PRESSURE TREATMENT OF ROBUSTA 
AND OHIA POSTS...final report

Roger G. Skolmen

Since 1962, round posts of ohia (Metrosideros collina) and robusta (Eucalyptus robusta) treated with preservatives have been observed for their durability at the Makiki Exposure Site, Honolulu, Hawaii. The posts are 3 to 5 inches in diameter.

Two preservatives were applied: 8.2 percent pentachlorophenol in mineral spirits with water repellent, and chromated copper arsenate. Pressure treatment was used. Preservative was forced in the previously air-dried wood in a pressure cylinder.

The retention and penetration of preservatives in the posts varied by species (table 1).

Twenty-five posts of each species and treatment were installed in the graveyard test together with 20 untreated control posts of each species.

Results reported after 5 years¹ showed that all treated posts were sound, whereas all untreated ohia and all but five of the untreated robusta posts had failed.

After more than 10½ years, all posts treated with pentachlorophenol are still sound. One robusta treated with chromated copper arsenate failed after 9½ years; the rest of the posts treated with this preservative are sound. The last two untreated robusta posts failed in 1969–7 years after installation.

Life of the untreated ohia averaged 4 years. And that of the untreated robusta averaged 4½ years. Decay was the cause of failure.

The test has conclusively demonstrated that pressure treatment with preservatives greatly extends the service life of posts. Further observations of the posts are not planned. But because the posts are still in place, later observations may be possible.

The Honolulu Wood Treating Co., Ltd. treated the posts and helped to install them. The Hawaii Division of Forestry provided the posts and the exposure site.
Table 1—Retention and penetration of preservatives in pressure-treatment of Robusta and ohia posts, Honolulu, Hawaii

<table>
<thead>
<tr>
<th>Species</th>
<th>Preservatives used</th>
<th>Retention</th>
<th>Penetration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robusta</td>
<td>Pentachlorophenol</td>
<td>4.9 of solution</td>
<td>0.5</td>
</tr>
<tr>
<td>Robusta</td>
<td>Chromated copper arsenate</td>
<td>.85 of salt</td>
<td>.6</td>
</tr>
<tr>
<td>Ohia</td>
<td>Pentachlorophenol</td>
<td>12.4 of solution</td>
<td>.9</td>
</tr>
<tr>
<td>Ohia</td>
<td>Chromated copper arsenate</td>
<td>1.4 of salt</td>
<td>.6</td>
</tr>
</tbody>
</table>

NOTES


The Author

ROGER G. SKOLMEN is on the staff of the Station’s Institute of Pacific Islands Forestry, with headquarters in Honolulu, Hawaii, where he has been investigating the uses, properties, and processing of forest products. Native of San Francisco, he holds B.S. (1958) and M.S. (1959) degrees in forestry from the University of California, Berkeley.

U.S. Forest Service research in Hawaii is conducted in cooperation with
Division of Forestry
Hawaii Department of Land and Natural Resources

This publication reports research involving pesticides. It does not contain recommendations for their use, nor does it imply that the uses discussed here have been registered. All uses of pesticides must be registered by appropriate State and/or Federal agencies before they can be recommended.

CAUTION: Pesticides can be injurious to humans, domestic animals, desirable plants, and fish or other wildlife—if they are not handled or applied properly. Use all pesticides selectively and carefully. Follow recommended practices for the disposal of surplus pesticides and pesticide containers.