Toxicity of Stabilized and Unstabilized PYRETHRINS APPLIED TO WESTERN SPRUCE BUDWORM

Robert L. Lyon Jacqueline L. Robertson

In the search for a safe, efficient, and selective means of controlling the highly destructive western spruce budworm (Choristoneura occidentalis Freeman), pyrethrins have emerged as one of the superior candidate insecticides.¹ Pyrethrins have long been known to be highly toxic to a closely related spruce budworm—C. fumiferana (Clemens).² But because the insecticide is labile in air and sunlight and is expensive, pyrethrins have not been widely used for insect control outdoors. The recent stabilization of pyrethroid compositions has greatly improved the prospect of using them in forest insect control.³ Field tests of stabilized pyrethrins against the western hemlock looper and against C. fumiferana have produced generally satisfactory results.⁴

As a prerequisite to field use of pyrethrins against the western spruce budworm, it was necessary to develop information from laboratory studies. We found that all larval stages showed about the same tolerance to pyrethrins, that the adjuvants used in stabilization did not affect basic contact toxicity, that the residual activity apparent on Douglas-fir foliage was only slight, that the biological activity of the commercial formulation was about the same as that of the laboratory formulation, and that spray concentration ranging through about one order of magnitude did not significantly affect toxicity of the spray.

METHODS

Insects used for bioassay were obtained from a non-diapausing colony reared continuously in the laboratory on an artificial diet.⁵ The insects were selected for testing in the 6th instar at an average body weight of 85 mg. They were treated in a laboratory spray chamber in replicates of 10.
Treatment procedure was that described by Lyon et al., except that an unaltered No. 40 DeVilbiss nebulizer was used for spray atomization. The size of spray chamber used varied with the subject of the test. Spray chamber I, measuring 15 inches tall by 5-1/4 inches inside diameter, produced spray droplet sizes of about 20μ mass median diameter (MMD). Spray chamber II, measuring 21-1/2 inches tall by 8 inches inside diameter, produced droplets of about 49μ MMD.

All expressions of dosage in the spray chambers refer to the active ingredient (AI) deposited at the base of the chamber. Deposit was measured by using a Cahn Electrobalance to weigh the spray impinging on 12-mm. aluminum pans.

Insects were held at treatment at 22 to 24°C. In 100- to 20-mm. plastic petri dishes (10 per dish) lined with filter paper and provided with sections of artificial diet. The number of dead insects was tallied 7 days after treatment.

Toxicity, by Instar

The insect was treated in four instars as follows: (a) third and fourth stage larvae combined, (b) fifth stage, and (c) sixth stage. First and second stage larvae were not tested since our studies were aimed at providing data for field tests against post-diapause larvae.

The insects were treated in laboratory spray chamber I at five different spray concentrations replicated 8 to 10 times. The spray volume deposited in the spray chamber was equivalent to 0.375 gal./acre (0.0351 ml./sq. cm.). The pyrethrins were formulated in tripropylene glycol monomethyl ether (TPM). Mortality data were processed by a computer program of probit analysis.

Bioassay of Stabilized Formulations

To provide information on the effect of adjuvants on toxicity, and to bioassay the purity of the stabilized pyrethrins, we tested these formulations:

- Two commercial stabilized field formulations—designated PS-1 and PS-2. PS-1 was the original field formulation having the ultraviolet screen Permasorb MA. To improve the quality of the solution, Permasorb MA was replaced by benzyl cinnamate in PS-2. Concentration of pyrethrins in both formulations was 24 mg./ml. (2.86 percent w/w).
- Laboratory formulated pyrethrins—designated PS-3—stabilized according to patent specifications.
- An unstabilized formulation in mineral oil—designated PMO—since mineral oil is the principal carrier in the stabilized formulation.
- An unstabilized formulation in TPM—designated PTMP—was included as a second control to provide information on the influence of the mineral oil itself on spray performance.

The larvae were treated in spray chamber II. Four concentrations of each formulation were tested, and replicated 6 to 10 times. The formulations and the spray volume (gallon per acre) deposited in the chamber were: PS-1: 0.478; PS-2: 0.272; PS-3: 0.477; PMO: 0.501; and PTMP: 0.482. The data were analyzed by probit analysis.

Residual Toxicity

Potted Douglas-fir trees, 5 years old, in full flush of new growth, were treated in spray chamber II with the PS-1 stabilized formulation (fig. 1). The plants were then aged in sunlight for 0, 1, and 4 hours before larvae were caged on them. Ten larvae were placed in each cage. The cage was composed of light weight 22- by 22- mesh gauze secured around the trunk and above the crown (fig. 1).

Post-treatment observations were made 1/2 hour as well as 7 days after caging larvae to determine "knockdown," i.e., insects that fell out of the foliage and were writhing and regurgitating.

Three spray application rates (per acre) were tested: 0.05 lb. AI per 1/4 gallon; 0.1 lb. AI per 1/2 gallon; and 0.2 lb. AI per 1 gallon. Each spray dosage and exposure period was replicated four times.

The data were analyzed on a computer program of the two sample Wilcoxon test.

Importance of Spray Concentration

Larvae were sprayed directly in spray chamber II by using an approximate LD50 dosage (0.2 oz./acre) of pyrethrins applied at four different spray volumes: 0.125, 0.25, 0.5, and 1 gal./acre. Each treatment was replicated 10 times and analyzed by the two sample Wilcoxon test.

RESULTS AND DISCUSSION

Toxicity, by Instar

All larval stages treated showed about the same tolerance level (fig. 2). The small differences were not
Figure 1—Treatment of potted Douglas-fir trees in tests of stabilized pyrethrins: Left, potted tree sprayed in a chamber; right, western spruce budworm larvae on treated Douglas-fir were caged by a mesh gauze.

Figure 2—Western spruce budworm larvae sprayed with pyrethrins did not show any significant difference in tolerance among stages.
statistically significant. The dosage needed for LD₉₀ was as follows:

<table>
<thead>
<tr>
<th>Larval stage:</th>
<th>LD<sub>90</sub> dosage (oz./acre)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 + 4</td>
<td>1.29</td>
</tr>
<tr>
<td>5</td>
<td>1.53</td>
</tr>
<tr>
<td>6</td>
<td>1.65</td>
</tr>
<tr>
<td>Combined</td>
<td>1.49</td>
</tr>
</tbody>
</table>

No appreciable differences in mortality, from the standpoint of inherent contact toxicity, as the composition of the last four instars changes should be expected. These data at face value suggest a wide latitude in spray application timing. Differences in behavior of the different instars may, however, determine their degree of exposure to the insecticide. Other considerations, such as the desire to minimize insect damage, may dictate that spray application be made when earlier instars comprise most of the population.

The 20 percent pyrethrins concentrate used in this test had been refrigerated for more than 3 years and showed significant breakdown. The absolute dosage figures shown therefore are overestimated, and differ from those of the other tests which were done with a fresh pyrethrins concentrate. This breakdown should not affect relative toxicity, however, so comparisons made between larval stages should be valid.

Bioassay of Stabilized Formulations

The adjuvants used in stabilizing pyrethrins did not affect the basic contact toxicity of the spray (table 1). Also the biological activity of the commercial field formulation was clearly no different from the laboratory standard formulated according to patent specifications. The commercial field formula-

<table>
<thead>
<tr>
<th>Dosage (lb./acre A.I)</th>
<th>Exposure to sunlight</th>
<th>Average mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>0.05</td>
<td>0</td>
<td>14<sup>o</sup></td>
</tr>
<tr>
<td>.05</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>.05</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Control</td>
<td>-</td>
<td>7</td>
</tr>
<tr>
<td>.1</td>
<td>0</td>
<td>34<sup>o</sup></td>
</tr>
<tr>
<td>.1</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>.1</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Control</td>
<td>-</td>
<td>7</td>
</tr>
<tr>
<td>.2</td>
<td>0</td>
<td>41<sup>o</sup></td>
</tr>
<tr>
<td>.2</td>
<td>1</td>
<td>19<sup>o</sup></td>
</tr>
<tr>
<td>.2</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

*Statistically significant at 6 percent level of probability according to Wilcoxon two-sample test.

mortality were significantly higher than those in the control test. The test of 0.1 lb./acre (1.6 oz./acre) caused 34 percent kill, with no aging of deposit (significantly different from control), but no significant kill after 1 hour of aging. When these results are compared to those in the previous test of direct contact toxicity (in which the LD₉₀ was about 0.03 lb./acre or about 0.5 oz./acre), it is apparent that contact of the larvae by the spray cloud directly will probably be the major source of toxic effects so that little residual activity can be expected.

Knockdown was appreciable only at the two highest dosage levels and where deposits were not aged (table 3). After 1 hour of aging, knockdown was reduced to 25 percent or less and after 4 hours of aging was nil.

This test at best only partially simulated field conditions. Even the small amount of residual activity shown by the data is likely to be an overestimation.
We so conclude because the degrading atmospheric effects on the descending spray cloud were not taken into account. Also, the "deposit" is usually much less than the release rate from an airplane, and our dosage expressions were based on spray deposited in the spray chamber.

Importance of Spray Concentrations

Spray concentration ranging through about one order of magnitude had no significant (measured by Wilcoxon two sample test) effect on toxicity of the spray to the budworm larvae (Table 4). An exact deposit of 0.2 oz./acre (the approximate LD50 for pyrethrins) was not achieved as shown in Table 3, but ranged from 0.174 to 0.225 (0.2 ± 13 percent oz./acre). The small differences in mortality can be attributed entirely to this variation in deposit.

Table 3—Knockdown of western spruce budworm larvae caused by stabilized pyrethrins applied to potted Douglas-fir trees

<table>
<thead>
<tr>
<th>Dosage (lb./acre Al)</th>
<th>Exposure to sunlight</th>
<th>Average knockdown</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours</td>
<td>Percent</td>
</tr>
<tr>
<td>Control</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>0.05</td>
<td>0</td>
<td>13</td>
</tr>
<tr>
<td>.05</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>.05</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Control</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>.1</td>
<td>0</td>
<td>54</td>
</tr>
<tr>
<td>.1</td>
<td>1</td>
<td>25</td>
</tr>
<tr>
<td>.1</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Control</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>.2</td>
<td>0</td>
<td>72</td>
</tr>
<tr>
<td>.2</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>.2</td>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

We conclude because the degrading atmospheric effects on the descending spray cloud were not taken into account. Also, the "deposit" is usually much less than the release rate from an airplane, and our dosage expressions were based on spray deposited in the spray chamber.

Importance of Spray Concentrations

Spray concentration ranging through about one order of magnitude had no significant (measured by Wilcoxon two sample test) effect on toxicity of the spray to the budworm larvae (Table 4). An exact deposit of 0.2 oz./acre (the approximate LD50 for pyrethrins) was not achieved as shown in Table 3, but ranged from 0.174 to 0.225 (0.2 ± 13 percent oz./acre). The small differences in mortality can be attributed entirely to this variation in deposit.

NOTES

7. Personal communication from J. J. Fette, Chemical Control Research Institute, Ottawa, Ontario, Canada, 1970.

10. Trade names and commercial enterprises or products are mentioned solely for necessary information. No endorsement by the U.S. Department of Agriculture is implied.

12. Samples of both formulations were provided by the McLaughlin Gormley King Company.

13. 2-hydroxy-4-(2-hydroxy-3-methacryloxy) propoxy-benzophenone (National Starch Company).

The Authors

are research entomologists assigned to the Station's studies in the evaluation of chemical insecticides. ROBERT L. LYON, is responsible for insect culture and bioassay. He attended New York State University College of Forestry, where he earned B.S. (1953) and M.S. (1954) degrees. He received a doctorate in entomology (1961) from the University of California, Berkeley. JACQUELINE L. ROBERTSON earned a bachelor's degree in zoology at the University of California, Berkeley (1969). She joined the Station staff in 1968.
The Forest Service of the U.S. Department of Agriculture

... Conducts forest and range research at more than 75 locations from Puerto Rico to Alaska and Hawaii.

... Participates with all State forestry agencies in cooperative programs to protect and improve the Nation's 395 million acres of State, local, and private forest lands.

... Manages and protects the 187-million-acre National Forest System for sustained yield of its many products and services.

The Pacific Southwest Forest and Range Experiment Station
represents the research branch of the Forest Service in California and Hawaii.

This publication reports research involving pesticides. It does not contain recommendations for their use, nor does it imply that the uses discussed here have been registered. All uses of pesticides must be registered by appropriate State and/or Federal agencies before they can be recommended.

CAUTION: Pesticides can be injurious to humans, domestic animals, desirable plants, and fish or other wildlife—if they are not handled or applied properly. Use all pesticides selectively and carefully. Follow recommended practices for the disposal of surplus pesticides and pesticide containers.