichocar­
pa.
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