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Abstract

Riordan, Erin C.; Montalvo, Arlee M.; Beyers, Jan L. 2018. Using species 
distribution models with climate change scenarios to aid ecological restoration 
decisionmaking for southern California shrublands. Res. Rep. PSW-RP-270. 
Albany, CA: U.S. Department of Agriculture, Forest Service, Pacific Southwest 
Research Station. 130 p.

Sourcing appropriate plant material for restoration within the heterogeneous 
landscape of southern California is a nuanced task further complicated by climate 
change. We generated species distribution models (SDMs) that may be useful tools 
for incorporating climate change scenarios into ecological restoration decisionmak-
ing for southern California scrub and shrubland habitats. We modeled regional 
patterns of suitable habitat under baseline (1951–1980) and midcentury (2040–2069) 
climate conditions for 44 focal plant taxa under five future climate scenarios. 
Projected changes in habitat suitability varied across taxa and climate scenarios. 
Future climate scenarios with the most extreme directional changes in precipitation 
(increase or decrease) resulted in the greatest projected loss of suitable habitat for 
most taxa. The majority of plant taxa we modeled had a high degree of stable future 
habitat suitability, with 31 taxa projected to have ≥75 percent of baseline suitable 
habitat maintaining suitability midcentury under at least three future climate sce-
narios. Infraspecific differences in projected midcentury suitable habitat highlight 
the importance of considering varieties and subspecies when applying modeling 
results to conservation and natural resource management decisionmaking. While 
we did not explicitly model plant communities, multitaxon suitability overlays 
revealed patterns for alluvial scrub, coastal sage scrub, mixed chaparral-sage scrub, 
and low-elevation chaparral vegetation groups that were less readily apparent in 
individual taxon maps. We discuss caveats regarding SDMs and suggest that they 
could be used as part of an integrated toolset for successful application.

Keywords: Alluvial scrub, chaparral, climate change, coastal sage scrub, 
ecological restoration, seed transfer, shrubland, southern California, species distri-
bution modeling.



Preface
This study provides the background and methodology for species distribution 
modeling and habitat suitability maps generated as part of a collaborative effort by 
the Riverside-Corona Resource Conservation District and the USDA Forest Service 
Pacific Southwest Research Station to develop decision-support tools for use in 
ecological restoration within southern California ecosystems. The maps are being 
incorporated into taxon-specific plant profiles with detailed ecological and genetic 
information on foundation plant taxa from alluvial scrub, coastal sage scrub, and 
low-elevation chaparral. The expanded plant profiles will be available online and 
are intended to help inform species selection, seed sourcing, and decisions about 
seed transfer for ecological restoration and other native planting projects.

Summary
Sourcing appropriate plant material for restoration within southern California’s 
heterogeneous landscape is a nuanced task further complicated by climate change. 
It entails a detailed understanding of species distribution, dispersal ecology, 
population genetics, and biotic and abiotic interactions. Generalized tools used to 
inform restoration, such as provisional seed zones, are typically static with respect 
to environmental change and may become less effective in the context of climate 
change. We generated species distribution models (SDMs) that may be useful tools 
for incorporating climate change scenarios into recommendations for ecological 
restoration decisionmaking for southern California scrub and shrubland habitats. 
We modeled regional patterns of suitable habitat under baseline (1951–1980) and 
projected midcentury (2040–2069) climate conditions for 44 focal plant taxa under 
five future climate scenarios. Projected changes in habitat suitability varied across 
taxa and climate scenarios. Future climate scenarios with the most extreme direc-
tional changes in precipitation (projected increase or decrease) had the greatest pro-
jected loss of suitable habitat for most taxa. The majority of plant taxa we modeled 
had a high degree of stable future habitat suitability, with 31 taxa projected to have 
≥75 percent of baseline suitable habitat maintaining suitability midcentury under at 
least three future climate scenarios. Infraspecific differences in midcentury suitable 
habitat projections highlight the importance of considering within-species variation 
when applying modeling results to conservation and natural resource management 
planning, especially in areas of high environmental heterogeneity such as southern 
California. Although we did not explicitly model plant communities, multitaxon 



suitability overlays revealed patterns for alluvial scrub, coastal sage scrub, mixed 
chaparral-sage scrub, and low-elevation chaparral vegetation groups that were less 
readily apparent in individual species maps. We discuss caveats regarding SDMs 
and suggest their use as part of an integrated toolset for successful application. This 
modeling effort is part of a greater collaborative project between the Riverside-
Corona Resource Conservation District and the USDA Forest Service Pacific 
Southwest Research Station to provide decision-support tools guiding plant selec-
tion for use in ecological restorations within southern California shrub-dominated 
ecosystems.



Contents
1 Introduction

2 Climate Change Context

4 A Species Distribution Modeling Approach

6 Methods

6 Study Area

6 Focal Taxa and Occurrence Data

14 Climate Data

15 Land Use

17 Modeling Approach

20 Model Evaluation

20 Results

20 Midcentury Climate Exposure in Southern California

22 Species Distribution Model Performance

23 Projected Changes in Habitat Suitability

29 Discussion

30 Habitat Suitability Under Projected Climate Change

32 Climate Change, Land Use, and Fire

35 Management Implications

37 Acknowledgments

38 U.S. Equivalents

38 References

59 Appendix 1: Projected Midcentury Change in Southern
California Climate

61 Appendix 2: Detailed Species Distribution Modeling Methods

61 Infraspecies Name Assignments

63 Parent Geology

64 Treatment of Sampling Bias



66 Appendix 3: Detailed Species Distribution Modeling Results

73 Appendix 4: Baseline and Projected Midcentury Suitable Habitat Maps
for Focal Species

118 Appendix 5: Projected Midcentury Suitable Habitat for Scrub and
Shrubland Vegetation Groups

123 Appendix 6: Species Distribution Modeling Caveats

123 What Do SDM Habitat Suitability Maps Represent?

123 Factors to Consider When Applying SDM in Decisionmaking

128 Glossary



Using Species Distribution Models with Climate Change Scenarios to Aid Ecological Restoration Decisionmaking

Introduction
Land managers in southern California often face the challenge of restoring wildland 
habitat degraded by various combinations of habitat fragmentation, disruption of 
dispersal processes and biotic interactions, human-caused disturbance, and human-
altered fire regimes. The region’s diverse shrubland communities are of particular 
concern. For example, urbanization, recreational development, and increased fire 
frequency have contributed to the widespread loss of coastal sage scrub (including 
alluvial fan scrub), which has as little as 15 percent of its original extent remaining 
today (O’Leary 1990, 1995; Westman 1981). Restoration efforts to maintain habitat 
for rare species of these plant communities have been carried out for many years 
(Allen et al. 2000, Buck-Diaz et al. 2011, DeSimone 2006, Hanes et al. 1989). Low- 
elevation chaparral has been degraded by nonnative annual grass invasion and 
reduced shrub density under shortened fire-return intervals (Keeley and Brennan 
2012) and by construction projects, leading to more interest in methods to restore 
chaparral shrubs (Engel 2014, Wilkin et al. 2013) and the important ecosystem ser-
vices they provide, such as hillslope stability (Gabet and Dunne 2002) and carbon 
sequestration (Rundel and Vankat 1989). Selecting appropriate species and plant 
material for restoration in the heterogeneous landscape of southern California is a 
complex undertaking that entails an understanding of species distribution, habitat 
relationships, ecological genetics, and biotic and abiotic interactions; this task is 
further complicated by changing climate.

Scientists have already documented ecological responses to climate change 
from species to ecosystems (Parmesan and Hanley 2015, Walther 2010). In southern 
California, Kelly and Goulden (2008) attributed elevational shifts in dominant 
plant species in the Santa Rosa Mountains to changes in regional climate from 
1977 through 2007, though past fire disturbance may have also contributed to the 
observed shifts (Schwilk and Keeley 2012). In California’s forests, climate-driven 
changes in water balance have been linked to changes in structure and species com-
position during the 20th century (McIntyre et al. 2015) and increased tree mortality 
during the 2012–2015 drought (Young et al. 2017). Projected changes in climate are 
expected to dramatically alter natural systems within the 21st century (Thomas et al. 
2004). Many species could face local extirpation, and even extinction, if the rate of 
climate change exceeds their capacity to adapt locally or migrate to track suitable 
conditions (Christmas et al. 2016, Corlett and Westcott 2013, Malcolm et al. 2002). 
Consideration of the potential effects of future climate change on reference or target 
ecosystems, species, and populations will likely become increasingly important for 
the long-term success of ecological restoration projects (Breed et al. 2013, Harris et 
al. 2006, Havens et al. 2015, Jackson and Hobbs 2009).
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Climate Change Context
California has experienced an overall warming trend over the past century, 
although patterns vary spatially and temporally (Cordero et al. 2011, Rapacciuolo 
et al. 2014). Weather station data show warming trends for statewide minimum and 
maximum temperatures from 1918 through 2006, accelerating after 1970 to rates 
of +0.31 °C and +0.27 °C per decade, respectively (Cordero et al. 2011). Southern 
California has experienced some of the greatest regional increases in temperature 
across the state, particularly interior mountain areas where minimum and maxi-
mum temperatures have increased 0.42 °C  and 0.26 °C per decade, respectively, 
from 1970 through 2006 (Cordero et al. 2011). Intensely urbanized areas have 
experienced especially large increases in minimum and maximum temperature 
(LaDochy et al. 2007), in part from a heat island effect (Kalnay and Cai 2003). Los 
Angeles, for example, experienced as much as a 5 °C increase in minimum temper-
ature and a 2 °C increase in maximum temperature from 1950 to 2000 (LaDochy 
et al. 2007). 

For vegetation, water availability in particular plays a central role in shaping 
plant distribution (Rehfeldt et al. 2006; Stephenson 1990, 1998; Woodward 1987). 
Patterns in precipitation have also changed in California, although high spatial 
and temporal variability make detecting trends difficult. For much of northern and 
central California, annual precipitation increased in 1970–2009 relative to 1900–
1939, whereas precipitation decreased slightly in southern California during the 
same time period (Rapacciuolo et al. 2014). Shifts in temperature and precipitation 
affected water balance in southern California, causing large increases in climatic 
water deficit (CWD) for 1970–2009 relative to 1900–1939 (Rapacciuolo et al. 2014). 
CWD is the evaporative demand not met by available water, defined as the differ-
ence between potential evapotranspiration (PET)—the amount of water that could 
potentially evaporate or transpire from vegetation given unlimited water—and 
actual evapotranspiration (AET)—the evaporative water loss from vegetation based 
on actual water availability (Stephenson 1990). Temperature and precipitation (as 
it affects soil moisture storage) both influence AET. Together, these variables are 
important indicators of water availability and climate stress experienced by plants 
(Stephenson 1998). 

Temperatures are projected to continue warming in California throughout the 
21st century (Cayan et al. 2008, Hayhoe et al. 2004, Pierce et al. 2013). Statewide 
mean temperature could increase as much as 5.8 °C by 2070–2099 relative to 
1971–2000 under continued high greenhouse gas emissions (Mastrandrea and Luers 

2



Using Species Distribution Models with Climate Change Scenarios to Aid Ecological Restoration Decisionmaking

2012). In the Los Angeles Basin and surrounding mountains, mean temperature 
is projected to increase anywhere from 2.8 to 6.2 °C by the end of the 21st century 
relative to 1981–2000 (Sun et al. 2015). Without measures to reduce greenhouse 
gas emissions, a new regional climate state could emerge in southern California 
where average temperatures at the end of the 21st century are outside the range of 
historical interannual variability (Sun et al. 2015). Future change in precipitation for 
California is less certain, with both increases and decreases in annual precipitation 
projected, depending on the general circulation model (GCM) considered (Berg 
and Hall 2015, Dettinger et al. 2015, Pierce et al. 2013). A recent analysis of many 
GCMs under a “business-as-usual” (continued high) emission scenario suggests 
that California will experience precipitation increases, though with less increase 
toward the south (Allen and Luptowitz 2017). Extreme dry and extreme wet events 
are projected to increase in frequency by the end of the 21st century (Berg and Hall 
2015). Mid-21st-century projected change in precipitation regionally downscaled for 
the Los Angeles Basin and surrounding mountains ranges from +19 mm to -25 mm 
relative to 1981–2000 (Berg et al. 2015). Regardless of the direction of precipita-
tion change in southern California, the change will likely be small compared to the 
naturally high interannual variability (Berg and Hall 2015, Pierce et al. 2013). 

Warming temperatures since the mid-20th century are also significantly altering 
the hydrologic cycle across the Western United States (Barnett et al. 2008, Hamlet 
et al. 2007) through decreased snowpack (Mote et al. 2005), increased proportion of 
precipitation falling as rain rather than snow (Knowles et al. 2006), and changes in 
the timing and variability of spring snowmelt and streamflow (Maurer et al. 2007, 
Pagano and Garen 2005, Stewart et al. 2005). Projected warming and hydrologi-
cal shifts will likely increase evaporative demand in the 21st century (Dettinger 
et al. 2015), while changes in snowmelt, resulting effects on streamflow (Hayhoe 
et al. 2004), and increases in the frequency of extreme dry and wet hydrological 
years (Berg and Hall 2015, Kim 2005) could severely stress already-strained water 
resources and infrastructure. In the mountains of southern California, widespread 
decline in both snowfall and snowpack are projected for the end of the 21st century 
(Sun et al. 2016). If greenhouse gas emissions continue to increase at current rates, 
less than 50 percent of snowfall and 26 percent of snowpack relative to 1981–2010 
levels are projected to remain at elevations under 2400 m by the mid-21st century 
(Sun et al. 2016). Warming-accelerated spring snowmelt and declines in snowpack 
will likely affect streamflow for the region. Drought risk in California may also 
increase. Although periodic severe drought is common in California, the recent 
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2011–2015 drought was exceptionally severe, driven by low, albeit not unprec-
edented, precipitation and record high temperatures (Griffin and Anchukaitis 2014). 
Anthropogenic warming is increasing the probability that low-precipitation years 
will coincide with warm conditions (Diffenbaugh et al. 2015) and contribute to 
extreme drought (Williams et al. 2015). 

A Species Distribution Modeling Approach
When carefully constructed and interpreted, species distribution models (SDMs) 
can be a useful tool for incorporating climate change into natural resource deci-
sionmaking (Araújo and Peterson 2012, Guisan et al. 2013, Schwartz 2012), includ-
ing choices of species and source locations for restoration (Havens et al. 2015). 
Species distribution models correlate species occurrence data with environmental 
information to predict habitat suitability in space and time (Elith et al. 2006, 
Guisan and Thuiller 2005). Model algorithms tailored for presence-only data and 
small sample sizes (e.g., Maxent) (Phillips et al. 2006), combined with statistical 
techniques addressing sampling bias (e.g., Phillips et al. 2009), allow the investiga-
tion of the geographic distribution of suitable habitat for species even with limited 
or incomplete occurrence information. This is particularly valuable when time or 
other resource constraints prevent the collection of detailed field data. Gastón et al. 
(2014) found that SDMs were as effective as local experts in ranking the suitability 
of different plant taxa at forest restoration sites and proposed SDMs as a fast and 
cost-effective method to inform species selection.

Some species and plant communities may be affected more than others by 
changes in climate. A species’ vulnerability to climate change can be evaluated 
based on climate exposure (the degree to which a system is exposed to climate 
change) and factors related to its sensitivity (how severely it is affected) and adap-
tive capacity (ability to adjust and maintain fitness), based on life history traits, 
dispersal capacity, pattern of genetic diversity, and history of population fragmenta-
tion (Butt et al. 2016, Dawson et al. 2011, Fordham et al. 2012, Williams et al. 2008). 
When combined with future climate scenarios, SDMs can provide an estimate of 
climate exposure, measured in terms of projected change in suitable habitat. These 
future suitable habitat projections can then help inform various aspects of decision-
making in restoration. For example, SDMs have recently been applied to improve 
long-term restoration success by identifying target species having suitable habitat 
both now and in the future (Butterfield et al. 2016, López-Tirado and Hidalgo 
2016). Gelviz-Gelvez et al. (2015) considered ecological characteristics together 
with SDM-suitable habitat projections under future climate scenarios to select plant 
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species for restoration in a semiarid region of central Mexico. Species distribution 
models have also been used to assess the need for and potential success of interven-
tion such as assisted migration (e.g., Hällfors et al. 2016a). If such intervention is 
warranted, SDM used in concert with maps that show how climate variables may 
shift spatially can inform the implementation of climate-adjusted provenancing 
(sourcing) scenarios such as those described by Prober et al. (2015). 

Most SDM approaches focus at the species level, pooling occurrence data 
throughout a species’ range and assuming uniform environmental tolerance 
(Hällfors et al. 2016b). This practice obscures patterns of within-species variation 
that could be important for restoration success. Modeling approaches that address 
intraspecific variation in niche structure reveal distinct patterns in predicted 
distributions as well as forecasts of change under future climate scenarios (Hällfors 
et al. 2016b, Pearman et al. 2010, Valladares et al. 2014). Ecological and genetics 
studies that include multiple named infraspecies (variety or subspecies) commonly 
reveal differences in habitat affinities (Cole 1967, Montalvo and Ellstrand 2000, 
Stebbins 1942, Wang et al. 1999). In southern California, the presence of geographic 
variation in environmental tolerance and local adaptation across populations of 
many plant species suggests that intraspecific variation would be useful to take into 
account when modeling species distributions to inform restoration decisionmaking. 
Ideally, information on genetic variation in adaptive traits would be used to delin-
eate populations into groups or ecotypes for modeling at an intraspecific level (e.g., 
Richardson et al. 2014). However, these data are unavailable for many plant taxa. 
In the absence of detailed population-level genetic data, infraspecies level models 
(Pearman et al. 2010, Rehfeldt et al. 2014) or models based on groups of populations 
delineated by climate or geography (Hällfors et al. 2016b, Hamann and Aitken 
2013) may be more informative than pooled species-level models.

Focusing on the South Coast hydrologic region (Calwater 2.2.1) (CIWMC 
2004), we used SDMs to create habitat suitability maps to aid species and infra-
species selection and to help inform decisions about seed sourcing for ecological 
restoration in scrub and shrubland habitats. First, we modeled suitable habitat for 
44 focal plant taxa under baseline (1951–1980) climate conditions. We restricted 
occurrence and climate data to the study area to model regional patterns of habitat 
suitability and, when possible, modeled at the infraspecific (variety or subspe-
cies) level. We then projected baseline suitability models under five future climate 
scenarios for mid 21st century (2040–2069) conditions to identify potential shifts 
in suitable habitat and how the shifts differ in their severity and spatial context 
under the different climate change scenarios. We also created multitaxon suitability 
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overlays to highlight potential effects of climate change on southern California 
alluvial scrub, coastal sage scrub, mixed chaparral-sage scrub, and low-elevation 
chaparral vegetation groups. Finally, we discuss potential climate change effects in 
the context of additional nonclimatic drivers known to strongly influence patterns 
of vegetation structure in southern California and which are expected to interact 
with climate change—namely fire, invasive species, and land use—and we high-
light caveats regarding SDM use in planning and decisionmaking. 

Methods
Study Area
Our study area encompasses the South Coast hydrologic region (Calwater 2.2.1) 
(CIWMC 2004), excluding the Channel Islands but including adjacent hydrologic 
subareas from the Colorado River hydrologic region plus a 30-km buffer (fig. 1). 
This region lies within a globally recognized biodiversity hotspot (Myers et al. 
2000) where high plant diversity and endemism is intermixed with high human 
impact. Of California’s 39-million population, an estimated 18 million people (46 
percent) inhabit Los Angeles, Orange, Riverside, and San Diego Counties (U.S. 
Census Bureau 2015). Human activities and land use are concentrated in coastal 
lowland and low-elevation shrubland habitats. 

The climate in the region is typical of Mediterranean-type ecosystems with 
cool moist winters and hot dry summers. Oceanic influences moderate winter and 
summer temperatures along the coast (fig. 2), and precipitation declines sharply to 
the east of the mountains in the bordering arid desert ecoregions. Comparisons of 
30-year climate averages show recent warming in 1981–2010 relative to 1951–1980 
(fig. 2). Although precipitation was variable during this time period, CWD esti-
mated from the California Basin Characterization Model (CA-BCM) (Flint et al. 
2013) increased throughout most of our study area because warming temperatures 
increased evaporative demand. Climatic water deficit, which can be thought of as a 
measure of drought stress, can increase even with increased precipitation (Thorne 
et al. 2012).

Focal Taxa and Occurrence Data
We modeled suitable habitat for 44 plant taxa that are characteristic of southern 
California scrub and shrubland habitats and are important for ecological restoration 
(table 1). We chose taxa used in habitat restoration that are considered to be foun-
dational: either dominants or codominants, or indicator species of low-elevation 
shrubland communities. We categorized taxa into vegetation groups based on the 

Text continues on page 11.

6



Using Species Distribution Models with Climate Change Scenarios to Aid Ecological Restoration Decisionmaking

Figure 1—Southern California study area with (A) ecological sections (color key) and subsections (letters) and (B) South 
Coast hydrologic region and adjacent watersheds with 30-km buffer used for modeling extent. Data sources: ecological 
sections are from Goudey and Smith (1994) updated by Cleland et al. (2007); hydrologic regions with watersheds are from 
Calwater 2.2.1 (CIWMC 2004).
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Figure 2—Baseline (1951–1980) climate averages and recent change (1951–1980) relative to baseline in southern California. Climate 
variables: T  = minimum winter temperature December through February, T  = maximum summer temperature June through min max
August, PPT = annual precipitation, CWD = climatic water deficit. Black lines indicate ecological section boundaries; dark gray lines 
indicate ecological subsection boundaries. Climate data are based on PRISM 30-year averages, downscaled by the California Basin 
Characterization Model (Flint et al. 2013).
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Table 1—List of modeled plant taxa

Scientific namea Common name Family Life formb
Fire 

cresponse

Acmispon glaber var. brevialatus (Ottley) 
Brouillet

Deerweed, California 
broom

Fabaceae Subshrub S

Acmispon glaber (Vogel) Brouillet var. glaber Deerweed, California 
broom

Fabaceae Subshrub S

Adenostoma fasciculatum Hook. & Arn. var. 
fasciculatum

Chamise Roseaceae Shrub FS

Arctostaphylos glandulosa subsp. cushingiana 
(Eastw.) J.E. Keeley, M.C. Vasey & V.T. Parker

Cushing’s manzanita Ericaceae Shrub OR

Arctostaphylos glandulosa Eastw. subsp. 
glandulosa

Eastwood’s manzanita Ericaceae Shrub OR(FSd)

Arctostaphylos glandulosa subsp. mollis 
(J.E. Adams) P.V. Wells

Transverse Range 
manzanita

Ericaceae Shrub OR

Arctostaphylos glauca Lindl. Big-berry manzanita Ericaceae Shrub S
Artemisia californica Less. California sagebrush Asteraceae Subshrub FS
Ceanothus crassifolius Torr. var. crassifolius Hoaryleaf ceanothus Rhamnaceae Shrub S
Ceanothus cuneatus (Hook.) Nutt. var. cuneatus Buck brush Rhamnaceae Shrub S
Ceanothus leucodermis Greene Chaparral whitethorn Rhamnaceae Shrub FS
Ceanothus megacarpus Nutt. var. megacarpus Big-pod ceanothus Rhamnaceae Shrub S
Ceanothus oliganthus Nutt. Hairy ceanothus Rhamnaceae Shrub S
Ceanothus perplexans Trel. Cupped leaf ceanothus Rhamnaceae Shrub S
Ceanothus tomentosus Parry Woolly leaf ceanothus Rhamnaceae Shrub S
Ceanothus vestitus Greenea Mojave ceanothus Rhamnaceae Shrub S
Cercocarpus betuloides Nutt. var. betuloides Birch-leaf mountain 

mahogany
Rosaceae Shrub OR

Corethrogyne filaginifolia (Hook. & Arn.) Nutt. Common sandaster Asteraceae Suffru 
perennial 

OR

Deinandra fasciculata (DC.) Greene Fascicled tarplant Boraginaceae Annual herb S
Encelia californica Nutt. California encelia, 

bush sunflower
Asteraceae Subshrub OR

Encelia farinosa A. Gray ex Torr. Brittlebush, incienso Asteraceae Subshrub FS
Eriodictyon crassifolium Benth. var. crassifolium Thickleaf yerba santa Boraginaceae Subshrub FS
Eriodictyon crassifolium var. nigrescens Brand Bicolored yerba santa Boraginaceae Subshrub FS
Eriodictyon trichocalyx var. lanatum 

(Brand) Jeps.
San Diego yerba santa Boraginaceae Subshrub FS

Eriodictyon trichocalyx A. Heller var. trichocalyx Hairy yerba santa Boraginaceae Subshrub FS
Eriogonum fasciculatum Benth. var. fasciculatum Coastal California 

buckwheat
Polygonaceae Subshrub FS

9
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Table 1—List of modeled plant taxa (continued)

Scientific namea Common name Family Life formb
Fire 

cresponse

Eriogonum fasciculatum var. foliolosum (Nutt.) 
Abrams

Leafy California 
buckwheat

Polygonaceae Subshrub FS

Eriogonum fasciculatum var. polifolium (Benth.) 
Torr. & A. Gray

Mojave desert 
California buckwheat

Polygonaceae Subshrub FS

Eriophyllum confertiflorum (DC.) A. Gray var. 
confertiflorum

Golden yarrow Polygonaceae Suffru 
 perennial 

FS

Hesperoyucca whipplei (Torr.) Trel. Chaparral yucca Agavaceae Suffru rosette OR
Heteromeles arbutifolia (Lindl.) M. Roem. Toyon Roseaceae Shrub OR
Lepidospartum squamatum (A. Gray) A. Gray Scalebroom Asteraceae Shrub OR
Malacothamnus fasciculatus (Nutt. ex Torr. & A. 

Gray) Greene var. fasciculatus
Chaparral mallow Malvaceae Subshrub FS

Malosma laurina (Nutt.) Nutt. ex Abrams Laurel sumac Anacardiaceae Shrub FS
Phacelia minor (Harv.) Thell. ex F. Zimm. California bells Boraginaceae Annual herb S
Plantago erecta E. Morris California plantain, 

dot-seed plantain
Plantaginaceae Annual herb S

Prunus ilicifolia (Nutt. ex Hook. & Arn.) 
D. Dietr. subsp. ilicifolia

Islay, hollyleaf cherry Roseaceae Shrub OR

Quercus berberidifolia Liebm. Scrub oak Fagaceae Shrub OR
Rhamnus crocea Nutt. Spiny redberry Rhamnaceae Shrub OR
Rhamnus ilicifolia Kellogg Hollyleaf redberry Rhamnaceae Shrub OR
Rhus ovata S. Watson Sugar bush Anacardiaceae Shrub FS
Salvia apiana Jeps. White sage Lamiaceae Subshrub FS
Salvia mellifera Greene Black sage Lamiaceae Subshrub/

shrub
FS

Stipa pulchra Hitchc. Purple needlegrass Poaceae Bunchgrass FS
a Taxonomy follows the Jepson eFlora (Jepson Flora Project 2017) except for Ceanothus vestitus, where we follow the pervious treatment in Baldwin et 
al. (2012). The most recent eFlora treatment of Ceanothus vestitus places the taxon in Ceanothus pauciflorus DC. (Jepson Flora Project 2017).
b Growth forms: subshrubs are stiff to somewhat woody at base, stems do not die back each year; suffru perennial = suffrutescent perennial, 
branches stiff and sometimes somewhat woody at base but with substantial annual die-back of stems; suffru rosette = suffrutescent rosette, 
monocots with stiff leaves in a rosette from a semiwoody crown (no true wood).
c Fire response: S = obligate seeder; FS = facultative seeder (both seeds and resprouts); OR = obligate resprouter (seeds killed by fire) 
(Keeley et al. 2006).
d Some populations reseed as well as resprout after fire (Jan Beyers, personal observation).
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plant communities with which they are commonly associated (Sawyer et al. 2009): 
alluvial scrub, coastal sage scrub, mixed chaparral-sage scrub, and low-elevation 
chaparral (table 2). We define low-elevation chaparral as occurring on the lower 
slopes of southern California mountains from 300- to 1500-m elevation (lower 
chaparral sensu Schoenherr 1992) and mixed chaparral-sage scrub where the two 
communities intergrade along low elevations or south-facing slopes in chaparral. 
Vegetation groups are not mutually exclusive, and taxa listed in a group do not nec-
essarily occur together in local vegetation alliances or associations. Predominance 
in a particular vegetation association can depend upon successional stage, postfire 
disturbance, or both. Additionally, different assemblages within a vegetation group 
may occur within contrasting exposures or geographic regions.

We obtained occurrence data from the Consortium of California Herbaria, or 
(CCH) (CCH 2016), Calflora (Calflora 2016), alluvial scrub vegetation surveys 
from southern California (Buck-Diaz et al. 2011, Wirka 1997), and field surveys in 
chaparral and coastal sage scrub that we conducted in 2015. CCH provides a record 
of taxon occurrences based on herbarium specimens for which collection goals 
and collection intensity vary across taxa and locations. To capture taxon occur-
rences across ecological gradients, we augmented the CCH data with survey data 
that recorded the presence of all taxa. For the 2015 surveys, we first mapped the 
density of herbarium collections of the focal taxa to identify under-collected areas 
in the lower elevations of the Santa Ana Mountains, San Bernardino Mountains, 
San Jacinto Mountains, and the Gavilan Hills in Riverside County. We then used 
provisional seed zone boundaries (Bower et al. 2014) and ecological subsection 
boundaries (Cleland et al. 2007) to select survey locations that maximized sampling 
across topographic, climatic, and ecological gradients. At each survey location we 
recorded geographic coordinates and elevation using a global positioning system 
(GPS) (Garmin Oregon 6001), slope, aspect, and general soil characteristics. We 
noted the dominant vegetation and presence of any focal taxa within 10 m. We 
recorded additional focal taxa on contrasting slopes within 250 m, using binoculars 
for identifications in rugged terrain, and noted the direction and estimated distance 
from the GPS waypoint. 

1 The use of trade or firm names in this publication is for reader information and does 
not imply endorsement by the U.S. Department of Agriculture or the Riverside-Corona 
Resource Conservation District of any product or service.
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Table 2—Vegetation group assignments for focal plant taxa

Scientific name

aVegetation group

ALSC CSS CHAP MIXED

Acmispon glaber var. brevialatusb X X X X
Acmispon glaber var. glaberb X X X X
Adenostoma fasciculatum var. fasciculatum X X X
Arctostaphylos glandulosa subsp. cushingiana X
Arctostaphylos glandulosa subsp. glandulosa X
Arctostaphylos glandulosa subsp. mollis X
Arctostaphylos glauca X
Artemisia californica X X X
Ceanothus crassifolius var. crassifolius X
Ceanothus cuneatus var. cuneatus X
Ceanothus leucodermis X
Ceanothus megacarpus var. megacarpus X
Ceanothus oliganthus X
Ceanothus perplexans X
Ceanothus tomentosus X
Ceanothus vestitus X
Cercocarpus betuloides var. betuloides X X
Corethrogyne filaginifolia X X X X
Deinandra fasciculata X
Encelia californica X
Encelia farinosa X
Eriodictyon crassifolium var. crassifolium X X X
Eriodictyon crassifolium var. nigrescens X X X
Eriodictyon trichocalyx var. lanatum X X
Eriodictyon trichocalyx var. trichocalyx X X X
Eriogonum fasciculatum var. fasciculatum X X
Eriogonum fasciculatum var. foliolosum X X X X
Eriogonum fasciculatum var. polifolium X X
Eriophyllum confertiflorum var. confertiflorumb X X X
Hesperoyucca whipplei X X X X
Heteromeles arbutifolia X X
Lepidospartum squamatum X
Malacothamnus fasciculatus var. fasciculatusb X X X
Malosma laurina X X X X
Phacelia minorb X X X
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Table 2—Vegetation group assignments for focal plant taxa (continued)

Scientific name

Vegetation groupa

ALSC CSS CHAP MIXED

Plantago erecta X
Prunus ilicifolia subsp. ilicifolia X X
Quercus berberidifolia X
Rhamnus crocea X X X
Rhamnus ilicifolia X
Rhus ovata X X
Salvia apiana X X X
Salvia mellifera X X X X
Stipa pulchra X
a Vegetation groups are based upon the plant communities in which each taxon predominantly occurs: ALSC 
= alluvial scrub, CSS = coastal sage scrub, CHAP = low-elevation chaparral (305 to 1524 m), MIXED = 
chaparral-sage scrub.
b Common in early postfire chaparral.

We used the following criteria to ensure a high quality of occurrence records. 
We omitted herbarium record occurrences (1) having ≥2.5 km error or uncertainty 
associated with the geographic coordinates; (2) annotated or otherwise identified 
as hybrids or having introgression; or (3) planted or cultivated, including suspected 
roadside revegetation plantings or introductions. We only used Calflora records that 
were contributed by the rapid vegetation assessments conducted by the California 
Department of Fish and Wildlife and the U.S. Geological Survey Central Mojave 
Vegetation Mapping project. Because the majority of taxa modeled are long-lived, 
we included records collected from 1951 to present, assuming that herbarium 
collections in years after the 1951–1980 baseline climate period were likely from 
plants established during or close to the baseline time period. Including these recent 
collections increased our sample of occurrences with high-quality location data and 
was necessary to ensure the best possible model accuracy in representing species’ 
climatic niches (e.g., Feeley and Silman 2011). Similarly, we excluded all occur-
rences collected before 1950 because climate in southern California has already 
shifted since the early 20th century, increasing the likelihood that older records 
could reflect climatic conditions at plant establishment that differ from the baseline 
climate used in SDMs. A more recent time period for the baseline climate (e.g., 
1981–2010) could include climate conditions that have already changed since the 
establishment of the collected specimen and are no longer suitable for successful 
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reproduction and establishment (Svenning and Sandel 2013). We discuss this issue 
of vegetation disequilibrium, climate change, and SDM assumptions in appendix 6. 
We identified climatic outliers as any record occurring in an area of mean annual 
temperature or annual precipitation greater or equal to five standard deviations 
from the species’ mean. All climatic and geographic outliers were examined and 
excluded if the mapped coordinates did not reasonably match the locality descrip-
tion in the database. 

As species misidentification errors affect the accuracy and spatial predictions of 
SDMs (Costa et al. 2015), we visited major data contributors to CCH—the Univer-
sity of California and Jepson Herbaria at the University of California, Berkeley; the 
California Academy of Sciences Herbarium; Rancho Santa Ana Botanic Garden 
(RSA); and the Herbarium at the University of California, Riverside (UCR)—to 
verify the identification of the following easily confused Ceanothus taxa: C. 
cuneatus, C. perplexans, C. vestitus, C. tomentosus, and C. oliganthus. Previous 
taxonomic treatments list C. perplexans and C. vestitus as varieties of C. greggii. 
Where possible, we identified records of C. greggii missing an infraspecies deter-
mination to either C. perplexans or C. vestitus. At RSA and UCR, we also exam-
ined specimens of C. crassifolius, Acmispon glaber, and Arctostaphylos glandulosa 
to verify varietal status. At these two herbaria, we checked any focal taxa speci-
mens with dubious geographic locations for misidentification or labeling errors. 
Finally, we assigned infraspecific names for any record missing an infraspecific 
determination in our occurrence database when the infraspecies could reasonably 
be inferred from the record’s geographic location and the taxon description (app. 2). 

Climate Data
We downloaded 30-year averages of baseline (1951–1980) and midcentury 
(2040–2069) climate data at 270 m resolution from the CA-BCM (Flint et al. 2013). 
The CA-BCM applies a regional water-balance model to simulate hydrological 
responses to climate across the California hydrologic region (Flint et al. 2013). 
Monthly historical temperature and precipitation data are based on Parameter-
Elevation Relationships on Independent Slopes Model (PRISM) data (Daly et 
al. 1994) spatially downscaled by the gradient-inverse distance squared (GIDS) 
approach. We selected five general circulation models (GCMs) from phase five of 
the Coupled Model Intercomparison Project (CMIP5) (Taylor et al. 2012) under a 
business-as-usual greenhouse gas emission scenario, the representative concentra-
tion pathway (RCP) 8.5. The RCP 8.5 scenario corresponds to an increase in global 
radiative forcing of 8.5 W m-2 from preindustrial times through 2100 (van Vuuren 
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et al. 2011) and represents a high greenhouse gas future that most closely tracks our 
current emissions trajectory. The five GCMs were chosen to represent the range in 
projected precipitation and temperature change: CCSM4, CNRM-CM5, FGOALS-
G2, IPSL-CM5A-LR, and MIROC-ESM (fig. 3, app. 1). 

We calculated 19 bioclimatic variables (Busby 1991) from monthly tempera-
ture and precipitation 30-year averages. We then examined correlations among 
bioclimatic and hydrological CA-BCM variables, selecting a subset of variables 
for modeling that (1) are important in driving plant distributions in the Western  
United States (Rehfeldt et al. 2006, Stephenson 1998), (2) minimized correlations 
between variables (Pearson’s |r| < 0.8) (table 3), and (3) maximized model perfor-
mance. These variables were minimum winter temperature (T ) calculated asmin
the minimum temperature averaged over the coldest months (December through 
February), summer maximum temperature (T ) calculated as the maximummax
temperature averaged over the hottest months (June through August), temperature 
seasonality (T ) calculated as the standard deviation of the weekly mean tem-seas
peratures, precipitation seasonality (PPT ) calculated as the standard deviation ofseas
the weekly precipitation estimates expressed as a percentage of the annual mean of 
those estimates, precipitation of the warmest quarter (PPT ), precipitation ofsummer
the coldest quarter (PPT ), CWD, and AET. The last two variables, CWD andwinter
AET, reflect biologically relevant estimates of water balance that have been associ-
ated with vegetation distribution, structure, and mortality (Das et al. 2013; McIntyre 
et al. 2015; Stephenson 1990, 1998). We also included a variable for soil parent geol-
ogy (app. 2). Although different variables within the subset may contribute more or 
less to the habitat suitability for individual taxa, we included all eight variables for 
comparability of models across taxa. 

Land Use
We obtained contemporary urban and agricultural land use from the California 
State Department of Forestry and Fire Protection Fire and Resource Assessment 
Program vegetation map (FRAP 2015). This vegetation map is a compilation of 
best available land cover data from about 1990 to 2014 and is available as a raster 
of 30 m resolution. We used spatial overlays to exclude area already converted to 
human land-cover types from habitat suitability maps and habitat change calcula-
tions. We did not include projections for future land use. 
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Table 3—Pairwise Pearson’s correlation coefficients for climatic variables used in species 
distribution modeling

PPTseas PPTsummer PPTwinter Tseas AET CWD Tmin Tmax

PPTseas 1.000
PPTsummer -0.699 1.000
PPTwinter 0.520 0.075 1.000
Tseas -0.443 0.604 0.133 1.000
AET 0.231 0.088 0.552 -0.110 1.000
CWD 0.090 -0.494 -0.589 -0.326 -0.384 1.000
Tmin 0.511 -0.677 -0.139 -0.777 0.163 0.625 1.000
Tmax -0.226 0.060 -0.300 0.405 -0.035 0.449 -0.046 1.000

Pearson’s correlation coefficients calculated across occurrence localities. Climate variables: PPTseas = precipitation seasonality, 
PPTsummer = precipitation of the warmest quarter, PPTwinter = precipitation of the coldest quarter, Tseas = temperature seasonality, 
AET = actual evapotranspiration, CWD = climatic water deficit, Tmin = minimum winter temperature December–February, Tmax = 
summer maximum temperature June–August.

Modeling Approach
Species distribution models correlate occurrence data and spatially explicit environ-
mental data to predict species distributions in space and time (Elith and Leathwick 
2009, Guisan and Thuiller 2005). Using the modeling algorithm Maxent (version 
3.3.3 k) (Phillips et al. 2006), we used the occurrence data and environmental layers 
described above to predict suitable habitat for focal plant taxa under baseline and 
midcentury climate conditions. Maxent is a high-performing SDM method tailored 
to presence-only data (Elith et al. 2006, Merow et al. 2013, Phillips et al. 2006). For 
each taxon, we modeled the baseline (1951–1980) taxon-climate relationship, then 
forecast that model onto each of the five future climate scenarios to map future 
habitat suitability under midcentury (2040–2069) conditions. We ran models with 
the following settings: (1) linear, quadratic, and product features only; (2) default 
beta-regularization; (3) 10,000 bias-weighted background points (details below); and 
(4) logistic output ranging from zero to one. The modeling extent was restricted to
the study area described above (fig. 1). We implemented Maxent in R (R Core Team
2016) with the “dismo” package (Hijmans et al. 2016).

Spatial and temporal biases in natural history collections can reduce SDM 
predictive performance (Kadmon et al. 2004, Kramer-Schadt et al. 2013, Syfert et 
al. 2013). We corrected for sampling bias by weighting background sampling with 
a bias grid based on a target group (Phillips et al. 2009) consisting of digitized 
herbarium records for all vascular plants in southern California collected after 1950 
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(CCH 2016). Our aim was to produce geographic sampling bias in the background 
data that was similar to that of the occurrence data. The bias grid was derived from 
a Gaussian-kernel density map of the target group occurrences with a standard 
deviation of 100 km, rescaled from 1 to 20 (Elith et al. 2010). We then used this 
grid to weight background sampling within the study area. We restricted back-
ground sampling to within 100 km of known occurrences inside the study area. We 
investigated two additional methods to control for sampling bias but report results 
only for the bias grid approach, as it gave the highest performance with the least 
overfitting for the majority of focal taxa (see app. 2 for a detailed comparison of 
methods). Model complexity also affects predictive performance and transferability 
across space and time (Merow et al. 2014, Moreno-Amat et al. 2015, Warren and 
Seifert 2011). Overly complex (overfit) models produce predictions that reflect noise 
or sampling idiosyncrasies rather than a species’ environmental tolerances. Thus, 
we used only linear, quadratic, and product features to limit the complexity of the 
climate response curves created in Maxent.

We calculated future changes in habitat suitability from binary suitable 
habitat maps created using the maximum sensitivity plus specificity threshold 
(Jimenez-Valverde and Lobo 2007, Liu et al. 2013). For each taxon by future cli-
mate scenario, we calculated the percentage change in suitable habitat relative to 
baseline. We defined changes in future suitable habitat as stable = suitable under 
baseline and future conditions, loss = suitable under baseline but unsuitable under 
future conditions, or gain = unsuitable under baseline and becoming suitable under 
future conditions (fig. 4). We assumed unlimited dispersal within the study area 
for projections of suitability gain and assumed no dispersal (species are unable to 
disperse to new areas of suitable habitat) for projections of suitability loss. These 
dispersal assumptions are meant to cap the two extremes of potential habitat change 
under future climate. Expansion into newly suitable habitat will depend on intrinsic 
species traits and habitat connectivity. We excluded areas already converted to 
human land cover types from all suitable habitat calculations. To show how fore-
casted habitat suitability varies with climate scenario, we created consensus maps 
for each species. Consensus maps show the degree of agreement in future suitable 
habitat across the five climate scenarios, where values range from 1 (no agreement) 
to 5 (full agreement). To visualize potential climate change effects on different 
vegetation groups, we overlaid the suitability maps of the individual taxa associated 
with each group: alluvial scrub, coastal sage scrub, mixed chaparral-sage scrub, and 
low-elevation chaparral (table 2). We excluded bunchgrass and annual growth forms 
from vegetation group maps, as these are not structurally dominant elements of our 
vegetation groups. 
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Figure 4—Example of occurrence data and baseline (1951–1980) and projected midcentury 
(2040–2069) suitable habitat for Rhus ovata. Midcentury suitable habitat maps show agreement 
across the five climate model scenarios and range from one (no agreement) to five (full agreement). 
Projected change in suitable habitat is defined as follows: stable = suitable under baseline and future 
conditions; loss = suitable under baseline but unsuitable under future conditions; gain = unsuitable 
under baseline and becoming suitable under future conditions. In all maps, suitable habitat already 
converted to human land uses (FRAP 2015) is masked in dark gray.
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Model Evaluation
We evaluated overall model performance by the area under the receiver operator 
curve statistic (AUC) (Fielding and Bell 1997, Lobo et al. 2008) averaged over 
fivefold cross-validation replicates. AUC ranges from 0 to 1, where a score of 1 
indicates perfect discrimination between presence and background, 0.5 indicates 
predictive performance no better than random, and < 0.5 indicates predictive 
performance worse than random. To evaluate model overfitting, we calculated the 
difference between the training and test AUC (AUC ); the smaller the difference,diff
the lesser the degree of overfitting in the model (Warren and Seifert 2011). We also 
included two threshold-dependent measurements of performance, the omission 
rate at the 10 percent test threshold (OR ) and the omission rate at the maximum10p
sensitivity plus specificity threshold (OR ) used to create binary suitabilitymSSS
maps. The omission (or false negative) rate is the proportion of test occurrences 
incorrectly classified and provides information about the discriminatory ability of 
the model at a particular threshold. We identified important climatic variables from 
Maxent’s percentage of permutation importance metric. Permutation importance is 
calculated in Maxent by randomly permuting the values of each variable among the 
training points and measuring the drop in training AUC. A large decrease indicates 
heavy model dependence on a particular variable and high permutation importance. 

Results
Midcentury Climate Exposure in Southern California
Under the five climate scenarios we considered, projected midcentury (2040–2069) 
increase in minimum winter and summer maximum temperatures averaged across 
the Southern California Coast (261B) ecological section ranged from 2.0 ± 0.3 °C 
to 3.0 ± 0.2 °C (mean ±SD) and 2.2 ± 0.3 °C to 3.0 ± 0.3 °C, respectively, relative 
to 1951–1980 averages (table 4, fig. 3). The direction and magnitude of precipita-
tion change varied across the five climate scenarios, ranging from a 27 ± 3 percent 
decrease (MIROC-ESM) to a 16 ± 6 percent increase (CNRM-CM5). Projected 
increases in winter minimum and summer maximum temperatures tended to be 
slightly higher in the Southern California Mountains and Valleys (M262B) ecologi-
cal section compared to the Southern California Coast (261B), ranging from 2.2 
± 0.3 °C to 3.0 ± 0.3 °C for winter and 2.4 ± 0.4 °C to 3.6 ± 0.4 °C for summer, 
relative to 1951–1980 averages. Projected change in precipitation ranged from a 29 
± 4 percent decrease (MIROC-ESM) to a 12 ± 7 percent increase (CNRM-CM5). 
Climatic water deficit increased in both ecological sections even under scenarios of 
increased precipitation (table 4, app. 1). The MIROC-ESM scenario had the greatest 
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Table 4—Recent and projected midcentury (2040–2069) climate change in southern California 
climate variables relative to baseline (1951–1980) conditions, summarized (mean ± standard 
deviation) by ecological section

Variable

Baseline 
climate

Change in climate relative to baseline  

Historical Projected midcentury (2040–2069
1951–1980 1981–2010 CCSM4 CNRM FGOALS IPSL MIROC

Southern California Coast (261B):

AET (mm) 322 ± 44 11 ± 7 -12 ± 12 21 ± 15 -12 ± 15 2 ± 12 -57 ± 24
CWD (mm) 1034 ± 70 28 ± 12 82 ± 14 60 ± 17 102 ± 17 101 ± 15 150 ± 24
PPTseas 97 ± 5 5 ± 2 -1 ± 2 25 ± 3 3 ± 5 -3 ± 1 -5 ± 3
PPTsummer (mm, %) 10 ± 2 -29 ± 12 33 ± 16 24 ± 34 66 ± 36 -1 ± 27 -33 ± 11
PPTwinter (mm, %) 236 ± 67 8 ± 3 0 ± 5 35 ± 7 -7 ± 6 -6 ± 4 -31 ± 5
Tmin (°C) 6.3 ± 1.5 0.7 ± 0.3 2.0 ± 0.3 2.4 ± 0.3 2.3 ± 0.3 2.9 ± 0.3 3 ± 0.2
Tmax (°C) 27 ± 3.2 0.4 ± 0.4 2.2 ± 0.3 2.5 ± 0.3 2.8 ± 0.3 3.5 ± 0.3 3 ± 0.4
Tseas 362 ± 77 -3 ± 7 13 ± 9 27 ± 7 27 ± 8 32 ± 8 6 ± 9

Southern California Mountains and Valleys (M262B):

AET (mm) 291 ± 79 13 ± 11 3 ± 27 31 ± 22 16 ± 26 17 ± 30 -32 ± 42
CWD (mm) 996 ± 167 32 ± 15 96 ± 24 84 ± 27 107 ± 27 123 ± 32 160 ± 33
PPTseas 88 ± 11 -16 ± 15 29 ± 12 33 ± 21 83 ± 33 -10 ± 11 -9 ± 22
PPTsummer (mm, %) 24 ± 14 9 ± 7 -1 ± 6 33 ± 8 -9 ± 6 -8 ± 5 -35 ± 4
PPTwinter (mm, %) 256 ± 122 19 ± 12 -4 ± 15 83 ± 47 -21 ± 18 -22 ± 17 -89 ± 43
Tmin (°C) 2.0 ± 3.0 0.7 ± 0.3 2.2 ± 0.3 2.6 ± 0.3 2.4 ± 0.3 3.0 ± 0.3 3.0 ± 0.3
Tmax (°C) 31.2 ± 3.3 0.3 ± 0.3 2.4 ± 0.4 2.6 ± 0.4 2.8 ± 0.4 3.6 ± 0.4 2.9 ± 0.4
Tseas 591 ± 75 -1 ± 9 14 ± 10 25 ± 8 24 ± 8 31 ± 8 3 ± 9

Ecological sections from Goudey and Smith (1994) updated by Cleland et al. (2007).

Climate variables: AET = actual evapotranspiration, CWD = climatic water deficit, PPTseas = precipitation seasonality,
PPTsummer = precipitation of the warmest quarter, PPTwinter = precipitation of the coldest quarter, Tmin = minimum winter 
temperature December–February, Tmax = maximum summer temperature June–August, Tseas = temperature seasonality. 

Change in annual precipitation is calculated as the percentage of change relative to baseline.

Global circulation models used: CCSM4, CNRM (= CNRM-CM5 in text), FGOALS (= FSGOALS-G2 in text), IPSL (= IPSL-
CM5A-LR in text), and MIROC (= MIROC-ESM in text).  
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projected increase in CWD throughout our southern California study area. Across 
all the future scenarios we considered, CWD increased notably in section M262B 
subsections g, h–San Gorgonio Mountains, l–San Jacinto Foothills-Cahuilla Moun-
tains (eastern portion), m–San Jacinto Mountains, and o–Palomar-Cuyamaca Peak 
(eastern portion of the Peninsular Ranges, especially the Laguna Mountains). 

Species Distribution Model Performance
Overall, Maxent models had high performance (app. 3). For the 44 taxa modeled, 
AUC  scores ranged from 0.728 to 0.959 with a median score of 0.830. Omission test
rate at the 10 percent test threshold (OR ) ranged from 0.10 to 0.18. Higher10p
AUC  scores did not necessarily translate to higher model performance in termstest
of omission rate. For example, Arctostaphylos glandulosa subsp. mollis had among 
the highest overall model performance in terms of AUC  (0.926) but lowesttest
performance in terms of omission rate at the 10 percent test threshold (0.18). The 
importance of environmental variables in models varied across taxa (app. 3). Tem-
perature seasonality (Tseas) was most frequently important, ranking most important 
for 13 taxa. Climatic water deficit ranked most important for nine taxa, and winter 
rainfall (PPTwinter) ranked most important for six taxa. Also worth noting is 
precipitation seasonality (PPTseas). Although ranked most important for only three 
species, two of those species were projected to have among the greatest losses in 
habitat suitability (Ceanothus perplexans and Eriodictyon trichocalyx var. lanatum).

Baseline suitable habitat maps generally matched the known distribution of 
most taxa, with a few exceptions (app. 4). Models of Eriodictyon crassifolium var. 
nigrescens predicted baseline suitable habitat in areas of San Diego County where 
occurrence data were excluded from our models and where E. crassifolium var. 
crassifolium occurs (see app. 2). The model of Ceanothus vestitus may overpredict 
baseline suitable habitat in the Peninsular Ranges or may reflect the taxonomic 
uncertainty between C. vestitus and C. perplexans in the area. Previously consid-
ered varieties of C. greggii, these taxa are now treated as separate species. Her-
barium records suggest C. perplexans is more common in the Peninsular Ranges, 
but the degree to which the species overlap in this region has not yet been closely 
studied. Therefore, it is unclear whether our model is picking up suitable habitat in 
the Peninsular Ranges that is indeed occupied by the C. vestitus or overpredicting 
into the range of C. perplexans. In both cases, taxonomic uncertainties may be 
affecting model predictions. Two of the 44 taxa, Encelia farinosa and Eriogonum 
fasciculatum var. polifolium, have geographic distributions that extend significantly
into desert ecoregions much more arid than the portion of the species range we 
model in our study area. These range truncations, as well as those to the north and 
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south of the study area, may affect future habitat suitability projections. Lastly, 
suitable habitat maps for Lepidospartum squamatum should be interpreted with 
caution. Lepidospartum squamatum is sensitive to the substrate and fluvial dynam-
ics of alluvial fans and confined outwashes, factors that were not directly measured 
by our environmental predictors. 

Projected Changes in Habitat Suitability
Projected midcentury (2040–2069) changes in suitable habitat varied widely across 
taxa and climate scenarios (table 5, apps. 3 and 4), including among taxa in the 
same genus and family. For example, in the family Rhamnaceae, the chaparral 
shrub C. crassifolius var. crassifolius was projected to have among the highest 
degree of stable suitable habitat of all modeled taxa, with >90 percent of baseline 
habitat maintaining future suitability under all five GCMs. In contrast, C. perplex-
ans was projected to have among the greatest losses of suitable habitat, >50 percent, 
under three of five GCMs. Rhamnus ilicifolia, another chaparral shrub, had highly 
variable suitability projections (32 to 99 percent stable) (fig. 5). Rhamnus crocea, 
which occurs in alluvial scrub, chaparral, and mixed chaparral-sage scrub, had even 
greater variability in suitability projections (2 to 99 percent stability) across the 
GCMs we considered. 

The climate scenarios with the greatest projected loss of suitable habitat for 
most taxa were the two scenarios with the most extreme directional changes in 
precipitation: CNRM-CM5 (wettest) and MIROC-ESM (driest). Taxa differed 
in the direction of the precipitation shift that resulted in the greatest loss of suit-
able habitat. Twelve taxa showed projected losses of ≥50 percent under the driest 
climate scenario, most of which were woody chaparral shrubs (app. 3). Fourteen 
taxa showed projected losses of ≥50 percent under the wettest climate scenario, 
including a number of taxa associated with coastal sage scrub such as Acmispon 
glaber var. glaber, Encelia californica, Eriogonum fasciculatum var. fasciculatum, 
Deinandra fasciculata, and Salvia apiana. 

Overall, the majority of plant taxa we modeled had a high degree of stable 
future suitable habitat, with 31 taxa projected to have ≥75 percent of baseline 
suitable habitat maintaining suitability midcentury under at least three future 
climate scenarios (table 5). Eleven taxa had ≥75 percent of baseline suitable habitat 
maintaining suitability across all five GCMs (Artemisia californica, Ceanothus 
crassifolius var. crassifolius, Encelia farinosa, Eriodictyon crassifolium var. crassi-
folium, Eriogonum fasciculatum var. foliolosum, Hesperoyucca whipplei, Malosma 
laurina, Phacelia minor, Quercus berberidifolia, Rhus ovata, and Salvia mellifera). 
Seven taxa had projected losses of baseline suitable habitat of >50 percent under at 
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Figure 5—Examples of contrasting patterns of projected change in suitable habitat under midcentury (2040–2069) climate for three 
species, (A) Ceanothus perplexans (high loss), (B) Rhamnus ilicifolia (variable), and (C) C. crassifolius var. crassifolius (high stability). 
Maps show agreement across the five climate model scenarios and range from one (no agreement) to five (full agreement). Projected 
change in suitable habitat is defined as follows: stable = suitable under baseline and future conditions; loss = suitable under baseline but 
unsuitable under future conditions; gain = unsuitable under baseline and becoming suitable under future conditions. In all maps, suitable 
habitat already converted to human land uses (FRAP 2015) is masked in dark gray.
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least three GCMs (Acmispon glaber var. glaber, Arctostaphylos glandulosa subsp. 
cushingiana, Ceanothus perplexans, C. vestitus, Corethrogyne filaginifolia, E. 
trichocalyx var. lanatum, Eriophyllum confertiflorum var. confertiflorum). Some 
of these taxa with large losses in suitable habitat also occur in areas of high CWD 
exposure (e.g., ecological section M262B subsection near the Palomar Mountains 
and Cuyamaca Peak), such as Ceanothus perplexans and Eriodictyon trichocalyx 
var. lanatum. Corethrogyne filaginifolia, however, is widespread in our study area, 
yet had among the greatest projected loss in suitable habitat of all modeled taxa (50 
to 79 percent loss). 

We found examples of contrasting patterns of projected habitat suitability 
change for varieties within the same species. Acmispon glaber var. glaber had much 
greater projected loss of suitable habitat (42 to 99 percent) compared to A. glaber 
var. brevialatus (2 to 35 percent). Both varieties had the greatest loss of suitable 
habitat under the wettest climate scenario, but A. g. var. brevialatus fared better 
with 35 percent loss compared to 99 percent loss for A. g. var. glaber. Similarly, 
Eriodictyon trichocalyx var. lanatum had a much greater loss in suitable habitat 
(36 to 100 percent) compared to E. trichocalyx var. trichocalyx (9 to 73 percent). 
Interestingly, these varieties strongly differed as to which climate scenario resulted 
in the greatest suitable habitat loss. The wettest scenario resulted in 100 percent loss 
of suitable habitat for E. t. var. lanatum, but only 9 percent loss for E. t. var. tricho-
calyx, while the driest scenario resulted in 36 percent loss for E. t. var. lanatum and 
73 percent loss of suitable habitat for E. t. var. trichocalyx. 

Although we did not explicitly model plant communities, the multitaxon suit-
able habitat overlays revealed patterns for associated vegetation groups that were 
less readily apparent in maps of individual taxa (fig. 6, app. 5). Spatial patterns of 
projected suitable habitat loss, or climate exposure, varied across future climate 
scenarios and vegetation groups. All vegetation groups—alluvial scrub, coastal 
sage scrub, low-elevation chaparral, and mixed chaparral-sage scrub—had large 
projected suitability losses under the wettest future climate scenario (CNRM-
CM5). Many taxa associated with low-elevation chaparral also had large projected 
suitable habitat losses under the driest scenario (MIROC-ESM). For low-elevation 
chaparral, suitable habitat losses were most pronounced in the low elevations of the 
Southern California Mountains and Valleys (M262B) ecological section. Coastal 
sage scrub taxa, in contrast, had the most pronounced suitable habitat losses in the 
Southern California Coast (261B) ecological section. Baseline and future suitable 
habitat for coastal sage scrub taxa also coincided geographically with a high degree 
of human land use. Larger unconverted areas of stable habitat suitability occurred 
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in coastal Orange and San Diego Counties for alluvial scrub and coastal sage scrub 
taxa and in portions of the Santa Monica, San Gabriel, and Santa Ana Mountains 
for low-elevation chaparral and mixed chaparral-sage scrub taxa. Overlays for all 
vegetation groups showed potential gains in suitable habitat with increasing eleva-
tion in the Transverse and Peninsular Ranges under all five future climate scenarios 
(app. 5). 

Discussion
Species distribution models can be a valuable tool for conservation and natural 
resource management decisionmaking when applied thoughtfully and in concert 
with expert knowledge about the biology, ecological relationships, population 
dynamics, and demographics of the species of interest. Habitat suitability maps 
provide insights about which species might be used most successfully for restora-
tion in the face of an uncertain future, and, when paired with climate-adjusted 
provenancing strategies (e.g., Prober et al. 2015), provide information on where 
one might collect material for any particular restoration site. One of the largest 
hurdles to incorporating climate change into decisionmaking is the uncertainty 
in future climate. We explored this uncertainty by considering five scenarios that 
span a range of future conditions for southern California, including both increases 
and decreases in precipitation. Note, however, that the actual climate conditions at 
midcentury may not be encompassed by these five scenarios. 

Habitat suitability forecasts are best interpreted as an estimate of potential 
climate exposure (the nature and degree of projected change in climate at midcen-
tury), as our models focus on climatic predictors rather than other factors that may 
influence species distribution, such as biotic interactions or disturbance regime. 
Projected loss in suitability suggests high future climate stress or exposure, but 
inferring extinction risk or population persistence requires coupling SDMs with 
demographic models (Dawson et al. 2011; Franklin et al. 2014, 2016), which we 
were unable to do given the lack of detailed demographic data for nearly all taxa. 
Climate exposure estimates from SDM projections can be evaluated in combination 
with factors related to the sensitivity and adaptive capacity of a species to assess 
vulnerability under climate change (Butt et al. 2016, Estrada et al. 2015). However, 
we caution against transferring our regional model results outside our focal area, 
as those taxon-climate relationships may differ from the ones we modeled. Addi-
tionally, our restricted occurrence dataset could result in underpredicting suitable 
climate space and overpredicting climate-driven suitability loss (e.g., Barbet-Massin 
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et al. 2010). Finally, there are a number of methodological assumptions for SDMs 
that should be taken into consideration when using modeling results for practical 
applications. These are explicitly recognized in appendix 6. 

Habitat Suitability Under Projected Climate Change
In California’s environmentally heterogeneous landscapes, the geographic ranges of 
species can vary tremendously in extent and habitat attributes. Our regional models 
focus on projected changes in suitable habitat under climate change specifically 
for southern California. Projections of future habitat suitability for focal shrubland 
taxa varied widely depending on the climate scenario considered. Future climate 
scenarios with the most extreme directional changes in precipitation at midcentury 
had the greatest projected losses of suitable habitat for most taxa. The wettest 
scenario (CNMR-CM5) had the greatest departure from baseline conditions with 
respect to novel climate combinations. Our choice to limit SDM extrapolation in 
areas of novel climates may have contributed to the high projected losses for some 
taxa under this scenario. The driest scenario (MIROC-ESM) produced high losses 
of suitable habitat for many plant taxa. It also had the greatest increase in climatic 
water deficit (CWD) of all five future climate scenarios. 

Given the strong association between water availability and vegetation structure 
and composition in California (e.g., Jin and Goulden 2014), shifts toward a hotter, 
drier climate like that projected by MIROC-ESM could be expected to have large 
effects on southern California vegetation. The majority of taxa with high suitability 
loss under the MIROC-ESM scenario were woody chaparral shrubs, suggesting that 
low-elevation chaparral shrublands may be vulnerable to increased drought stress 
in southern California. Thorne et al. (2016) also predicted high climate exposure 
and loss of suitability for chaparral at the macro-group level, particularly in low-ele-
vation areas in southern California. Differential response to drought stress among 
chaparral species (Coates et al. 2015, Frazer and Davis 1988, Venturas et al. 2016) 
may result in changes in chaparral structure and composition as climate shifts. 
Future increases in precipitation extremes and interannual variability (Berg and 
Hall 2015, Berg et al. 2015) may also strongly affect southern California vegetation, 
although we did not directly address these changes in our modeling. SDM overlays 
of multiple taxa provide a first pass at predicting climate change effects on shru-
bland vegetation groups. Areas that maintain suitable habitat for a large number of 
taxa in vegetation groups may act as important refugia under future climate change. 
Individualistic shifts of taxa in response to climate change (Huntley 1991), however, 
will have implications for the structure and composition of plant communities and 
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ecosystems, such as the potential for emergent novel species assemblages with no 
modern analog or novel biotic interactions (Jackson and Overpeck 2000, Williams 
and Jackson 2007).

Many of the taxa we modeled showed high stability in future suitable habitat 
under projected midcentury climate conditions, which contrasts with recent model-
ing studies predicting large habitat losses for southern California plant taxa under 
climate change (e.g., Principe et al. 2013, Riordan and Rundel 2014). For example, 
we predicted a high degree of stable future suitable habitat under midcentury cli-
mate for Artemisia californica in southern California (92 to 100 percent of baseline 
suitable habitat), while Principe et al. (2013) predicted a 78 precent loss. Thorne 
et al. (2016) and Riordan and Rundel (2014) also predicted greater losses of suit-
able habitat for dominant coastal sage scrub taxa both at mid and late 21st century 
compared to our regional modeling results. Factors that may have contributed to 
the differences between studies include, but are not limited to, GCM and emis-
sion scenario selection, study area extent, source of occurrence data, and spatial 
resolution of climatic data. Our models used higher resolution (270 m) climate data 
that may better identify topographically buffered areas maintaining stable climate 
conditions (Dobrowski et al. 2009, Franklin et al. 2013, Meineri and Hylander 2017) 
compared to models built on coarser 1 km resolution climate data, such as Riordan 
and Rundel (2014) and Principe et al. (2013). 

The infraspecific differences in projected midcentury suitable habitat that we 
found highlight the need to consider within-species variation when forecasting 
future climate change effects in southern California. Modeling at the infraspecies 
level can improve model performance, revealing divergent patterns of potential 
effects of climate change that are masked when modeling at the species level (e.g., 
Pearman et al. 2010). Furthermore, incorporating intraspecific genetic information 
into SDMs can provide more realistic distribution models and improve forecasts 
of range shifts, especially if infraspecies are adapted to different environments 
(Gotelli and Stanton-Geddes 2015, Marcer et al. 2016). Plant populations are often 
adapted to their local environments and can vary in genetic structure and traits 
across even relatively short distances within a species’ range (reviewed in Linhart 
and Grant 1996). Valladares et al. (2014) showed that when population differentia-
tion (phenotypic plasticity and local adaptation) and dispersal restrictions are 
accounted for in SDMs, models predict greater losses in suitable habitat under 
climate change than when assuming a homogenous species range with unlimited 
dispersal. Species’ traits and interactions with dispersal agents also ought to be 
considered, as both can profoundly affect migration rates, isolation, expansion of 
species range, and the extent to which populations can adapt to new conditions 
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(Aitken et al. 2008). Although we were unable to incorporate population-level 
genetic variation in our SDMs, we emphasize the importance of considering genetic 
variation and dispersal ability, where available, when applying modeling results for 
restoration in areas of high environmental heterogeneity like southern California. 
For example, Richardson et al. (2014) showed that genetically distinct warm- and 
cold-adapted ecotypes in blackbrush (Coleogyne ramosissima Torr.) differed in 
their predicted occupancy of contemporary and future climate space, with the 
warm-adapted ecotype dominating contemporary climate space and the cold-
adapted ecotype dominating future climate space and newly suitable habitat that 
became available at higher latitudes and elevations. 

Climate Change, Land Use, and Fire
Fire, invasive species, and human land use are major drivers of vegetation change in 
southern California. For example, a combination of human land use, frequent fire, 
invasion by exotic annuals, grazing, and air pollution have greatly reduced coastal 
sage scrub (Minnich and Dezzani 1998; O’Leary 1990, 1995; Westman 1981). In 
southern California, contemporary fire-return intervals for coastal sage scrub and 
chaparral are 30 to 40 years (Keeley and Fotheringham 2001), which is already 
shorter than pre-European settlement return intervals (Safford and Van de Water 
2014). Too-frequent fires and other human disturbance can lead to a shift in domi-
nance to nonnative annual grasses (Fleming et al. 2009, Talluto and Suding 2008). 
Nitrogen deposition from air pollution and severe drought enhance these shifts in 
coastal sage scrub, slowing postfire succession and increasing nonnative grass cover 
(Kimball et al. 2014). Once established, nonnative grasses can further promote high 
fire frequencies by carrying fire easily where ignitions are plentiful, as they are in 
most of southern California (D’Antonio and Vitousek 1992, Faivre et al. 2014, Keeley 
and Syphard 2017). In addition, interacting drivers of vegetation change such as fire 
can complicate and confound climate change signals (e.g., Schwilk and Keeley 2012). 
Thus, fire, land use, and invasive species could interact with changing climate to 
cause vegetation change, even if the projected vulnerability to climate change alone 
is relatively low. Novel climate conditions may also facilitate new invasive species or 
affect existing biotic interactions (Schweiger et al. 2010).

In the Western United States, warming temperatures exacerbate water deficit 
and drought (Williams et al. 2015), which may affect fuel conditions and increase 
wildfire activity (Westerling et al. 2006), including fire severity and intensity (van 
Mantgem et al. 2013). In southern California, the worst fire conditions occur during 
Santa Ana wind events in autumn, but projected warmer and drier conditions mid-
century could lead to a longer fire season and cause an increase in the area burned 

32



Using Species Distribution Models with Climate Change Scenarios to Aid Ecological Restoration Decisionmaking

by fire, whether or not it occurs during a Santa Ana event (Jin et al. 2015, Yue et al. 
2014). Because climatic conditions are already suitable for massive fires most years 
in southern California, human activity has a large effect on ignition frequency and 
wildfire activity (Faivre et al. 2014, Keeley and Syphard 2016). A projected increase 
in southern California’s population of over 50 percent by midcentury (Sanstad et al. 
2011) will likely further alter fire regimes and contribute to additional habitat loss 
and fragmentation, all of which could affect vegetation response to climate change. 

Habitat fragmentation poses a significant threat to many species’ persistence. 
Much of the lower elevation of the southern California landscape has a high degree 
of habitat conversion and fragmentation, the result of interrelated effects of urban-
ization, altered fire regimes, and invasive species (especially nonnative grasses and 
forbs). Local extinctions can stem from direct habitat loss owing to land develop-
ment, but also indirectly from the effects of habitat degradation and fragmentation. 
Reduced population sizes in habitat fragments are more susceptible to inbreeding 
depression and extirpation from demographic stochasticity (Frankham 1995, Neel 
2008, Richards 2000). The high degree of human land use in southern California 
is a considerable barrier to dispersal and gene flow and could negatively affect 
the adaptive capacity and ability of some species to move across the landscape in 
response to changing conditions (Fahrig 1997, Krosby et al. 2010). 

Life history traits, especially postfire regeneration response, are also important 
in understanding the influence of different environmental drivers of vegetation 
change (Swab et al. 2012, Syphard et al. 2013). In southern California, seedling 
recruitment of many shrubs is stimulated by fire (Keeley et al. 2006, Keeley and 
Keeley 1981, Keeley and Zedler 1978). Obligate resprouters regenerate after fire 
solely by vegetative resprouts, while postfire seeders can either be obligate seeders 
that cannot resprout after fire or facultative seeders that recruit postfire through 
seeds and resprouting (Keeley et al. 2012). Too-frequent fires can cause shifts in 
dominance by reducing obligate seeders on a site (Syphard et al. 2006, Zedler et 
al. 1983) or lead to type conversion to grass-dominated vegetation (Haidinger and 
Keeley 1993, Lippitt et al. 2013). Modeling studies linking population dynamics, 
climate change, land use, and fire highlight the substantial threat of short-interval 
fire regimes on obligate seeder persistence in southern California (Syphard et al. 
2013). The interaction between fire and drought can also affect postfire regenera-
tion in chaparral. Facultative seeding and obligate resprouting shrub species may 
be able to tolerate shorter fire-return intervals than obligate seeding species (Lucas 
et al. 2013), but they are susceptible to severe drought following fire that causes 
high seedling mortality (Frazer and Davis 1988) as well as increased mortality 
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of resprouts (Pratt et al. 2014). Seedlings of obligate seeders have comparatively 
higher tolerance to water stress and postfire drought (Pratt et al. 2008), but they are 
particularly vulnerable to short fire-return intervals. 

Despite uncertainty in projections of future drought and precipitation, warming 
temperatures are predicted to increase annual climatic water deficits regardless of 
the direction in future precipitation change (Thorne et al. 2012). Recent extreme 
and prolonged drought in California could be indicative of a trend of continuing 
hot droughts in the Anthropocene characterized by high plant mortality rates as 
physiological thresholds are exceeded (Allen et al. 2015, Overpeck 2013). Although 
our modeling approach is best used to understand potential shifts in climate expo-
sure, rather than to infer mechanisms of species response to climate change, high 
projected losses in habitat suitability may suggest increased mortality for some 
chaparral species. Chaparral shrubs tend to have lower drought tolerance and to 
occur in more mesic and higher elevation areas than drought-deciduous sage scrub 
species (Harrison et al. 1971, Miller and Poole 1979, Mooney and Dunn 1970). Thus 
high projected habitat suitability losses for low-elevation chaparral species under the 
driest future scenario may translate to future increases in mortality. Structure and 
composition within vegetation types may shift depending on differential species tol-
erance to drought (Pratt et al. 2007, 2014; Venturas et al. 2016), as well as differential 
responses to changes in wildfire frequency and intensity (Keeley et al. 2005, 2006).

Spatial context is also important when evaluating the vulnerability of southern 
California plant species to multiple interacting threats. At high fire-return inter-
vals, fire tends to be the most serious threat for obligate seeding shrub species, 
compared to projected land use or climate change (Franklin et al. 2014, Regan et al. 
2010, Syphard et al. 2013). At longer fire-return intervals, however, the rankings of 
projected threats vary by species and depend on the spatial context (Syphard et al. 
2013). Regan et al. (2010) found that a small degree of habitat fragmentation may 
actually be beneficial for the obligate seeder Ceanothus perplexans if it spatially 
and temporally decouples fire events, though the negative impact of habitat loss 
typically outweighed this benefit as fragmentation increased. For species that are 
already embedded in urban landscapes, such as the rare obligate seeder C. verruco-
sus (not modeled in our study), climate change may pose the greatest threat, result-
ing in population decline and increased local extirpation (Lawson et al. 2010). It is 
also possible that climate change may benefit some plant taxa. Our modeling results 
suggest that many southern California shrub taxa may retain and even gain suitable 
habitat under projected climate change. Drought-tolerant species such as C. crassi-
folius, whose seedlings are particularly tolerant of water stress (Pratt et al. 2008, 
2014), may be able to expand with moderate increases in temperature and climatic 

34



Using Species Distribution Models with Climate Change Scenarios to Aid Ecological Restoration Decisionmaking

water deficit so long as fire frequencies do not exceed the threshold needed for the 
species to reach reproductive maturity. Therefore, it is important to consider SDM 
results such as ours within a broader spatial framework of environmental change. 

Management Implications
Effective land management under rapid environmental change may call for manag-
ers to consider multiple spatial and temporal scales, address diverse threats and 
drivers of environmental change, and incorporate scenarios of climate change into 
many aspects of planning and action (e.g., Abrahms et al. 2017, Heller and Zavaleta 
2009, Lawler 2009). For ecological restoration, practitioners are beginning to 
redefine project goals and procedures in the context of recent and projected future 
climate change, from the selection of reference targets to sourcing of plant mate-
rial (Breed et al. 2013, Harris et al. 2006, Havens et al. 2015, Jackson and Hobbs 
2009). Understanding how climate is projected to change in southern California 
and the potential effects on target species are important considerations for restora-
tion efforts in the region. Fortunately, a variety of tools and frameworks have been 
developed to help facilitate the incorporation of climate change into planning and 
decisionmaking (reviewed in Abrahms et al. 2017). The SDM results from this 
study can be consulted to address some important questions raised in the Abrahms 
et al. (2017) review, including (1) how climate is projected to change in the project 
area, (2) how the suitable habitat of a potential project taxon is expected to shift, 
(3) how vulnerable potential combinations of taxa are to the projected changes, (4)
what suite of taxa is projected to remain or become appropriate for the project site,
(5) and what management strategies might affect project outcomes.

Uncertainty, whether from a lack of knowledge in how species and ecosystems
will respond to change (e.g., Walther 2010) or due to uncertainty about the mag-
nitude and direction of future climate change itself (e.g., Stott and Kettleborough 
2002), can impede decisionmaking. Scenario planning facilitates incorporating 
uncertainty into decisionmaking by providing a framework to evaluate the robust-
ness of a decision across a range of plausible but contrasting futures (Peterson 
et al. 2003). Considering multiple climate scenarios allows planners to address 
uncertainty about future climate change and identify strategies that are success-
ful across a range of future conditions. Our projections of future suitable habitat 
provide information about possible climate change effects on focal shrubland plant 
taxa that can be incorporated into a scenario planning framework. For example, 
taxa projected to maintain suitability at a site under all future scenarios may have 
high restoration value even given uncertain future conditions. For taxa with high 
projected suitable habitat loss and climate exposure, evaluation of their ecological 
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relationships, genetics, and life-history traits will help estimate vulnerability to 
climate change and guide the development of taxon- and site-specific sourcing 
strategies. Because nonclimatic factors are important drivers of southern California 
vegetation distribution, we suggest that SDM outputs could be used in a broader 
context that combines future habitat suitability under climate change with alterna-
tive futures of varying stressors (e.g., fire, land use, invasive species) and species 
response (e.g., dispersal capacity, physiological tolerances). 

Species distribution model forecasts can be used to inform restoration goals and 
reference targets, as well as to evaluate restoration feasibility, under projected climate 
change. Setting realistic and effective goals for ecological restoration under changing 
environmental conditions remains a significant challenge, despite numerous recent 
advancements in the field (Hobbs 2007, Perring et al. 2015). Ecological restoration 
in the United States has often used historical data from the site to be restored and 
contemporary data from pristine analogous sites to establish reference conditions 
for restoration (Moore et al. 1999, White and Walker 1997). Although this approach 
may lose effectiveness under mounting climate and environmental change, restoring 
historical ecosystems may remain a viable goal in some areas (Jackson and Hobbs 
2009). For example, historical targets may remain useful at sites projected to main-
tain suitability for many species across a range of future scenarios, whereas sites 
projected to lose suitability may be more difficult to restore or necessitate greater 
human intervention for success. Managers may want to consider alternative restora-
tion goals as well as more dynamic targets in areas of high future climate exposure, 
especially if other ecological stressors (e.g., invasive species, disturbance) are also 
high. Species distribution models can also help managers to evaluate species-site 
suitability and identify specific taxa with projected high stability of suitable habitat, 
or the reverse, under climate change to aid in species selection (Butterfield et al. 
2016, Gelviz-Gelvez et al. 2015, López-Tirado and Hidalgo 2016). 

For SDMs to most effectively assist restoration efforts, we recommend that mod-
els take into account intraspecific variability. As found in our study, this often leads 
to very different predictions of risk and vulnerability under projected climate change, 
compared to traditional SDM approaches that pool records across a species’ range 
(Hällfors et al. 2016b, Pearman et al. 2010, Valladares et al. 2014). By partitioning 
species’ ranges into groups of populations at landscape units, Hamann and Aitken 
(2013) showed that climate change could negatively affect populations throughout a 
species’ range, not just at the leading or trailing edges. When Valladares et al. (2014) 
accounted for population-level differentiation and restricted dispersal capacity, they 
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forecasted greater losses under climate change compared to conventional forecasts 
assuming uniformly high plasticity across a species’ range. Wherever possible, we 
recommend interpreting SDM results in a broader context that combines variation in 
habitat attributes, genetics, and adaptive and life-history traits.

One of the biggest challenges in ecological restoration is accounting for varia-
tion among populations within taxa. Our study takes a step toward incorporating 
such variation by modeling at the level of infraspecies over a limited ecological 
region. Within a species’ range, natural plant populations are often adapted to their 
local environments and can differ in genetic structure and phenotypic characters 
over large or small spatial scales (reviewed in Linhart and Grant 1996). This varia-
tion has implications both for sourcing appropriate plant material for restoration and 
for understanding how a species may respond to changing climate. In the absence of 
taxon-specific seed transfer guidelines, using local seed sources for restoration has 
been recommended to minimize the risk of maladaptation and outbreeding depres-
sion to the extent that the deleterious effects of small populations and inbreeding 
can be avoided (Hufford and Mazer 2003, McKay et al. 2005, Rogers 2004, Rogers 
and Montalvo 2004). Rapidly changing environmental conditions, however, can 
threaten the adaptive capacity of species at local spatial scales (Christmas et al. 
2016, Nicotra et al. 2015), suggesting a more complex, but carefully determined, 
form of seed sourcing may be needed on a case-by-case basis (Havens et al. 2015, 
Prober et al. 2015). Population-level genetic variation is also important in under-
standing species vulnerability to climate change. Variation in adaptive traits and 
intrinsic traits can profoundly affect migration rates, isolation, expansion of species 
range, and the extent to which populations migrate to suitable conditions or adapt 
to new conditions (Aitken et al. 2008, Estrada et al. 2015). Any guidelines for 
determining the direction and extent of expanded seed sourcing areas will need to 
consider the risks of moving too far or too soon. The SDM results we provide can 
be combined with other information to begin the genesis of such guidelines and 
stimulate research to test their utility.
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U.S. Equivalents

When you know: Multiply by: To find:

Millimeters (mm) 0.0394 Inches
Meters (m) 3.28 Feet
Kilometers (km) 0.621 Miles

2)Square kilometers (km  .386 Square miles
Degrees Celsius (°C) 1.8 °C + 32 Degrees Fahrenheit
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Appendix 1: Projected Midcentury Change in Southern 
California Climate
Appendix 1 provides maps (fig. 7 A–E) of projected midcentury climate change 
relative to baseline climate conditions. Change in climatic variables was calculated 
as the difference between midcentury (2040–2069) and baseline (1951–1980) 
30-year climate averages under five climate scenarios. Change in annual precipita-
tion was calculated as percentage of change relative to baseline. Abbreviations: 
Tmin = minimum winter temperature (December through February); Tmax = 
maximum summer temperature (June through August); PPT = annual precipitation; 
CWD = climatic water deficit. Black lines indicate ecological section boundaries; 
dark gray lines indicate ecological subsection boundaries. Climate data are from the 
Basin Characterization Model (CA-BCM) (Flint et al. 2013). See figure 3 for full 
name and source of the general circulation models for the five climate scenarios.
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Figure 7—Projected midcentury (2040–2069) change in climate under five future climate scenarios (A-E) relative to baseline 
(1951–1980) climate.
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Appendix 2: Detailed Species Distribution Modeling 
Methods
Infraspecies Name Assignments
Species distribution models (SDMs) use locality data from species occurrences and 
spatially explicit environmental layers to predict species distributions in space and 
time (Elith and Leathwick 2009, Guisan and Thuiller 2005). Spatial and temporal 
biases in natural history collections (e.g., Kadmon et al. 2004) can affect model 
performance, requiring more collections than previously thought to accurately 
represent a species range or climatic niche (Feeley and Silman 2011). To maximize 
the number of occurrence records used in infraspecies models, we assigned missing 
infraspecific names where the variety or subspecies could reasonably be inferred 
from the geographic location of the occurrence data based on the taxonomic 
description. For some taxa, we also checked herbarium specimens at the Herbarium 
at the University of California, Riverside (UCR). Taxonomy and nomenclature 
follow Baldwin et al. (2012), unless otherwise noted. 

Acmispon glaber— 
Two varieties are recognized for Acmispon glaber: A. g. var. brevialatus and A. g. 
var. glaber. Acmispon g. var. brevialatus is restricted to southern California and 
Baja California unless planted or introduced, whereas A. g. var. glaber occurs not 
just in southern California, but also in coastal portions of northern California, the 
North Coast Ranges, and the Sierra Nevada foothills. In southern California, A. g. 
var. brevialatus occurs primarily in hotter and drier interior regions of Riverside, 
Los Angeles, western San Bernardino, and eastern San Diego Counties, and A. g. 
var. glaber primarily occurs in coastal southern California, the western Transverse 
Ranges, and Peninsular Ranges. After checking and annotating herbarium speci-
mens at UCR, we assigned other records missing a variety determination that oc-
curred outside southern California and were not obvious roadside plantings or intro-
ductions to A. g. var. glaber (north of the western Transverse Ranges, including the 
Tehachapi Mountains, Sierra Nevada foothills, Coast Ranges, and the central and 
northern California coast). We did not use A. glaber records lacking variety deter-
minations that were collected in southern California where both varieties occur. 

Adenostoma fasciculatum var. fasciculatum— 
There are three varieties recognized in Adenostoma fasciculatum: A. f. var. fas-
ciculatum, A. f. var. prostratum, and A. f. var. obtusifolium. Adenostoma f. var. 
fasciculatum is common and broadly distributed throughout shrublands below 
1830 m in the California Floristic Province. After checking specimens at UCR, we 
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assigned all records missing a variety determination to A. f. var. fasciculatum. This 
may include a small number of records from two other less common varieties, A. 
f. var. prostratum (restricted to a limited area in the central coast and outside our
study extent) and A. f. var. obtusifolium (occurring in the south coast and southwest
Peninsular Ranges in San Diego County).

Ceanothus crassifolius var. crassifolius— 
There are two varieties recognized in Ceanothus crassifolius: C. c. var. crassifo-
lius and C. c. var. planus. The varieties intergrade in Santa Barbara and Ventura 
Counties and may represent the extremes of an intergrading network that needs 
more study to see if varietal rank is appropriate. We included all records miss-
ing varietal determination as C. c. var. crassifolius, but recognize this may include 
some records near the northern limit of our study area that either are C. c. var. pla-
nus or have introgression with C. c. var. planus. 

Ceanothus cuneatus  cuneatus— var.
There are three varieties in Ceanothus cuneatus: C. c. var. cuneatus, C. c. var. fas-
cicularis, and C. c. var. ramulosus. C. c. var. cuneatus is widespread throughout the 
California Floristic Province below 2133 m. The two other varieties are restricted 
to the central coast (C. c. var. fascicularis in Santa Barbara and San Luis Obispo 
Counties) and the Coast Ranges from the San Francisco Bay Area south into the 
western Transverse Ranges (C. c. var. ramulosus), outside the geographic extent of 
this study. We assigned records missing a variety determination collected outside 
these areas of overlap to C. c. var. cuneatus. 

Ceanothus megacarpus var. megacarpus— 
There are two varieties recognized in Ceanothus megacarpus: C. m. var. insularis, 
which is restricted to the Channel Islands, and C. m. var. megacarpus, which occurs 
in southern California. We assigned records missing variety determination collect-
ed on the mainland to C. m. var. megacarpus. 

Cercocarpus betuloides var. betuloides— 
There are three varieties recognized in Cercocarpus betuloides: C. b. var. 
betuloides, C. b. var. blanchaea, and C. b. var. macrourus. Cercocarpus. b. var. 
betuloides overlaps in distribution with C. b. var. blanchaea in the Chanel Islands 
and the southern western Transverse Ranges and with C. b. var. macrourus in 
northern California in the Klamath Ranges, Cascade Range, and Modoc Plateau. 
We assigned records missing a variety determination collected outside these areas 
of overlap to C. b. var. betuloides. 
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Eriodictyon crassifolium— 
There are two varieties recognized in Eriodictyon crassifolium: E. c. var. crassifo-
lium and E. c. var. nigrescens. Eriodictyon c. var. crassifolium occurs in cismontane 
southern California, including the South Coast Ranges and drainages, from eastern 
Santa Barbara County to northwestern Baja California. Eriodictyon c. var. nigres-
cens also occurs in cismontane southern California, but primarily in the western 
Transverse Ranges and southern South Coast Ranges. However, there are speci-
mens from areas of southern California that are hard to place into either variety; 
and there are some specimens from the southwestern Peninsular Ranges that have 
been identified as E. c. var. nigrescens. We assigned all southern California records 
missing variety determination collected from San Bernardino, Riverside, Orange, 
and San Diego Counties to E. c. var. crassifolium. We excluded records of E. c. var. 
nigrescens collected in the southwestern Peninsular Ranges in San Diego County 
from models, but recognize this may truncate the taxon’s range if those collections 
are indeed correct and if the range description in the current taxonomic treatment 
needs to be updated. 

Malacothamnus fasciculatus var. fasciculatus— 
There are four varieties currently recognized in Malacothamnus fasciculatus, in-
cluding M. f. var. fasciculatus, which is most common and widespread in southern 
California. Two subspecies, M. f. var. catalinensis and M. f. var. nesioticus, occur 
only on Catalina and Santa Cruz Islands, respectively. One variety, M. f. var. nuttal-
lii, overlaps with M. f. var. fasciculatus on the mainland in the South Coast Ranges 
and western Transverse Ranges in Santa Barbara and Ventura Counties. We include 
all mainland records missing a variety determination as M. f. var. fasciulatus, but 
recognize that this may include a few records of M. f. var. nuttallii within a small 
zone of overlap for the study extent. 

Prunus ilicifolia subsp. ilicifolia— 
There are two subspecies recognized in Prunus ilicifolia: P. i. subsp. ilicifolia and 
P. i. subsp. lyonii. As P. i. subsp. lyonnii is restricted to the Channel Islands, we as-
signed any records missing a subspecies determination occurring on the mainland
to P. i. subsp. ilicifolia.

Parent Geology
The parent geology data included in SDMs (fig. 8) were obtained from the Cali-
fornia Basin Characterization Model (CA-BCM) (Flint et al. 2013), based on the 
Geologic Map of California (Jennings et al. 2010). We simplified the CA-BCM 
parent geology layer into 18 categories. All different types of alluvium parent 
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Figure 8—Parent geology map simplified to 18 categories used in species distribution models. 

geology, such as playas, valley fill, and channels, were grouped into a single 
“alluvium” category. Different types of granites, volcanics, and sandstone were 
also combined into single groups by those names. 

Treatment of Sampling Bias
We compared three methods for correcting sampling bias based on the manipula-
tion of background data to produce geographical sampling bias similar to that of our 
occurrence data. Each approach used target group sampling (Phillips et al. 2009) of 
digitized herbarium records for all vascular plants in southern California collected 
after 1950 (CCH 2016). In the first method, “target background,” we substituted 
all target group occurrences thinned to one record per environmental grid cell for 
Maxent’s default random background. In the second method, “target-weighted,” we 
created a grid of relative sampling frequency by summing the number of occur-
rences in each grid cell and dividing by the total number of occurrences (Merow 
et al. 2013). We then used this grid to weight background sampling in proportion 
to the relative sampling frequency of our target group. In the third method, “bias 
grid,” we created a bias grid derived from a Gaussian-kernel density map of the 
target group, rescaled from 1 to 20 (Elith et al. 2010). As in the second method, we 
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used this grid to weight background sampling. We tested model performance of six 
different bias grids of varying standard deviation distances of the Gaussian-kernel 
(15 km, 20 km, 30 km, 50 km, 75 km, and 100 km). To evaluate model perfor-
mance, we ran each modeling method with fivefold cross validation and compared 
three evaluation metrics: sample size corrected Akaike information criterion (AICc) 
(Akaike 1974, Burnham and Anderson 2002), area under the receiver operating 
curve of the test data (AUC ) and the difference between the calibration and test test
AUC (AUC ). We included AICc as an additional measure of overall model per-diff
formance when comparing methods because AUC can produce inflated estimates 
of model performance when both training and test data are spatially biased, non-
independent, or both (Hijmans 2012, Veloz 2009). We calculated AICc in R by the 
calc.aicc function in the ENMeval package (Muscarella et al. 2014). Of the different 
distance-based bias grids, the 100 km standard deviation distance produced models 
with the lowest AICc (highest model performance) for the majority of taxa mod-
eled. When compared to the target background and target weighted methods, the 
100 km bias grid had significantly higher performance, as measured by AICc and 
AUC  (all P < 0.0001; paired Student’s t-test), and less overfitting, as measured bytest
AUC  (all P < 0.0001; paired Student’s t-test).diff
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Appendix 3: Detailed Species Distribution Modeling 
Results
Detailed model performance metrics and summaries of projected habitat suitability 
change are presented for all focal plant taxa. Table 6 reports model performance 
(mean ± standard deviation) summarized across fivefold cross-validation replicates 
for four different metrics: area under the receiver operator curve for the test data 
(AUC ); difference between the calibration and test AUC (AUC ); omissiontest diff
rate at the 10 percent test threshold (OR ); and the omission rate at the maximum10P
sensitivity plus specificity threshold (OR ). AUC  provides a threshold-inde-mSSS test
pendent measures of overall model performance. AUC  measures model overfit-diff
ting with high values indicate high overfitting to the calibration data. The omission 
(or false negative) rate gives the proportion of test occurrences incorrectly identified 
and provides information about the discriminatory ability of the model at a particu-
lar threshold. Table 7 reports the relative significance of individual environmental 
variables to Maxent models for each taxon. Variable significance is estimated as 
the percentage of permutation importance. A high value of permutation importance 
indicates a strong model dependence on that particular variable. Bold font indicates 
the variable with the greatest permutation importance. Table 8 reports the percent-
age of change in suitable habitat under projected midcentury (2040–2069) climate 
conditions relative to baseline (1951–1980) suitable habitat for each of the five 
climate scenarios. Projected change in suitable habitat is defined as follows: stable 
= suitable under baseline and future conditions; loss = suitable under baseline but 
unsuitable under future conditions; gain = unsuitable under baseline and becoming 
suitable under future conditions. 
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Table 6—Model performance metrics (mean ± standard deviation) for focal taxa

Scientific name N aAUCtest
bAUCdiff

cOR10P
dORmSSS

Acmispon glaber var. brevialatus 303 0.780 ± 0.027 0.014 ± 0.035 0.13 ± 0.06 0.20 ± 0.09
Acmispon glaber var. glaber 246 0.859 ± 0.021 0.003 ± 0.026 0.11 ± 0.03 0.24 ± 0.08
Adenostoma fasciculatum var. fasciculatum 609 0.762 ± 0.014 0.001 ± 0.017 0.11 ± 0.04 0.18 ± 0.02
Arctostaphylos glandulosa subsp. cushingiana 39 0.914 ± 0.014 0.023 ± 0.016 0.13 ± 0.09 0.15 ± 0.14
Arctostaphylos glandulosa subsp. glandulosa 204 0.899 ± 0.014 0.006 ± 0.017 0.13 ± 0.09 0.12 ± 0.08
Arctostaphylos glandulosa subsp. mollis 137 0.926 ± 0.023 0.011 ± 0.027 0.18 ± 0.11 0.15 ± 0.11
Arctostaphylos glauca 503 0.785 ± 0.012 0.006 ± 0.013 0.12 ± 0.03 0.21 ± 0.06
Artemisia californica 345 0.825 ± 0.020 0.003 ± 0.023 0.12 ± 0.03 0.06 ± 0.03
Ceanothus crassifolius var. crassifolius 357 0.873 ± 0.013 -0.002 ± 0.016 0.12 ± 0.05 0.22 ± 0.07
Ceanothus cuneatus var. cuneatus 135 0.827 ± 0.040 0.033 ± 0.049 0.16 ± 0.11 0.24 ± 0.14
Ceanothus leucodermis 404 0.842 ± 0.019 0.001 ± 0.021 0.12 ± 0.04 0.20 ± 0.09
Ceanothus megacarpus var. megacarpus 88 0.959 ± 0.029 0.001 ± 0.035 0.13 ± 0.16 0.07 ± 0.13
Ceanothus oliganthus 235 0.913 ± 0.017 0.001 ± 0.021 0.11 ± 0.04 0.12 ± 0.06
Ceanothus perplexans 229 0.881 ± 0.023 0.004 ± 0.028 0.11 ± 0.05 0.14 ± 0.05
Ceanothus tomentosus 201 0.917 ± 0.011 0.001 ± 0.014 0.11 ± 0.05 0.11 ± 0.05
Ceanothus vestitus 97 0.916 ± 0.032 0.013 ± 0.039 0.17 ± 0.11 0.09 ± 0.10
Cercocarpus betuloides var. betuloides 398 0.792 ± 0.019 0.006 ± 0.022 0.12 ± 0.06 0.19 ± 0.09
Corethrogyne filaginifolia 456 0.728 ± 0.022 0.007 ± 0.028 0.12 ± 0.03 0.27 ± 0.09
Deinandra fasciculata 347 0.841 ± 0.013 -0.002 ± 0.016 0.11 ± 0.05 0.17 ± 0.08
Encelia californica 195 0.915 ± 0.024 0.001 ± 0.030 0.13 ± 0.07 0.14 ± 0.09
Encelia farinosa 256 0.890 ± 0.017 -0.002 ± 0.021 0.12 ± 0.05 0.10 ± 0.03
Eriodictyon crassifolium var. crassifolium 274 0.818 ± 0.029 0.008 ± 0.036 0.11 ± 0.01 0.26 ± 0.10
Eriodictyon crassifolium var. nigrescens 121 0.854 ± 0.023 0.025 ± 0.026 0.17 ± 0.09 0.18 ± 0.09
Eriodictyon trichocalyx var. lanatum 62 0.862 ± 0.040 0.029 ± 0.046 0.13 ± 0.09 0.19 ± 0.11
Eriodictyon trichocalyx var. trichocalyx 148 0.880 ± 0.022 0.018 ± 0.025 0.13 ± 0.07 0.24 ± 0.07
Eriogonum fasciculatum var. fasciculatum 79 0.934 ± 0.012 0.010 ± 0.013 0.18 ± 0.08 0.18 ± 0.08
Eriogonum fasciculatum var. foliolosum 477 0.770 ± 0.025 0.004 ± 0.028 0.12 ± 0.06 0.21 ± 0.05
Eriogonum fasciculatum var. polifolium 426 0.740 ± 0.027 0.011 ± 0.033 0.13 ± 0.03 0.27 ± 0.06
Eriophyllum confertiflorum var. confertiflorum 478 0.751 ± 0.021 0.002 ± 0.026 0.10 ± 0.04 0.26 ± 0.06
Hesperoyucca whipplei 459 0.763 ± 0.036 0.005 ± 0.046 0.11 ± 0.04 0.30 ± 0.12
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Table 6—Model performance metrics (mean ± standard deviation) for focal taxa (continued)

Scientific name N aAUCtest
bAUCdiff

cOR10P
dORmSSS

Heteromeles arbutifolia 361 0.836 ± 0.012 0.002 ± 0.015 0.11 ± 0.03 0.20 ± 0.03
Lepidospartum squamatum 338 0.757 ± 0.041 0.016 ± 0.050 0.14 ± 0.07 0.33 ± 0.10
Malacothamnus fasciculatus var. fasciculatus 346 0.789 ± 0.018 0.007 ± 0.021 0.12 ± 0.03 0.21 ± 0.09
Malosma laurina 365 0.871 ± 0.007 -0.003 ± 0.008 0.12 ± 0.04 0.11 ± 0.05
Phacelia minor 282 0.801 ± 0.025 0.009 ± 0.030 0.12 ± 0.03 0.36 ± 0.14
Plantago erecta 274 0.830 ± 0.018 0.008 ± 0.021 0.12 ± 0.07 0.21 ± 0.07
Prunus ilicifolia subsp. ilicifolia 377 0.751 ± 0.019 0.010 ± 0.021 0.13 ± 0.03 0.29 ± 0.01
Quercus berberidifolia 386 0.782 ± 0.018 0.010 ± 0.020 0.11 ± 0.03 0.19 ± 0.07
Rhamnus crocea 229 0.815 ± 0.025 0.015 ± 0.030 0.13 ± 0.12 0.15 ± 0.13
Rhamnus ilicifolia 471 0.766 ± 0.021 0.007 ± 0.027 0.13 ± 0.03 0.27 ± 0.13
Rhus ovata 512 0.798 ± 0.037 -0.003 ± 0.043 0.11 ± 0.07 0.22 ± 0.08
Salvia apiana 435 0.752 ± 0.012 0.013 ± 0.016 0.12 ± 0.06 0.22 ± 0.07
Salvia mellifera 470 0.838 ± 0.025 -0.005 ± 0.030 0.13 ± 0.06 0.23 ± 0.07
Stipa pulchra 187 0.831 ± 0.014 0.020 ± 0.017 0.11 ± 0.05 0.28 ± 0.10

N = total number of taxon occurrences.
a AUC  = area under the receiver operator curve for the test data.test
b AUC  = difference between the calibration and test AUC.diff
c OR  = omission rate at the 10 percent test threshold.10P
d OR  = omission rate at the maximum sensitivity plus specificity threshold.mSSS
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Appendix 4: Baseline and Projected Midcentury 
Suitable Habitat Maps for Focal Species
Baseline maps illustrate areas with suitable habitat in southern California under 
historical (1951–1980) climate conditions. Midcentury (2040–2069) suitable habitat 
maps show projected changes in suitable habitat under each of five future climate 
scenarios relative to baseline suitable habitat. Projected change in suitable habitat 
is defined as stable = suitable under baseline and future conditions; loss = suitable 
under baseline but unsuitable under future conditions; gain = unsuitable under 
baseline and becoming suitable under future conditions. Climate model consensus 
maps show agreement in projected suitable habitat change across the five climate 
scenarios and range from one (no agreement) to five (full agreement). In all maps, 
suitable habitat that has already been converted to urban and agriculture land uses 
is masked in dark gray (FRAP 2015). Projections for future land use change were 
not included.
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Figure 9—Acmispon glaber var. brevialatus baseline (1951–1980) and midcentury (2040–2069) suitable habitat maps.
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Figure 10—Acmispon glaber var. glaber baseline (1951–1980) and midcentury (2040–2069) suitable habitat maps.
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Figure 11—Adenostoma fasciculatum var. fasciculatum baseline (1951–1980) and midcentury (2040–2069) suitable habitat maps.
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Figure 12—Arctostaphylos glandulosa subsp. cushingiana baseline (1951–1980) and midcentury (2040–2069) suitable habitat maps
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Figure 13—Arctostaphylos glandulosa subsp. glandulosa baseline (1951–1980) and midcentury (2040–2069) suitable habitat maps
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Figure 14—Arctostaphylos glandulosa subsp. mollis baseline (1951–1980) and midcentury (2040–2069) suitable habitat maps.
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Figure 15—Arctostaphylos glauca baseline (1951–1980) and midcentury (2040–2069) suitable habitat maps.
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Figure 16—Artemisia californica baseline (1951–1980) and midcentury (2040–2069) suitable habitat maps.

81



RESEARCH PAPER PSW-RP-270

Figure 17—Ceanothus crassifolius var. crassifolius baseline (1951–1980) and midcentury (2040–2069) suitable habitat maps.
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Figure 18—Ceanothus cuneatus var. cuneatus baseline (1951–1980) and midcentury (2040–2069) suitable habitat maps.

83



RESEARCH PAPER PSW-RP-270

Figure 19—Ceanothus leucodermis baseline (1951–1980) and midcentury (2040–2069) suitable habitat maps.
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Figure 20—Ceanothus megacarpus var. megacarpus baseline (1951–1980) and midcentury (2040–2069) suitable habitat maps.
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Figure 21—Ceanothus oliganthus baseline (1951–1980) and midcentury (2040–2069) suitable habitat maps.
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Figure 22—Ceanothus perplexans baseline (1951–1980) and midcentury (2040–2069) suitable habitat maps.
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Figure 23—Ceanothus tomentosus baseline (1951–1980) and midcentury (2040–2069) suitable habitat maps.
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Figure 24—Ceanothus vestitus baseline (1951–1980) and midcentury (2040–2069) suitable habitat maps.
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Figure 25—Cercocarpus betuloides var. betuloides baseline (1951–1980) and midcentury (2040–2069) suitable habitat maps.
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Figure 26—Corethrogyne filaginifolia baseline (1951–1980) and midcentury (2040–2069) suitable habitat maps.
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Figure 27—Deinandra fasciculata baseline (1951–1980) and midcentury (2040–2069) suitable habitat maps.
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Figure 28—Encelia californica baseline (1951–1980) and midcentury (2040–2069) suitable habitat maps.
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Figure 29— Encelia farinosa baseline (1951–1980) and midcentury (2040–2069) suitable habitat maps.
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Figure 30—Eriodictyon crassifolium var. crassifolium baseline (1951–1980) and midcentury (2040–2069) suitable habitat maps.
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Figure 31—Eriodictyon crassifolium var. nigrescens baseline (1951–1980) and midcentury (2040–2069) suitable habitat maps.
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Figure 32—Eriodictyon trichocalyx var. lanatum baseline (1951–1980) and midcentury (2040–2069) suitable habitat maps
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Figure 33—Eriodictyon trichocalyx var. trichocalyx baseline (1951–1980) and midcentury (2040–2069) suitable habitat maps.
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Figure 34—Eriogonum fasciculatum var. fasciculatum baseline (1951–1980) and midcentury (2040–2069) suitable habitat maps.

99



RESEARCH PAPER PSW-RP-270

Figure 35—Eriogonum fasciculatum var. foliolosum baseline (1951–1980) and midcentury (2040–2069) suitable habitat maps.
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Figure 36—Eriogonum fasciculatum var. polifolium baseline (1951–1980) and midcentury (2040–2069) suitable habitat maps.
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Figure 37—Eriophyllum confertiflorum var. confertiflorum baseline (1951–1980) and midcentury (2040–2069) suitable habitat maps.
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Figure 38—Hesperoyucca whipplei baseline (1951–1980) and midcentury (2040–2069) suitable habitat maps.
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Figure 39—Heteromeles arbutifolia baseline (1951–1980) and midcentury (2040–2069) suitable habitat maps.
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Figure 40—Lepidospartum squamatum baseline (1951–1980) and midcentury (2040–2069) suitable habitat maps.
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Figure 41—Malacothamnus fasciculatus var. fasciculatus baseline (1951–1980) and midcentury (2040–2069) suitable habitat maps.
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Figure 42— Malosma laurina baseline (1951–1980) and midcentury (2040–2069) suitable habitat maps.
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Figure 43—Phacelia minor baseline (1951–1980) and midcentury (2040–2069) suitable habitat maps.
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Figure 44—Plantago erecta baseline (1951–1980) and midcentury (2040–2069) suitable habitat maps.
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Figure 45—Prunus ilicifolia subsp. ilicifolia baseline (1951–1980) and midcentury (2040–2069) suitable habitat maps.
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Figure 46—Quercus berberidifolia baseline (1951–1980) and midcentury (2040–2069) suitable habitat maps.
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Figure 47—Rhamnus crocea baseline (1951–1980) and midcentury (2040–2069) suitable habitat maps.
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Figure 48—Rhamnus ilicifolia baseline (1951–1980) and midcentury (2040–2069) suitable habitat maps.
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Figure 49—Rhus ovata baseline (1951–1980) and midcentury (2040–2069) suitable habitat maps.
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Figure 50—Salvia apiana baseline (1951–1980) and midcentury (2040–2069) suitable habitat maps.
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Figure 51—Salvia mellifera baseline (1951–1980) and midcentury (2040–2069) suitable habitat maps.
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Figure 52—Stipa pulchra baseline (1951–1980) and midcentury (2040–2069) suitable habitat maps.
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Appendix 5: Projected Midcentury Suitable Habitat for 
Scrub and Shrubland Vegetation Groups
Multiple-taxon overlay maps show the number of taxa with projected suitable 
habitat under midcentury (2040–2060) climate conditions for alluvial scrub, coastal 
sage scrub, low-elevation chaparral, and mixed chaparral-sage scrub vegetation 
groups (figs. 53 through 56). Projected change in suitable habitat is defined as: 
stable = suitable under baseline and future conditions; loss = suitable under base-
line but unsuitable under future conditions; gain = unsuitable under baseline and 
becoming suitable under future conditions. Vegetation group assignments are not 
mutually exclusive (see table 2). For baseline suitability maps, see figure 6. In all 
maps, suitable habitat that has already been converted to urban and agriculture land 
uses is masked in dark gray (FRAP 2015).
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Figure 53—Projected habitat suitability for plant taxa associated with alluvial scrub under five future climate 
scenarios (A–E).
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Figure 54—Projected habitat suitability for plant taxa associated with coastal sage scrub under five future climate 
scenarios (A–E).
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Figure 55—Projected habitat suitability for plant taxa associated with low-elevation chaparral under five future 
climate scenarios (A–E).
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Figure 56—Projected habitat suitability for plant taxa associated with mixed chaparral-sage scrub under five future 
climate scenarios (A–E).
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Appendix 6: Species Distribution Modeling Caveats
What Do SDM Habitat Suitability Maps Represent?
Predictions of baseline and future habitat suitability should be interpreted cau-
tiously and are best applied in concert with expert knowledge about the biology, 
ecological relationships, population dynamics, and demographics of the species. 
Baseline maps identify the geographic distribution of suitable habitat meeting the 
abiotic (climate and parent geology) requirements of individual taxa under climate 
conditions averaged from 1951 to 1980. While not included in our models, biotic 
interactions, dispersal, human land use, and fire also influence plant distribution 
in southern California and affect the degree to which habitat suitability models 
match the known distribution, or realized niche, of the species modeled (Araújo 
and Peterson 2012). Future suitability maps show how spatial patterns in habitat 
suitability may change under midcentury climate conditions averaged from 2040 to 
2069. We assumed unlimited dispersal ability within the study area for projections 
of suitability gain and assumed no dispersal (where species are unable to disperse 
to new areas of suitable habitat), for projections of suitability loss. Though biologi-
cally unrealistic, these dispersal assumptions are meant to cap the two extremes of 
potential habitat change under future climate. Suitable habitat projections are best 
interpreted as estimates of projected climate exposure rather than predictions of 
species persistence, which would require integrating species distribution models 
(SDMs) with models of population dynamics, physiological tolerances, and genetic 
variation (Dawson et al. 2011, Franklin et al. 2016, Richardson et al. 2014). For 
example, a prediction of suitability loss can identify high climate exposure and 
potentially stressful environmental conditions midcentury, but it does not indicate 
how the species may respond or if populations within the species range would 
respond differently. 

Factors to Consider When Applying SDM in Decisionmaking
Spatial scale— 
It is important to consider spatial scale (extent and resolution) when applying mod-
eling results in decisionmaking. We modeled species-environment relationships at a 
regional extent and results are best used to inform decisionmaking within southern 
California. Our results are not transferable to other regions that may differ in the 
dynamics controlling habitat suitability and species distribution. When the underly-
ing input data to the California Basin Characterization Model (CA-BCM) has high 
accuracy, spatial applications of the climatic and hydrologic data can be quite small, 
as fine as hillslope scale (Flint et al. 2013). However, uncertainties in the CA-BCM 
input variables, such as coarse resolution of soil data and difficulty incorporating 
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the impacts of human activities on hydrology for some areas in California (Flint et 
al. 2013) or measurement errors in the temperature and precipitation data (Oyler et 
al. 2015, Stoklosa et al. 2015), can limit the appropriate spatial resolution for appli-
cations. The occurrence data used in SDMs can introduce additional spatial uncer-
tainties, such as spatial biases in collections and error in georeferencing accuracy 
(Barry and Elith 2006, Graham et al. 2008). Misidentifications (Costa et al. 2015) 
and even taxonomic ambiguities that arise as taxon concepts are refined (Romero 
et al. 2014) can affect model predictions and forecasts. Although our output habitat 
suitability maps have a high spatial resolution (270 m), patterns of suitability are 
best interpreted as summaries or trends at the ecological subsection to section level.

Uncertainty in future climate— 
Uncertainty in future climate projections stems from a variety of sources. Climate 
change projections depend on general circulation models (GCMs)—mathemati-
cal representations of the Earth’s climate system—that vary in their sensitivity 
of climate to greenhouse gases and radiative forcing (Daniels et al. 2012, Stott 
and Kettleborough 2002). Combined with scenarios for future greenhouse gas 
emissions, such as the representative concentration pathways (RCPs) used in the 
Intergovernmental Panel on Climate Change (IPCC) 5th assessment report (IPCC 
2013), GCMs provide a range of possible future climate conditions for the 21st 
century. These projections tend to diverge dramatically across emission scenarios 
after the mid-21st century. Downscaling, which is necessary to convert the coarse 
scales of GCMs (250 km resolution) to finer regional-to-local scales relevant 
for land management, is another source of uncertainty in future climate projec-
tions. Precipitation, for example, is particularly challenging to forecast in southern 
California, as coarse-resolution GCMs are unable to represent the fine-scale vari-
ability introduced by the region’s complex topography (Hughes et al. 2009). We 
use five GCMs under a ‘business-as-usual’ scenario that tracks our present high 
greenhouse gas emission trajectory (IPCC scenario RCP 8.5) to show how climate 
may change in southern California and highlight some of the uncertainty in these 
changes. It is possible that the five scenarios we selected may not encompass the 
actual climate conditions in southern California at midcentury.  Temperature is pro-
jected to warm under continued greenhouse gas emissions, but to what degree and 
how quickly depends on a number of factors, including human actions to reduce 
those emissions (IPCC  2013). The magnitude and direction of precipitation change 
are also uncertain, with different GCMs projecting either increases or decreases in 
precipitation relative to the 20th century. Our selection of climate models spans both 
wetter (CNRM-CM5) and drier (MIROC-ESM) future conditions and can be used 
to explore sensitivity of habitat suitability to the direction in precipitation change. 
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Novel climates— 
Climate change will likely result in novel future climate combinations that have no 
present-day analog, especially if greenhouse gas emissions continue to increase at 
current levels (Williams and Jackson 2007). Therefore, projecting SDM predictions 
under future climate often involves extrapolating models to novel environmental 
space outside the reference conditions used to train the models (Elith et al. 2010, 
Merow et al. 2013). In Maxent, the species-environment relationship can either be 
“clamped” to a constant probability when projected into novel space or simply ex-
tended, neither of which is likely to reflect a biologically realistic response (Merow 
et al. 2013). Consequently, suitability forecasts under novel conditions should be 
treated with extreme caution. Of the five future climate scenarios we considered, 
the CNRM-CM5 model had the greatest departure from the baseline 1951–1980 cli-
mate conditions. Novel climate conditions also introduce biotic uncertainty. Studies 
of past vegetation dynamics during the late Quaternary suggest that plant commu-
nities are unlikely to remain intact as species shift individualistically, with nonana-
log conditions leading to nonanalog communities (Jackson and Overpeck 2000). 
Climate change, land use change, fire, and invasive species may all contribute to 
the rise of novel ecosystems, creating implications for conservation and restoration 
(Hobbs et al. 2009).

Uncertainty in SDM— 
Uncertainty in correlative SDMs arises from a number of sources, some of which 
have already been discussed above. Model outputs depend on the quality of the in-
put data, and errors in the species occurrences (e.g., Graham et al. 2008) and envi-
ronmental predictors (e.g., Fernández et al. 2013, Stoklosa et al. 2015) introduce un-
certainty into model predictions. Mismatches in the resolution between occurrence 
and environmental layers can compound these uncertainties (Wiens and Bachelet 
2010); model resolution should ideally be matched to the scale of the conservation 
and management applications. For example, models built with coarse-scale environ-
mental data may not be appropriate to inform decisionmaking at local or fine scales. 
Species geographical and ecological characteristics can also affect model perfor-
mance and predictions (reviewed in Heikkinen et al. 2006). Methodological deci-
sions and errors introduce uncertainty in SDMs, including choice of modeling algo-
rithm, model misspecification, and missing covariates (Barry and Elith 2006, Beale 
and Lennon 2012). Methodological decisions in model parameterization affect the 
transferability of models in both space and time and are important to consider when 
projecting predictions under future climate change (García-Callejas and Araújo 
2016). Comprehensive reviews on the sources of SDM uncertainty can be found 
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in Barry and Elith (2006), Beale and Lennon (2012), Heikkinen et al. (2006), and 
Wiens et al. (2009). Despite these challenges, SDMs can be a powerful tool to sup-
port decisionmaking. We emphasize the importance of close collaboration between 
modelers and data users to ensure that models are designed to address appropriate 
management questions and that uncertainties and limitations in application and in-
terpretation are well-communicated.

Model assumptions— 
Numerous papers have reviewed SDM assumptions and practical applications 
in conservation and management (Araújo and Peterson 2012, Guisan et al. 2013, 
Jarnevich et al. 2015, Schwartz 2012, Sinclair et al. 2010, Wiens et al. 2009). The 
degree to which a species violates certain SDM assumptions can lead to both over-
estimation and underestimation of risk under projected climate change (e.g., Early 
and Sax 2014, Schwartz 2012, Valladares et al. 2014). We highlight the fundamental 
assumptions underlying SDMs to better guide appropriate use of SDM results.

Correlation—SDMs assume that a species’ distribution is limited by the environ-
mental variables included in the model; in our case climatic and geologic factors. 
For some species, the approach used to relate distributional data with environmen-
tal conditions may not correlate with the population-level processes driving spe-
cies persistence. This is particularly relevant when extinction risk is sensitive to life 
history traits (e.g., recruitment response to fire) (Fordham et al. 2012, Lawson et 
al. 2010). Ultimately, SDMs linked to population dynamics are needed to address 
population persistence or extinction risk under projected climate change (Franklin 
et al. 2016). 

Equilibrium with climate—Species distribution models assume that the current 
distribution of a species is in equilibrium with the environment, meaning all suit-
able habitat is occupied by the species. However, dispersal, demographics, longev-
ity, and biotic interactions (including humans) can affect the degree to which a 
species is in equilibrium with the current environment. For long-lived taxa, indi-
viduals and populations may continue to persist in areas where climate has become 
unfavorable for reproduction or seedling establishment. Projected climate change is 
expected to induce vegetation disequilibrium with climate at both leading and trail-
ing edges of species ranges (Svenning and Sandel 2013). While unavoidable, this 
assumption should be acknowledged when interpreting SDM results. 
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Niche conservatism—Species distribution models assume that the species-environ-
ment relationship remains fixed, or conserved, over space and time (niche conser-
vatism) (Wiens and Graham 2005). That is, the model assumes that there is no local 
adaptation within a species range and that species will not have any adaptive re-
sponse to changing conditions. Although an assumption of niche conservatism may 
be realistic for species with high dispersal ability and little population structure, or 
where the rate of climate change exceeds a species’ adaptive capacity, it is likely to 
be violated for many species. For the widespread species we analyzed, our regional-
scale modeling aims to capture relationships specific to southern California with-
out including potentially confounding dynamics from other regions in the state. 
However, we are not able to address patterns of local adaptation and differential 
response to climate change without more detailed data on genetic variability of in-
dividual taxa across the landscape.
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Glossary
actual evapotranspiration (AET)—Evaporative water loss (a function of tempera-
ture and radiation) from the ground surface and transpired by vegetation given pre-
vailing water availability. Available water is defined as the amount of water held in 
the soil between wilting point and field capacity multiplied by soil depth (affected 
by precipitation over time) in the California Basin Characterization Model. 

adaptive capacity—Ability of a system to adjust to climate change (including 
climate variability and extremes) to moderate potential damages, to take advantage 
of opportunities, or to cope with the consequences (IPCC 2007). At the population 
level, the ability of populations to adjust to climate change stimuli and maintain fit-
ness through genetic change (evolutionary response), behavioral response, or plastic 
responses in physiology. 

California Basin Characterization Model (CA-BCM)—A spatially explicit, 
regional water balance model that integrates physical watershed characteristics 
with historical or projected climate data to predict watershed-specific hydrologic 
responses for the California hydrologic region (Flint et al. 2013). It mechanistically 
models the pathway of precipitation into evapotranspiration, infiltration into soil, 
runoff, and the ability of water to percolate through the root zone and recharge 
groundwater, producing high-resolution surfaces (270 m) for the following vari-
ables: precipitation, air temperature, April 1st snowpack, recharge, runoff, potential 
evapotranspiration (PET), actual evapotranspiration (AET), and climatic water 
deficit (CWD).

climate scenario—Plausible and often simplified representation of the future 
climate based on a set of coherent and internally consistent assumptions about key 
driving forces and relationships (IPCC 2013).  

climate exposure—Degree and nature to which a system is exposed to climate 
change. Exposure refers to extrinsic factors of climate change such as character, 
magnitude, and rate of change (Glick et al. 2011). Loss in climatic suitability 
predicted from correlative species distribution models based on climate variables 
can be interpreted in terms of climate exposure.

climate model—Numerical representation of the climate system based on the 
physical, chemical, and biological properties of its components, their interactions 
with feedback processes, and accounting for all or some of its known properties 
(IPCC 2013). See general circulation model.
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climate projection—Simulated response of the climate system to a scenario of 
future emission or concentration of greenhouse gases and aerosols, or radiative 
forcing scenarios, often derived using climate models (IPCC 2013). 

climatic water deficit (CWD)—Evaporative demand that exceeds water avail-
ability. Calculated as the difference between potential evapotranspiration (PET) and 
actual evapotranspiration (AET) summed annually in the California Basin Charac-
terization Model (Flint et al. 2013).

downscaling—A method that derives local- to regional-scale (10 to 100 km) infor-
mation from larger scale models or data analyses (IPCC 2013).

emission scenario—Plausible representation of the future development of emis-
sions of substances that are potentially radiatively active (e.g., greenhouse gases, 
aerosols) based on a set of coherent and internally consistent assumptions about 
driving forces and their relationships. Driving forces can include demographic 
and sociological development, technological change, etc. Concentration scenarios 
derived from emission scenarios are used as input to a climate model to compute 
climate projections (IPCC 2013). See representative concentration pathways.

general circulation model (GCM)—Comprehensive, three-dimensional global 
climate model that reflects the latest scientific understanding of complex physical, 
chemical, and biological properties of the climate system, as well as their interac-
tions with feedback properties (IPCC 2013). 

habitat suitability—Potential of a site to support a particular taxon. In species 
distribution modeling, the degree to which the environmental variables considered 
in the model (e.g., climate) are predicted to support the presence of a particular 
taxon in geographic space and time. 

infraspecific—Refering to classification below the species level, as in subspecies 
and variety.

intraspecific—Refering to variation within a species, such as variation among 
populations or among individuals within populations.

Maxent—Species distribution modeling method tailored for presence-only data and 
based on a maximum entropy algorithm (Phillips et al. 2006).

potential evapotranspiration (PET)—Amount of water that could evaporate from 
the ground surface or transpire from vegetation given unlimited water, summed 
annually. In the California Basin Characterization Model, it is modeled from solar 
radiation and air temperature and partitioned to represent bare-soil evaporation and 
evapotranspiration owing to vegetation (Flint et al. 2013).
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radiative forcing—Change in net radiative flux (expressed in W m-2) at the top 
of the atmosphere owing to a change in a driver of the climate system, such as a 
change in the concentration of carbon dioxide or output of the Sun (IPCC 2013). 

resilience—Degree to which a system rebounds, recoups, or recovers from a 
disturbance or hazard.

representative concentration pathway (RCP)—Scenarios of future emissions and 
concentrations of greenhouse gases, aerosols and chemically active gases, and land 
use/land cover. Each RCP provides just one of many possible future scenarios that 
could lead to the specific radiative forcing characteristics. Four RCPs were used to 
represent climate projections in the Intergovernmental Panel on Climate Change 
(IPPC) 5th climate change assessment, RCP2.6, RCP4.5, RCP6.0, and RCP8.5 
(IPCC 2013). 

RCP8.5—One possible high-concentration pathway in which radiative forcing 
reaches greater than 8.5 W m-2 by 2100. 

sensitivity—Degree to which a species or system is affected, either adversely or 
beneficially, by climate variability or change (Glick et al. 2011, IPCC 2007). The 
effect may be direct (e.g., a change in crop yield in response to a change in the 
mean, range or variability of temperature) or indirect (e.g., damages caused by an 
increase in the frequency of coastal flooding owing to sea level rise) (IPCC 2007). 

species distribution model (SDM)—Statistical model relating observations of 
species occurrence with environmental information to predict habitat suitability in 
space and time.

vulnerability—Degree to which a system is susceptible to, or unable to cope with, 
adverse effects of climate change, including climate variability and extremes. 
Vulnerability is a function of the climate exposure experienced by the system, its 
sensitivity, and its adaptive capacity (Glick et al. 2011). 
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