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Abstract. We examined statistical relationships between the seasonal Southern Oscillation Index (SOI) and total
acreages burned (TAB) and the number of fires in the Hawaiian Islands. A composite of TAB during four El Niño/
Southern Oscillation (ENSO) events reveals that a large total of acres burned is likely to occur from spring to
summer in the year following an ENSO event. The correlation is most significant between the TAB in summer and
the SOI of the antecedent winter. This relationship provides a potential for long-lead (i.e. 2 seasons in advance)
prediction of wildfire activity in the Hawaiian Islands. 

Logistic regression is applied to predict events of large acreages burned by wildfires. The goodness of
predictions is measured by specificity, sensitivity, and correctness using a cross-validation method. A comparison
of prediction skill for four major islands in Hawaii is made using the summer TAB as the response variable and the
preceding winter SOI as the predictor variable. For predicting the probability of events (sensitivity), results indicate
rather successful skills for the islands of Oahu and Kauai, but less so for Maui and Hawaii. It is more difficult to
predict non-events (specificity), with the exception of Oahu. As a result, only Oahu has a high overall correctness
rate among the four islands tested.
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Introduction

Wildfires have inflicted major damage to life and property in
the Hawaiian Islands and posed a great ecological threat to
numerous flora and fauna found nowhere else in the world.
In recent years, the number of fire occurrences (NFO) as
well as the total acres burned (TAB) in Hawaii has increased
as a result of increased population density and climate
variations associated with strong and recurrent El Niño
events. These damages could be reduced with accurate long-
lead prediction provided to wildfire control agencies. The El
Niño phenomenon is manifested as the anomalous warming
of the east and central equatorial Pacific. This study
investigates relationships between fire activity and short-
term climate variations, which can be used to estimate fire
potential for long-range fire planning and management. 

In recent years, strong El Niño events, such as 1982–1983
and 1997–1998 events, have caused violent climate
variations worldwide (e.g. severe drought in Indonesia).
Numerous studies (Chu 1989, 1995) have established a
linkage between local rainfall anomalies in the Hawaiian
Islands and El Niño. However, few studies have been

conducted on fire–climate relationship in Hawaii, let alone
on long-lead seasonal fire prediction. 

Brenner (1989) investigated how variations in sea surface
temperatures in the eastern and central Pacific and sea level
pressure anomalies in Darwin in the Northern Territory of
Australia are related to fire activity in Florida. His study
revealed that, during La Niña years, the acres burned in
Florida by wildfires were anomalously high, and the
converse was true during El Niño years. Fujioka et al. (1991)
and Klein and Whistler (1992) developed a long-range fire
weather forecasting system for Alaska and the contiguous
U.S. The system consists of regression models that predict
monthly mean fire weather variables, with demonstrated
skill, from the predicted anomalous 700-mb monthly mean
height field (Klein et al. 1996). The dependent variable is
chosen on the basis of its correlation with historical fire
activity.

In the Hawaiian Islands, the climate variation and fire
behavior in response to El Niño are different from those in
other states of the USA. Drought or deficiency of rainfall
occurs frequently from winter to spring in the year following
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an El Niño (Chu 1995), possibly promoting favorable
conditions for wildfire occurrence. This study explores the
relationship between the El Niño phenomenon and wildfire
activities in the Hawaiian Islands. A simple statistical fire–
climate model is also developed to test feasibility of long-
lead seasonal fire prediction.

Data processing 

The Hawaii Department of Land and Natural Resources,
Division of Forestry and Wildlife, supplied wildfire records
for the islands of Hawaii, Maui, Oahu, and Kauai for the
period July 1976 to December 1997 (Fig. 1). From these, we
tabulated monthly and seasonal TAB and NFO by island.
The Southern Oscillation Index (SOI) is the difference in
normalized sea level pressure between Darwin (Australia)
and Tahiti, and has been used in previous studies (e.g. Chu
and Katz 1985, 1989). This index is representative of large-
scale atmospheric circulation patterns. The El Niño
phenomenon is linked with the Southern Oscillation, and
both events are labeled together ENSO. The monthly SOI
data from 1976 to 1997 are obtained from the National
Centers for Environmental Predictions of the National
Oceanic and Atmospheric Administration.

The fire data are highly skewed, as typified by the
summer TAB statistics for Oahu (Fig. 2). For instance, more
than 2400 acres were burned in a single wildfire that
occurred on Oahu on 18 June 1983, while the yearly total
TAB in 11 of the total 22 years (50% of the data) is less than
1000 acres. Table 1 lists median and interquartile range
(lower quartile to upper quartile) of seasonal TAB values for
the four major islands in Hawaii. For the seasonal TAB,
winter is defined from December of the preceding year to
February of the current year (e.g. winter of 1997 runs from
December 1996 through February 1997). The other three
seasons are defined as: spring (March to May), summer
(June to August), and fall (September to November). Given
the small land size for Oahu, Kauai, and Maui, the median is
expected to be small. For the island of Hawaii, which has the
largest land area among the four islands, the  ‘middle value’
of the seasonal TAB is relatively large (238.5 acres) and the
central 50% of the data lie between 36.4 and 1310.9 acres.
However, when the median TAB is divided by land area, the
island of Maui has the highest rate. 

According to the fire control agencies, NFO is more
easily affected by human activity than is TAB (Brenner
1989). For example, a record high number of fires was
reported (NFO = 122) in Oahu in 1980 but there was no
unusual climate forcing in the Pacific Ocean (i.e. ENSO
event) in this year. Moreover, the annual rainfall totals
measured at most gauges in 1980 were above normal (e.g.
1980 was not a dry year). Because of the potential problems
in NFO, only TAB is employed as the fire index in the
subsequent analysis.

Background climate and variations of TAB 

Background climate and annual cycle of TAB

The annual cycle of rainfall and temperature in Hawaii is
broadly characterized by two seasons: summer, which
extends approximately from May to October, and winter,
from November to April. Summer is a dry and warm season

Fig. 1. Map of the major Hawaiian Islands.

Fig. 2. Histogram of summer (a) Total Acres Burned (TAB) and (b)
Number of Fire Occurrences (NFO) for Oahu. Note that the x-axis in
(a) is on a log scale.
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with persistent north-easterly trade winds from the sea. As
cumulus-cloud clusters from the North Pacific Ocean are
advected into the islands, they are forced to rise along the

mountain barriers. The upward displacement of air, caused by
orographic effects, is known as orographic uplift which
produces clouds and rains. Thus, areas of maximum rainfall
are generally found on windward slopes where uplifting is
predominant. On the leeward side of the mountains where air
descends the slope and warms by compression, low rainfall
occurs. This phenomenon is known as a rain-shadow effect,
which occurs on the downwind side of the mountain ridges.
Because of the rain-shadow and uplifting effects, large rainfall
gradients over short distances are not uncommon in Hawaii.
High mountain tops well above 3000 m (e.g. Mauna Kea on the
island of Hawaii) are dry because low-level moisture-laden
trade flows are capped by the subsidence inversion, which
usually occurs at an elevation of about 1500 m.

During the cooler and rainy winter season, trade winds are
often interrupted by mid-latitude frontal rainband systems
and kona storms (Ramage 1962; Chu et al. 1993). A kona
storm occurs when Hawaii appears to be under the influence
of the circulation of a subtropical cyclone; it can last for a
week or more and occasionally brings flooding to the islands.
Frontal passages generally bring light to moderate rainfall to
the islands. However, because of its southernmost location,
the island of Hawaii experiences less frontal-induced rainfall
than the island of Kauai. 

The warmer and drier weather in summer naturally
increases the potential for fire occurrence. Consequently,
TAB in the four islands is expected to be high during the
summer months. Indeed, the peak month of TAB for Maui
and Oahu is June, while the peak for Kauai and Hawaii
occurs in September (Fig. 3). Note that the log(TAB) is used
in the vertical axis. The percentages of TABs during summer

Table 1. Median and interquartile range of seasonal TAB (acres), and the ratio of median TAB per land area
(acres/km2) for various islands in Hawaii

Kauai Oahu Maui Hawaii

Median 3.3 25 79.7 238.5
Interquartile range (0.8, 15.8) (6.1, 126.6) (8.3, 504.7) (36.4, 1310.9)
Median/land area 0.0023 0.0162 0.0423 0.0229

Fig. 3. Monthly mean Total Acres Burned (TAB) for (a) Kauai, (b)
Oahu, (c) Maui and (d) Hawaii.

Fig. 4. Seasonal composite of Total Acres Burned (TAB) for Oahu
during the four ENSO events (1976–1977, 1982-1983, 1986–1987
and 1991–1992.
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months (June, July, and August) to the total annual amounts
are 39%, 60%, 57%, and 31% for Kauai, Oahu, Maui, and
Hawaii, respectively.

From October to January, TAB generally decreases,
probably because more rainfall occurs during these four
months. The larger value of TAB in February (April) for
Hawaii (Maui) might be related to the increase in human
outdoor activities, such as hiking and camping during these
months. We focus the analysis and prediction modeling of
TAB on Oahu during summer mainly, because population
pressure on the island puts a premium on fire management
and because of the large acres burned in summer (i.e. 60% of
the total annual amount occurs in summer).

Fire activity during ENSO cycle 

A composite of the seasonal standardized anomaly of TAB
on Oahu during four El Niño events (1976–1977, 1982–
1983, 1986–1987, 1991–1992) is shown in Fig. 4. The
original, 3-consecutive-months TAB data are summed to
produce a seasonal value. Standardization is achieved by
taking the difference between the original seasonal data and
the long-term average seasonal mean and then dividing this
departure by the standard deviation for each season. The year
in which El Niño occurred is denoted as Yr (0), while the
following year is Yr (+1).

The composite shows that TAB from fall of Yr (0) to fall
of Yr (+1) is positive, suggesting that TAB increases after an
El Niño event. The only negative value appears in the
summer of Yr (0). From winter to summer of Yr (+1), TAB
dramatically peaks in response to a prolonged dry climate
associated with El Niño event. Usually, El Niño-related
drought in Hawaii occurs in winter and spring of Yr (+1)
(Chu 1995). Apparently, TAB follows the El Niño–rainfall
cycle with a lag of one season (Fig. 4). The above results
suggest that the El Niño effect on wildfire is persistent,
lasting for at least 6 months, and is likely to cause a large
TAB event in the following spring and summer. 

Correlation between Fire Index and SOI

We calculated lag correlations between the seasonal TAB
and the seasonal SOI using the entire dataset to identify the
time-dependence of this relationship. Because of the
skewness and variability of the TAB data, Spearman
correlations, rather than Pearson correlation, are calculated.
A Spearman rank correlation is simply a Pearson correlation

coefficient computed using the ranks of the data. It is more
robust and resistant than the Pearson product-moment
correlation coefficient.

Table 2 shows the result of Spearman rank correlation
coefficients between SOI and TAB for Oahu. These
correlations are either concurrent or between TAB and SOI
several seasons previously. All statistically significant
correlation coefficients are negative, suggesting that a
negative SOI is followed by a larger TAB in the following
seasons. Note that the two highest correlations occurred for
winter SOI and summer TAB of the same year (–0.631), and
for fall SOI and summer TAB of the following year (–0.586).
The third largest correlation value (–0.482) shows a strong
relationship between the SOI in spring and TAB in the
following spring. This result indicates that the influence of
ENSO on the fire activity on Oahu could persist for a year.
The lag correlations between the SOI and TAB on Kauai and
Hawaii are also strong but in different seasons from Oahu
(not shown). Besides the difference in microclimate among
the islands, the data used in this study are based on fire
records reported only on state land, and the state land size
varies from island to island. In fact, this feature is reflected
in Table 1, in which the medians and interquartiles for each
island are quite different. It is likely that these factors
account for the difference in lag correlations from island to
island. In summary, it is important to note that the significant
correlations between SOI and TAB in Table 2 indicate a
potential for long-lead fire forecasting for Oahu using a
statistical model.

Long-lead prediction models

Logistic regression is used to model and predict the
conditional probability, y, of an event, given that the odds
ratio of the event to the non-event is log-linear in a set of
independent variables, {xi} (Sharma 1995): 

Inverting the ratio and solving for y, we obtain

Table 2. Spearman Rank correlation coefficients between SOI and TAB for Oahu
* correlations significant at the 10% level; # correlations significant at the 5% level; @ for correlations significant at the 1% level

Same year as the SOI Following year of the SOI

SOI/TAB Winter Spring Summer Fall Winter Spring Summer Fall
Winter –0.214 –0.345 –0.631@ –0.189   0.073 –0.312 –0.058 –0.309
Spring –0.330 –0.369 –0.397* –0.237 –0.482# –0.288 –0.175
Summer 0.102 –0.248 –0.342 –0.264 –0.337 –0.007
Fall –0.251 –0.432* –0.348 –0.586@ –0.161
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As the sum in the argument of the exponent function ranges
from negative infinity to positive infinity, y assumes values
from 0 to 1.

In this study, we defined y as the probability of a large
TAB event and modeled the log odds by a simple linear
equation (n = 1):

where x is the SOI in the pre-season used to predict the TAB
event. We estimated parameters using the LOGISTIC
procedure in SAS. Regression parameters in equation (3) are
fitted by a non-linear equation. A check of the TAB series
shows a weak autocorrelation pattern from year to year,
suggesting that the underlying data are nearly independent.
The dependent variable of each datum consisted of a binary
number, either a 1 for a large TAB event in the season
targeted for prediction or a 0 for a TAB event not classified
as large. Specifically, an observation is classified as an event
if a TAB value exceeds a specified threshold value;
otherwise it is classified as a non-event. We used three
different thresholds prior to the analysis, corresponding to
the 50th, 75th and 90th percentiles of seasonal TAB.

In the setting of the logistic regression, we tested the
statistical significance of the parameter, under the null
hypothesis that β1 = 0, that is, no relationship between TAB
and SOI exists; the alternative hypothesis is β1≠0, meaning a
relationship between TAB and SOI does exist. The standard
error of the parameter (β1) can be used to compute the t-test
value. The square of the t-test value gives the Wald χ2

statistic, which can be used to assess the statistical

significance of the independent variable. The estimates of
the parameter, β1, and P value of χ2 statistics were calculated
using the entire 22 data points. Results with three criteria
being set at the median, 75th (i.e. upper quartile) and 90th
percentiles are shown in Table 3. As can be seen, the null
hypothesis for β1 can be rejected at the 5% significance level
for the 75th percentile (P < 0.05). The null hypothesis is also
close to rejection for the 90th percentile.

In testing prediction skill, cross-validation is used. Cross-
validation is a technique of repeatedly omitting one or more
observations from the data, reconstructing the model, and
then making estimates for the omitted cases (Chu and He
1994). For the fire data in this study, only 22 years of TAB
are available. Therefore, 22 logistic models are set up, each
omitting one point. By doing so, cross-validation uses the
entire data sample as independent data and thus produces a
more robust test result. Then the forecasted TAB is classified
as an event or non-event using the aforementioned three
given criteria. 

As an example of summer TAB prediction, Table 4 shows
the number of observed and predicted events and non-events,
sensitivity, specificity, and overall correctness for the
median, upper quartile and the 90th percentile criterion for
Oahu. Sensitivity, specificity and correctness are three
measures for prediction accuracy. Sensitivity is a ratio of the
total number of correctly classified events to the total
number of events, while specificity is a ratio of the total
number of correctly classified non-events to the total number
of non-events. Correctness simply gives the probability that
the model correctly classified the sample data for each
criterion when events and non-events are considered
together. 

Referring to equation (3), y is the summer TAB for Oahu
and x is the SOI of the preceding winter. In this study if the
predicted probability is 0.7, which exceeds the specified cut-
off (e.g. median), then this prediction is called an event. This
can be compared with the actual observation, which is also
classified as an event or non-event based on the same cut-off
point as the prediction. If the corresponding actual
observation also indicates an event, then the prediction is
deemed to be correct. In Table 4, the forecast with the upper
quartile has the highest correctness (86.4%) and sensitivity
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))(exp(1
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Table 3. Logistic parameter of β1 and its P value with different 
criteria at the median, 75th, and 95th percentiles (Q75, Q95)

The predicted variable is summer TAB for Oahu and the predictor is 
SOI in the antecedent winter

 Parameter β1 P value
(β1)

Median –1.031 0.086
Q75 –1.850 0.035
Q90 –1.367 0.066

Table 4. Logistic classification table for the summer TAB prediction for Oahu using SOI of the preceding winter as predictor
Q75 and Q95 are the same as Table 3. The cut-off values for summer TAB (acres) are also indicated in the first column

Observed 
Event

Correctly
classified

event

Observed
non-event

Correctly
classified
non-event

Sensitivity
(%)

Specificity
(%)

Correctness
(%)

Median
98.5

11 6 11 9 54.5 81.8 68.2

Q75
1025

6 5 16 14 83.3 87.5 86.4

Q90
2200

3 2 19 14 66.7 73.7  72.7
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(83.3%). For the six observed events, five events are correctly
classified and 14 out of 16 non-events are also correctly
forecasted two seasons in advance using the cross-validation
method. The logistic model performs reasonably well with
the criteria of the median and the 90th percentile; the
correctness reaches 68.2% and 72.7%, respectively. As
shown in Table 2, in addition to the strong correlation between
the summer TAB and the SOI of the preceding winter, strong
correlations are found elsewhere. For example, a pronounced
correlation is noted between the spring TAB and the spring
SOI of the antecedent year (–0.482). To test the overall
usefulness of the model, we apply the logistic equation to
forecast TAB in winter, spring, summer, and fall using the
SOI in various pre-seasons as predictors. The classification
table given in Table 5 shows moderate overall correctness for
winter, summer and fall (52.4%, 68.2% and 57.9%). These
correctness rates are consistent with the results of lag
correlations shown in Table 2; in general, a larger lag
correlation coefficient between the SOI and the TAB
corresponds to higher classification correctness.

Prediction results so far are shown for Oahu. A question
arises as to whether other islands also have long-lead
predictability. Because the sensitivity and correctness of
summer TAB prediction for Oahu are highest with the upper
quartile, a similar attempt is made here to predict the

probability of large fire events for the other three islands at
the same cut-off point as Oahu. A comparison of predicted
classification with observation is given in Table 6 based on
the cross-validation method. The 75th percentile of summer
TAB values for Kauai, Maui, and Hawaii is 697, 1239, and
2307 acres, respectively. Among four islands, the overall
correctness is highest for Oahu (86.4%) and disappointingly
low for Maui (35.4%).

It is notable that the sensitivity for Kauai is perfect
(100%), even though the overall correctness is just 53%. For
Hawaii and Maui, the model misses three out of six events,
resulting in a sensitivity of 50%. It should be noted that the
correct prediction of an event is more important than of a
non-event because large acres burned have potentially more
impact on fire-fighting agencies (e.g. budget and resource
allocations) and local community. 

Summary and discussion

The statistics of wildfires reveal that most fires and largest
total acreage burned occur in summer. Besides being
influenced by climate variability, wildfire activities are also
related to many uncertainties such as man-made ignition and
problems of control ability. These uncertainties distort fire
data from a Gaussian distribution and pose a great difficulty
for data analysis and prediction. Total acres burned are less

Table 5. Logistic classification table of TAB prediction for Oahu with the 75th percentile for winter, spring, summer, and fall using SOI 
in various pre-seasons as predictors

Target season
(Predictor
season)

Observed event Correctly 
classified 

event

Observed
non-event

Correctly
classified
non-event

Sensitivity
(%)

Specificity
(%)

Correctness
(%) 

Winter
(SOI preceding
fall)

6 2 14 9 33.3 64.3 52.4

Spring
(SOI preceding 
spring)

5 3 14 6 60.0 42.9 42.1

Summer
(SOI preceding 
fall) 

6 4 16 11 66.7 68.8 68.2

Fall
(SOI preceding 
spring)

5 2 14 8 40.0 57.1 57.9

Table 6. Logistic classification table for the summer TAB prediction for various islands in Hawaii with the 75th 
percentile (Q75) as the cut-off

The SOI of the preceding winter is the predictor variable

Observed 
event

Correctly 
classified 

event

Observed 
non-event

Correctly 
classified
non-event

Sensitivity (%) Specificity (%) Overall 
correctness (%)

Kauai 5 5 12 4 100 33.3 52.9
Oahu 6 5 16 14 83.3 87.5 86.4
Maui 6 3 16 5 50 31.3 35.4
Hawaii 6 3 16 7 50 43.8 45.4
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affected artificially than the number of fire occurrences.
Therefore, it was chosen as the index for fire activity in this
study. 

The ENSO composite chart (Fig. 4) indicates that positive
TAB events on Oahu tend to occur from fall of an El Niño
year to fall in the year following an El Niño event (extending
over five seasons), with the largest anomalies occurring in
spring and summer Yr (+1). The total acres burned in
summer as a result of wildfires are significantly and
negatively correlated with the antecedent winter SOI.
Typically, when an El Niño event occurs, the local Hadley
cell in the central Pacific becomes more vigorous. Hawaii is
located in the subsiding branch of this cell, while the rising
branch is found in the central and eastern equatorial Pacific.
Consequently, this enhanced subsidence retards formation of
rain-producing systems (e.g. frontal rain-band and kona
storm) in Hawaii and provides Hawaii with a large potential
for wildfires. 

The pronounced correlations between TAB and SOI in
previous seasons suggest the possibility for a long-lead
prediction model. Since the correlation between TAB in
summer and SOI in the preceding winter on Oahu is most
significant and the year-to-year variability in TAB is large,
we focus on modeling the probability of large TAB events
using a non-linear logistic regression model. Forecasting the
probability of large events would produce properly bounded
estimates between 0 and 1 and therefore avoid the problem of
dealing with the nearly unbounded TAB values.

Since the fire forecast users are concerned more about
abnormally large fire activities, the summer TAB data are
classified in a binary format, representing large and not-
large events according to three criteria, the median, 75th and
90th percentiles. Prediction skill is measured in terms of the
sensitivity, specificity, and correctness. For the island of
Oahu, five out of six events are correctly forecasted two
seasons in advance. At the same cut-off point, all the fire
events on Kauai are correctly forecasted. For Maui and
Hawaii, results are less encouraging.

It is more difficult to predict non-events, with the
exception of Oahu. As a result, this difficulty degrades the
overall correctness sharply. It should be remembered that the
model used in this study involves only one predictor, the SOI,
which only remotely affects Hawaii’s climate variability. In
the future, local fire-sensitive data such as the Keetch/Byram
drought index (which considers daily maximum temperature
and rainfall, and the previous day’s drought condition)
should be included as additional predictors. This index has

been used operationally by fire agencies in the contiguous
United States to monitor fire potential. As the Keetch/Byram
index is derived from daily meteorological records, the
construction of this drought index for various islands in
Hawaii requires more time to process and is beyond the
scope of the current study.
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