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Abstract. Disease dynamics are governed by variation of individuals, species, and environ-
mental conditions across space and time. In some cases, an alternate reservoir host amplifies 
pathogen loads and drives disease transmission to less competent hosts in a process called 
pathogen spillover. Spillover is frequently associated with multi-host disease systems where a 
single species is more tolerant of infection and more competent in pathogen transmission com-
pared to other hosts. Pathogen spillover must be driven by biotic factors, including host and 
community characteristics, yet biotic factors interact with the abiotic environment (e.g., tem-
perature) to create disease. Despite its fundamental role in disease dynamics, the influence of 
the abiotic environment on pathogen spillover has seldom been examined. Improving our 
understanding of disease processes such as pathogen spillover hinges on disentangling the 
effects of interrelated biotic and abiotic factors over space and time. We applied 10 yr of fine-
scale microclimate, disease, and tree community data in a path analysis to investigate the rela-
tive influence of biotic and abiotic factors on pathogen spillover for the emerging infectious 
forest disease sudden oak death (SOD). Disease transmission in SOD is primarily driven by 
the reservoir host California bay laurel, which supports high foliar pathogen loads that spil-
lover onto neighboring oak trees and create lethal canker infections. The foliar pathogen load 
and susceptibility of oaks is expected to be sensitive to forest microclimate conditions. We 
found that biotic factors of pathogen load and tree diversity had relatively stronger effects on 
pathogen spillover compared to abiotic microclimate factors, with pathogen load increasing 
oak infection and tree diversity reducing oak infection. Abiotic factors still had significant 
effects, with greater heat exposure during summer months reducing pathogen loads and opti-
mal pathogen conditions during the wet season increasing oak infection. Our results offer clues 
to possible disease dynamics under future climate change where hotter and drier or warmer 
and wetter conditions could have opposing effects on pathogen spillover in the SOD system. 
Disentangling direct and indirect effects of biotic and abiotic factors affecting disease processes 
can provide key insights into disease dynamics including potential avenues for reducing disease 
spread and predicting future epidemics. 
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INTRODUCTION 

Pathogen spillover (Power and Mitchell 2004) is the 
driving process in a multitude of emerging infectious 
diseases that directly and indirectly impact human well-
being, including Lyme disease (Borrelia burgdorferi; 
Brisson et al. 2008), bovine tuberculosis (Mycobac-
terium bovis; Nugent 2011), and Ebola (Ebolavirus; 
Chowell and Nishiura 2014). Spillover arises from 
asymmetries in the infectious competency of hosts, 
occurring when a reservoir host species amplifies and 
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maintains a high level of a pathogen population relative 
to other less competent host species and causing higher 
infection rates in non-reservoir host species. Reservoir 
hosts support high levels of pathogen reproduction 
(amplification) and transmission, while tolerating infec-
tion and experiencing few ill effects. In contrast, non-
reservoir hosts are much less tolerant of infection and 
experience more negative effects, including greater mor-
tality. The asymmetries in host competency and toler-
ance of the host species are biotic factors that must 
naturally interact with abiotic environmental hetero-
geneity. Responding to and predicting emerging infec-
tious disease outbreaks in this era of rapid global 
change requires disentangling the effects of biotic and 
abiotic factors in disease processes such as pathogen 
spillover. 
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Disease transmission and spillover fundamentally 
depend on the overlap of a pathogen, susceptible hosts, 
and abiotic environmental conditions that are favorable 
for disease. Abiotic factors such as temperature, rainfall, 
and physical landscape structure can all directly and/or 
indirectly affect the host-pathogen interactions that 
lead to disease. Abiotic conditions can directly affect 
pathogen survival especially when the pathogen is trans-
mitted indirectly and must survive outside of the host. 
Landscape characteristics and changes in land use affect 
host density by influencing where hosts aggregate. Ani-
mal hosts may have preferred forage areas where they 
aggregate, while the aggregation of plant hosts is more 
strongly determined by landscape structure because 
individuals don’t move. Plant host density only 
increases in areas on the landscape where conditions are 
favorable or where conditions are made favorable by 
human action. The hosts and the pathogen experience 
the same climatic conditions but respond at different 
temporal scales to exposure to hot/cold or wet/dry 
extremes. Extreme conditions for the pathogen can 
reduce pathogen survival thereby reducing transmission. 
Extreme conditions for the host may increase its suscep-
tibility to infection at a later time by stressing the host 
and compromising its immune response. Pathogen 
reproduction is also dependent on the host community 
because of differences in species’ competency for patho-
gen reproduction and tolerance of pathogen infection. 
For example, greater diversity may present more low-
competency or non-hosts, which would reduce disease 
transmission through processes such as spillover. 
Although abiotic environmental conditions are a key 
component for many diseases, plant disease systems 
may be more regularly affected by abiotic environmental 
heterogeneity because the plants and their pathogens 
generally can’t move to change the conditions they are 
experiencing. 
Despite the fundamental role abiotic environmental 

heterogeneity plays in disease dynamics at multiple tem-
poral and spatial scales (Altizer et al. 2006, Meente-
meyer et al. 2012), most studies on pathogen spillover 
mainly focus on the biotic interactions affecting disease 
dynamics, occasionally including a broad scale measure-
ment of the abiotic environment such as temperature or 
precipitation averages from nearby weather stations 
(e.g., Beckstead et al. 2010). The dearth of studies exam-
ining abiotic environmental heterogeneity in pathogen 
spillover is in part due to a lack of data available at spa-
tial and temporal scales relevant to epidemiological pro-
cesses. Still, the process of pathogen spillover is 
dominated by heterogeneity of the hosts and host com-
munity. Therefore, assessing the effects of the abiotic 
environment on pathogen spillover requires disentan-
gling the host–pathogen–environment interactions 
across space and time. Parsing these relationships neces-
sitates long-term monitoring of disease dynamics under 
heterogeneous environmental conditions and taking 
measurements at epidemiologically relevant spatial and 

temporal scales (Jules et al. 2002, Holdenrieder et al. 
2004, Rohr et al. 2011, Meentemeyer et al. 2012). 
We analyzed the relative effects of biotic and abiotic 

factors on pathogen spillover using sudden oak death 
(SOD) as a case study of an emerging infectious disease 
with asymmetric host competency and transmission pat-
terns correlated with environmental heterogeneity (Rizzo 
and Garbelotto 2003). This multi-host plant disease has 
killed millions of trees in coastal forests of California 
and southwestern Oregon since its introduction in the 
mid-1990s (Meentemeyer et al. 2008, Lamsal et al. 
2011). The pathogen, Phytophthora ramorum, causes two 
host-dependent diseases: (1) lethal canker infections on 
the stems of certain Quercus spp. and tanoak 
(Notholithocarpus densiflorus; Manos et al. 2008) and 
(2) typically non-lethal foliar infections on a wide range 
of other species (APHIS 2013). The pathogen is wind 
dispersed and thought to spread primarily between indi-
viduals of the primary foliar host, California bay laurel 
(Umbellularia californica, hereafter referred to as bay 
laurel), or from leaf and twig infections on tanoak 
(Rizzo et al. 2005, Cobb et al. 2010). The majority of 
disease spread occurs locally (<60 m; Swiecki and Bern-
hardt 2007, Dillon et al. 2014), though long-range dis-
persal events are an important contribution to regional 
spread (Meentemeyer et al. 2011). Infection of suscepti-
ble Quercus host species, such as coast live oak (Q. agri-
folia), California black oak, (Q. kellogii), and canyon 
live oak (Q. chrysolepsis), which do not support patho-
gen sporulation (Rizzo et al. 2005, Swiecki et al. 2016), 
result in bole cankers that lead to tree mortality. Mean-
while, foliar infections on bay laurel do not negatively 
impact this host (DiLeo et al. 2009). These asymmetries 
in host competency and tolerance observed in this sys-
tem are emblematic of pathogen spillover. 
While asymmetric host competency and susceptibility 

clearly indicate the presence of a reservoir host (bay lau-
rel) and multiple non-reservoir hosts (Quercus spp.), the 
temperature and moisture sensitivity of P. ramorum 
make this system particularly useful for studying less 
understood abiotic effects on pathogen spillover. Fluctu-
ations in moisture and temperature moderate the patho-
gen population on timescales of weeks to months 
(Davidson et al. 2005), and host species over years to 
decades. Experimental and observational studies indi-
cate that temperature extremes (hot or cold) and/or lack 
of moisture reduces pathogen sporulation, and therefore 
transmission (experimentally [Englander et al. 2006, 
Tooley et al. 2008], observationally [Davidson et al. 
2005, 2008, Eyre et al. 2013]). Temperature and moisture 
are in turn influenced by landscape topography through 
orographic effects and cool air pooling (Dobrowski 
2011). By observing fluctuations of environmental fac-
tors influencing pathogen reproduction and host suscep-
tibility over time at multiple locations across a 
landscape, we aimed to disentangle the relative contribu-
tions of key biotic and abiotic factors on pathogen spil-
lover in this disease system. 
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The inherent complexity of ecological systems pre-
sents analytical challenges because multiple factors have 
direct and indirect causal relationships within and across 
ecological hierarchies. We addressed this challenge using 
path analysis to examine the direct and indirect effects 
of multiple variables within a confirmatory causal 
framework. Specifically, we analyze the influence of 
topography, understory microclimate, and the tree com-
munity on pathogen spillover in the sudden oak death 
disease system. 
Landscape characteristics, such as topography and 

geology, influence moisture persistence, the vegetation 
community, and, indirectly, disease dynamics. Forest 
microclimate conditions, i.e., temperature and moisture, 
directly influence pathogen reproduction and may also 
affect host susceptibility. While the hosts and the patho-
gen experience the same abiotic conditions, they respond 
differently to extremes (too hot or too cold, too wet or 
too dry) because what is “extreme” for a microscopic 
pathogen is not the same as an “extreme” for a tree. 
Pathogen reproduction is also dependent on the host 
community because of differences in competency for 
pathogen reproduction and tolerance of pathogen 
infection. 
We hypothesize that biotic factors, in this case the 

density of bay laurel and diversity of the tree community, 
affect spillover more strongly than abiotic factors of 
microclimate and landscape topography, but that abiotic 
factors still significantly affect the spillover process 
(Fig. 1). Specifically, as a very competent host greater 
bay laurel density will generate greater pathogen loads 
and directly drive infection of susceptible oak species 
(i.e., pathogen spillover). At the same time, infection of 
oaks is expected to be reduced by greater tree diversity 
(i.e., a dilution effect) because all other tree species in 
the community have low competency compared to bay 
laurel. Greater exposure to warm and wet conditions is 

hypothesized to directly increase pathogen loads and dis-
ease prevalence of oaks by creating favorable conditions 
for the pathogen. We also hypothesize that greater expo-
sure to “extreme” temperatures for the pathogen will 
directly reduce pathogen load in the bay laurel canopy 
due to poorer conditions for pathogen reproduction and 
increased abscission of leaves damaged by infection. 
Finally, we hypothesize that the landscape context (to-
pography) will indirectly affect pathogen spillover by 
influencing bay laurel density, heat exposure, exposure 
to warm and wet conditions, and tree diversity. Higher 
values of the topographic index are expected to correlate 
with greater bay laurel density, less heat exposure, 
greater exposure to warm and wet conditions, and lower 
tree diversity. Our results provide insights into the rela-
tive effects of biotic and abiotic environmental hetero-
geneity on disease dynamics, particularly the process of 
pathogen spillover, which can improve predictions of dis-
ease risk and strategies for disease control. 

METHODS 

Study area 

During 2003–2004, we established 202 plots (each 225 
m2) in potential P. ramorum host habitat (i.e., forests or 
woodlands) across a 275-km2 study area in southeastern 
Sonoma County, California, USA (Fig. 2). Plots were 
located on public and private lands with varying levels of 
forest cover and development across the surrounding 
landscapes. Elevation at plots ranged from 55 m to 
800 m (mean 378 m) and minimum Euclidean distance 
between plots was 137 m. Vegetation is diverse across 
this landscape, including stands of mixed evergreen forest 
dominated by oak species and bay laurel, as well as 
stands dominated by coast redwood (Sequoia semper-
virens) or Douglas-fir (Pseudotsuga menziesii). Chaparral 

FIG. 1. Conceptual path model describing the hypothesized causal relationships between factors influencing pathogen spillover 
in the sudden oak death disease system. The curved, double-headed arrow indicates a correlative but not causal relationship 
between variables, and this relationship is excluded from the model fitting. 
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FIG. 2. Study area in Sonoma County, California, USA. Points are plot locations, inverted triangles (blue) are rain gauge loca-
tions, outlined areas are parks and public lands, and darker shading (green) indicates forest cover. 

vegetation occurs at higher elevations of the Mayacama 
Mountain range along the eastern border of the study 
area, characterized by manzanita (Arctostaphylos sp.), 
chamise (Adenostoma fasciculatum), and Ceanothus 
shrub species interspersed with a few oak species. Tanoak 
is relatively rare across this study area, only found in 

eight plots, typically occurring with coast redwood or 
Douglas-fir. This region of California has a Mediter-
ranean climate with distinct wet and dry seasons. Precipi-
tation predominantly falls as rain from October through 
April, followed by a dry season with higher temperatures 
and lower humidity from May through September. 
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Data collection 

We collected data in the field each spring during peak 
P. ramorum symptom expression from the onset of the 
study at plot establishment through 2012, and then 
began sampling every other year, with the most recent 
data used in this analysis collected during the spring of 
2014. We recorded individual stem characteristics, dis-
ease intensity and prevalence, and understory microcli-
mate temperature in each plot. We assessed stems 
measuring ≥2 cm diameter at breast height (DBH; 
breast height = 1.4 m) of five epidemiologically impor-
tant host species: coast live oak, California black oak, 
canyon live oak, tanoak, and bay laurel. Some species 
commonly form multi-stemmed trees, so a stem was 
defined as a major branching that separated from the 
base or main trunk of the tree below breast height. We 
quantified disease intensity on bay laurel by counting 
the number of symptomatic leaves on each stem for 
60 seconds (Condeso and Meentemeyer 2007, Haas 
et al. 2016). Infected oak species were identified by 
visual inspection for cankers characteristic of P. ramo-
rum infection on main stems or major branches. At plot 
establishment, the stems of all other tree species rooted 
in the plot and ≥ 5 cm DBH were identified to species, 
deemed alive or dead, and their DBH was recorded. 
We measured ambient understory temperature in each 

plot using HOBO temperature loggers (model H08-032-
08 from 2003 to 2008 and model UA-001-64 from 2008 
to 2014, Onset Computer, Bourne, Massachusetts, USA) 
housed inside a solar radiation shield (Model RS1, 
Onset Computer) secured 1 m above the ground in the 
center of each plot. The temporal resolution of these 
data sometimes changed between years and some data 
were missing each year due to user error, logger malfunc-
tion, vandalism, and/or battery failure. Using methods 
described in Tonini et al. (2016), we developed a com-
plete set of temperature measurements at an hourly reso-
lution for each plot for the entire study period. We 
recorded rainfall using tipping-bucket rain gauges 
(model RG3, Onset Computer) at 14 locations capturing 
the topographic variability across the study area. Using 
these data, we developed variables to quantify pathogen 
spillover and major abiotic and biotic factors relevant to 
this process in this disease system. 

Pathogen spillover 

During each sampling year at each plot, we quantified 
the pathogen load on bay laurel and the disease preva-
lence on oak trees as measures of the pathogen spillover 
process. We estimated pathogen load by summing the 
symptomatic leaf counts on bay laurel stems that were 
rooted within, or had foliage overhanging, the plot 
boundary. We calculated disease prevalence on living 
stems of susceptible oak species as the ratio of 
infected to uninfected stems based on observed canker 
symptoms. 

Landscape context 

To account for heterogeneity of the physical landscape 
in the sudden oak death disease system we calculated the 
topographic wetness index (TWI) for each plot from a 
15-m resolution digital elevation model using the r.top-
idx function (Cho 2000) implemented in GRASS GIS 
(GRASS Development Team 2016). The index is calcu-
lated by dividing the upslope contributing area of a loca-
tion on the landscape by the tangent of the local slope 
gradient (in radians) assuming soil transmissivity is con-
stant (Moore et al. 1991): 

(1)

where w is the wetness index, As is the catchment area, 
and b is the local slope gradient. Higher index values 
indicate the potential for more water to flow through or 
accumulate at a location, prolonging moisture persis-
tence. 

Plant community 

To assess effects of the plant community on disease 
dynamics we calculated reservoir host density and tree 
diversity. We estimated reservoir host density as the 
number of bay laurel stems per hectare based on the 
number of stems ≥2 cm rooted in the plot area (225 m2). 
We calculated Shannon’s diversity index for tree species 
in each plot using the following equation (Krebs 
1999:444–445): 

s 

H 0 ¼ � ðpiÞðlog2 piÞ
i¼1 

X 
(2) 

where H0 is the Shannon’s diversity index, s is the num-
ber of species, and pi is the proportion of the total sam-
ple belonging to the ith species. Larger values of H0

indicate greater diversity. We used the diversity function 
from the R package vegan (Oksanen et al. 2016) to cal-
culate Shannon’s index for each year that we collected 
data on all tree species (2005, 2012, and 2014). Index val-
ues were strongly correlated between these years (Pear-
son’s r > 0.9), so we used values from the 2005 sample 
year in this analysis, because this resulted in the largest 
number of plots for analyses due to some being decom-
missioned later in the study. 

Microclimate 

To capture effects of microclimatic variability on bay 
laurel foliar pathogen load and oak infection we calcu-
lated heat exposure in excess of 25°C or warm and wet 
conditions at each plot using the rainfall and tempera-
ture data collected across the study area. We calculated 
heat exposure as the number of hours above 25°C during 
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the dry season (June–September) prior to sampling the 
following spring. We chose this threshold because inocu-
lum is reduced with greater exposure to high tempera-
tures due to increased leaf abscission and direct 
mortality of the pathogen (Davidson et al. 2005, Englan-
der et al. 2006, Tooley et al. 2008). We defined warm 
and wet conditions as the average number of hours that 
the temperature was between 14°C and 22°C on wet days 
during November through May of the current and previ-
ous sample year for each plot. A plot was determined to 
have a wet day if its nearest-neighbor rain gauge 
recorded >0.25 mm of precipitation during a 24-h 
period. 

Statistical analyses 

We used structural equation modeling (SEM) to assess 
the hypothesized relationships between biotic and abi-
otic drivers of pathogen spillover in the sudden oak 
death disease system because it enables conceptualizing 
and examining direct and indirect effects of multiple 
processes in ecological systems (Grace et al. 2010). 
Using published knowledge of sudden oak death disease 
dynamics, we developed a structural model describing 
hypothesized direct and indirect relationships between 
the landscape, forest microclimate climate, tree commu-
nity, and disease (Fig. 1) and assessed this model struc-
ture using path analysis (Wright 1921, Shipley 2004). 
Each box in Fig. 1 that has at least one arrow pointing 
to it is a response variable in the model and each of the 
boxes where that arrow is rooted is a predictor variable. 
In our evaluation of the path model, we excluded model-
ing the relationship between the microclimate variables 
because they were assumed to be correlated due to a 
shared driver (regional climate), indicated by the curved 
and double-headed arrow (Fig. 1). All analyses were 
conducted using R statistical software (R Core Team 
2017). 
We used the piecewiseSEM package (Lefcheck 2015) 

to evaluate our model because it allows linear mixed 
models with different distributional forms to be evalu-
ated together in the same SEM. We modeled all response 
variables (except oak infection) as normally distributed. 
To better meet assumptions of normality, we applied a 
natural logarithm transformation to the pathogen load, 
host density, and warm and wet conditions variables. 
Since diversity for each plot was calculated from a single 
year (not a repeated measurement) and also had a static 
predictor variable in the topographic index we fit an 
ordinary least squares bivariate regression to model this 
relationship. For variables repeatedly measured at each 
plot during each year, we used mixed-effects models with 
scalar random effects for the sample year and plot, 
which account for this cross-replication by allowing the 
intercepts for these grouping factors to vary. The ran-
dom effect for year accounts for correlation between 
measurements made during the same year, while the ran-
dom effect for plot accounts for correlation between the 

measurements from the same plot. Accounting for this 
induced correlation provides more accurate estimates of 
confidence intervals and P values by preventing varia-
tion from being attributed to measured variables. We 
modeled the repeatedly measured symptomatic leaf 
count and the microclimate variables using linear mixed-
effects regressions of the following form using the lmer 
function in the R package lme4 (Bates et al. 2015): 

y ¼ X � b þ Z � b þ e (3) 

b �Nð0; DÞ (4) 

e �Nð0; r 2Þ (5) 

where y is the n-length vector of observed values for the 
response variable; X is the n 9 p fixed-effects matrix of 
predictor variables, with p equal to the number of 
explanatory variables; b is the p-length vector of fixed-
effects coefficients to be estimated that apply to all years 
and plots; Z is the n 9 q “random effects” matrix, where 
q is the number of random effects in Z; and b is a 
q-length vector of random effects that is assumed to have 
a multivariate normal distribution. The scalar random 
effects for sample year and plot are assumed to be inde-
pendent within and between groups, resulting in the 
covariance matrix D having diagonal structure with the 
estimated variance (diagonal matrix values) homoge-
neous within each group and the covariance (off-diago-
nal matrix values) equal to zero (Bates et al. 2015). The 
n-length vector e is the residual error in the model (unex-
plained variation in y), and assumed to be normally dis-
tributed with a mean of zero and a variance r 2. 
We fit a binomial generalized linear mixed effects 

model to yes/no observations of oak infection with ran-
dom effects for sample year and plot using the glmer 
function from the lme4 package: 

ðyjB ¼ bÞ�Binomialðn; pjbÞ (6) 

logitðpjbÞ ¼  X � b þ Z � b (7) 

where y is binomially distributed with an occurrence 
probability p, which is modeled as a function of linear 
predictors using the logit link function (Eq. 7). The 
details of the linear predictors in Eq. 7 are the same as 
those in Eqs. 3 and 4. 
We assessed collinearity of predictor variables prior to 

inclusion in each model to ensure that Pearson’s r was 
<|0.5|, and examined residual plots of each model for 
heteroscedasticity that would indicate violation of model 
assumptions. Models were checked for spatial autocorre-
lation by plotting and comparing correlograms of the 
response variable and the residuals from the fitted 
models. There was some minor spatial correlation in the 
modeled response variables, but the model residuals 
showed no significant spatial autocorrelation, indicating 
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that the models accounted for any significant spatial cor-
relation in the response. We fit models using unstandard-
ized variables, and then calculated standardized 
(mean = 0, variance = 1) coefficients for continuous 
variables. 

Model interpretation 

Path coefficients are interpreted as either direct or 
indirect effects on the response variables. Direct effects 
are from variables that have an arrow pointing directly 
to a response variable. Variables with indirect effects are 
those that are at least once removed from another 
response variable. For example, landscape context indi-
rectly influences disease prevalence through direct effects 
on species diversity and heat exposure (Fig. 1). Indirect 
effects are calculated by multiplying the coefficients 
along the path to the response variable. The total effect 
of a variable is the sum of the direct and indirect effects. 
We report standardize coefficients in Fig. 3 showing the 
relative strength of direct effects in the pathogen spil-
lover process. Unstandardized coefficient estimates and 
test statistics are reported in Appendix S1: Table S1. 

RESULTS 

We tested our path model using data from 164 plots 
sampled between 2005 and 2014 (n = 1,433 observa-
tions) that met the criteria of having one or more suscep-
tible oak trees and found an acceptable fit to the model 

structure (P = 0.409, Table 1). Biotic factors of species 
diversity, bay laurel density, and pathogen load had 
stronger effects on pathogen spillover relative to abiotic 
factors, but abiotic environmental factors of exposure to 
temperatures >25°C, optimal pathogen temperatures 
(14–22°C), and topographic index also significantly 
influenced the pathogen spillover (Fig. 3). The statisti-
cally insignificant hypothesized relationships included 
those between topographic index and bay laurel density 
and optimal pathogen temperatures, tree diversity and 
symptomatic leaf count, and optimal pathogen tempera-
tures and symptomatic leaf count. 
The terminus of pathogen spillover, oak infection, was 

most strongly affected by the biotic factors of tree diver-
sity and symptomatic leaf count, but also was influenced 
by exposure to optimal pathogen temperatures on wet 
days. Diversity and pathogen load had opposite effects 
on oak infection with greater symptomatic leaf count 
resulting in greater oak infection (Fig. 4a) and greater 
tree diversity resulting in lower oak infection (Fig. 4b). 
Greater exposure to optimal pathogen temperatures 
resulted in greater oak infection (Fig. 4c). Bay laurel 
density had the strongest direct effect on symptomatic 
leaf count but symptomatic leaf count was also influ-
enced directly by greater exposure to temperatures 
>25°C during the June through September dry season 
and indirectly by the landscape context indicated by the 
topographic index. Plots with greater bay laurel density 
had higher symptomatic leaf count (Fig. 4d), but greater 
exposure to temperatures >25°C reduced symptomatic 

FIG. 3. Standardized coefficients for each relationship in the path model. Gray lines are negative relationships and dotted lines are 
statistically insignificant at P = 0.05 (full P-values are reported in Table S1). Direct effects are variables pointing unimpeded toward 
response variables; variables with indirect effects have one or more intermediate variables between them. The line weights are scaled to 
the absolute value of the standardized path coefficient. Oak infection represents disease prevalence; symptomatic leaf count represents 
pathogen load; summer hours >25°C represents heat exposure; wet-hours 14–22°C represents  “optimal” warm and wet conditions; bay 
laurel density is reservoir host density; Shannon’s diversity index is species diversity; and topographic index represents landscape context. 
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TABLE 1. Results for the fitted path model indicating relationships between pairs of variables with missing path(s) and the metrics 
to assess the fit of the entire path model. 

Missing path Estimate SE df Crit-value P 

Pathogen load ~ Landscape context 0.047 0.049 165.8 0.966 0.336 
Disease prevalence ~ Landscape context 0.083 0.084 NA 0.987 0.324 
Reservoir host density ~ Diversity 0.126 0.241 161.0 0.523 0.602 
Heat exposure ~ Diversity 3.170 22.78 160.8 0.139 0.890 
Warm + Wet ~ Diversity 0.202 0.181 160.4 1.117 0.266 
Heat exposure ~ Reservoir host density �5.363 6.322 300.9 �0.848 0.398 
Warm + Wet ~ UMCA density �0.082 0.056 198.1 �1.473 0.143 
Disease prevalence ~ UMCA density 0.120 0.176 NA 0.678 0.497 
Disease prevalence ~ Heat exposure �0.001 0.001 NA �1.289 0.197 

Notes: All missing paths are statistically insignificant and the overall model fit is acceptable (P = 0.409). Fisher’s C = 18.72; 
SEM df = 18; SEM P = 0.409. Estimate, estimated coefficient; SE, standard error; df, model degrees of freedom (not estimated for 
the binomial response disease prevalence); Crit-value, critical value of the test statistic; Fisher’s C as described by Shipley (2004); 
P, path model P value. 

leaf count (Fig. 4e). Topographic index (landscape con-
text) had a net positive indirect effect on oak infection 
that was mediated by tree diversity, and the path 
through exposure to temperatures >25°C and symp-
tomatic leaf count (Fig. 3). Plots with greater topo-
graphic index values had less exposure to temperatures 
>25°C (Fig. 4f) and lower tree diversity (Fig. 4g). Multi-
plying the coefficients along the significant paths from 
the topographic index to symptomatic leaf count 
(Fig. 3) shows a positive indirect effect of landscape con-
text on symptomatic leaf count through the direct effect 
on exposure to temperatures >25°C (Fig. 4f). 

DISCUSSION 

Pathogen spillover in the sudden oak death disease 
system was most strongly influenced by biotic factors, 
but these biotic factors were still significantly influenced 
by abiotic environmental heterogeneity. Higher densities 
of the reservoir host increased pathogen load, which 
resulted in greater disease prevalence (i.e., pathogen spil-
lover) in susceptible oaks, but this was countered by a 
relatively strong negative effect of tree species diversity. 
Microclimate conditions in the plot simultaneously 
influenced the reservoir host pathogen load and disease 
prevalence in non-reservoir hosts, with heat exposure 
reducing pathogen load, but warm and wet conditions 
increasing disease prevalence. The tree community and 
microclimate were influenced by landscape topography, 
where locations with greater potential for moisture accu-
mulation and persistence had higher pathogen load and 
disease prevalence. 
We confirmed that bay laurel density was the strongest 

driver of pathogen load (total symptomatic leaf count) 
in the plot, but also that microclimate conditions have 
significant influence. Previous studies indicated individ-
ual variation in bay laurel susceptibility and competency 
(Anacker et al. 2008, H€uberli et al. 2011) that would be 
obscured by aggregation to the plot level in our study. 
However, disease on individual trees can be overridden 

at the landscape scale by climatic conditions (Anacker 
et al. 2008) reinforcing our findings of abiotic effects on 
pathogen load at the plot level. Still, individual variation 
in susceptibility indicates the possibility of superspreader 
(Heesterbeek et al. 2015) bay laurels existing in the pop-
ulation, or in particular locations that would not be 
detectable in this analysis. By aggregating disease preva-
lence across all stems of all susceptible oak species we 
also obscured the variation among species’ and individ-
ual’s disease resistance, susceptibility, and tolerance that 
may be conferred by genetic differences (Dodd et al. 
2005). Since this individual variation exists, efforts that 
preserve the genetic diversity of susceptible species 
increase resilience to this and other diseases. 
The negative relationship between disease prevalence 

on susceptible oaks and species diversity is evidence for 
the dilution effect, whereby species diversity reduces dis-
ease risk (Keesing et al. 2006, 2010), which was previ-
ously shown in the sudden oak death disease system 
(Haas et al. 2011). Our analysis using a longer data set 
from a geographically distinct plot network with differ-
ent forest types reinforces the previous finding in this 
system. The magnitude of the dilution effect may be 
influenced by individual variation, which we did not 
account for in our models, and by cryptic infections of 
bay laurel leaves or oak trees that are impossible to 
detect visually (Swiecki et al. 2016). In the case of cryp-
tic infection, it is possible that we underestimated patho-
gen load or disease prevalence, however, any visual 
underestimation is likely to be equally biased across the 
range of tree diversity. An interesting contrast in our 
results is that the dilution effect did not extend to patho-
gen load (symptomatic leaf count) on bay laurel. One 
possible reason for observing a dilution effect of diver-
sity on oak disease prevalence but no effect on pathogen 
load is because the P. ramorum infection on bay laurel 
occurs at the scale of the leaf, while on oaks it occurs at 
the scale of the tree (i.e., bole cankers). At the leaf scale, 
a single bay laurel tree with thousands of leaves could 
support a very large pathogen load even as the only bay 
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FIG. 4. Plots of the predicted relationships (smooth line) for significant paths between response and explanatory variables from 
fitted models of the path analysis in Fig. 3; (a) oak infection vs. symptomatic leaf count, (b) oak infection vs. tree diversity (Shan-
non’s H’), (c) oak infection vs. hours at optimal pathogen conditions during the wet season (November–May), (d) symptomatic leaf 
count vs. bay laurel density, (e) symptomatic leaf count vs. time above 25°C during summer months (June–September), (f) time 
above 25°C during summer months vs. topographic index, (g) tree diversity vs. topographic index. Plots were generated using the R 
packages sjplot (L€udecke 2018), ggplot2 (Wickham 2016), and cowplot (Wilke 2018). 

laurel among a group of susceptible oaks. In this low-
diversity scenario, all of the oaks near the bay laurel tree 
would be at high risk of becoming infected. Therefore, 
increasing tree diversity to include more species with low 
or no competency (essentially any species that is not bay 
laurel) for P. ramorum infection would likely reduce the 
encounter rate between dispersed spores and susceptible 
oak species. 
Alongside the host(s) and pathogen(s), abiotic environ-

mental conditions is the third key component of disease 
dynamics. Our finding that heat exposure during the sum-
mer reduced pathogen inoculum load the following spring 

corroborates findings showing that P. ramorum survival 
on bay laurel leaves decreased during the summer months 
(Davidson et al. 2005) and with the number of days 
exceeding 30°C (DiLeo et al. 2014). Several experimental 
studies also found decreased survival of P. ramorum 
exposed to high constant temperatures for several hours 
(Tooley et al. 2008, 2014, Tooley and Browning 2015). 
Although infection on bay laurel leaves can rebound 
quickly following drought conditions (Eyre et al. 2014), 
our results suggest that this may not necessarily increase 
pathogen spillover, because we also found that disease 
prevalence was greater when temperatures are 
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consistently warm and wet. A generally warming climate 
would likely mean warmer temperatures year-round, 
potentially increasing the success of pathogen spillover 
during the wet season, but also increasing heat exposure 
and reducing the pathogen load during the dry season. 
While these conditions could offset each other, the rela-
tive strength of the effects of heat exposure on bay laurel 
pathogen load and of optimal warm and wet tempera-
tures on oak infection in our results suggests that greater 
exposure to warm and wet conditions favorable to patho-
gen growth and reproduction could override the limiting 
influence of summer heat exposure on pathogen load. 
Additionally, changes in rainfall patterns, such as shifts in 
the timing and length of the wet and dry seasons and the 
amount of rainfall, would dramatically affect sudden oak 
death disease dynamics. For example, extended drought 
would reduce pathogen loads and stress trees, potentially 
increasing oak tree susceptibility to infection during epi-
demic outbreaks by compromising their defense response. 
In a review of studies examining the relationship 

between drought and plant diseases, Desprez-Loustau 
et al. (2006) found that 67% showed evidence for 
drought favoring disease, and in some cases the interac-
tion was synergistic. However, only 50% of the studies 
on Phytophthora-related diseases in this review reported 
positive drought–disease interactions. The findings of 
positive interactions were frequently attributed to indi-
rect effects of drought on the pathogen where host sus-
ceptibility to disease was increased by drought. A 
possible reason for this 50/50 finding for drought inter-
actions with Phytophthora diseases is that in some situa-
tions the cost of drought to the host is greater than the 
cost of drought to the pathogen and in some cases the 
cost is greater for the pathogen than the host. The effect 
of drought also depends on the size and life-history of 
the organism: a drought for a pathogen would generally 
be at a smaller spatial and temporal scale than a drought 
for a tree. Our results suggest an antagonistic interaction 
between drought and disease for a Phytophthora-caused 
disease, where greater exposure to temperatures >25°C 
during the summer dry season (June–September) 
reduced pathogen load in bay laurel canopy foliage and 
therefore spillover that causes disease on susceptible 
oaks; i.e., the cost of “drought” was greater for the 
pathogen than for the host. Reduction of pathogen load 
on canopy foliage is partly due to bay laurel leaves dam-
aged by the pathogen being abscised during hot sum-
mers, as well as the pathogen being killed directly or 
forced into dormancy due to the prolonged exposure to 
hot and dry conditions. The species of susceptible oaks 
in the sudden oak death system are generally resilient to 
drought and more commonly occur where rainfall is gen-
erally lower than in our study area (Lamsal et al. 2011). 
Since we modeled oak infection, and not mortality, it is 
possible that sudden oak death has a positive interaction 
with drought in terms of increasing mortality of trees 
that become infected when abiotic conditions are favor-
able for the pathogen. 

Landscape context such as topography influences bio-
tic and abiotic conditions through orographic effects, 
cool air pooling, and soil moisture. Locations with 
greater potential moisture indirectly increased pathogen 
spillover by having lower species diversity and heat expo-
sure, but higher pathogen load. These conditions likely 
increase the susceptibility of oak trees. Persistent mois-
ture also can enhance pathogen sporulation and increase 
the likelihood that P. ramorum spores will survive long 
enough to infect a susceptible oak tree without necessar-
ily altering the physiological susceptibility of the host. 
Biotic and abiotic conditions should both be consid-

ered when attempting to reduce pathogen spillover and 
the spread of sudden oak death. The epidemiologically 
important tree species in sudden oak death dynamics 
(bay laurel and oaks) appears to be more resilient to 
drought conditions compared to the pathogen. With this 
in mind, management actions attempting to slow disease 
spread may be especially effective during seasonal 
drought conditions when the pathogen load has already 
been reduced. Slowing the spread can primarily be 
achieved by removing bay laurel, the reservoir host in 
the spillover process, which would also worsen microcli-
mate conditions for the pathogen on any remaining host 
species. These efforts could simultaneously reduce and 
restructure potential fuel loads, helping prevent large 
wildfires that may be more intense due to disease-
induced mortality (Metz et al. 2011). Low-intensity pre-
scribed fire may be an effective tool for thinning forest 
understory that is dominated by bay laurel. In these 
cases, the substrate for P. ramorum to survive at rela-
tively high levels during the dry summer months would 
be removed, thus reducing the inoculum available to 
seed epidemic spread during the following wet season. 
A growing number of emerging infectious diseases 

(EIDs) involve multiple hosts with transmission pro-
cesses that involve pathogen spillover. While prevention 
and control of EIDs is a common goal, more research is 
needed to understand how environmental heterogeneity 
may affect these efforts by simultaneously influencing 
pathogen loads on reservoir host(s) and susceptibility to 
infection of non-reservoir host(s). Plant disease systems, 
such as sudden oak death, are useful for investigating 
the effects of abiotic environmental heterogeneity 
because the host species don’t move, which enables close 
monitoring of variation in disease–environment relation-
ships. Analysis of detailed monitoring data can in turn 
provide insights into disease management such as when 
or where to apply treatments that target reservoir hosts 
or may be most effective to prevent or slow disease 
spread. 
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