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Abstract. Frequent wildfires in tropical landscapes dominated by non-native invasive grasses threaten surrounding 
ecosystems and developed areas. To better manage fire, accurate estimates of the spatial and temporal variability in fuels 
are urgently needed. We quantified the spatial variability in live and dead fine fuel loads and moistures at four guinea grass 
(Megathyrsus maximus) dominated sites. To assess temporal variability, we sampled these four sites each summer for 3 
years (2008–2010) and also sampled fuel loads, moistures and weather variables biweekly at three sites for 1 year. Live and 
dead fine fuel loads ranged spatially from 0.85 to 8.66 and 1.50 to 25.74 Mg ha-1 respectively, and did not vary by site or 
year. Biweekly live and dead fuel moistures varied by 250 and 54% respectively, and were closely correlated (P , 0.05) 
with soil moisture, relative humidity, air temperature and precipitation. Overall, fine fuels and moistures exhibited 
tremendous variability, highlighting the importance of real-time, site-specific data for fire prevention and management. 
However, tight correlations with commonly quantified weather variables demonstrates the capacity to accurately predict 
fuel variables across large landscapes to better inform management and research on fire potential in guinea grass 
ecosystems in Hawaii and throughout the tropics. 
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Introduction 

The introduction and spread of invasive species is one of the 
leading causes of biodiversity loss in Hawaii (Loope 1998, 
2004; Loope et al. 2004; Hughes and Denslow 2005). A cycle 
of positive feedbacks between invasive grasses and anthropo­
genic wildfire is now a reality in many Hawaiian landscapes 
formerly occupied by native woody communities (D’Antonio 
and Vitousek 1992; Blackmore and Vitousek 2000; D’Antonio 
et al. 2001). The synergistic interactions of fire and invasive 
species pose serious threats to the biological integrity and 
sustainability of remnant Hawaiian ecosystems (LaRosa et al. 
2008). Coupled with frequent anthropogenic ignition sources, 
invasive grasses can dramatically increase fire frequency, often 
with severe consequences for native plant assemblages 
(Vitousek 1992). 

Guinea grass (Megathyrsus maximus, [Jacq.] B.K. Simon & 
S.W.L. Jacobs (Poaceae), previously Panicum maximum and 
Urochloa maxima [Jacq.]), a perennial bunchgrass originally 
from Africa, has been introduced to many tropical countries as 
livestock forage (D’Antonio and Vitousek 1992; Portela et al. 

2009). It was introduced to Hawaii for cattle forage and became 
naturalised in the islands by 1871 (Motooka et al. 2003). Guinea 
grass quickly became one of the most problematic non-native 
invaders in Hawaiian landscapes because it is adapted to a wide 
range of ecosystems (e.g. dry to mesic) and can alter flamma­
bility by dramatically increasing fuel loads and continuity. 
Year-round high fine fuel loads, particularly a dense layer of 
dead grass in the litter layer, maintain a significant fire risk 
throughout the year in guinea grass dominated ecosystems in the 
tropics. In addition, this species recovers rapidly following fire 
by resprouting and seedling recruitment (Vitousek 1992; Williams 
and Baruch 2000). In Hawaii, as well as in many tropical 
areas, the conversion of land from forest to pasture or agriculture 
and subsequent abandonment has resulted in increased cover of 
invasive grasses across the landscape (Williams and Baruch 
2000). Because guinea grass recovers quickly following dis­
turbances (e.g. fire, land use change) and is competitively 
superior to native species under most environmental conditions 
(Ammondt and Litton 2012), many areas of Hawaii are now 
dominated by this non-native invasive grass (Beavers 2001). 
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A small number of studies have examined fuel loads in 
guinea grass dominated ecosystems in Hawaii (Beavers et al. 
1999; Beavers and Burgan 2001; Wright et al. 2002). However, 
these prior studies have been limited in spatial and temporal 
extent and their representativeness of the larger landscape is 
unknown. The reported variability in fuel loads in guinea grass 
stands in Hawaii is tremendous, ranging from 9.7 to 30.4 Mg 
ha -1 (Beavers et al. 1999; Beavers and Burgan 2001; Wright 
et al. 2002), but the driver of this variability is unknown. These 
overall values are generally similar to those reported for grass 
fuel loads in pastures elsewhere in the tropics (Kauffman et al. 
1998; Avalos et al. 2008; Portela et al. 2009). In cattle pastures 
of the Brazilian Amazon dominated by a similar grass species 
and in a similar climate, dead grass comprised 76 to 87% of the 
grass fuel load (Kauffman et al. 1998). These pastures were 
sampled less than 2 years after the previous fire, demonstrating 
that the rapid accumulation of dead fuels may be the primary 
driver of fire spread and behaviour in these grasslands. Dead fuel 
moisture in guinea grass in Hawaii has previously been reported 
to show a strong diurnal pattern (.20% increase at night) and a 
.50% increase in dead fuel moisture content after precipitation 
events (Weise et al. 2005). In similar tropical grasslands, 
variability in fuel moisture has been shown to be closely related 
to total fuel loads and has been accurately predicted using 
climate variables (de Groot et al. 2005; Weise et al. 2005). 

In Hawaii, research quantifying the spatial and temporal 
variability of fine fuels, ratio of live to dead fuels, fuel moisture 
content, and the relationship of these variables to current and 
antecedent weather conditions and time since fire are largely 
lacking and urgently needed. To accurately predict and manage 
fire occurrence and behaviour in areas dominated by guinea 
grass, it is imperative to first determine variability in fuels, 
particularly for dry areas of the island (Giambelluca et al. 2013) 
where anthropogenic fire ignitions are common and risk of fire 
is greatest. In addition, it is imperative to determine the drivers 
of this spatial and temporal variability in fuels to improve 
predictive capacity and better inform management decisions. 
Without improved fire prediction capability and rapid fire 
management response, wildland fires will continue to alter 
the composition and structure of these landscapes, contribute 
to the loss of native species diversity and perpetuate the invasive 
grass–wildfire cycle in guinea grass dominated ecosystems. 

The overall goal of this study was to assess the spatial and 
temporal variability in guinea grass fuels (live and dead fuel 
loads and moistures) in high fire risk areas on the Waianae Coast 
and North Shore of Oahu, Hawaii. Specific objectives included 
quantifying the: 

(i) spatial variability in live and dead fine fuel loads in guinea 
grass ecosystems in high fire risk areas; 

(ii) temporal variability at multiple scales (interannual, intra-
annual and fine-scale (3 times per week)) in fuel loads and 
fuel moistures in guinea grass ecosystems in high fire risk 
areas and 

(iii) relationship between antecedent weather variables (pre­
cipitation, relative humidity, wind speed and temperature) 
and fine fuel loads and moistures to explore predictive 
capacity to inform fire management of guinea grass eco­
systems in Hawaii. 

Methods 

Spatial and interannual temporal variability 
in guinea grass fuels 

Research was initiated in the summer of 2008 to quantify the 
spatial and interannual variability of fuel loads in non-native 
dominated guinea grass ecosystems on Oahu’s Waianae Coast 
and North Shore areas (Fig. 1). Sites were located at Schofield 
Barracks, Makua Military Reservation, Waianae Kai Forest 
Reserve and Dillingham Airfield (Table 1) to encompass the 
widest range of spatial variability in environmental conditions 
occurring on the leeward, fire-prone area of Oahu. All sites have 
been heavily utilised by anthropogenic activity (i.e. military 
training, abandoned agricultural land) and are currently domi­
nated by homogeneous stands of guinea grass with some inva­
sive Leucaena leucocephala (Lam.) De wit (Fabaceae) in the 
overstorey. There is seasonal variability in precipitation pat­
terns, with most precipitation falling in the winter months of 
November through April (Giambelluca et al. 2013). All study 
sites have deep, well drained soils that originated in alluvium or 
colluvium weathered from volcanic parent material (Table 1). 
Soils at Dillingham Airfield are in the Lualualei series (fine, 
smectitic, isohyperthermic Typic Gypsitorrerts), formed in allu­
vium and colluvium from basalt and volcanic ash. At Makua, soils 
in some sample plots are also in the Lualualei series and some 
have been classified broadly as Tropohumults-Dystrandepts. 
Soils at Waianae Kai are in the Ewa series (fine, kaolinitic, iso­
hyperthermic Aridic Haplustolls), formed in alluvium weathered 
from basaltic rock. At Schofield Barracks soils are in the Kunia 
series (fine, parasesquic, isohyperthermic Oxic Dystrustepts), 
formed in alluvium weathered from basalt rock (Table 1). 

Fuels were quantified by selecting and measuring at least 
three plots at each site. Six plots were sampled at Makua due to a 
wider range of expected fuel loads at this site. Plots were 
selected based on continuous grass and limited overstorey tree 
cover using satellite imagery. Each plot was initially measured 
in the summer of 2008 and a subset of plots was remeasured in 
the summers of 2009 and 2010. One plot at Waianae Kai Forest 
Reserve and two plots at Schofield Barracks were abandoned 
after the 2008 sampling respectively due to cattle and military 
activity. The remaining two plots at Waianae Kai were aban­
doned due to cattle activity after the 2009 sampling. 

Fuel parameters measured during yearly plot visits were 
(i) total fine fuel loads (standing live and dead, and litter), 
(ii) fuel composition (live and dead grass and herbs), and 
(iii) fuel moisture content for both live and dead grass fuels. 
At each 50 x 50-m sampling plot, three parallel 50-m transects 
were established 25 m apart and all herbaceous fuel was 
destructively harvested in six 25 x 50-cm subplots at regularly 
spaced fixed locations along each transect (n ¼ 18 per plot). 
Subsequent years’ samples were offset 3 m from previously 
clipped subplots. Samples were separated into the following 
categories: live grass, live dicots, standing dead grass, standing 
dead dicots and surface litter. Samples were collected, placed 
into plastic bags to retain moisture, weighed within 6 h of 
collection, dried in a forced air oven at 708C to a constant mass 
and reweighed to determine dry mass and moisture content 
relative to oven-dried weight. Some live and dead woody fuels 
existed in our study sites, but we were primarily interested in 
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Fig. 1. Location of sample sites for spatial and temporal variability sampling in fuel loads across the Waianae 
Coast and North Shores of Oahu, Hawaii. Black circles indicate sites that were sampled during the summers of 
2008, 2009 and 2010 (spatial and interannual temporal sites). White squares indicate sites that were sampled 
biweekly for 1 year (intra-annual temporal sites). Sites with both a black circle and a white square were used for both 
spatial and temporal sampling. 

Table 1. Descriptions of sites sampled for spatial variability in fuel loads and temporal variability in fuel loads and fuel moisture 
MAP, mean annual precipitation (Giambelluca et al. 2013); MAT, mean annual temperature (T. Giambelluca, unpubl. data); Soil classifications 

were from the USDA Natural Resources Conservation Service (see http://websoilsurvey.nrcs.usda.gov/, accessed 30 May 2013) 

Site Elevation (m ASL) MAP (mm) MAT (8C) Soil classification 

Dillingham Airfield 4 900 24 Lualualei Series: Typic Gypsitorrerts 
Dillingham Ranch 5 851 24 Kawaihapai Series: Cumulic Haplustolls 
Makua 108 864 23 Tropohumults-Dystrandepts and Lualualei Series: Typic Gypsitorrerts 
Schofield Barracks 297 1000 22 Kunia Series: Oxic Dystrustepts 
Waianae Kai 193 1134 23 Ewa Series: Aridic Haplustolls 
Yokohama 7 857 24 Lualualei Series: Typic Gypsitorrerts 

characterising fine fuels associated with guinea grass, so did not 
include woody fuels in our analyses. Overall, live trees were 
infrequent in most plots, comprising only 5.8% of the total fuel 
load on average (range of 0–22%). Dead woody fuels, in 
turn, constituted only 0.5% of the total fuel load on average 
(range of 0–5%). 

Intra-annual temporal variability in guinea grass fuels 

Intra-annual variability of live and dead fuel loads and moisture 
content was measured approximately biweekly (27–33 sample 
dates per site) for 1 year (8 October 2009 through 24 September 
2010) in three plots on leeward Oahu – Dillingham Ranch 
(immediately adjacent to the Dillingham Airfield sites), 
Schofield Barracks and Yokohama State Park (proxy for 

adjacent Makua, where access is limited due to unexploded 
ordinance; Fig. 1; Table 1). All sites were dominated by guinea 
grass, with scattered L. leucocephala in the overstorey. 

At each sampling location, one 50-m transect was established 
per sample date, along which all vegetation and litter in 
25 x 50-cm subplots at six locations (0-, 10-, 20-, 30-, 40- and 
50-m marks) was clipped and collected. Each subsequent 
transect was offset 1 m from and parallel to the previous 
sampling transect. Dillingham Ranch and Yokohama sites were 
flat and the Schofield Barracks site had a ,5% slope, with a 
south-east aspect. Transects were oriented parallel to the slope 
(Schofield), or perpendicular to the road (Yokohama and 
Dillingham Ranch). Live and dead (standing dead and litter 
combined) fine fuels were processed for moisture content and 
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total dry weight, as described above. Additionally, soil volu­
metric water content in the top 12 cm of mineral soil was 
quantified in every subplot at each sampling date with a 
CS620 HydroSense Water Content Sensor (Campbell Scientific, 
Logan, Utah). Six measurements were taken adjacent to each 
subplot and averaged across subplots for each sampling date. 

Fine-scale temporal variability in guinea grass fuels 

To gain a better understanding of changes in fuel moistures 
following precipitation events at a finer temporal resolution, we 
measured live and dead fuel moistures three times per week for 
4 weeks at the Dillingham Ranch site. The first sampling event 
corresponded to the first week of fall (autumn) rains 
(1 November 2010). At each sampling date, six randomly 
located samples of live grass and standing dead grass were 
collected, one each from six randomly located sampling loca­
tions. Vegetation samples were processed to determine moisture 
content as described above. 

Analysis of spatial and interannual temporal 
variability of guinea grass fuels 

Due to significant imbalance and heteroskedasticity in the data, 
we used a repeated-measures mixed model analysis to determine 
whether differences exist in fine fuels that could be attributed to 
site (spatial) or year sampled (temporal) variability. Response 
variables examined in separate analyses were live fine fuels (live 
grass þ live herbs), dead fine fuels (standing dead grass þ litter þ
dead herbs) and total fine fuels (all live and dead fine fuel com­

ponents). Plots were treated as subjects to account for the 
repeated measurements taken over time. Site was treated as a 
fixed factor, year was treated as a random factor and the inter­
action between site and year was tested to determine whether 
there was a differential pattern over time at separate sampling 
sites. Restricted maximum likelihood estimates (REML) of 
parameter values were derived using IBM SPSS v.20 (IBM SPSS, 
Inc., Chicago, IL) and SAS 9.2 for Windows (SAS Institute Inc., 
Cary, NC, USA). REML is preferred to maximum likelihood 
(ML) as it gives unbiased estimates of covariance parameters by 
taking into account the loss of degrees of freedom from esti­
mating the fixed effects in the model (West et al. 2007). At least 
four covariance structures were considered for each response 
variable and the best fitting structure was chosen based on 
available information criterion (-2 log-likelihood, Akaike’s 
Information Criterion, Schwarz’s Bayesian Criterion) (West 
et al. 2007). A heterogeneous Toeplitz structure was selected for 
all response variables. Significance of random effects was 
determined by REML-based likelihood ratio tests between full 
and reduced models (West et al. 2007; McCulloch et al. 2008). 
Significance of fixed site effect was determined by least-squares 
F-tests, with significance determined at a ¼ 0.05. Post-hoc 
multiple comparisons using the least square difference method 
were performed to elucidate differences between individual sites. 

Analysis of intra-annual temporal variability 
of guinea grass fuels 

A repeated-measures mixed model analysis was used to deter­
mine whether there was a difference in fine fuel load or fuel 
moisture that could be attributed to site or time sampled. 

Additionally, we were interested in potential relationships 
between fuel load and fuel moisture, and onsite weather vari­
ables (antecedent precipitation, maximum wind speed, relative 
humidity and air temperature). Response variables examined in 
separate analyses were live fine fuels (live grass and live herbs), 
dead fine fuels (standing dead grass, litter and dead herbs), total 
fine fuels (all live and dead fine fuel components), live fuel 
moisture content and dead fuel moisture content. Site and 
sample week were both treated as fixed factors, as we were 
interested in all the levels of each factor. Weather data were 
downloaded from onsite Remote Automated Weather Stations 
(RAWS) at each sampling site and variables were chosen as 
covariates based on bivariate correlations between weather and 
response variables. An iterative backwards model selection 
process was used to determine which explanatory variables 
contributed to the best model fit, starting with a full model with 
all covariates and two-way interactions but without the site and 
time factors. The model was iteratively reduced by removing 
terms that were not significant by least-squares F-tests at 
a ¼ 0.05. After the best covariate-only model was determined, site 
and time factors were added to see if they explained any addi­
tional variability in the data. Weather covariates considered in 
each model were 7-day antecedent precipitation (Precip), 7-day 
average maximum air temperature (Temp) and 7-day average 
minimum relative humidity (RH). Additionally, soil moisture 
content (SM) was included as a potential explanatory covariate. 
Although fuel parameters, particularly fuel moisture can 
change on very short time scales (i.e. hourly) (Viney 1991), for 
fire management (i.e. planning prescribed fires, estimating 
needed suppression resources) it is also useful to understand 
how longer scale (i.e. daily, weekly) climate patterns affect fuel 
moisture. After examining relationships between weather vari­
ables at multiple intervals (daily, 3-, 5-, 7-, 10- and 14-day 
averages), 7-day average provided the strongest relationship 
with fuel moisture. REML estimates of parameter values were 
derived using IBM SPSS v.20 (IBM SPSS, Inc., Chicago, IL). At 
least four covariance structures were considered for each 
response variable and an autoregressive structure was chosen 
based on available information criterion for all response vari­
ables. Significance of fixed effects was determined by least-
squares F-tests at a ¼ 0.05 and post-hoc multiple comparisons 
using the least square difference method were performed to 
elucidate differences between individual sites. 

Analysis of fine scale temporal variability 
of guinea grass fuels 

The strongest combinations of predictor variables to explain 
the change in live and dead fine fuel moisture at the finer tem­
poral resolution (3 times per week for 4 weeks) were determined 
using backwards stepwise linear regression, with weather cov­
ariates derived from onsite RAWS as described above (Precip, 
Temp, RH). Additionally, 7-day average maximum sustained 
wind speed (Wind) was used as a covariate, after examining 
several date ranges. Because we wanted to see how antecedent 
weather altered fuel moisture between sampling dates, we used 
the change (D) in live and dead fuel moistures from one sam­

pling date to the next as the response variables. All covariates 
and two-way interactions between covariates were considered 
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for inclusion in linear regression models, and were iteratively 
removed based on non-significant F-tests, with a ¼ 0.15 used as 
the criteria to enter or remove terms from possible models. 

Results 

Spatial and interannual temporal variability 
in guinea grass fuels 

Total fine fuel loads ranged widely across sites and years, from 
3.26 to 34.29 Mg ha -1. Total fine fuels did not vary significantly 
by site (P ¼ 0.17). Live and dead fine fuel loads ranged from 0.85 
to 8.66 and 1.50 to 25.74 Mg ha -1 respectively. Neither live 
(P ¼ 0.29) nor dead (P ¼ 0.11) fine fuels varied by site. At all four 
sites, there was more dead fine fuel (standing dead leaves and 
sheaths and litter) than live fine fuel, with the live : dead ratio 
ranging from 0.21 in plots at Makua to 0.65 at Schofield Barracks. 

The among-years variance component for total fine fuel 
loads was estimated to be zero (P ¼ 1.00), indicating that there 
were no consistent year effects across all sites. However, 
there was strong evidence that sites varied differently over time 
(sitexyear interaction; P , 0.01; Fig. 2). Makua and Schofield 
showed a trend of increasing fine fuel loads over time, whereas 
Waianae Kai had fairly constant fuel loads over time and 
Dillingham had highest fine fuel loads in 2009. Similarly, there 
was no consistent year effect in either live (P ¼ 1.00) or dead 
(P ¼ 1.00) fine fuel loads, but the change in both live and fine 
fuels over time differed across sites (sitexyear interaction, 
P , 0.01 for both dead and live; Fig. 2). 

Intra-annual temporal variability in guinea grass fuels 

There was considerable temporal variability in biweekly total 
fine fuel loads at all three sites (intra-annual temporal sites, 
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Fig. 1). Although total fuel loads varied considerably from one 
sample date to the next, there was a general trend of higher fuel 
loads in the late spring and early summer than in fall and winter 
(Fig. 3). Weather covariates and soil moisture were poor pre­
dictors of total fine fuel loads (Table 2). The best model for total 
fine fuels contained only the site factor (P , 0.01), with 
both Dillingham Ranch (P , 0.01) and Schofield Barracks 
(P , 0.01) having significantly more total fine fuels than 
Yokohama (Fig. 3, Table 2). 

Soil moisture (SM) (P ¼ 0.01), Temp (P , 0.01), RH 
(P , 0.01) and the TempxRH interaction (P , 0.01), were all 
significant predictors of the variability in live fine fuel loads 
over the sampled year (Table 2). In a model including these 
weather covariates, increases in Temp (model estimate ¼ 2.94) 
and RH (estimate ¼ 1.91) increased live fine fuel loads, whereas 
increases in SM (estimate ¼-0.11) and in the TempxRH 
interaction (estimate ¼-0.06) resulted in small decreases in 
live fine fuels. Live fine fuel loads varied by site (P , 0.01), with 
lower fuels at Yokohama (1.28–6.30 Mg ha -1) than either 
Dillingham Ranch (2.12–14.80 Mg ha -1; P , 0.01) or Schofield 
Barracks (3.20–15.16 Mg ha -1; P , 0.01). 

Weather and soil moisture covariates were not strong 
predictors of the variability in dead fine fuels (Table 2). 
Differences based on study site were marginally significant 
(P ¼ 0.06, Table 2), with more dead fine fuel at Dillingham 
Ranch (8.19–28.61 Mg ha -1; P ¼ 0.03) and Schofield 
Barracks (8.19–29.39 Mg ha -1; P ¼ 0.04) than at Yokohama 
(9.01–23.09 Mg ha -1). 

Moisture content of fine fuels was variable over time, with 
large changes seen between sampling weeks (Figs 4, 5). Weather 
covariates and soil moisture were good predictors of the 
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Fig. 2. Spatial variability in aboveground fine fuels in four guinea grass dominated sites along the 
Waianae Coast and North Shore areas of Oahu, Hawaii from 2008 to 2010. Bars are means for each 
site (Mg ha -1) and error bars represent 1 s.e. Grey bars denote dead fine fuel loads and black bars live 
fine fuel loads. 
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variability measured in the winter and spring. The model that 
best explained the variability seen in dead fuel moisture includ-
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ed SM (estimate ¼ 0.39; P , 0.01), Temp (estimate ¼ 4.24; 
P , 0.01), RH (estimate ¼ 2.98; P , 0.01), Precip (estimate 
1.56; P ¼ 0.02), TempxRH (estimate ¼-0.09; P , 0.01) and 
TempxPrecip (estimate ¼-0.05; P ¼ 0.02, Table 2), but not 
sample site (P ¼ 0.10). 

Fine-scale temporal variability in guinea grass fuels 

At a finer temporal scale (three sampling dates per week for 4 
weeks), fuel moisture could not be accurately predicted using 
selected weather covariates. Although there appeared to be a 
trend of increasing fuel moisture following rainfall events 
(Fig. 5), predictive relationships between weather variables and 
fuel moisture were not evident with the data collected. Live fuel 
moisture was lowest (115%) on the first sampling date. After a 
week with multiple rainfall events, live fuel moisture increased 
to .300% and remained high (between 195–304%) for the 
duration of the sampling period. Relationships between ante­
cedent weather and change in live fuel moisture were quite 
weak. There was a suggestive correlation between RH and live 
fuel moisture (R2 ¼ 0.63, P ¼ 0.05). Models generated using 
stepwise linear regression explained little of the variability in the 
data and none were statistically significant. The best model 
(DLFM ¼-382 – 4.35Wind þ 9.20RH; P ¼ 0.11) included only 
7-day average maximum wind speed (kph) and 7-day average 
minimum relative humidity (%) as predictor variables, with no 
significant interactions, but this model was not statistically 
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significant; in addition, although this model explained nearly 
half the variation in the response variable (R2 ¼ 47.3%), its 
predicted R2 (IBM SPSS, Inc., Chicago, IL) was much lower 
(R2

pred ¼ 14.3%), suggesting that even this simple model was 
overfitting the data. 

Dead fuel moisture (DFM) was much less variable than live 
fuel moisture, ranging from 14.5 to 27.0% throughout the 
sampling period. Relative humidity (7-day average minimum) 
was again the only weather variable significantly correlated with 
change in dead fuel moisture between sampling dates 
(R2 ¼ 0.70, P ¼ 0.04). Models generated using stepwise linear 
regression explained little of the variability in the data and had 1-
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Fig. 3. Intra-annual temporal variability in aboveground fine fuels at three 
guinea grass dominated sites on Oahu, Hawaii from October 2009 to 
September 2010. 

measured changes in live and dead fuel moistures over the year 
sampled. The best model for live fuel moisture (LFM) included 
SM (estimate ¼ 2.90; P , 0.01), Temp (estimate ¼-39.06; 
P , 0.01), RH (estimate ¼-15.63; P ¼ 0.06) and the TempxRH 
interaction (estimate ¼ 0.63; P ¼ 0.03, Table 2), and there was no 
evidence for additional variability in the data being explained by 
site differences (P ¼ 0.23). Live fuel moisture was generally 
higher in the winter and spring than in the summer and fall, but 
rapid changes were often seen between sampling dates with 
changes in weather events (e.g. precipitation). 

Dead fine fuel moisture was similarly lowest in the summer 
and fall across all three sites, with higher moistures and greater 

no predictive power. The best model (DDFM ¼-141 þ 1.26 
Temp þ 2.07RH – 0.279Precip: R2 ¼ 74.5%; R2

pred ¼ 0.0%; 
P ¼ 0.11) included only 7-day average maximum temperature 
(8C), 7-day average minimum relative humidity (%) and 7-day 
antecedent precipitation (mm) as predictor variables, with no 
significant interactions. 

Discussion 

The distribution and arrangement of fuel loads profoundly affect 
fire behaviour across a landscape (Rothermel 1972; Pyne et al. 
1996). Invasive grasses in the tropics alter fuel loads, typically 
by providing a continuous, highly flammable fuel source that 
can perpetuate a cycle of fire and further grass invasion 
(D’Antonio and Vitousek 1992; Brooks et al. 2004). A better 
understanding of the spatial and temporal variability in fuel 
loads and moistures associated with invasive grasses is, there­
fore, integral to fire prevention and management in these 
ecosystems. 
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Table 2. Statistical results of separate repeated-measures mixed model analyses for intra-annual temporal variability 
models 

Models were from the REML estimation method using SPSS:MIXED; Yokohama set as reference site. Variables in this table 
are: Temp, 7-day average maximum air temperature; RH, 7-day average minimum relative humidity; SM, soil moisture content; 

Precip, 7-day antecedent precipitation 

Model Estimate SE d.f. t-statistic P-value 
Parameter 

Total fine fuel biomass (Mg ha -1) 
Intercept 18.65 1.85 16.17 10.09 0.000 
Site 
Dillingham 9.68 2.60 15.83 3.72 0.002 
Schofield 7.89 2.66 16.92 2.97 0.009 
Yokohama 0.00A 0.00A – – – 

Live fine fuel biomass (Mg ha -1) 
Intercept -84.02 28.75 38.62 -2.92 0.010 
Site 
Dillingham 5.15 1.04 40.85 4.96 0.000 
Schofield 3.07 0.86 26.93 3.56 0.001 
Yokohama 0.00A 0.00A . . . 

Temp 2.94 0.96 36.82 3.06 0.004 
RH 1.91 0.54 37.65 3.52 0.001 
SM -0.11 0.04 74.89 -2.62 0.011 
TempxRH -0.06 0.02 35.70 -3.45 0.001 

Dead fine fuel biomass (Mg ha -1) 
Intercept 14.65 1.32 14.64 11.10 0.000 
Site 
Dillingham 4.37 1.86 14.37 2.35 0.034 
Schofield 4.33 1.89 15.31 2.29 0.037 
Yokohama 0.00A 0.00A – – – 

Live fine fuel moisture (%) 
Intercept 1119.87 415.38 46.60 2.70 0.010 
Temp -39.06 14.03 43.35 -2.78 0.008 
RH -15.63 8.00 46.39 -1.95 0.057 
SM 2.90 0.44 76.05 6.59 0.000 
TempxRH 0.63 0.28 43.15 2.29 0.027 

Dead fine fuel moisture (%) 
Intercept -136.54 39.61 44.88 -3.45 0.001 
Temp 4.24 1.30 44.00 3.27 0.002 
RH 2.98 0.78 46.85 3.81 0.000 
SM 0.39 0.06 47.63 7.03 0.000 
Precip 1.56 0.65 74.96 2.40 0.019 
TempxRH -0.09 0.03 45.71 -3.32 0.002 
TempxPrecip -0.05 0.02 73.70 -2.33 0.023 

AYokohama set as reference site. 

Previous work on guinea grass fuel loads has shown that 
there is great variability in this fuel type but the spatial and 
temporal scope of these studies has been limited (Beavers et al. 
1999; Beavers 2001; Wright et al. 2002; Weise et al. 2005). In 
Brazil, pronounced temporal variability in guinea grass fine fuel 
loads has been documented, with live fine fuel loads ranging 
from ,1 to 12.5 Mg ha -1 and dead fine fuel loads ranging from 
2.5 to 19.0 Mg ha -1(Portela et al. 2009). Similar variability was 
reported over a 7-year study period in Puerto Rico, where total 
fine fuel loads ranged from 3.6 to 14.3 Mg ha -1 (Francis and 
Parrotta 2006). 

Our results for Hawaii show even greater variability in 
guinea grass fuel loads, but generally support previously pub­
lished estimates. Importantly, total fuel loads in mature guinea 
grass stands varied remarkably, both spatially and temporally, 

over a relatively small island landscape. Our data, like previous 
work, show some evidence for seasonal patterns in fuel loads 
(Table 2), but fluctuations over shorter time periods driven by 
weather better characterise this landscape. The differing tempo­
ral patterns observed between sites in this study may be due to 
small-scale weather patterns (i.e. precipitation events, solar 
radiation, wind speed and direction), as well as land use and 
management histories (e.g. military training v. state park). More 
dead fuel loads than live were consistently observed in this study 
across all sites and sampling periods, translating to landscapes 
with high fire risk year-round. In tropical grassland fuel types, 
fire will no longer spread when dead fuel moisture is above a 
threshold of ,30–40% moisture content (Beavers 2001; Scott 
and Burgan 2005). Dead fuel moisture in all sampled sites was 
well below this threshold at many sampling periods (Fig. 4), 
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Fig. 4. Intra-annual temporal variability in (a) live and (b) dead fuel moistures at three guinea grass 
dominated sites from October 2009 to September 2010 (note: different scales on y-axis). 
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ignition is unlikely but as live fuel moisture decreases, potential 
for ignition increases (Pyne et al. 1996). Rapid increases in live 10 
fine fuel moisture were observed in this study following precipi­
tation events when relative humidity was high, temperatures were 
low and soils were moist. Additionally, an interactive effect of 
temperature and relative humidity was evident, such that fuel 
moisture stayed higher when weather was cool and moist. 

Prediction of fuel parameters using weather covariates was 
2 most effective in intra-annual temporal models. Live and dead 
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0 (Temp, RH, SM, Precip; Table 2). Fuel moisture is one of the 

most difficult parameters to predict, but one of the most impor­
tant parameters driving fire occurrence and spread. Develop­
ment of robust, site-specific predictive models for estimating 
fuel moisture, such as that provided here, should greatly advance 
capacity for modelling and managing fire in tropical landscapes. 

Fig. 5. Fine scale temporal variability in fine fuel moisture at Dillingham 
Ranch on Oahu, Hawaii over 4 weeks. Vertical bars denote rainfall events 

Although our intra-annual models showed good predictive 
capacity over the year sampled, the most valuable model would 

(mm; right y-axis) for the 3 weeks before and during sampling. Dates without 
bars had no precipitation. Dashed line with closed circles denotes live fuel 
moisture and solid line with open circles denotes dead fuel moisture. 

indicating that these sites have adequate fuel accumulation and 
sufficiently low fuel moisture content to promote rapid fire 
spread most of the year, given an ignition source. 

Live fuel moisture, which is affected by both biological 
processes and current and antecedent weather, also affects 
potential fire behaviour on the landscape. Water is a heat sink 

be one that could be used on shorter time scales, giving 
managers almost real-time information on fuel moisture condi­
tions. In our fine scale variability sampling, it appeared that 
periods of increased fuel moisture followed precipitation events 
(Fig. 5), as would be expected, but models describing this 
relationship on short time scales (i.e. daily to weekly) were 
not effective for prediction, perhaps due to the small sample 
size. The change in live and dead fuel moisture may be a product 
of many interacting factors, including current and antecedent 
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weather (temperature, precipitation, wind speed and direction, 
insolation, relative humidity, etc.) as well as physical and 
biological processes (soil moisture, soil water holding capacity, 
evapotranspiration, plant water uptake, species specific curing 
rates, etc.) (Viney 1991; Viney and Catchpole 1991; Cheney 
et al. 1993; Nelson 2000; Weise et al. 2005). These complex 
interactions may make prediction of live and dead fuel moisture 
difficult on these shorter time scales, but at longer temporal 
scales (intra-annual) these relationships were more robust. 

This research provides an important first step in the manage­
ment and prevention of fire in guinea grass dominated ecosys­
tems in Hawaii by describing the variability of fuel loads over 
both space and time. The conversion of native, lowland dry 
ecosystems to invasive-dominated, fire-prone grass ecosystems 
has increased the demand on fire management agencies. Impor­
tant future work in guinea grass ecosystems in Hawaii, other 
island ecosystems and throughout the tropics will be the incor­
poration of the data presented here into fire prediction modelling 
tools, such as fire behaviour and spatial models. Additional data 
on fuel height, arrangement and continuity will be important for 
scaling these models across larger spatial scales. With this 
knowledge, managers will be better able to assess potential fire 
risk and consider management strategies in guinea grass domi­
nated ecosystems in Hawaii and throughout the tropics. 
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Avalos JFV, Ramos LFN, González JCV, Britton CM (2008) Response of 
six tropical grasses to prescribed burning in the west coast of Mexico. 
Tecnica Pecuaria en Mexico 46, 397–411. 

Beavers A (2001) Creation and validation of a custom fuel model represent­
ing mature Panicum maximum (Guinea grass) in Hawaii. Colorado State 
University, Department of Forest Sciences, Center for Environmental 
Management of Military Lands, Report TPS 01-12.(Fort Collins, CO) 

Beavers A, Burgan R (2001) Wildland fire risk and management on west and 
south ranges, Schofield Barracks, Oahu. Colorado State University, 

Department of Forest Sciences, Center for Environmental Management 
of Military Lands, Report TPS 01-11. (Fort Collins, CO) 

Beavers A, Burgan R, Fujioka F, Laven R, Omi P (1999) Analysis of fire 
management concerns at Makua Military Reservation. Colorado State 
University, Department of Forest Sciences, Center for Environmental 
Management of Military Lands, Report TPS 99-9. (Fort Collins, CO) 

Blackmore M, Vitousek PM (2000) Cattle grazing, forest loss, and fuel 
loading in a dry forest ecosystem at Pu’u Wa’aWa’a ranch, Hawai’i. 
Biotropica 32, 625–632. doi:10.1646/0006-3606(2000)032[0625: 
CGFLAF]2.0.CO;2 

Brooks ML, D’Antonio CM, Richardson DM, Grace JB, Keeley JE, 
DiTomaso JM, Hobbs RJ, Pellant M, Pyke D (2004) Effects of invasive 
alien plants on fire regimes. Bioscience 54, 677–688. doi:10.1641/0006­
3568(2004)054[0677:EOIAPO]2.0.CO;2 

Cheney NP, Gould JS, Catchpole WR (1993) The influence of fuel, weather 
and fire shape variables on fire-spread in grasslands. International 
Journal of Wildland Fire 3, 31–44. doi:10.1071/WF9930031 

D’Antonio CM, Vitousek PM (1992) Biological invasions by exotic 
grasses, the grass/fire cycle, and global change. Annual Review of 
Ecology and Systematics 23, 63–87. 

D’Antonio CM, Hughes RF, Vitousek PM (2001) Factors influencing 
dynamics of two invasive C4 grasses in seasonally dry Hawaiian wood­
lands. Ecology 82, 89–104. 

de Groot WJ, Wardati , Wang Y (2005) Calibrating the Fine Fuel Moisture 
Code for grass ignition potential in Sumatra, Indonesia. International 
Journal of Wildland Fire 14, 161–168. doi:10.1071/WF04054 

Francis JK, Parrotta JA (2006) Vegetation response to grazing and planting 
of Leucaena leucocephala in a Urochloa maxima-dominated grassland 
in Puerto Rico. Caribbean Journal of Science 42, 67–74. 

Giambelluca TW, Chen Q, Frazier AG, Price JP, Chen Y-L, Chu P-S, 
Eischeid JK, Delparte DM (2013) Online rainfall atlas of Hawai’i. 
Bulletin of the American Meteorological Society 94, 313–316. 
doi:10.1175/BAMS-D-11-00228.1 

Hughes FH, Denslow JS (2005) Invasion by a N2-fixing tree alters function 
and structure in wet lowland forests of Hawaii. Ecological Applications 
15, 1615–1628. doi:10.1890/04-0874 

Kauffman JB, Cummings DL, Ward DE (1998) Fire in the Brazilian 
Amazon. 2. Biomass, nutrient pools and losses in cattle pastures. 
Oecologia 113, 415–427. doi:10.1007/S004420050394 

LaRosa AM, Tunison JT, Ainsworth A, Kauffman JB, Hughes RF (2008) 
Fire and nonnative invasive plants in the Hawaiian Islands Bioregion. 
In ‘Wildland fire in ecosystems: fire and nonnative invasive plants’. 
(Eds K Zouhar, JK Smith, S Sutherland, ML Brooks) USDA Forest 
Service, Rocky Mountain Research Station, General Technical Report 
RMRS-GTR-42, Vol. 6, pp. 225–242. (Ogden, UT) 

Loope L (1998) Hawaii and Pacific islands. In ‘Status and trends of the 
nation’s biological resources’. (Eds M Mac, P Opler, C Purkett, 
P Doran.) Vol. 2, pp. 747–774. (US Department of the Interior, 
US Geological Survey: Reston, VA) 

Loope L (2004) The challenge of effectively addressing the threat of 
invasive species to the National Park System. Park Science 22, 14–20. 

Loope L, Starr F, Starr K (2004) Protecting endangered plant species 
from displacement by invasive plants on Maui, Hawaii. Weed Techno­
logy 18, 1472–1474. doi:10.1614/0890-037X(2004)018[1472:PEPSFD] 
2.0.CO;2 

McCulloch CE, Searle SR, Neuhaus JM (2008) ‘Generalized, Linear, and 
Mixed Models.’ (Wiley: Hoboken, NJ) 

Motooka P, Castro L, Duane N (2003) Weeds of Hawaii’s pastures and 
natural areas: an identification and management guide. College of 
Tropical Agriculture and Human Resources, University of Hawaii 
(Honolulu, HI) 

Nelson RM, Jr (2000) Prediction of diurnal change in 10-h fuel stick 
moisture content. Canadian Journal of Forest Research 30, 1071– 
1087. doi:10.1139/X00-032 

http://dx.doi.org/10.1111/J.1526-100X.2011.00806.X
http://dx.doi.org/10.1646/0006-3606(2000)032[0625:CGFLAF]2.0.CO;2
http://dx.doi.org/10.1646/0006-3606(2000)032[0625:CGFLAF]2.0.CO;2
http://dx.doi.org/10.1641/0006-3568(2004)054[0677:EOIAPO]2.0.CO;2
http://dx.doi.org/10.1641/0006-3568(2004)054[0677:EOIAPO]2.0.CO;2
http://dx.doi.org/10.1071/WF9930031
http://dx.doi.org/10.1071/WF04054
http://dx.doi.org/10.1175/BAMS-D-11-00228.1
http://dx.doi.org/10.1890/04-0874
http://dx.doi.org/10.1007/S004420050394
http://dx.doi.org/10.1614/0890-037X(2004)018[1472:PEPSFD]2.0.CO;2
http://dx.doi.org/10.1614/0890-037X(2004)018[1472:PEPSFD]2.0.CO;2
http://dx.doi.org/10.1139/X00-032


1092 Int. J. Wildland Fire L. M. Ellsworth et al. 

Portela RCQ, Matos DMS, Siqueira LPd, Braz MIG, Silva-Lima L, 
Marrs RH (2009) Variation in aboveground biomass and necromass 
of two invasive species in the Atlantic rainforest, southeast Brazil. 
Acta Botanica Brasilica 23, 571–577. doi:10.1590/S0102­

33062009000200029 
Pyne SJ, Andrews PL, Laven RD (1996) ‘Introduction to Wildland Fire.’ 

(Wiley: New York) 
Rothermel R (1972) A mathematical model for predicting fire spread in 

wildland fuels. USDA Forest Service, Intermountain Forest and Range 
Experiment Station, Research Paper INT-115. (Ogden, UT) 

Scott, JH, Burgan, RE, (2005) Standard fire behavior fuel models: 
a comprehensive set for use with Rothermel’s Surface Fire Spread 
Model. USDA Forest Service, Rocky Mountain Research Station, 
General Technical Report RMRS-GTR-153. (Fort Collins, CO) 

Viney N (1991) A review of fine fuel moisture modelling. International 
Journal of Wildland Fire 1, 215–234. doi:10.1071/WF9910215 

Viney N, Catchpole E (1991) Estimating fuel moisture response times from 
field observations. International Journal of Wildland Fire 1, 211–214. 
doi:10.1071/WF9910211 

Vitousek PM (1992) Effects of alien plants on native ecosystems. In ‘Alien 
Plant Invasions in Native Ecosystems of Hawaii: Management and 
Research’. (Eds CP Stone, CW Smith, TJ Tunison) pp. 29–41. (Univer­
sity of Hawaii Press: Honolulu, HI) 

Weise DR, Fujioka FM, Nelson JRM (2005) A comparison of three models 
of 1-h time lag fuel moisture in Hawaii. Agricultural and Forest 
Meteorology 133, 28–39. doi:10.1016/J.AGRFORMET.2005.03.012 

West BT, Welch KB, Galecki AT (2007) ‘Linear Mixed Models: a Practical 
Guide using Statistical Software.’ (Chapman and Hall/CRC: Boca 
Raton, FL) 

Williams D, Baruch Z (2000) African grass invasion in the Americas: 
ecosystem consequences and the role of ecophysiology. Biological 
Invasions 2, 123–140. doi:10.1023/A:1010040524588 

Wright CS, Ottmar RD, Vihnanek RE, Weise DR (2002) Stereo photo series 
for quantifying natural fuels: grassland, shrubland, woodland, and forest 
types in Hawaii. USDA Forest Service, Pacific Northwest Research 
Station. General Technical Report PNW-GTR-545. (Portland, OR) 

www.publish.csiro.au/journals/ijwf 

http://dx.doi.org/10.1590/S0102-33062009000200029
http://dx.doi.org/10.1590/S0102-33062009000200029
http://dx.doi.org/10.1071/WF9910215
http://dx.doi.org/10.1071/WF9910211
http://dx.doi.org/10.1016/J.AGRFORMET.2005.03.012
http://dx.doi.org/10.1023/A:1010040524588
www.publish.csiro.au/journals/ijwf

