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Abstract

Predicting the behavior of overland flow with analytical solutions to the kinematic

wave equation is appealing due to its relative ease of implementation. Such simple

solutions, however, have largely been constrained to applications on simple planar

hillslopes. This study presents analytical solutions to the kinematic wave equation for

hillslopes with modest topographic curvature that causes divergence or convergence

of runoff flowpaths. The solution averages flow depths along changing hillslope con-

tours whose lengths vary according hillslope width function, and results in a one-

dimensional approximation to the two-dimensional flow field. The solutions are

tested against both two-dimensional numerical solutions to the kinematic wave

equation (in ParFlow) and against experiments that use rainfall simulation on

machined hillslopes with defined curvature properties. Excellent agreement between

numerical, experimental and analytical solutions is found for hillslopes with mild to

moderate curvature. The solutions show that curvature drives large changes in maxi-

mum flow rate qpeak and time of concentration tc, predictions frequently used in engi-

neering hydrologic design and analysis.
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1 | INTRODUCTION

Accurate prediction of overland flow processes is essential to a range

of management challenges, including flash flooding (Bracken &

Croke, 2007; Foody, Ghoneim, & Arnell, 2004), urban stormwater sys-

tem management (Poff et al., 1997), and fluvial erosion (Howard, Die-

trich, & Seidl, 1994). These outcomes impact infrastructure planning,

design, flood risk estimation, and erosion mitigation (Grimaldi &

Petroselli, 2015). Consequently, peak flow estimation for overland

flow dominated systems has a long history, and numerous predictive

methods are available to practitioners. These methods vary in their

complexity, from numerical solutions of two-dimensional flow equa-

tions (Ashby & Falgout, 1996; Jones & Woodward, 2001; Kollet &

Maxwell, 2006; Maxwell, 2013), to analytical expressions obtained

from solutions of one-dimensional kinematic wave equations on a

plane (Brutsaert, 2005), to even simpler empirical approaches such as

the Rational Method (Kuichling, 1889; Mulvaney, 1851). Broadly,

hydrologists selecting from these methods are faced with a tradeoff

between process fidelity and ease of use, with the latter being partic-

ularly important for widespread adoption by practitioners

(Douglas, 1991).

If ease-of-use is an important determinant of the uptake of a

method, then improving the predictions made by simple methods,

without making them significantly harder to use, would be particularly

valuable. Opportunities for such improvement could be associated

with making better use of information about the land surface that
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regulates flow, for example by incorporating data from remote sensing

(Petroselli, 2012); or by increasing the physical basis of predictive

tools (Grimaldi, Petroselli, Tauro, & Porfiri, 2012; Manoj et al., 2013).

The hillslope response has been studied extensively on rectangu-

lar hillslopes, primarily using the non-linear storage model

(SM) (Agnese, Baiamonte, & Corrao, 2001; Baiamonte &

Agnese, 2016) and the kinematic wave model (KWE) (Baiamonte &

Singh, 2016a). These formulations have led to analytical formulae for

calculating the time to equilibrium te [T] and peak flow Qpeak [L
3/T] of

the hydrograph. Such kinematic wave solutions have been used to

develop simplified peak flow prediction tools that incorporate the

effects of infiltration (Baiamonte, 2020; Baiamonte & Singh, 2017).

Here, we attempt to enable both analytical improvement and expan-

sion of data use by extending solutions of the physically-based hill-

slope kinematic wave equation to account for surface topographic

curvature, a land surface property that can be derived from lidar

remote sensing. For sufficiently simple hillslope morphologies (com-

pare Troch, van Loon, & Hilberts, 2004), the resulting solutions are

analytical and represent only a modest increase in numerical complex-

ity relative to existing formulae.

As outlined in Section 2, the major assumption needed to develop

these predictions is that the two-dimensional flow field that arises on

curved landscapes can be approximated by a one dimensional,

contour-averaged value (Fan & Bras, 1998). Testing this assumption is

challenging: two dimensional analytical solutions do not exist for the

case at hand, and two-dimensional numerical models contain their

own uncertainty (e.g., from numerical approximation). Similarly,

although empirical observations of flow behavior are available, it is

often not possible to simultaneously (a) constrain landscape curvature,

(b) characterize the runoff generation process, and (c) obtain high-res-

olution, local rainfall data in the same landscape—all of which are

needed for model testing. In this situation, laboratory-scale experi-

ments have a useful role to play (Blume, van Meerveld, &

Weiler, 2010; Kleinhans, Bierkens, & van der Perk, 2010). We there-

fore undertake experiments in which simulated rainfall is applied to

scale-models of hillslopes with prescribed curvature and runoff gener-

ation mechanisms to generate datasets against which to test the ana-

lytical solution. Comparing the analytical solution against both

numerical and experimental datasets controls for different kinds of

errors, and increases our confidence in the performance of the

solution.

2 | THEORETICAL DEVELOPMENT

2.1 | Background

The kinematic wave approximation simplifies the flow momentum

equations under the assumption of steady, uniform flow when gravi-

tational forces accelerating flow are balanced by a friction slope that

parameterizes bed shear stresses. A history of kinematic wave model-

ing can be found in Baiamonte and Singh (2016a). The mass balance

for flow along a trapezoidal two-dimensional cross-section is given by:

∂H
∂t

+
∂Q
∂x

= I− fð Þw ð1Þ

where H is the flow cross-section [L2]; Q total flow across the cross-

section [L3/T]; I rainfall intensity [L/T]; f(x, t) infiltration rate [L/T]; w(x)

the width of the cross-section [L]; and t [T] and x [L] are the time and

path coordinates respectively (Brutsaert, 2005). In general, for a

cross-slope y coordinate with w = y2 − y1,

H=
ðy2
y1

hdy =w�h ð2Þ

where h(x, y, t) is water depth [L] and �h x,tð Þ is the average depth

[L] along the cross-section, and

Q=
ðy2
y1

qdy =w�q ð3Þ

where q(x, y, t) is flow rate [L2/T], and �q x,tð Þ is the average flow [L2/T]

along the cross-section. Using Equations (2) and (3), we rewrite Equa-

tion (1) as:

∂

∂t
�hw +

∂

∂x
�qw = I− fð Þw: ð4Þ

In effect, this simplifies the equations to one dimension so that

no terms depend on the cross-slope coordinate. The limitations of this

approach are explored later. This one-dimensional averaged equation

is equivalent in form to the solution for a one-dimensional streamline

in the case of w = Const. Note that overbars are omitted in this

section since the results are applicable to both the one-dimensional

equation and the contour averaged one-dimensional equation

(Equation (4)) that represents two-dimensional flow. This approach is

similar to Agnese, Baiamonte, and Corrao (2007), who employ a shape

factor to solve the kinematic wave equation on a trapezoidal hillslope.

To solve these equations, the friction slope must be related to

surface roughness and flow properties, typically via a Darcy-Weisbach

friction factor. For turbulent flow, where the friction factor scales with

relative roughness, this results in relationships between flow and

depth of the form:

q= αhm, ð5Þ

which are often referred to as kinematic roughness equations

(Brutsaert, 2005). The term α [L2 − m/T] depends on surface rough-

ness, while m depends on the flow regime. Units of α depend on m in

order to maintain homogeneous units. Here we use either m = 5/3 or

m = 2 (Morgali, 1970; Woolhiser & Liggett, 1967), corresponding to

turbulent or transitional flows respectively. m = 3 corresponds to lami-

nar flow, which is not considered in this study since overland flow is

unlikely to be laminar.

The kinematic wave equation can be used to describe runoff gen-

eration during rainfall on a homogeneous hillslope. Runoff is
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generated homogeneously along the hillslope beginning at the time of

ponding tp, prior to which all rainfall infiltrates, and the flow depth is

h = 0 by definition. A boundary condition of h = 0 is usually assumed

at the hillslope divide (x = 0), which results in a no flow boundary con-

dition for Equation (5). An initial water depth of h = 0 is assumed at all

locations at t = 0 (Giráldez & Woolhiser, 1996). Kinematic flow that

results from these conditions can be visualized via a characteristic net,

as shown in Figure A1. Lines in the characteristic net represent

space–time trajectories along which the flow equations can be simpli-

fied into ordinary differential equations. These trajectories are called

the characteristics t(x) of the wave equation (Lighthill &

Whitham, 1955). Flow obeying the kinematic wave equation moves

along the characteristics prescribed by t(x) with depth (h(x, t)) and flow

rate per unit contour width (q(x, t)). Hydrographs are generated by

solving for flow at the hillslope outlet (q(L, t)), located at x = L. We gen-

eralize the concept of an outlet so that for a hillslope, the outlet refers

not to a point of discharge but to the bottom boundary of the hill-

slope, which produces flow out of the landscape. The discharge q is

related to the flow celerity by Equation (5). The wave celerity u is

defined by u= ∂x
∂t [L/T]. As a characteristic becomes flatter (∂x∂t

approaches ∞), the wave celerity u, depth h (by Equation (7)), and

therefore the flow per unit width q (by Equation (5)) all increase.

Three distinct domains in the hydrograph—Domain 1—the rising

limb, Domain 2—equilibrium flow, and Domain 3—the recession

(or falling limb)—can be interpreted directly via the characteristic net.

The hydrograph's rising limb is generated by characteristics originating

at the time of ponding, anywhere in space (i.e., along the x-axis of the

net). The further the origin of the characteristic from the outlet (the

smaller x at t = tp) the later the characteristic crosses x = L; in other

words, the contributing area of the hillslope increases over time until

the characteristic originating at x = 0 (shown in solid gray) crosses

x = L. At this time (t = te), the hillslope reaches an equilibrium flow con-

dition, and the rising limb ends. For t > te, new characteristics can only

be initiated at the divide, x = 0. On a planar hillslope experiencing con-

stant I and f, these characteristics behave identically until the end of

the storm, leading to equilibrium (steady state) flow at x = L. When

the storm ends at t = tr, ponded water infiltrates without replenish-

ment, slowing the flow and curving the characteristics upward. The

fraction of these characteristics that cross the x = L boundary form

the falling limb of the hydrograph. The remainder describe the path-

ways taken by water that infiltrates on the hillslope. Solving the ordi-

nary differential equations along the characteristics of the wave

equation in these three domains results in three equations to describe

a hydrograph: a solution structure we follow when considering con-

vergent/divergent slopes.

2.2 | General equation

Equation (4) describes the average flow along a hillslope contour.

Using �h and �q allow us to retain the simplicity of a one-dimensional

equation but generalize solutions to non-planar hillslopes by defining

the width function w(x) that describes the linear distance between

contour endpoints at each point x along a hillslope. Here, we present

solutions for the simplest case where rainfall with constant intensity I

falls on an impermeable slope with f = 0. The solution is unchanged

for constant f, and can be generalized using, for example, the methods

of Giráldez and Woolhiser (1996) for time-varying infiltration.

Using Equation (5), Equation (4) can be rewritten as:

∂�h
∂t

+m�h
m−1

α
∂�h
∂x

= I−α
1
w
dw
dx

�h
m
: ð6Þ

We use the method of characteristics (Lighthill & Whitham, 1955)

to transform Equation (6) into a system of ODEs:

dx
dt

=m�h
m−1

α ð7Þ

and

d�h
dt

= I−α
1
w
dw
dx

�h
m
: ð8Þ

2.3 | Analytical solutions

To obtain analytical solutions to Equation (8), we use an exponential

width function with the form:

w xð Þ= ceax: ð9Þ

The exponential allows for both convergent (a < 0) and divergent

(a > 0) slopes. The bottom row of Figure A1 illustrates the shape of

hillslopes with an exponential width function for different values of a.

To proceed with a solution, we firstly we note that:

dw
dx

= aceax, ð10Þ

allowing solution to Equation (8) through the simplified form:

d�h
dt

= I−αa�h
m
: ð11Þ

To facilitate an analytical solution, we specifym = 2 in Equation (5)

for mixed turbulent and laminar conditions. Semi-analytical solutions

are available for other values of m using a hypergeometric function.

While we principally select m = 2 to preserve analytical tractability,

this approximation is nonetheless reasonable for describing flow on

most land surfaces (Baiamonte & Singh, 2015; Giráldez &

Woolhiser, 1996).

With these assumptions, we separately solve the equations

within the three space–time domains described in Section 2. Each

domain corresponds to a different set of boundary conditions, for
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which Equations (7) and (11) are solved. To assist in navigating the

equations, a list of symbols is provided as Table A1.

Domain 1, the Rising Limb: Characteristics originating from

0 ≤ x ≤ L, t = tp

Characteristics in Domain 1 originate at the time of ponding at

any point in space. The boundary conditions on these characteristics

are x = x0, where x0 lies between the divide and the hillslope outlet,

and t = tp.

Equation (11) can be integrated subject to these boundary

conditions:

ðt
tp

dt=
ð�h
0

1

I−αa�h
m d�h, ð12Þ

yielding the semi-analytical equation:

t= tp +
�h
I 2F1 1,

1
m
,1 +

1
m
,
aα�h

m

I

" #
: ð13Þ

where 2F1 is the Gauss hypergeometric function (Abramowitz &

Stegun, 1972). For m = 2, Equation (13) yields a relationship between

the rainfall and hillslope properties (f and a), time, and the depth

of flow:

t=

tp +

ffiffiffiffiffiffiffi
1
aαI

r
tanh−1 �h

ffiffiffiffiffiffi
aα
I

r� �
a≥0

tp +

ffiffiffiffiffiffiffiffiffiffiffi
1

−aαI

r
tan−1 �h

ffiffiffiffiffiffiffiffiffiffi
−aα
I

r� �
a≤0

0
BBB@ ð14Þ

The tanh function also appears in the expression for q in solutions

to the non-linear storage model when m = 2 (Agnese et al., 2001). We

also integrate the other differential equation, Equation (7), with the

boundary condition x = x0 at t = tp, and use Equation (11) to change

the integration variable from t to h:

ðx
x0

dx=
ðt
tp

m�h
m−1

αdt=
ð�h
0

αm�h
m−1

I−αa�h
m d�h, ð15Þ

giving:

x= x0 +
ln Ið Þ
a

−
ln I−aα�h

m
� �

a
, ð16Þ

Equation (16) can be re-arranged to express �h as a function of x

and x0:

�h xð Þ= I− Ieax0−ax

aα

� �1=m

ð17Þ

Substituting Equation (17) into Equation (13) gives the equation

of the characteristics t(x). Equation (17) is applied along the character-

istics, giving �h xð Þ for all initial conditions x0. The depth of the flow at

the hillslope outlet is given by �h Lð Þ , which is substituted into Equa-

tion (5) to obtain the hydrograph.

For short storms (or for low wave celerities), the end of the

storm t = tr may arrive before a characteristic reaches the hillslope

outlet. In this case, the values x and �h at t = tr are noted as x* and �h�
and provide the boundary conditions for the characteristics in

Domain 3.

Domain 2, Equilibrium Flow: Characteristics originating from x = 0,

tp ≤ t ≤ tr

Characteristics in this domain originate at the hillslope divide

between the time of ponding and the end of rainfall at t = tr. The

boundary conditions for the equation are x = 0 and tp ≤ t0 ≤ tr. The

relationship between time and flow depth along the characteristics is

obtained by integrating Equation (11) from t = t0 to t (if the character-

istic reaches x = L by time t), or from t = t0 to tr (for characteristics pre-

sent on the domain at the end of rainfall):

ðt
t0

dt=
ð�h
0

1

I−αa�h
md�h, ð18Þ

which gives:

t= t0 +
�h
I 2F1 1,

1
m
,1 +

1
m
,
aα�h

m

I

" #
, ð19Þ

and again is fully analytical for m = 2:

t=

t0 +

ffiffiffiffiffiffiffi
1
aαI

r
tanh−1 �h

ffiffiffiffiffiffi
aα
I

r� �
a≥0

t0 +

ffiffiffiffiffiffiffiffiffiffiffi
1

−aαI

r
tan−1 �h

ffiffiffiffiffiffiffiffiffiffi
−aα
I

r� �
a≤0:

0
BBB@ ð20Þ

To obtain the characteristic equation, x(t), Equation (7) is inte-

grated for characteristics starting at x = 0, again using Equation (11) to

change the variable of integration:

ðx
0
dx=

ðt0
tp

m�h
m−1

αdt=
ð�h
0

αm�h
m−1

I−αa�h
m d�h, ð21Þ

giving:

x=
ln Ið Þ
a

−
ln I−aα�h

m
� �

a
: ð22Þ

The flow depth �h can then be explicitly expressed as a function

of x:

�h xð Þ= I− Ie−ax

aα

� �1=m

: ð23Þ

When rain stops at t = tr, values of x and �h on each characteristic,

denoted as x* and �h�, provide the initial conditions for Domain 3.
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Domain 3, the Recession/Falling Limb: Characteristics present on the

hillslope at t = tr for all values of x along the hillslope until the time when

no water remains on the surface

For t > tr, the rainfall rate I = 0, so Equation (11) becomes:

d�h
dt

= −αa�h
m
: ð24Þ

All characteristics present in this domain originated from domains

1 or 2, and have boundary conditions x* and �h� at t = tr set by the solu-

tion from the previous domains. Integrating Equation (24) with these

boundary conditions:

ðt
tr

dt=
ð�h
�h�

−1

αahm
dh, ð25Þ

gives:

t= tr +
1

aα m−1ð Þ
1

�h
m−1 −

1
�h
m−1
�

 !
, ð26Þ

or in the case of m = 2,

t= tr +
1
aα

1
�h
−

1
�h�

� �
ð27Þ

Equation (7) is then integrated, changing the variable of integra-

tion with Equation (24):

ðx
x�
dx=

ðt
tr

m�h
m−1

αdt=
ð�h
�h�
−
αm�h

m−1

αa�h
m d�h=

ð�h
�h�
−
m
ah

d�h, ð28Þ

to give:

x= x� +
m
a
ln

�h�
�h

� �
: ð29Þ

And the flow depth �h is then expressed as:

�h= �h�e−
a
m x−x�ð Þ, ð30Þ

which can be solved for x = L and converted from flow depth to dis-

charge to obtain the hydrograph.

Thus, for constant f and I, a set of general and numerically solv-

able solutions for any m > 0 are given by: Domain 1—Equations (13)

and (23), Domain 2—Equations (19) and (23), and Domain 3—Equa-

tions (26) and (30). For the fully analytical solutions associated with

m = 2 the relevant equations are: Domain 1—Equations (14) and (23),

Domain 2—Equations (20) and (23), and Domain 3—Equations (27)

and (30), in conjunction with Equation (5), used to relate flow depth h

to unit discharge q. A similar solution for trapezoidal hillslopes was

presented by (Agnese et al., 2007).

2.4 | Modeling scenarios

We used the analytical model to explore the impact of hillslope diver-

gence and convergence on hillslope hydrology. Firstly, we qualitatively

explored the behavior of equilibrium and non-equilibrium storms on

hillslopes with convergent versus divergent topography, and inter-

preted the behavior of the resulting characteristic nets and hydro-

graphs in terms of hillslope topography. Next, to allow quantitative

comparisons between hydrographs, we held the total hillslope area

Amax and length L constant for three curvature cases: (a) a very con-

vergent hillslope with a = − 0.02, (b) a uniform width hillslope,

described by a = 0, and (c) a very divergent hillslope with a = 0.02. We

examined how the hydrograph shape, time to equilibrium flow te, and

maximum discharge rate qpeak for equilibrium storms (tr > te, where

the hydrograph demonstrates a period of constant equilibrium flow at

the peak value) and non-equilibrium storms (tr ≤ te, where the peak is

represented by a point, not an interval of equilibrium flow) varied as a

function of the curvature parameter a.

The characteristic nets in Figure A1 show the model predictions

for a non-equilibrium storm (tr > te) and an equilibrium storm (tr ≤ te),

and for convergent, planar, and divergent slopes. Different qualitative

hydrograph behavior between the convergent and divergent slopes

for an equilibrium storm is shown in the top row in Figure A1. The

convergent hydrograph rises rapidly before reaching peak flow,

whereas the divergent hydrograph rises in a more linear fashion from

the start of the storm. These differences are intuitively related to the

hillslope geometry of the different slopes, which means that the rate

of change of contributing area, ∂A/∂t, increases with time up to t = te

on convergent slopes, but declines on divergent slopes.

The shape of the characteristics differs between the convergent

and divergent cases. For the convergent slope, the characteristics

become flatter with increasing x, indicating acceleration of the flow as

it is concentrated by the slope convergence.

The characteristics on the divergent slope approach a constant

velocity (a diagonal line on the characteristic net) as x increases. After

the storm ends, the flow on the convergent slope continues to accel-

erate as it exits the domain. On the divergent slope, the curvature

decelerates the flow, causing a rapid recession.

Non-equilibrium storm conditions are shown in the middle row of

Figure A1. In these storms, the boundary characteristics originating

from x = 0 (shown in dark gray) do not reach the bottom of the

hillslopes before the storm ends. On the convergent hillslope, the

hydrograph continues to rise after the non-equilibrium storm ends.

This reflects the large volume of water already present in the domain

at the upslope end of the watershed, and its acceleration downslope

via topographic convergence, evident in the flattening of the charac-

teristics even after the rain ends at tr. Even though the boundary char-

acteristic crosses the outlet well after tr, it is the crossing of this

characteristic that determines the timing of the peak flow (compare

with a planar slope for non-equilibrium storms, where peak flow cor-

responds to the end of the storm (Giráldez & Woolhiser, 1996)). For

the divergent hillslope, the end of the non-equilibrium storm coincides
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with qpeak. Like the equilibrium storm case, the water on the hillslope

decelerates due to topographic divergence, infiltrates locally, and

forms a steep falling limb.

Figure A2 shows the hydrographs produced by three exponential

width hillslopes of equal area but different curvature (very convergent

a = − 0.02, uniform width a = 0, and very divergent a = 0.02) for a

60 min duration, 5 cm/hr storm with no infiltration. All hillslopes reach

equilibrium. The divergent slope (dark blue) hydrograph rises fastest

initially, since most of the hillslope area is close to the outlet. The con-

vergent slope hydrograph rises sharply as the runoff from higher in

the watershed reaches the outlet, since most of the watershed area is

far from the outlet. Thus, the approach to qpeak is gentle for the diver-

gent slope hydrograph and becomes sharper as the slope becomes

more convergent. All slopes exhibit the same total maximum flow

Qpeak, but the convergent slope produces this maximum first. As seen

in Figure A2, the difference in the time of equilibrium te is more than

20% between the slopes.

Unsurprisingly, the degree and directionality of curvature has a

direct impact on the peak flow per unit contour qpeak at the hillslope

outlet, as shown in the inset in Figure A2. While all hillslopes pro-

duce the same total hillslope discharge, due to the equilibrium condi-

tions, and identical hillslope area and storm properties, the unit

discharge is normalized by contour length, generating the different

values of qpeak. While trivial, this result is also linked to large differ-

ences in flow depth and velocity with differences in curvature, with

important practical outcomes for, for example, inundation, erosion

risk and safety.

The divergent slope hydrograph falls most steeply during the

recession, reflecting that most water on the hillslope at the end of the

storm is located near the outlet. Flow from the uniform width and

convergent slopes declines more slowly.

3 | METHODS

3.1 | Comparison to numerical simulations

The analytical solutions obtained above required several assumptions,

notably the assumption that flow is one-dimensional along lines of

steepest descent (streamlines), and that the flow is near-uniform along

contours. For sufficiently curved slopes, the two-dimensional nature

of surface flow would violate these assumptions, making the analytical

solutions unreliable. To identify when this occurs, we compared pre-

dictions of the hillslope hydrograph made with the solutions obtained

in Section 2 to predictions made using numerical solutions of the two-

dimensional kinematic wave equations on a common set of divergent

and convergent hillslopes. We used ParFlow (Ashby & Falgout, 1996;

Jones & Woodward, 2001; Kollet & Maxwell, 2006; Maxwell, 2013)

to solve the two-dimensional kinematic wave equations for a range of

values of a. ParFlow represents flow resistance using Manning's equa-

tion. We therefore firstly compared ParFlow output to numerical solu-

tions of our semi-analytical m = 5/3 solution. We also compared the

ParFlow predictions to the analytical solutions where m = 2, noting

that in these cases, error arises from both the change in the value of

m between ParFlow and the solution, and from loss of validity of the

assumptions. To evaluate the similarity between ParFlow and our

solutions, we compared the peak discharge, the RMSE between the

numerical hydrographs and the (semi-)analytical hydrographs, and the

difference between hydrograph shapes, which we evaluated with a

metric ξ, defined as the RMSE between two hydrographs, normalized

by the maximum flow rate. If the assumptions used in the derivation

are met, then peak flows would be identical on identical hillslopes sim-

ulated by the different models, and the RMSE and the shape metric ξ

would tend to zero. We also report the coefficient of variation (CV) in

flow across all hillslope cells at the outlet in the ParFlow simulation as

a metric of uniformity across the contours, anticipating that the ana-

lytical solutions would become less reliable as CV increased. Several

ParFlow simulations on divergent hillslopes formed a localized numeri-

cal instability around the center-line of the domain. Although persis-

tent, the instability represented <0.01% of the flow. We removed

these aberrant points and interpolated the flow predictions across the

gap before comparing to the analytical solutions.

We compared analytical and ParFlow solutions for a range of

hillslopes with exponential width functions produced with the equa-

tion suggested by Evans (1980):

z= E 1−x=Lð Þk +ωy2, ð31Þ

where x and L are again the hillslope coordinate and the hillslope

length; y is the cross-slope horizontal coordinate, with y = 0

corresponding to the centre-line of a symmetrical hillslope; z is vertical

elevation above a datum located at x = L; E is the elevation change

between x = 0 and x = L at y = 0; and k and ω are parameters describ-

ing hillslope curvature. Examples of this topography are shown in

Figure A1.

The lines of steepest descent are given, for k = 1, by:

y =
C
2
e−

2ωL
E x, ð32Þ

where C/2 is a constant of proportionality. For flow that follows the

lines of steepest descent, we can truncate the landscape along any

streamline without altering flow behavior in the remaining section of

the landscape.

To do this, we define a hillslope that is symmetric about y=0, with

width function:

w =2
C
2
e−

2ωL
E xor ð33Þ

w =Ceax, ð34Þ

where a = − 2ωL/E.

The expression for a shows that for ω > 0, the hillslope is conver-

gent, and for ω < 0, the hillslope is divergent. Values of C were com-

puted by fixing L, E, ω and a hillslope area Amax across all simulations.
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We generated landscapes with a values ranging from a = − 0.1 to

a = 0.1 on a hillslope with E = 2.5 m and L = 50 m, holding the hillslope

area constant for all simulations. We ran all simulations with Man-

ning's n = 0.0001 during a 125 min rainstorm with 50 mm/hr inten-

sity. While the Manning's n used in these simulations is unusually

small and not likely to represent real landscapes, sensitivity tests indi-

cate that qualitative results are insensitive to the choice of n, and a

small n value allows us to resolve the full falling limb with decreased

computational cost. We checked that ParFlow simulations were stable

with respect to a change in space or time discretization (see Appendix

I). All simulations were therefore run using Δx = 0.5 m and

Δt = 0.005hr.

3.2 | Experimental

3.2.1 | Model set-up

Three model hillslopes were constructed using CNC machining to con-

form to Equation (31), for three values of a: a convergent hillslope

with a = − 0.05, a planar hillslope with a = 0, and a divergent hillslope

with a = 0.05. A script used to produce 3-D printed prototypes is

included in the data supplement (Lapides, David, Sytsma, Dralle, &

Thompson, 2020). Models were built at scale so that for a = − 0.05,

spatial measurements scale at 1:30 compared to full-scale, and

a = 0.05 is constructed at 1:40 scale. The a = 0 hillslope can be consid-

ered at any scale, allowing for easy comparison to both the a = 0.05

and a = − 0.05 hillslope cases. The particular scaling is explicitly

required since the width function is exponential with distance. For

instance, if the outlet is 1 m wide, and the divide is 0.2 m wide for a

hillslope that is 1 m long, the optimal exponential fit is w = 0.2e1.61x. If

we consider this to be a 1:100 scale model, then the best fit is

w = 20e0.0161xm. Thus, both C and a scale with the scaling parameter,

so the scale controls the value of a. Thus, the scale and value of a

must be chosen together. Considering the slope at a different scale

changes the value of a. Hydrodynamic scaling considerations, which

are also important, are described later in Section 3.

The hillslopes were constructed from 1 m × 1 m × 0.025 m insu-

lation foam blocks, glued together with marine grade epoxy to form

an initial 0.08 m high blank. CNC machining of these blanks is shown

in Figure A3 (a) and (b). Following machining, the hillslope surfaces

were smoothed by filling cracks with insulation foam and marine

grade epoxy, and the filled cracks were sanded to match the adjacent

surface height using 0.5 mm sandpaper, leaving the finish shown in

Figure A3 (c). This finished surface was hydrophobic, so we coated

the hillslopes with <250μm sieved builders sand at a average density

of 0.22 g/cm2 (based on the weight of sand applied to the known hill-

slope areas), using a thin layer of epoxy as an adhesive. The resulting

final surfaces of the hillslopes are shown in Figure A3 (d) for

a = − 0.05, (e) for a = 0, and (f) for a = 0.05. Finally, we used alumin-

ium foil to form boundary conditions and prevent water entering or

leaving the model hillslope domain.

We constructed a simple rainfall simulator by arranging 6 atomiz-

ing nozzles pointing directly down at locations shown in Figure A4.

Nozzles were connected to a University of California Berkeley build-

ing water main via a valve with a pressure equalizer. The path to each

nozzle from the valve was of an equivalent length and passed through

through identically sized tubes and connectors. We restricted the out-

lets to 6 nozzles in order to maintain high enough pressure in the sys-

tem to achieve atomizing spray. If pressure drops, nozzles drip

intermittently, creating large changes in uniformity of the rainfall.

Tests of the rainfall simulator performance showed that it was vari-

able (average coefficient of uniformity of 17% compared to bench-

marks of 70–94% Humphry, Daniel, Edwards, & Sharpley, 2002;

Esteves, Planchon, Lapetite, Silvera, & Cadet, 2000; Moore, Hirschi, &

Barfield, 1983; Shelton, von Bernuth, & Rajbhandari, 1985; Meyer &

Harmon, 1979), and that some areas received systematically more

rainfall than others (see Appendix Section II for details of the tests).

However, this spatial pattern was symmetrical and persistent across

tests. While the simplicity of the simulator design means that effective

rainfall on hillslope scales needs to be back-calculated from equilib-

rium flow values, the performance of the rainfall simulator was robust

enough for us to proceed with flow generation experiments.

The experiment was set up as shown in Figure A4 (b). Hillslope

models were placed on a levelled surface, with the rainfall simulator

0.7 m above the model. A funnel constructed of medium density

fiberboard and aluminium foil was used to direct flow from the base

of the hillslope into a beaker on a mass balance. Rainfall was initiated

while the hillslope was covered with an impermeable cover. Once the

cover was removed, we subjected the hillslopes to 5 or 10 min of rain-

fall simulation, after which the rain cover was replaced (and the simu-

lator turned off), and flow continued until it became negligible. The

mass of the beaker was recorded continuously throughout each

experiment and tabulated on one-second intervals. Experiments were

run 3–5 times for each hillslope.

We smoothed mass-time curves by quadratic locally-weighted

regression with a tricubic kernel using the python statsmodels library

(Cleveland, 1979; Hastie, Tibshirani, & Friedman, 2009). An optimal

smoothing method was determined by selecting the method that pro-

duced the hydrograph with the smoothest curve that accurately fits

the data. This was determined by examining the RMSE between the

smoothed curve and the data in addition to the “noisiness” of the

curve, measured as the mean frequency of concavity reversal. The

resulting smoothed curve was converted into a hydrograph using a

finite difference method. Details on quality control of hydrographs

and the selection of an optimal smoothing method can be found in

Appendix Section III. A list of the tested methods is found in Table A4.

To enable us to parameterize the constants in the experiment, we

separately analyzed (a) the rising limb, (b) equilibrium peak flow, and

(c) the falling limb of the hydrograph. Because the strongest sensitivity

to curvature is found in the rising limb of the hydrograph, we used

equilibrium peak flow to compute the effective rainfall intensity, and

the falling limb to parameterize the roughness coefficient for the

hillslopes.
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With no infiltration occurring on the model hillslopes, rainfall

intensity can be computed from equilibrium flow. Equilibrium flow

was identified by taking the mean value of the top 10% of flow mea-

surements (results are not sensitive to variations in these thresholds).

With the equilibrium flow (Qpeak) defined, the effective hillslope-

average rainfall rate was estimated as:

I=
Qpeak

A
, ð35Þ

Rainfall rates estimated using this procedure varied from

7–12 mm/hr. This compares well to the average flow rate measured

at the nozzles which was ≈10 mm/hr (see Appendix Section II).

Once the effective rainfall rate was estimated, we calibrated the

kinematic roughness parameter α by minimizing the RMSE between

the observed falling limb of the hydrograph and the analytical solution

for each experimental replicate and then averaging these values

across all replicates. The falling limb was defined by all flow that

occured following the recorded time of rainfall cessation.

We used the calibrated value of α to define the time to equilib-

rium te and the the rising limb of the hydrograph for all simulations.

We used the RMSE between the rising limb of the experimental

hydrograph and the analytical prediction from the model, normalized

by peak flow of the analytical hydrograph, (NRMSE) to measure how

well the analytical solutions approximated the flow behavior. We

examined the relationship between te and curvature a since te is an

important parameter for design. We also repeated the fit routine using

analytical solutions with a = 0 to evaluate the reduction in prediction

error achieved by incorporating curvature into the analytical solutions.

3.2.2 | Hydrodynamic scaling relationships

To enable the experimental models to provide a valid test of the the-

ory, it is important to verify that the flow dynamics on the models are

consistent with the assumptions used in the theory's derivation. This

is a less rigorous constraint on the model design than the full dynamic

similarity required for scale model construction in fluid mechanics/

aerodynamics situations (Kundu, Cohen, & Hu, 2008), in which the

value of the non-dimensional variables describing the flow must be

conserved. Here it will be sufficient to confirm consistency with the

two main assumptions used in deriving the theory: that (a) the flow is

kinematic, and (b) the momentum equation can be approximated by a

kinematic resistance formulation. These assumptions provoke consid-

eration of three dimensionless numbers—the kinematic number

Ki= S0L=Fr
2
0Lh0L ð36Þ

the Froude number (Fr = u0L/(gh0L)
1/2) and the relative roughness

(rr = ε/h). In these expressions, S0 is the slope, L the hillslope length, h

the flow depth, u the flow velocity, g gravitational acceleration, and ε

the characteristic lengthscale of roughness elements; the subscript 0L

indicates the normal depth/velocity at location x = L—i.e., the hillslope

outlet. We seek to verify that Ki � 1, meaning the use of the kine-

matic wave number is appropriate (Brutsaert, 2005, and references

contained within), that Fr � 1, meaning flow is subcritical and stable

and thus unlikely to change rapidly and violate the assumptions of

normal flow required by the kinematic resistance formulation

(White, 1999), and that the relative roughness is � 1, meaning that

resistance to the flow is primarily produced by bed shear, rather than

by distributed drag elements. We note, however, that distributed drag

is also represented reasonably well by formulations that are mathe-

matically equivalent to the kinematic roughness equations used here

(see Crompton, Katul, & Thompson, 2020). We computed these

dimensionless numbers for all hillslopes and verified that Ki > 10,000

in all cases, that Fr < 0.12 in all cases (with variations in Fr across the

hillslopes being less than one order of magnitude), and that rr < 0.6, at

least for equilibrium flow conditions. During low flow conditions,

rr > 1 likely occurs. However, because (a) we separately calibrate α for

each experiment, (b) the form of the resistance equation is similar

across all values of rr, and (c) the choice of roughness scheme is less

important for producing the correct hydrograph during hillslope runoff

than proper calibration of any selected scheme (Crompton

et al., 2020), these variations are not problematic for the verification

of the theory with the experimental hillslopes. All three conditions—

Ki � 1, Fr � 1 and variable rr that is nonetheless typically <1 for equi-

librium flow, would apply to “full sized” hillslopes using typical esti-

mates of rainfall, hillslope and land surface properties.

4 | RESULTS

4.1 | Numerical

Full data for the comparison between the analytical hydrographs (with

m = 2 and m = 5/3) and the numerical solutions (via ParFlow) are pres-

ented in the Appendix Section 7, collected in Table 2. All forms of

error remain relatively small until ja j ≥ 0.02. At this point, the magni-

tude of error in the hydrograph increased in a stepwise fashion. Given

these large increases in error, we considered the range ja j ≤ 0.02 to

represent the “reasonable” range of application for the analytical

model, for both m = 2 and m = 5/3. Since results were qualitatively

similar for both values of m, only results for m = 5/3 are shown. Quan-

titative values differ between the two sets of numerical simulations,

with always greater error for the m = 2 simulations (see Table A2), due

to the added error in the mismatch between the value of m in numeri-

cal and analytical simulations. Note that the experimental studies use

jaj values of 0.05, outside the boundaries of the reasonable range

defined by numerical simulations, which were selected in order to

maximize the effects of curvature on the flow and examine whether

the limitations of the model may appear different when examined

with laboratory methods.

Within the reasonable range of a, the error metrics ξ and RMSE

remain fairly small. Figure A5 (a) shows how ξ varies with a as a pro-

portion relative to a = 0. The RMSE is comparable to that of the a = 0

case (values similar to 1) when ja j ≤ 0.02, but increases for larger a.
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In Figure A5 (b), the proportional error in maximum flow is compared

to the expected equilibrium condition of Amax * I. Errors in maximum

flow increase with increasing jaj when a > 0, and the value becomes

larger for a > 0.05. While peak flow error decreases when a < − 0.02,

this decrease may be due to lower resolution data at the outlet since

the number of cells at the outlet decreases as the hillslope becomes

more convergent. Errors in the mean specific discharge across the

boundary are less than 20% within the reasonable range. These errors

are due to violation of the quasi-1D flow assumption. The lack of uni-

formity in flow across contours is illustrated by the coefficient of vari-

ation (CV) in the boundary flux shown in Figure A5 (c). The larger this

CV, the less uniform the flow crossing the bottom boundary is. For

divergent hillslopes (a > 0), CV remains relatively small since the ten-

dency of the hillslope to disperse flow bounds the minimum specific

discharge at 0. However, for convergent hillslopes (a < 0), the concen-

tration of flow leads to effectively unbounded growth in peak specific

discharge across the slope, leading to increasing CV as hillslopes

become more convergent. The data point for a = − 0.10 is plotted in

grey, and violates this increasing trend: this is due to the resolution of

the ParFlow simulation that results in very few boundary cells for the

strongly convergent slope. The drivers of the increasing CV with

increasing convergence are illustrated in Figure A5 (d), where the solid

lines show the variations in specific discharge along the bottom

boundary, which diverge further from the mean boundary discharge

(dotted line) as jaj increases.

4.2 | Experimental

The two hydrographs that meet quality standards for each of the

hillslopes were used for comparison to analytical predictions.

Figure A6 shows sample experimental and prediction hydrographs for

(a) a = − 0.05, (b) a = 0, and (c) a = 0.05. Parameterized roughness

values are shown in Table A3. The effective rainfall rates are of the

same order of magnitude, indicating that, while the rainfall is not spa-

tially uniform, the hillslopes of different shapes received similar

amounts of rainfall. It is visually apparent from the hydrographs in the

upper half of the figure that shape of the rising limbs differs between

curvature cases, with a steeper rising limb in the convergent case and

a less extreme rising limb for the divergent case.

When normalized and plotted together in panel (d), the differ-

ences in the hydrographs due to curvature become more apparent.

The divergent hydrograph contributes flow immediately and slowly

increases, while the convergent hydrograph doesn't discharge much

flow at first before rapidly rising to produce equilibrium peak flow.

The result is that the time to equilibrium te occurs sooner for the con-

vergent than the divergent hillslope, as predicted by the analytical

model. This trend is shown in panel (e). The values of te for each hill-

slope are distinct, and there is a clear trend of increasing te with

increasing a.

The agreement between predicted and observed hydrographs is

apparent from Figure A6 (a), (b), and (c) and reflected in the small

NRMSE values for the curvature-included model referenced in panels

(a)-(c) and plotted in panel (f) in blue for all hydrographs, while the

NRMSE for the curvature-removed fit (orange) is at least an order of

magnitude greater. This result indicates that including information

about curvature improves the predictions of hydrographs formed on

the experimental hillslopes, especially for divergent hillslopes, and

suggests that even the simplified analytical solutions used in this

study provide a very good approximation to the experimental results.

It is notable that this agreement on the experimental hillslopes is bet-

ter than expected, for the specific level of curvature, based on the

ParFlow simulations. Potentially the reasonable range of a selected

using the ParFlow simulations (ja j < 0.02) is too conservative.

The value of α varied across the experimental hillslopes, a varia-

tion we attribute to heterogeneity in the application of the sand layer.

If α, rather than a, were the primary parameter controlling goodness-

of-fit then the difference in NRMSE for the curvature-included and

curvature-removed models in Figure A6 (f) would be minimal (as both

models would have identical and calibrated α values). The significant

difference in model performance associated with including informa-

tion about a in the predictions suggests that the variations in α reflect

surface preparation rather than a parameterization of the effects of

curvature.

5 | DISCUSSION AND CONCLUSION

This study extended the concept of hillslope width functions from

groundwater flow (Fan & Bras, 1998; Troch, van Loon, &

Hilberts, 2002) to surface runoff, predicting the hydrograph generated

by uniform infiltration excess overland flow on convergent or diver-

gent hillslopes, and allowing elegant analytical solutions for exponen-

tial hillslopes. Relative to existing techniques to simplify predictions

for kinematic flow on topographically curved slopes, the present

approach generates simpler and more intuitive predictions. Despite

the approximation of the two-dimensional flow field with one-

dimensional averaged flow needed to generate these solutions, pre-

dictions agreed well with both experimental observations and two-

dimensional numerical predictions.

5.1 | Model applicability

The solution approach required the use of reasonably stringent

assumptions, both around near one-dimensionality of flow, and

around the imposition of exponential width-functions and use of an

m = 2 exponent to allow analytical tractability. We note that previous

experiments and analyses have found that m = 2 is often a reasonable

approximation under transitional overland flow conditions

(Henderson & Wooding, 1964; Thompson, Katul, Konings, &

Ridolfi, 2011). Of course, with the exception of the one-dimensional

approximation, these constraints can be relaxed, and simple numerical

solutions for the one-dimensional flow problem can be used.

In approximating a conic section, a trapezoidal hillslope shape has

been assumed in prior work (Agnese et al., 2007; Baiamonte &
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Singh, 2016b), also derived for any value of m, including m = 2 and

m = 5/3. An exponential hillslope shape was assumed by Troch

et al. (2004). At present, GIS tools are available to simply delineate

trapezoidal hillslope shapes (e.g., Noël, Rousseau, Paniconi, &

Nadeau, 2014), and tools are under development by the authors for

exponential forms. The generality of either morphology for describing

real hillslopes is not well established, and each form has advantages—

the simplicity of planar forms for a trapezoidal assumption, and the

smoothness and continuity of exponential forms.

Where hillslopes exhibit very strong convergence or divergence

(i.e., where ja j > 0.02), the assumption that flow occurs in a one

dimensional sense along streamlines that follow the path of

steepest descent may become invalid. On sufficiently curved

hillslopes, water surface gradients arise that cause the flow vectors

to deviate from the topographic path of steepest descent. Such

flows are increasingly two-dimensional in their character, leading to

increased variability in velocity and depth along hillslope contours.

For such variable conditions the assumption that an average depth

or velocity is a good representation for all flow conditions along the

contour is inappropriate. This results in discrepancies between the

analytical solution and two-dimensional numerical solutions to the

flow equations, which tend to become more extreme as jaj becomes

larger.

The implications of this constraint, however, may be less prob-

lematic than it might appear at first sight. This is largely because the

representation of overland flow as sheet flow via the kinematic wave

equation is itself also constrained in its applicability—typically to hill-

slope scales on the order 100 s of meters. At this scale, numerous

hillslopes fall within the curvature range where the solution is applica-

ble, even in natural settings (Istanbulluoglu, Yetemen, Vivoni, Gutiér-

rez-Jurado, & Bras, 2008; Tarolli & Dalla Fontana, 2009). The

restriction may be even less problematic in managed or anthropogenic

settings such as urban landscapes, since these landscapes are often

subject to deliberate grading and topographic control, which tends to

reduce rather than exaggerate curvature. Thus, there are many situa-

tions where accounting for curvature via the solutions presented here

could improve hydraulic predictions without exceeding the limits of

validity of these solutions.

5.2 | Laboratory experimentation

The laboratory experiments provided a useful test of this method and

complement the comparisons to numerical techniques. Because the

sources of error in each approach (numerical versus experimental) are

independent, the two comparisons provide a robust assessment of a

new solution in a situation where two-dimensional analytical solutions

were not readily available. While time-consuming and labor-intensive

to construct and complete, the laboratory models allowed us to con-

struct a highly controlled environment for testing, in which the only

simplifications made relate to scale. In this situation, laboratory exper-

iments filled a gap left between full-scale observations, which were

not sufficiently controlled to allow testing of a new analytical solution,

and numerical methods which also contained simplifications of phys-

ics and numerical errors, suggesting the value of augmenting existing

hydrological methods with such laboratory approaches (Blume

et al., 2010; Kleinhans et al., 2010).

The laboratory experiments also provide an opportunity to quali-

tatively assess the applicability of solutions developed for trapezoidal

hillslopes by Agnese et al. (2007) and Baiamonte and Singh (2016b).

Agnese et al. (2007) found that te decreases with increasing diver-

gence using the non-linear storage model, while Baiamonte and

Singh (2016b) found that te increases with increasing divergence using

the kinematic wave model, similar to the solutions presented in this

study. Experimental results definitively show a trend of increasing te

with increasing divergence, showing better agreement with the kine-

matic wave model than the storage model.

5.3 | Utility of methods

New technologies such as airborne and ground-based LiDAR, drone-

based platforms, and micro-satellites have dramatically increased the

ability of planners and hydrologists to observe the features of the land-

scapes they work in, especially as innovations increase the resolution

and decrease the cost of obtaining information. Increasingly, planners

and hydrologists confront the issue of how to use, rather than how to

obtain such information. Techniques that can ingest this information

without greatly increasing the demands on planners and engineers are

appealing in this space. The analytical approach outlined in this study

addresses these requirements, being simpler to execute and less compu-

tationally intensive than distributed numerical models, accurate within

defined limits of reliability, and allowing predictions to become sensitive

to features such as curvature. The theory is useful for calculating hydro-

graphs from relatively small overland-flow dominated areas where flow

convergence or divergence is expected. The physically-based nature of

the theory makes it suitable for flow estimates where data needed to

parameterize a more complex model are unavailable, or where ease-of-

use or resource constraints require using simple tools.

The analytical solutions presented in this study provide a simple-

to-execute method for predicting peak flow on topographically curved

hillslopes. The joint verification of analytical solutions against numeri-

cal and experimental results provides a robust method for investigat-

ing the limitations of an analytical model under idealized conditions.

This method could profitably be applied to other models to assess

whether the assumptions truly hold in real systems, allowing for an

exploration of whether models are truly “getting the right answers for

the right reasons” (Kirchner, 2006).

ACKNOWLEDGMENTS

We would like to thank Michael Manga for generously providing lab

space for the experiments conducted, Jeannie Wilkening for help in

the lab, Twiggy Chen for assistance with 3-D printing and CNC fabri-

cation, Erica Woodburn and Fadji Maina for guidance on setting up

and running ParFlow, and Hana Moidu and Ellin Zhao for useful dis-

cussion. This work was supported by Engineering Research Center for

10 LAPIDES ET AL.



Reinventing the Nation's Urban Water Infrastructure (ReNUWIt) (AS),

the National Science Foundation grants EAR-1013339 and EAR-

BSF1632494 (DAL), the Hellman Foundation (DAL), the Gledden

Foundation at the University of Western Australia's Institute for

Advanced Studies (AS), the Undergraduate Research Apprenticeship

Program (URAP) at University of California (CD), Berkeley, and the

University of California, Berkeley (DAL).

DATA AVAILABILITY STATEMENT

Data, models, and code generated during the study are available in a

repository online (https://github.com/lapidesd/Hillslope_Storage_Kinem

atic_Wave), including programs for running the analytical and semi-

analytical solutions, numerical data from ParFlow with a code for

visualization, and experimental data with code to visualize, process, and

compare results (Lapides et al., 2020b).

ORCID

Dana A. Lapides https://orcid.org/0000-0003-3366-9686

REFERENCES

Abramowitz, M., & Stegun, I. A. (Eds.). (1972). Handbook of mathematical

functions with formulas, graphs, and mathematical tables, Washington,

D.C.: . National Bureau of Standards Applied Mathematics Series 55.

Agnese, C., Baiamonte, G., & Corrao, C. (2001). A simple model of hillslope

response for overland flow generation. Hydrological Processes, 15(17),

3225–3238.
Agnese, C., Baiamonte, G., & Corrao, C. (2007). Overland flow generation

on hillslopes of complex topography: analytical solutions. Hydrological

Processes: An International Journal, 21(10), 1308–1317.
Ashby, S. F., & Falgout, R. D. (1996). A parallel multigrid preconditioned

conjugate gradient algorithm for groundwater flow simulations.

Nuclear Science and Engineering, 124(1), 145–159.
Baiamonte, G. (2020). A rational runoff coefficient for a revisited rational

formula. Hydrological Sciences Journal, 65(1), 112–126.
Baiamonte, G., & Agnese, C. (2016). Quick and slow components of the

hydrologic response at the hillslope scale. Journal of Irrigation and

Drainage Engineering, 142(10), 04016038.

Baiamonte, G., & Singh, V. P. (2015). Overland flow times of concentration

for hillslopes of complex topography. Journal of Irrigation Drainage

Engineering, 3, (3), 142.

Baiamonte, G., & Singh, V. P. (2016a). Analytical solution of kinematic

wave time of concentration for overland flow under green-ampt infil-

tration. Journal of Hydrologic Engineering, 21(3), 04015072.

Baiamonte, G., & Singh, V. P. (2016b). Overland flow times of concentra-

tion for hillslopes of complex topography. Journal of Irrigation and

Drainage Engineering, 142(3), 04015059.

Baiamonte, G., & Singh, V. P. (2017). Modeling the probability distribution

of peak discharge for infiltrating hillslopes. Water Resources Research,

53(7), 6018–6032.
Blume, T., van Meerveld, I., & Weiler, M. (2010). The role of experimental

work in hydrological sciences – insights from a community survey.

Hydrology and Earth System Sciences, 62(3), 334–337.
Bracken, L. J., & Croke, J. (2007). The concept of hydrological connectivity

and its contribution to understanding runoff-dominated geomorphic

systems. Hydrological Processes, 21(13), 1749–1763.
Brutsaert, W. (2005). Hydrology: An introduction, Cambridge, New York: .

Cambridge University Press.

Cleveland, W. S. (1979). Robust locally weighted regression and smoothing

scatterplots. Journal of the American Statistical Association, 74(368),

829–836.

Crompton, O., Katul, G. G., & Thompson, S. (2020). Resistance formula-

tions in shallow overland flow along a hillslope covered with patchy

vegetation. Water Resources Research, 56(5), e2020WR027194.

Douglas, J. L. (1991). Hydrology: Infusing science into a demand-driven

art. In D. S. Bowles & P. E. O'Conell (Eds.), Recent advances in the

modeling of hydrologic systems (pp. 31–43). Dordrecht, Netherlands:

Kluwer Academic Publishers, Chapter 2.

Esteves, M., Planchon, O., Lapetite, J. M., Silvera, N., & Cadet, P. (2000).

The ‘EMIRE’ large rainfall simulator: design and field testing. Earth Sur-

face Processes and Landforms, 25(7), 681–690.
Evans, I. S. (1980). An integrated system of terrain analysis and slope mapping.

Zeitschrift für Geomorphologie. Supplementband Stuttgart, 36, 274–295.
Fan, Y., & Bras, R. L. (1998). Analytical solutions to hillslope sub-

surfacestorm flow and saturation overland flow. Water Resources

Research, 34(4), 921–927.
Foody, G. M., Ghoneim, E. M., & Arnell, N. W. (2004). Predicting locations

sensitive to flash flooding in an arid environment. Journal of Hydrology,

292(1–4), 48–58.
Giráldez, J. V., & Woolhiser, D. A. (1996). Analytical integration of the kine-

matic equation for runoff on a plane under constant rainfall rate and Smith

and Parlange infiltration.Water Resources Research, 32(11), 3385–3389.
Grimaldi, S., & Petroselli, A. (2015). Do we still need the Rational Formula?

An alternative empirical procedure for peak discharge estimation in

small and ungauged basins. Hydrological Sciences Journal – Journal des

Sciences Hydrologiques, 60(1), 67–77.
Grimaldi, S., Petroselli, A., Tauro, F., & Porfiri, M. (2012). Time of concen-

tration: a paradox in modern hydrology. Hydrological Sciences Journal,

57(2), 217–228.
Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical

learning: Data mining, inference, and prediction, New York: . Springer

Science & Business Media.

Henderson, F. M., & Wooding, R. A. (1964). Overland flow and groundwa-

ter flow from a steady rainfall of finite duration. Journal of Geophysical

Research, 69(8), 1531–1540.
Howard, A. D., Dietrich, W. E., & Seidl, M. A. (1994). Modeling fluvial ero-

sion on regional to continental scales. Journal of Geophysical Research:

Solid Earth, 99(B7), 13971–13986.
Humphry, J. B., Daniel, T. C., Edwards, D. R., & Sharpley, A. N. (2002). A

portable rainfall simulator for plot-scale runoff studies. Applied Engi-

neering in Agriculture, 18(2), 199–204.
Istanbulluoglu, E., Yetemen, O., Vivoni, E. R., Gutiérrez-Jurado, H. A., &

Bras, R. L. (2008). Eco-geomorphic implications of hillslope aspect:

Inferences from analysis of landscape morphology in central new mex-

ico. Geophysical Research Letters, 35, L14403.

Jones, J. E., & Woodward, C. W. (2001). Newton–krylov-multigrid solvers

for large-scale, highly heterogeneous, variably saturated flow prob-

lems. Advances in Water Resources, 24(7), 763–774.
Kirchner, J. W. (2006). Getting the right answers for the right reasons:

Linking measurements, analyses, and models to advance the science of

hydrology. Water Resources Research, 42(3).W03S04

Kleinhans, M. G., Bierkens, M. F. P., & van der Perk, M. (2010). HESS opin-

ions on the use of laboratory experimentation: “Hydrologists, bring

out shovels and garden hoses and hit the dirt”. Hydrological Sciences
Journal, 14, 369–382.

Kollet, S. J., & Maxwell, R. M. (2006). Integrated surface-groundwater flow

modeling: a free-surface overland flow boundary condition in a parallel

groundwater flow model. Advances in Water Resources, 29(7), 945–958.
Kuichling, E. (1889). The relation between the rainfall and the discharge of

sewers in populous districts. Transactions of the Ameican Society of Civil

Engineers, 20(1), 1–56.
Kundu, P. K., Cohen, I., & Hu, H. (2008). Dynamic similarity. In Fluid

mechanics. 2004 (4th ed., Chapter 8, pp. 262–276). San Diego, CA:

Elsevier Academic Press.

Lapides, D., David, C., Sytsma, A., Dralle, D., and Thompson, S. (2020). “Con-
vergence and divergence on idealized hillslopes: supplementary datasets

LAPIDES ET AL. 11

https://orcid.org/0000-0003-3366-9686
https://orcid.org/0000-0003-3366-9686


and code. https://doi.org/10.5281/zenodo.3517298, published at

https://github.com/lapidesd/Hillslope_Storage_Kinematic_Wave.

Lighthill, M. J., & Whitham, G. (1955). On kinematic waves i. flood move-

ment in long rivers. Proceedings of the Royal Society of London. Series

A. Mathematical and Physical Sciences, 229(1178), 281–316.
Manoj, K. C., Fang, X., Yi, Y.-J., Li, M.-H., Thompson, D. B., &

Cleveland, T. G. (2013). Improved time of concentration estimation on

overland flow surfaces including low-sloped planes. Journal of Hydro-

logic Engineering, 19(3), 495–508.
Maxwell, R. M. (2013). A terrain-following grid transform and

preconditioner for parallel, large-scale, integrated hydrologic modeling.

Advances in Water Resources, 53, 109–117.
Meyer, L., & Harmon, W. (1979). Multiple-intensity rainfall simulator for

erosion research on row sideslopes. Transactions of the ASAE, 22(1),

100–0103.
Moore, I. D., Hirschi, M. C., & Barfield, B. J. (1983). Kentucky rainfall simu-

lator. Transactions of the ASAE, 26(4), 1085–1089.
Morgali, J. R. (1970). Laminar and turbulent overland flow hydrographs.

Journal of the Hydraulics Division, 96(2), 441–460.
Mulvaney, T. J. (1851). On the use of self-registering rain and flood gauges

in making observations of the relations of rainfall and flood discharges

in a given catchment. Proceedings of the Institution of Civil Engineers Ire-

land, 4, 19–31.
Noël, P., Rousseau, A. N., Paniconi, C., & Nadeau, D. F. (2014). Algorithm for

delineating and extracting hillslopes and hillslope width functions from

gridded elevation data. Journal of Hydrologic Engineering, 19(2), 366–374.
Petroselli, A. (2012). Lidar data and hydrological applications at the basin

scale. GIScience & Remote Sensing, 49(1), 139–162.
Poff, N. L., Allan, J. D., Bain, M. B., Karr, J. R., Prestegaard, K. L.,

Richter, B. D., … Stromberg, J. C. (1997). The natural flow regime. Bio-

science, 47(11), 769–784.

Shelton, C. H., von Bernuth, R. D., & Rajbhandari, S. P. (1985). A

continuous-application rainfall simulator. Transactions of the ASAE, 28

(4), 1115–1119.
Tarolli, P., & Dalla Fontana, G. (2009). Hillslope-to-valley transition mor-

phology: New opportunities from high-resolution dtms. Geomorphol-

ogy, 113, 47–56.
Thompson, S., Katul, G., Konings, A., & Ridolfi, L. (2011). Unsteady over-

land flow on flat surfaces induced by spatial permeability contrasts.

Advances in Water Resources, 34(8), 1049–1058.
Troch, P., van Loon, E., & Hilberts, A. (2002). Analytical solutions to a

hillslope-storage kinematic wave equation for subsurface flow.

Advances in Water Resources, 25(6), 637–649.
Troch, P. A., van Loon, A. H., & Hilberts, A. G. J. (2004). Analytical

solution of the linearized hillslope-storage Boussinesq equation for

exponential hillslope width functions. Water Resources Research, 40(8),

W08601.

White, F. M. (1999). Fluid mechanics (4th ed.New York, New York: ).

WCB/McGraw-Hill.

Woolhiser, D. A., & Liggett, J. A. (1967). Unsteady, one-dimensional flow

over a plane—The rising hydrograph. Water Resources Research, 3(3),

753–771.

How to cite this article: Lapides DA, David C, Sytsma A,

Dralle D, Thompson S. Analytical solutions to runoff on

hillslopes with curvature: numerical and laboratory

verification. Hydrological Processes. 2020;1–20. https://doi.

org/10.1002/hyp.13879

12 LAPIDES ET AL.

https://doi.org/10.5281/zenodo.3517298
https://github.com/lapidesd/Hillslope_Storage_Kinematic_Wave
https://doi.org/10.1002/hyp.13879
https://doi.org/10.1002/hyp.13879


APPENDIX I . ADDITIONAL DETAILS ON PARFLOW

SIMULATIONS A.

In order to minimize any differences between ParFlow simulations

and analytical solutions due to numerical error, we checked that the

ParFlow simulations were stable with respect to a change in space or

time discretization to ensure that, to as great a degree as possible,

deviation between the two models is due primarily to the simplicity of

the analytical solutions. We ran initial simulations using a 1 m spatial

grid and a 0.01 hr timestep for three test hillslopes with a = − 0.02,

a = 0, and a = 0.02. We ran additional simulations with the space and

time grids at 1/4, 1/2, 2× and 4× this resolution to check sensitivity

of the results to the numerical grid. We tabulated peak flow values

from each simulation. Peak flow predictions converged with increas-

ing resolution, with negligible change between the 2× and 4× resolu-

tions as shown in Figure A7. All test simulations in this study were

therefore run using Δx = 0.5 m and Δt = 0.005hr (the 2× resolu-

tion case).

Results from the full set of simulations (full details in the main

text) can be found in Table A2. Comparison between ParFlow and

analytical solutions were performed for both the case of m = 2 and

m = 5/3, while ParFlow assumes m = 5/3. This difference in m

explains the fact that statistics for m = 2 are less robust than those for

m = 5/3. The qualitative behavior of the comparisons is similar, with

the same pattern of increasing or decreasing fit with value of a. Even

without the comparison to the analytical solutions, % error Qpeak and

CV can be used to assess the likelihood that the analytical solution will

provide a good fit to the numerical data. As % error Qpeak increases,

flow behavior deviates more from the expected flowlines, causing 2-D

flow not accounted for in the analytical model. As CV increases, the

average flow along a cross-section becomes a poorer fit to the flow.

CV and % error Qpeak both increase steadily with jaj until very large

values of jaj, where % error Qpeak becomes small or switches sign, due

to a much larger error that the statistics do not capture well. The step

change above a = j 0.02j is apparent in the magnitude of many of the

statistics.

APPENDIX II . EXPERIMENTAL RAINFALL AND

ROUGHNESS PARAMETERS B.

Rainfall intensity and roughness both had to be calibrated prior to

comparison of experimental hydrographs with analytical hydrographs.

Rainfall in the analytical model is assumed uniform and constant.

Throughout experiments, rainfall rate varied only with small variations

in tap pressure, which were mostly controlled for by a pressure

reducer. Due to material limitations, though, rainfall was not uniform.

Variation in the rainfall was measured in 7 independent trials. In each

trial, two 4x4 grids of petri dishes were laid out on a level surface

beneath the rainfall simulator for 2 min each, and the collected water

weighed. The rainfall pattern was consistent across all trials, and the

rainfall rate was consistent among tests performed in the same trial

(average varied from 7–12 mm/hr). Variations in rainfall rate between

trials are likely due to uncontrollable pressure differences in the mains

water line used. Small changes in measured rainfall pattern over time

were observed, and are likely due to changes in the performance of

TABLE A1 Reference list of symbols used in text

A Hillslope contributing area [L2]

Amax Total hillslope area [L2]

a Curvature parameter in exponential width function [1/L]

C Constant of proportionality so that C = 2c [L]

c Constant multiplier for exponential width function [L]

E Elevation change between the divide and the outlet [L]

f Infiltration rate (constant) [L/T]

g Gravitational acceleration [L/T2]

H Flow cross-section [L2]

h Water depth [L]

�h Average depth [L]

�h� Average depth on characteristic at tr [L]

I Rainfall intensity [L/T]

k Curvature parameter in conic section hillslope equation from

Evans (1980) []

L Hillslope length [L]

m Constant dictating flow regime []

n Manning's n []

Q Volumetric flow rate [L3/T]

Qpeak Peak flow in hydrograph [L3/T]

q Flow per unit width [L2/T]

�q Average flow rate along a contour [L2/T]

qpeak Maximum q in hydrograph [L2/T]

Sf Friction slope []

So Slope []

t Time [T]

tc Time of concentration [T]

te Time to equilibrium flow value [T]

tp Time of ponding [T]

tr Length of rainstorm [T]

t0 Time of start of characteristic in Domain 2 [T]

u Velocity [L/T]

w(x) Hillslope width function [L]

x Spatial coordinate pointing downhill [L]

x* Location of characteristic at tr [L]

x0 Location of start of characteristic in Domain 1 [L]

y Cross-slope coordinate [L]

y1 Limiting flowline [L]

y2 Limiting flowline [L]

z Height of topography above a base elevation [L]

α Roughness [L2 − m/T]

ρ Density [M/L3]

ξ Metric defined as the RMSE between two hydrographs []

ω Cross-slope curvature parameter from Evans (1980) [ ]
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the atomizing nozzles over time or incidental adjustment of the loca-

tions of petri dishes used for measurement. The observed rainfall pat-

tern shows two primary nodes of rainfall, as demonstrated in

Figure A8, which shows the average rainfall pattern across all 7 trials.

Rainfall was observed across the full hillslope surface in each experi-

mental run, although the amount of rainfall clearly varies to a great

degree. The coefficient of uniformity is on average 17%. This is a fairly

low value, indicating that the rainfall from our constructed rainfall

simulator is highly variable. For comparison, other rainfall simulators

have been found to achieve 70–94% coefficient of uniformity

(e.g., Esteves et al., 2000; Humphry et al., 2002; Meyer &

Harmon, 1979; Moore et al., 1983; Shelton et al., 1985), about 4–5

times better than the rainfall simulator constructed for this experi-

ment. The effective rainfall rate calibrated from experimental hydro-

graphs was near 10 mm/hr in all cases, very close to the average

rainfall intensity measured in these trials.

Roughness α is also calculated from experimental hydrographs

rather than measured directly. As a result, the value of α depends on

the scale factor, a, and the effective rainfall intensity. Calculated

roughness values for each trial and the average value for each a are

reported in Table A3. The values of α vary with a for the curvature-

included fit so that the smallest α values are measured for the most

divergent hillslopes. This may be incidental, though. We did our best

to match surface treatment among all hillslopes, but the amount of

sand that adhered to glue may have varied among the hillslopes.

Prior to the first model runs, we rinsed down each hillslope to

remove any sand or dust that was not adhered to prevent error in

the conversion from weight to mass. This also may somehwat be a

function of scale since the scale values for a = 0.05 and a = 0 (1:40)

are the same in the table, while a smaller scale is used for a = − 0.05

(1:30). For the no-curvature fit, though the α values are comparable,

although the a = 0 values are the smallest, and a = − 0.05 are still

the largest.

Despite difficulties in parameterizing the analytical solutions, the

NRMSE between the rising limbs of the analytical and experimental

hydrographs is very high. This indicates that, although the falling limbs

of the runs were qualitatively similar to the eye, there was sufficient

information to select different alphas that allowed for excellent fit of

the rising limb and time to equilibrium.

TABLE A2 Summary of results from
numerical simulations in ParFlow (Jones
and Woodward (2001), Jones and
Woodward (2001) Kollet and
Maxwell (2006), Maxwell (2013)). The
percent errors in qpeak is shown between
the numerical simulations and the
expected value of Amax * I. CV is the
coefficient of variance in flow along the
bottom boundary at the time of
equilibrium flow. The metric ξ is the
RMSE between hydrographs normalized
by peak flow. The subscripts on ξ and
RMSE indicate the m value used for the
comparison to ParFlow

a % error Qpeak CV ξ5/3 ξ2 RMSE5/3 RMSE2

−0.1 1.21% 0.56 0.052 0.16 0.76 2.34

−0.05 8.58% 0.68 0.037 0.15 1.19 2.57

−0.02 22.18% 0.41 0.018 0.13 2.86 3.48

−0.01 24.91% 0.28 0.012 0.12 3.15 3.58

−0.005 19.24% 0.21 0.011 0.11 2.44 3.01

−0.001 12.60% 0.09 0.011 0.11 1.59 2.37

−0.0005 9.41% 0.06 0.011 0.11 1.17 2.10

−0.0001 4.43% 0.03 0.013 0.11 0.56 1.81

0 0.00% 0.00 0.014 0.11 0.21 1.65

0.0001 −5.88% 0.03 0.015 0.11 0.81 1.69

0.0005 −8.76% 0.06 0.016 0.11 1.16 1.77

0.001 −10.78% 0.08 0.018 0.11 1.41 1.86

0.005 −18.07% 0.14 0.022 0.11 2.31 2.32

0.01 −17.83% 0.17 0.022 0.11 2.25 2.25

0.02 −9.51% 0.20 0.019 0.10 1.21 1.65

0.05 31.54% 0.20 0.035 0.08 4.39 3.85

0.1 1.48% 0.22 0.041 0.03 15.06 13.33

TABLE A3 Fitted roughness α values for laboratory experiments.
Fits are shown only for trials that passed quality control. At the top,
fitted values are shown for a equal to the value in the first column.
Below, fitted values are calculated under the assumption that a = 0 in
all cases

a Trial Number α

Curvature-included fit

0.05 3 5.53

4 8.59

0.0 3 8.29

4 8.59

−0.05 1 18.39

3 14.41

No-Curvature fit

0.05 3 9.82

4 12.88

0.0 3 8.29

4 8.59

−0.05 1 14.71

3 12.27
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APPENDIX II I . QUALITY ASSURANCE FOR

EXPERIMENTAL HYDROGRAPHS C.

Computation of raw experimental results yielded noisy hydrographs,

so smoothing was required for rigorous comparison with the analytical

model. Sources of noise in the raw data included: small pooling and

outburst events in the trough, slight movement of the collection bea-

ker, or other jumps resulting from the resolution of the digital scale (±

0.025 g). These sources of error are minimal enough to produce visu-

ally smooth volume-time curves but great enough to impede visual

analysis of hydrographs computed directly from raw data. The raw

data consisted of cumulative mass time series of water collected every

second at the outlet of the experimental models. Raw data were

converted to volume time series with an assumed water density of

1.0 kg/m3. The hydrograph is given by the derivative of the volume-

time curve.

Prior to computing derivatives, for optimal results, we smoothed

the volume-time curves by 4 methods that employ locally-weighted

regression (LOWESS) with a tricubic kernel, for which the fraction of

nearest points was visually tuned for each method to achieve smooth,

yet accurate hydrographs. The methods are distinguished based on

three parameters: f refers to the fraction of nearest neighbors used in

TABLE A4 Table of compared
smoothing methods applied to volume-
time curves. f refers to the fraction of
nearest neighbors used in the kernel, d
refers to the degree of polynomial
regression, and t to the number of
residual-based reweightings. Superscript
1 is attributed to Cleveland (1979)

Name f d t

1 moving average without reweightings 0.05 0 0

2 linear locally-weighted regression without reweightings 0.04 1 0

3 linear locally-weighted regression with three residual-based

reweightings (robust locally-weighted regression)1
0.03 1 3

4 quadratic locally-weighted regression without reweightings 0.08 2 0

F IGURE A1 Sample characteristic nets for (left) a convergent hillslope with a = − 0.02, (center) a planar hillslope, and (right) a divergent
hillslope with a = 0.02 under two different storm scenarios with no infiltration. The hillslope shapes are shown below the nets. The characteristic
shown in gold is the first originating from the top of the hillslope to reach the outlet. Its passage through (x = L) marks the time of equilibrium flow
te, shown as a solid gray line in each hydrograph panel. Domain 1 (the rising limb) is shown in light blue, Domain 2 (equilibrium flow) in black, and
Domain 3 (the falling limb) in dark blue. The rising limb is steeper in the convergent hillslope hydrographs than the divergent ones, and the
recession steepest for the divergent hillslopes. 46
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F IGURE A2 Hydrographs produced using Equations (14), (16), (20), (22), (27), and (29) for a 60 min storm with no infiltration on three
hillslopes of identical area and length: convergent a = − 0.02 (light blue), uniform width a = 0 (medium blue), and divergent a = 0.02 (dark blue).
The time of equilibrium te is marked with a dot for each hillslope. There is a 20% difference in te between the convergent and divergent cases.
The inset shows flow rate q (m2/s). Flow rate differs by a factor of 2 between convergent and divergent cases. 47

a = -0.05

(a) (b) (c)

(d) a = 0(e) a = 0.05(f)

F IGURE A3 (a) First step of CNC fabrication and (b) second step of CNC fabrication of engineered hillslope. (c) Smooth surface finish with
cracks filled in using insulation foam and epoxy, sanded flat to the surface. Aluminum is used to line the edges of the model. The lower half of the
figure shows completed models after the application of sand to the surface to increase hydrophilicity. 48
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F IGURE A4 (a) Diagrams of planned experimental design with dimensions in cm. Atomizing nozzles are marked by black rectangles with
dashed lines indicating spray. (b) The actual constructed dimensions of the experiment are shown. Errors are due to material limitations,
measurement error, or accidental changes made to the position of the rainfall simulator throughout experimentation and nozzle replacement. 49
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the kernel, d refers to the degree of polynomial regression, and t to

the number of residual-based reweightings (Cleveland, 1979). The

names and descriptions of the methods are found in Table A4.

Smoothed volume-time curves were converted to hydrographs using

central differences in the interior and one-sided differences at the

boundaries. This process yielded 4 different smoothed hydrographs

and one unsmoothed hydrograph. The unsmoothed hydrograph was

very noisy since finite differences amplify noise in the data, as shown

for the example dataset in Figure A9 (b). Figure A9 shows the evalua-

tion workflow for one dataset, which is completed for all 12 sets and

summarized in Figure A10.

Results of the different smoothing methods were evaluated by

(1) a Roughness Index and (2) the root mean squared error (RMSE) of

each smoothed volume-time curve from the corresponding raw

(unsmoothed) volume-time curve. We define the Roughness Index as

the mean frequency of concavity reversal, since we expect visually

rough curves to reverse concavity more frequently than visually

smooth curves. To calculate this index, we first compute the second

derivatives of each smoothed hydrograph. We then compute a power

spectral density estimate of the second derivative curve and take the

(power-weighted) average frequency of the spectrum. Figure A9

(c) shows a close-up of the second derivative curves and their power

spectra for an example dataset. Conceptually, a “period” of the second

derivative curve is the time it takes for the hydrograph to go from

concave to convex to concave again, so a concavity reversal occurs in

half of this “period”. Thus we define the Roughness Index as twice the

power spectrum's average frequency, which is equal to the mean fre-

quency of concavity reversal.

It is expected that poorly smoothed hydrographs should have a

high Roughness Index and over-smoothed volume-time curves

should differ significantly from the raw data (i.e., high RMSE). For

the best result, both the Roughness Index and the RMSE are

minimized.

Out of all 4 smoothing methods, quadratic local regression

(method 4 in Table A4) has, on average, the lowest Roughness Index

and the lowest RMSE, as shown in Figure A10. For all experimental

data, quadratic local regression has, on average, a mean frequency of

concavity reversal that is 0.88 standard deviations below the mean

and an RMSE that is 0.94 standard deviations below the mean, as indi-

cated by the purple triangle in Figure A10. By these standards of

F IGURE A5 Sample data from numerical simulations. a = − 0.1 data is shown in grey due to low confidence in statistics. Data are shown in

comparison to m = 5/3 solutions only since qualitative results are very similar for m = 2. In panels (a), (b), and (c), shaded regions indicate
(horizontal bars) the region of acceptable values for the given statistic and (vertical bars) the region identifying the values of a that consistently
exhibit appropriate values for the statistics. (a) ξ normalized by the value of ξ at a = 0 for m = 2 and m = 5/3. Absolute magnitudes are larger for
m = 2, as shown in Table 2. (b) Large errors in maximum flow (compared to expected mass balance AI) indicate 2-D flow behavior not described
by the analytical solution presented in this study. (c) CV remains below small for all divergent runs but increases steadily for convergent
simulations due to increased flow concentration. (d) Flow cross-sections along the bottom boundary for convergent hillslopes diverge more from
the average (dotted line) as a increases. Deviation from symmetry (vertical line for comparison) in (d) occurs when flow is routed to one of two
equivalent center grid points. 50
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smoothness and fit, quadratic locally-weighted regression with a

tricubic kernel is the best smoothing method for these data.

To produce final hydrographs, all datasets were smoothed using

quadratic locally-weighted regression (method 4). The quality of each

dataset was then assessed through visual inspection with the expecta-

tion of a smooth rising limb, peak, and falling limb. Many of the

datasets had superimposed structure that deviated greatly from this

form, which likely resulted from observed perturbations to the experi-

mental set-up. These events, which included spilling, outbursts from

pools, and leaks (that were subsequently patched), were clearly

expressed in the smooth hydrographs. Out of the 12 runs, 6 problem-

atic datasets were visually identified and discarded, leaving 2 runs for

each hillslope.

F IGURE A7 Difference in peak flow values between simulations
at different resolutions and the highest-resolution simulation (0.25) in
m3/s. The resolutions on the x-axis refer to the ratio between the
base resolution and the tested resolution from 1/4 to quadruple (4).
As resolution increases (moving right), the difference in peak flow
approaches 0. For all values of a, the difference in peak flow for 0.5
resolution is nearly 0, so we determine that double resolution is
adequate to control numerical dispersion and diffusion. 52

F IGURE A8 Average rainfall intensity pattern above the hillslope
model. Black dots mark locations of rain depth measurement.
Approximate diagonal symmetry may allow for less strong impact on
experiment results than would be expected for 17% coefficient of
uniformity. 53

(a) (b) (c)

(d) (e) (f)

F IGURE A6 Sample experimental hydrographs (light blue) are plotted with parameterized analytical solutions (dark blue) for (a) a = − 0.05,
(b) a = 0, and (c) a = − 0.05. (d) Normalized experimental hydrographs for a = − 0.05, a = 0, and a = 0.05 plotted together to demonstrate the
differences in rising limb behavior. A boxplot of (e) time to equilibrium (te) demonstrates high confidence in the qualitative trend in te predicted by
the analytical solutions. (f) shows a plot of NRMSE between the rising limbs of analytical (for curvature-included (blue) and curvature-removed
(orange) models) and experimental results (normalized by peak flow) to demonstrate the quality of the fit produced by the analytical solutions and
the improvement offered by including curvature in the model. For a = 0, the boxes are plotted on top of one another since results for curvature
and no curvature are identical. 51
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COMPUTE 
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COMPUTE RMSE BETWEEN 
SMOOTHED AND RAW CURVES

COMPUTE SECOND DERIVATIVE OF DISCHARGE 
(USING FINITE DIFFERENCES) AND POWER SPECTRA

COMPUTE 
ROUGHNESS INDEX 

FROM POWER 
SPECTRUM

RAW VOLUME TIME SERIES 

SMOOTH USING 
ALL 4 METHODS

average frequency

Method 1
Method 2
Method 3

raw (unsmoothed) data or first 
differences of raw data

LEGEND
Method 4

(a) (b)

(c)(d)

F IGURE A9 Workflow for the comparative evaluation of smoothing methods for an example dataset (a = −0.05, run 2). (a) Raw data is
smoothed by the methods described in Table A4, which produce distinguishable curves shown in the close-up. (b) Finite differences are computed
from the smoothed and raw volume-time curves to produce the hydrographs shown. (c) The second derivatives of the 4 smooth hydrographs are
computed, and their power spectra are estimated. (d) The Roughness Index is computed from the average frequency of each power spectrum and
scattered against the RMSE between smoothed and raw volume-time curves. Values are plotted in standard units (standard deviations away from
the mean value for each method), that allow for relative comparison between methods. The best method is the one with the lowest Roughness
Index and lowest RMSE 54
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Method 1
Method 2
Method 3

average over 
all runs

Method 4

F IGURE A10 Scatter of Roughness Index vs. RMSE of the
smoothed volume-time curves for all 12 datasets. Points are plotted
for each of the smoothing methods in Table 4. Values are shown in
standard units (standard deviations away from the mean value from
each run). Quadratic local regression (method 4) has, on average, the
lowest Roughness Index (average 0.88 standard deviations below the
mean) and the lowest RMSE (average 0.94 standard deviations below
the mean) for each run, as shown by the purple triangle in the lower
left corner. 55
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