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After decades of intensive timber harvest and land use change that removed forests from the 
landscape, recent satellite data show that forest cover has increased in North America (Liu et al. 
2015). However, these regenerating forests differ greatly in structure and composition than the forests 
that preceded them (McIntyre et al. 2015). This has been especially evident on the Pacific coast, 
where only 3 to 5 percent of old-growth coast redwood (Sequoia sempervirens (D. Don) Endl.) forest 
remains (Russell 2009). To address this, land managers are actively thinning second-growth forests to 
restore old-growth conditions (O’Hara et al. 2010, Teraoka and Keyes 2011). Whereas most thinning 
has taken place in upland forests, thinning also could accelerate recovery in second-growth riparian 
forests (Keyes and Teraoka 2014). 

Riparian forests are highly connected to adjacent streams and rivers (Baxter et al. 2005, Gregory et 
al. 1991). For example, riparian forests shade stream channels, keeping temperatures cool for cold-
water adapted species and contribute leaf litter and terrestrial insects that act as the primary sources of 
energy for aquatic macroinvertebrates, amphibians, and fish (Baxter et al. 2005, Vannote et al. 1980). 
Historical timber harvest practices which clearcut riparian forests disrupted these ecological 
processes, altering in-stream conditions with adverse effects on some sensitive species (Campbell and 
Doeg 1989). In response, contemporary forest management practices now require buffers to protect 
riparian forests (Marczak et al. 2010). Though such practices are intended to protect riparian forests, 
dense growth of young trees and early successional species can become dominant. In these cases, the 
question of actively managing these forests to more quickly restore late-successional forest structure 
and composition has been raised (Keyes and Teraoka 2014, Russell 2009). 

It has been long understood that riparian forests provide inputs of organic matter that support 
aquatic species (Vannote et al. 1980); in addition, evidence shows that light is also an important 
driver of in-stream productivity (Kiffney et al. 2004). Previous studies have documented that 
increased light associated with opening riparian canopies catalyzed in-stream productivity at multiple 
trophic levels (Bilby and Bisson 1992, Wilzbach et al. 2005, Wootton 2012). However, this increase 
in aquatic productivity is often at the expense of increased stream temperature (Beschta and Taylor 
1988). This ecological trade-off has caused some to hypothesize that a more subtle change in riparian 
forest cover, like those associated with thinning, could strike a balance by providing some increased 
light without substantially increasing stream temperature (Wilzbach et al. 2005). 

As streams and the biota they support can be sensitive to terrestrial disturbances (Welsh and 
Ollivier 1998), it is essential that we understand how streams respond to changing riparian forest 
conditions (Warren et al. 2016). Therefore, before thinning treatments are applied to second-growth 
riparian forests it is essential that we understand the effects on headwater stream ecosystems. As a 
result, we are evaluating the effects of experimental riparian thinning treatments on: 1) canopy cover, 

1 A version of this paper was presented at the Coast Redwood Science Symposium, September 13-15, 2016, Eureka, 
California. 
2 Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR 97331. 
3 Forest and Rangeland Ecosystem Science Center, USGS, Corvallis, OR 97331. 
4 Redwoods Sciences Laboratory, USDA Forest Service, Arcata, CA 95521. 
5 Pacific Northwest Research Station, USDA Forest Service, Juneau, AK 99801. 
6 Pacific Northwest Research Station, USDA Forest Service, Corvallis, OR 97331. 
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light, and stream temperature; 2) stream-riparian food webs; and 3) growth and bioenergetics of 
stream amphibians and fishes. We also examine the extent to which site-level responses to riparian 
thinning are evident at larger spatial scales, including further downstream and across entire 
watersheds. 

Our study is taking place in three headwater stream networks in second-growth redwood forests of 
coastal northern California. Two streams, the west and east forks of Tectah Creek, are located on 
private timber land owned by Green Diamond Resource Company and flow into the lower Klamath 
River. The third stream, the middle fork of Lost Man Creek, is located in Redwood National Park and 
flows into Redwood Creek. These streams drain two distinct land ownerships, but proposed riparian 
thinning treatments on both are motivated by many similar objectives and are conducted under a 
common set of regulatory requirements. 

Riparian thinning treatments are occurring at seven locations distributed across these three 
watersheds. Riparian thinning treatments consist of a reduction to 50 percent canopy cover over the 
stream channel along a 100 to 200 m reach. To evaluate the effects of riparian thinning, data are 
collected following a Before-After-Control-Impact (BACI) study design. Data are collected 
immediately upstream and downstream of experimental treatment reaches to understand the potential 
responses in context to local conditions and if those responses extend further downstream. Data are 
also being collected seasonally to understand how thinning affects streams during different times of 
year. 

In order to evaluate the effects of riparian thinning on streams, first we are measuring how 
changes in canopy cover and light affect stream temperature. Second, we are determining how the 
food webs in these streams are currently structured (riparian vs. freshwater pathways of productivity) 
and how that may change with thinning. To do this, we are collecting macroinvertebrates in the diets 
of coastal giant salamander and coastal cutthroat trout and using stable isotopes to discern if 
freshwater or riparian pathways support these food webs. Next we are examining how stream fish and 
amphibian communities respond to the thermal and trophic responses associated with the thinning 
treatments by measuring seasonal growth rates. We are also modeling bioenergetics for coastal 
cutthroat trout using the combined temperature and diet data. Finally, a food web systems dynamics 
model will assemble the composite abiotic and biotic data to provide a comprehensive perspective of 
how these streams are responding to riparian thinning. 

As riparian forest conditions continue to change, it is likely that freshwater ecosystems will be 
affected (Warren et al. 2016). Our studies focus on the potential changes in thermal and trophic 
conditions that are most likely to interact in supporting important aquatic species that inhabit 
headwater stream ecosystems. By combining empirical data collection with contemporary approaches 
in spatial stream network, food web, and bioenergetics modeling, we hope to provide a more 
comprehensive understanding of how these stream ecosystems are responding to riparian thinning. 
We hope that data collected by this study will not only address existing knowledge gaps, providing 
crucial information for multiple stakeholders, but will also help inform future riparian forest 
management in redwood ecosystems. 
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