
United States
Department
of Agriculture

DESIGN: A Program to Create Data
Forest Service Entry Programs
Pacific Southwest
Research Station

General Technical
Report PSW-GTR-148

J. Michael Wuerth David R. Weise

Wuerth, J. Michael; Weise, David R. 1994. DESIGN: a program to create data entry programs.
Gen. Tech. Rep. PSW-GTR-148. Albany, CA: Pacific Southwest Research Station, Forest
Service, U.S. Department of Agriculture; 17 p.

Scientific data entry can be an exacting process. The specific information needs change from
investigation to investigation. A computer program to design custom data screens is described.
The program, DESIGN, generates the necessary C programming language source code to create
a basic data entry program. Data entry screens can contain multiple nested screens. Users can
reuse common screens by creating templates.

Retrieval terms: data entry, computer program, C programming language

The Authors:

J. Michael Wuerth was formerly a Computer Programmer and David R. Weise is a Forester in the
Prescribed Fire Research Work Unit at the Station's Forest Fire Laboratory, 4955 Canyon Crest
Drive, Riverside, CA 92507.

Publisher:

Pacific Southwest Research Station
Albany, California
(Mailing address: P.O. Box 245, Berkeley, CA 94701-0245
Telephone: 510-559-6300)

April 1994

DESIGN: A Program to Create Data
Entry Programs

J. Michael Wuerth David R. Weise

Contents

Introduction .. 1

Installing and Running the DESIGN Program .. 2

Using a Template .. 3

Creating a New Screen ... 3

Creating and Modifying Prompts ... 4

Modifying Data Fields .. 4

Modifying the Screen ... 5

Creating the Program to Make a Data Entry Screen ... 5

Displaying Credits and Getting Help ... 6

Summary ... 6

Appendix ... 6

A: Sample C Source Code for Basic Data Entry Screen .. 7

B: Sample C Source Code to Produce a Data Entry Screen with a Nested Screen13

Introduction__________________

S cientific data entry can be an exacting process. The
specific information needs can vary from investi-

gation to investigation. Computer programs specifically
designed for data entry can increase the ease and accu-
racy of this process.

A data entry program that displays on-screen prompts
for data and ensures valid input of data can be difficult
and time consuming to write. The program code to
accomplish this is lengthy and needs modification every
time a new data entry program is needed.

The DESIGN program was created to enable both
programmers and nonprogrammers to create data entry
programs through a menu and mouse-driven user inter-
face. Programming knowledge is not needed to create a
data entry program with DESIGN. The Microsoft1 C
6.0 or QuickC 2.5 compiler is needed to convert the
output generated by DESIGN into an executable data
entry program. Basic PC knowledge is needed to run
DESIGN: what a directory is, how to run a program,
what a batch file is, etc.

A nontechnical user can create a data entry program
by placing the prompts and fields on the screen as
described below and then typing the command RUN at
the prompt after leaving DESIGN. However, knowledge
of the C programming language is necessary to under-
stand the source code in the appendices. DESIGN gener-
ates a batch file called RUN.BAT that creates a data
entry program by compiling and linking the C source
code generated by DESIGN to data entry libraries. These
libraries contain additional code that the C source code
generated by DESIGN must use to become a data entry
program. A person using DESIGN does not need to know
what a compiler or C library is. A nonprogrammer needs
only to know how to use DESIGN.

A programmer can use the C source code generated by
DESIGN as a starting point to create custom programs.
An example of C code produced by DESIGN can be
found in appendix A. By using DESIGN to generate C
code to produce data entry windows, the programmer can

use this code to create nested popup data entry windows.
The procedure to do this is described in appendix B. The
advantage of DESIGN is that it creates the source code
for the data entry program instead of just the executable
code. The main program is of relatively small size
because it is linked with a data entry library that contains
the code for the data entry routines. By linking with the
library, the programmer can add to the main program
created by DESIGN and tailor the program to the
specific requirements of the project without worrying about
the code to display the fields on the screen.

DESIGN is useful for projects with large volumes of
data to be entered, with many data entry personnel and a
high turnover of such personnel. Because DESIGN vali-
dates data as it is entered, data entry errors will be mini-
mized. Given the recent heightened Forest Service emph-
asis on data quality assurance/quality control (QA/QC),
DESIGN is a potentially useful tool. A programmer can
insert data validation routines into the source code cre-
ated by DESIGN as needed to add to the data validation
already provided by DESIGN, enabling the programmer
to implement whatever level of QA/QC is desired.

DESIGN creates a data entry program that outputs data
you entered to an ASCII file in a user-specified format. The
ASCII file can be used by most statistical, graphical, and
other programs.

This report describes the DESIGN program and
instructions for use. The typographical conventions in
this document are:

Text that came for the sample code……….……......…………bold

Parameters passed to sample code functionsitalic

User input to DESIGN queries………….………...italic and bold

Menu options .. underlined

File and directory names……...…………………ALL CAPITALS

1Trade names or products are mentioned solely for information and
do not imply endorsement by the U.S. Department of Agriculture.

USDA Forest Service Gen. Tech. Rep. PSW-GTR-148. 1994. 1

Installing and Running the DESIGN Program_____________________
The basic hardware and software requirements to use DESIGN are as follows:

Microsoft C 6.0 or QuickC 2.5 compiler

Microsoft-compatible mouse (MUST have a mouse to run DESIGN!)

MS-DOS 2.1 or higher

8088-based PC or higher

To install DESIGN, insert the installation floppy into the disk drive, change the working
directory to the floppy disk drive, and type INSTALL. This command creates the following
directories on the hard disk drive (C:).

C:\DESIGN (contains DESIGN.EXE)
C:\DESIGN\LIB (contains the data entry libraries)
C:\DESIGN\INCLUDE (contains the INCLUDE files)
C:\DESIGN\SAMPLES (contains the template and screen files)

You are then given the option to modify LIB and INCLUDE environment variables defined in
the AUTOEXEC.BAT file. INCLUDE files contain C functions and C routines that are either
standard (such as input/output routines) or custom. Use of include files is one method used to keep
C programs modular. To run DESIGN, you must move to the C:\DESIGN directory or add
C:\DESIGN to the PATH environment variable in the AUTOEXEC.BAT file and type DESIGN.
You should then see the screen illustrated in figure 1. An extensive explanation can be obtained
from the on-line help in DESIGN by clicking on About and selecting Help...Tutorial.

Below is a list of options for each menu item in figure 1. These options will be described in this
user's guide.

File:
Clear settings
Retrieve/Create Templates
Open/Save Screens

Create:
Create Screen
Display the Screen
Choose Compiler

Prompts:
Add/Delete/Move Prompts
Edit Text/Message in Prompt

Datafields:
Move a Datafield
Change the Type of a Datafield

Screen:
Resize/Move Screen
Change the Title of a Screen

Quit:
Quit DESIGN
Create data entry program
Abort DESIGN
Shell to DOS

About:
Show Credits
Help/Tutorial

When DESIGN is started you can either create an entirely new screen or modify a Template. A
Template is a file that contains information on the dimensions of the screen, the prompts, and data
fields that are repeatedly used in a majority of studies (i.e., date, location, observer). A
Template is different from a Screen. A Template is used as a starting point to create a screen. A

2 USDA Forest Service Gen. Tech. Rep. PSW-GTR-148. 1994.

Screen is a finished product using a Template as a building block. Choose Open Screen to work
on a saved screen. To create a new screen, click on Create. To modify a template or a previously
saved screen, click on File.

Using a Template__

Select File from the main menu, and the following menu is displayed:

Load/Save Templates
New.. clear all settings
Retrieve Template
Create Template
Open Screen
Save Screen

If for some reason you want to start over at any point in this session with DESIGN, click on
New...clear all settings to erase all the fields in the screen. To use a template, Retrieve
Template from a file. A dialog box then prompts you for the filename, and you can then
modify the template. Once a screen is set up the way you want, it can be saved to a file with
Create Template. Select Save Screen from the Create Template submenu to save the work.
A dialog box will appear, prompting you for the name of the saved screen.

Creating a New Screen______________________________________
To create a new screen, click on Create. The following menu is displayed. You have three

choices. The process of creating a data entry program can be started by clicking on
New...Create Screen. The work completed so far can be viewed by selecting Display Screen.

File Create Prompts Datafields Screen Quit About

Instructions

This is the Data Entry Design Program.

The menu bar above lets you create a screen, modify the

screen, add and modify the prompts and data fields. To

access a menu, press the cursor movement keys or the first

letter of a menu choice or move your mouse. The Enter key

or the left mouse button selects the highlighted item.

The Esc key or the right mouse button cancels a menu.

For a tutorial, go to the About menu and select Help.
<CLICK ON FILE OR CREATE TO BEGIN>

Figure 1-Main screen for the DESIGN program.

USDA Forest Service Gen. Tech. Rep. PSW-GTR-148. 1994. 3

Start Here First!
New..Create Screen
Display Screen
Compiler...

The type of compiler can be chosen by selecting Compiler. Selecting Compiler displays
a dialog box:

CHOOSE THE COMPILER YOU WORK WITH
| X | Microsoft Optimizing Compiler
| | Quick C Compiler

Creating and Modifying Prompts____________________________
A prompt is the text that instructs you on what data to enter. For example, suppose a prompt to

enter the date is needed. The prompt can look like this: ENTER TODAY'S DATE. Select
Prompts from the main menu, and the following menu is displayed:

Edit Prompts
Add Prompt
Delete Prompt
Move Prompt
Edit Text in Prompt
Change Descriptive Message

Create prompts by selecting Add Prompt. Delete any prompt from the screen by selecting
Delete Prompt. By selecting Move Prompt, a prompt can be relocated to any position on the
screen window. However, move a data field first if the prompt is to be moved to a location to
the right of the current location of the data field. The text of the prompt can be changed by
selecting Edit Text in Prompt. Whenever data is being entered for a prompt, a descriptive
message to you can be displayed at the bottom of the screen window. For example, with the
prompt ENTER TODAY'S DATE a message ENTER THE FORMAT MM/DD/YY can be
displayed at the bottom of the screen. This message can be changed by selecting Change
Descriptive Message.

Modifying Data Fields______________________________________
The actual location on the screen where you enter data is called a data field. A data field

(field) can contain integer (has no decimal point), floating point (has decimal point), or character
(contains numbers, letters and/or symbols) data. For example, the field associated with the prompt
ENTER TODAY'S DATE can be defined as being a CHARACTER field. Selecting
Datafields from the main menu displays the following screen:

Edit Fields
Move Field
Change Type

4 USDA Forest Service Gen. Tech. Rep. PSW-GTR-148. 1994.

A field can be relocated to another position on the screen by selecting Move Field. The type of a
field is determined by the type of data it contains (INTEGER, FLOATING POINT or
CHARACTER). A field's type can be changed by selecting Change Type. For example, the
prompt ENTER TODAY'S DATE: can be changed so it now expects the date in the format
ddmmyy that only allows numbers. For example, the date January 1, 1994 may be stored as a
CHARACTER value as Jan. 1, 1994 or 01/01/94. As an INTEGER value in the ddmmyy
format, it would be 010194.

Modifying the Screen_______________________________________

A screen contains all the prompts and fields. A screen may occupy all or a portion of the
computer monitor. Selecting Screen from the main menu, displays the following menu:

Edit Screen
Resize/Move Screen
Change Title

The size and location of a screen can be changed by selecting Resize/Move Screen. After
selecting this, click the mouse where the upper left corner of the screen should be, then click the
mouse where the lower right corner of the screen should be. Each screen may have a de-scriptive
title at the top of the screen. The title of a screen can be changed by selecting Change Title.
For example, to change the screen's title from AMPHIBIAN DATA to REPTILIAN DATA,
select Change Title and enter the new title.

Creating the Program to Make a Data Entry Screen _______________
There are many options under the Quit menu. Selecting Quit from the main menu displays the

following menu:

Quit?
No
Create program
Abort
Shell to DOS

You can return to DESIGN by selecting No. After the screen and prompts are defined, the data
entry program is created by selecting Create Program. This option creates the source code for
the program and also creates a batch file to compile the source code into a data entry program.
DESIGN can be exited without creating a data entry program by selecting Abort. DESIGN will
give you a chance to return to the main menu if Abort, is selected by accident:

DECIDE WHETHER TO CONTINUE OR QUIT

Enter either:
1 to Continue
2 to Quit

Keep in mind that you will lose all
your work if you choose 2.

USDA Forest Service Gen. Tech. Rep. PSW-GTR-148. 1994. 5

By selecting Shell to DOS, you can exit DESIGN temporarily and execute any DOS command at
the DOS prompt. For example, you might want to see if certain data files already exist.

Displaying Credits and Getting Help___________________________
Additional information about DESIGN can be obtained by selecting About from the main

menu. The following menu is displayed:

Show Credits?
No
Yes
Help...Tutorial

Selecting No returns you to the main menu, Selecting Yes shows who wrote DESIGN and where
additional information about DESIGN can be obtained. Selecting HeIp...Tutorial gives on-
line help which includes descriptions on the menu items and a step-by-step tutorial on how to
create a data entry program. See the Tutorial for a demo on how to create a data entry screen.

Summary__
The DESIGN program provides a set of tools that makes designing data entry programs easier

by taking away the task of writing the code for the user interface. For simple data entry programs,
you can design and create the program. If additional processing of the data is required at the time
of data entry (such as error checking), a programmer merely has to add source code to operate on
the data you entered.

6 USDA Forest Service Gen. Tech. Rep. PSW-GTR-148. 1994.

--

--

Appendix A - Sample C Source Code for Basic Data Entry Screen_______________

The following C code was produced by DESIGN by retrieving the sample template and
creating a data entry program from it:

/*

Name: sample.c

Written by J. Michael Wuerth

11/30/92

Purpose:

Type:

Language: Microsoft QuickC version 2.5

Video: At least color or monochrome text mode

To Compile: C:> qcl sample.c /link utilssm.lib

Program list: sample.c

UTILSSM.LIB
To use: C:> sample.c
Returns:

*/
#include <stdio.h>
#include "entry.h"
#include "data.h"
#include "colors.h"

// function prototypes
int main(void);
struct dnode *set_list(struct dnode *);
void FindContinueVariable(struct dnode *, int *);
void write_to_file(struct dnode *, FILE *);
int main(void)

{
int do_again = YES, FirstTime = YES;

// declare the linked list as NULL
struct dnode *datalist=NULL;
FILE *fptr;
fptr = fopen("data", "a");

// The next line initializes the linked list
datalist = set_list(datalist);
cls();
PaintBox(0, 21, 0, 79, B_BLUE);

// Have the user enter data
clear_list(datalist);
while (do_again) {

write_char(2, 61, 'Y', BRIGHT_VID | B_BLUE);
if (FirstTime) {

GetData(datalist, "TEST TEMPLATE", 0, 21, 0, 79, NO_REENTRY, NO);
FirstTime = NO;

}

else

GetData(datalist, "TEST TEMPLATE", 0, 21, 0, 79, NO_REENTRY, YES);

FindContinueVariable(datalist, &do_again);

// Write the data to a file

}
write_to_file(datalist, fptr);

fclose(fptr);

cls ();

mouse_hide();

return(0); // no errors

USDA Forest Service Gen. Tech. Rep. PSW-GTR-148. 1994. 7

--

--

--

--

}
/*

set_list

Purpose: To initialize the data entry linked list.

To use:

example-

Argument: Name of the list

datalist = set_list(datalist);
Returns: An initialized linked list.

*/
struct dnode *set_list(struct dnode *datalist)
{

datalist=add_entry (datalist,0,6,6,34,16,”Integer field”,"enter 4 digits", INTEGER,
NOT_NESTED,4,4);

datalist=add_entry(datalist,1,10,12,23,16,"Floating-point field","enter 2 digits to
left, 3 to right of decimal", FLOATING,NOT_NESTED,2,3);

datalist=add_entry(datalist,2,16,16,33,16,"Character field”,"enter characters or numbers",
CHARACTER,NOT_NESTED,35,35);

datalist=add_entry(datalist,3,2,2,61,51,"Continue?","Enter Y or N", CHARACTER,
NESTED,1,1);

return(datalist);
} // set_list()

/*

FindContinueVariable

Purpose: To determine whether or not to continue data input.

To use: First argument: name of the list

example-
Second argument: address of continue variable

FindContinueVariable(datalist, &do_again);

*/
void FindContinueVariable(struct dnode *datalist, int *do_again)
{

struct dnode *base;
char temp[80];
base = datalist;
while (datalist != NULL) {

if (datalist->type == CHARACTER) {
strcpy(temp, datalist->array);
if ((temp[0] == 'Y') || (temp[0] ==

*do_again = YES;
else

}
*do_again = NO;

datalist=datalist->next;
}
datalist = base;

} // FindContinueVariable()

'y') || (!strcmp(temp, "")))

8 USDA Forest Service Gen. Tech. Rep. PSW-GTR-148. 1994.

/*

write_to_file

Purpose: To write the contents of a linked-list to file.

To use: First argument: name of the list

example-
Second argument: file pointer

write_to_file(datalist, fptr);

*/

void write_to_file(struct dnode *datalist, FILE *fptr)

{

int field_len;
struct dnode *base;
base = datalist;
while (datalist != NULL) {

switch (datalist->type) {
case INTEGER :

field_len = datalist->leftofdec;

break;
fprintf(fptr, "%*ld ” , field_len, datalist->i);

case FLOATING :
field_len = datalist->leftofdec + datalist->rightofdec + 1;
fprintf(fptr, ”%*.*f ” , field_len, datalist->rightofdec, datalist->f);

break;
case CHARACTER :

field_len = datalist->leftofdec;
if (strcmp("Continue?", datalist->prompt))

fprintf(fptr, "%*s ” , field_len, datalist->array);
break;

}
datalist=datalist->next;

}

datalist = base;
fprintf(fptr, "\n");

} // write_to_file()

An explanation of what the code in this sample program does follows. Header files need to be
included. <STDIO.H> is a file provided with the Microsoft C compiler that contains standard
input/output functions. The next three files are custom to DESIGN and are included on the
installation diskette.

#include <stdio.h>
#include "entry.h"
#include "data.h"
#include "colors.h"

Next, function prototypes are needed.

int main(void);

struct dnode *set_list(struct dnode *);

void FindContinueVariable(struct dnode *, int *);

void write_to_file(struct dnode *, FILE *);

USDA Forest Service Gen. Tech. Rep. PSW-GTR-148. 1994. 9

These functions will be explained later. Now, the variables in the main program need to be
defined

int do_again = YES, FirstTime = YES;
struct dnode *datalist=NULL;
FILE *fptr;

When the data entry program is running, the information on where to locate the data fields and the
data itself is kept in a linked-list. The routine that manages this linked-list is called GetData.

GetData(datalist, "TEST TEMPLATE", 0, 21, 0, 79, NO_REENTRY, NO);

The parameters passed to GetData are:
• the name of the linked-list ― datalist
• the title of the screen ― TEST TEMPLATE
• the upper row of the screen
• the lower row of the screen
• the leftmost column of the screen
• the rightmost column of the screen
• what field to position the cursor on when starting GetData

0 = first field
1 = second field, etc.
NO_REENTRY = first field...the field does not lead to a nested screen (ex-

plained below)
• whether or not the linked-list has data in it

If the linked-list had data in it, then GetData displays that data on the screen. The first time
GetData is entered, the linked-list does not have data in it. The last parameter in GetData is set
to NO the first time GetData is accessed to indicate to GetData to not display the contents of the
linked-list (since there is no data). After the first time GetData is accessed, GetData should
display what was previously entered on the screen which is now in the linked-list.

To display this data, pass YES to the last parameter of GetData. The variable FirstTime lets
the program know when GetData is being accessed for the first time and that GetData should not
display the contents of the linked-list. After the first time GetData is accessed, FirstTime is set
to NO which tells the program to display the data in the linked-list. The name of the linked-list that
contains this data is called datalist.

struct dnode *datalist=NULL;

The linked-list is a list of dnode structures. The dnode structure is defined in the file entry.h.
dnode is a structure that contains information for a data field on the screen (dnode = “data node”).
This information includes what type the data is, where it is located on the screen, the actual data
itself and other information that GetData needs.

The prompt “Continue?” is displayed on the screen, asking if you want to continue entering
more data. The program decides when to end the program by “walking” down the linked-list
until the dnode for the “Continue?” prompt is accessed. If the data in this field is N, then the
program stops. The value of the “Continue?” field is stored in the looping variable do_again.

The last variable in main is the pointer to the data file. The data you enter is stored in the ASCII
file that this pointer refers to.

10 USDA Forest Service Gen. Tech. Rep. PSW-GTR-148. 1994.

FILE *fptr;

Now after the variables are defined, the program opens the data file.

fptr = fopen("data", "a");

Next, the program initializes the linked-list.

datalist = set_list(datalist);

set_list calls the library routine add_entry to initialize each dnode structure in the linked-
list. The information passed to add_entry is:

• the name of the linked list
• the ordinal number of the dnode (starting with 0)
• what row the prompt is located on
• what row the field is located on
• what column the data field is located on
• what column the prompt is located on
• the prompt
• the message accompanying the prompt
• the type of data
• whether or not the field leads to a nested screen
• the number of digits to the left of the decimal
• the number of digits to the right of the decimal

For INTEGER and CHARACTER fields, the number of digits to the left and right of the
decimal are set equal to the length of the field. The screen is now cleared and painted blue.

cls();

PaintBox(0, 21, 0, 79, B_BLUE);

Before using the linked-list, the contents of the list are set to default values. This is not
necessary, but it is good programming practice to make sure that the list does not contain un-
expected data when it is used.

clear_list(datalist);

Now the program enters the while loop that will let you continue to enter data until you enter
N or n at the “Continue?” prompt.

while (do_again) {
write_char(2, 61, 'Y', BRIGHT_VID | B_BLUE);
if (FirstTime) {

GetData(datalist, "TEST TEMPLATE", 0, 21, 0, 79, NO_REENTRY, NO);
FirstTime = NO;

}
else

GetData(datalist, "TEST TEMPLATE", 0, 21, 0, 79, NO_REENTRY, YES);
FindContinueVariable(datalist, &do_again);

// Write the data to a file

}
write_to_file(datalist, fptr);

USDA Forest Service Gen. Tech. Rep. PSW-GTR-148. 1994. 11

Inside the while loop, the program writes a Y to where the “Continue?” field is on the screen. Y
is the default answer to the prompt. Now an IF statement is executed to determine whether or not
to display the previously entered data, the contents of the linked-list, while you enter new data.
Next, the program calls the routine FindContinueVariable to “walk” down the linked-list and
find out if you entered Y or N at the “Continue?” prompt. The varible do_again is set to NO if
you entered N, thereby causing the program to leave the while loop. The last part of the loop
write_to_file(datalist, fptr);

writes the data entered to the file “data”. The routine write_to_file “walks” down the linked-list
and writes the contents of the data field in the dnode structure to the data file. After the while
loop is left, the program closes the data file, clears the screen, turns off the mouse, and returns to
DOS with a value of 0.

fclose(fptr);
cls();
mouse_hide();
return(0);

By compiling the program and linking it with the data entry library, this screen is produced:

TEST TEMPLATE

Continue?:Y

Integer field:_____

Floating-point field:

___._____

Character field:_______________________________

enter 4 digits

The program positions the cursor on the first field, “Integer field” in this case. The message
“enter 4 digits,” corresponding to that field, is displayed on the bottom of the screen. The data
entry operator moves between fields by pressing ENTER or by using the cursor keys. After the
operator enters the data for the last field on the screen, the cursor is positioned on the
“Continue?” prompt. By entering “Y” or pressing ENTER, the data on the screen is written to the
ASCII file as one line of text and the cursor is positioned at the first field on the screen.
Subsequent screens of data are appended to the following line in the ASCII file. To end data entry,
enter “N” at the “Continue?” prompt.

12 USDA Forest Service Gen. Tech. Rep. PSW-GTR-148. 1994.

--

Appendix B - Sample C Source Code Program to Produce a Data Entry
Screen With a Nested Screen___

The data entry program created by DESIGN can be modified to implement nested pop-up
data entry screens. To add a pop-up screen, you can use DESIGN to first create the pop-up
screen you like such as the following example.

NESTED SCREEN

Enter today's date: _____
Enter your initials: ____
mm/dd/yy

Save this screen, and then insert the lines of source code that DESIGN produced to create the pop-
up window, and copy that code into the source code for your main data entry screen. This way,
you can use DESIGN as a screen drawing program. To create the screen above, DESIGN
produced the source code below.

// Call a nested screen from the second field in the first screen

clear_list(nestedlist);

save_data_video(10, 19, 20, 60, screen);

PaintBox(10, 19, 20, 60, B_BLUE);

GetData(nestedlist, "NESTED SCREEN", 10, 19, 20, 60, NO_REENTRY, NO);

// write data from the nested screen to a file

write_to_file(nestedlist, second_ptr);

restore_data_video(10, 19, 20, 60, screen);

Add one more GetData after this section of source code, and you now have a nested pop-up
data entry window in your program. You do not have to use DESIGN to create the C code to
display the nested pop-up data window. You can create the C code yourself, but you have to
calculate the positions to place the data entry fields and prompts instead of letting DESIGN do the
tedious work for you.

// return to the first screen at the third field

GetData(datalist, "TEST TEMPLATE", 0, 21, 0, 79, 2, YES);

Whether you use DESIGN or create the C code yourself, this is the resulting code that will
create a data entry program with a nested pop-up data entry window:
/*

Name: nested.c
Written by J. Michael Wuerth

Purpose:
11/30/92

Type:

Language: Microsoft QuickC version 2.5

Video: At least color or monochrome text mode

To Compile: C:> qcl nested.c /link utilssm.lib

Program list: nested.c

UTILSSM.LIB
To use: C:> nested.c
Returns:

*/
#include <stdio.h>
#include <malloc.h>
#include "entry.h"
#include "data.h"
#include "colors. h"

USDA Forest Service Gen. Tech. Rep. PSW-GTR-148. 1994. 13

// function prototypes
int main(void);
struct dnode *set_list(struct dnode *);
struct dnode *set_nested_list(struct dnode *);
void FindContinueVariable(struct dnode *, int *);
void write_to_file(struct dnode *, FILE *);

int main(void)
{

int do_again = YES, FirstTime = YES;
// declare the linked lists as NULL

unsigned char *screen;
struct dnode *datalist=NULL, *nestedlist=NULL;
FILE *fptr, *second_ptr;

// allocate space for screen pointer
screen=(unsigned char *) malloc (2 * (24-0+1) * (79-0+1));

fptr = fopen("data", "a");
second_ptr = fopen("nestfile", "a");

// The next line initializes the linked list
datalist = set_list(datalist);
nestedlist = set_nested_list(nestedlist);

cls();

PaintBox(0, 21, 0, 79, B_BLUE);

// Have the user enter data
clear_list(datalist);
clear_list(nestedlist);
while (do_again) {

write_char(2, 61, 'Y', BRIGHT_VID | B_BLUE);
if (FirstTime)

GetData(datalist, "TEST TEMPLATE", 0, 21, 0, 79, NO_REENTRY, NO);
else

GetData(datalist, "TEST TEMPLATE", 0, 21, 0, 79, NO_REENTRY, YES);
// ---
// THE CODE BELOW CREATES A NESTED SCREEN THAT POPS UP AFTER THE
// USER ENTERS DATA FOR THE "Floating-point field" PROMPT
// ---

// Call a nested screen from the second field in the first screen
clear_list(nestedlist);
save_data_video(10, 19, 20, 60, screen);
PaintBox(10, 19, 20, 60, B_ BLUE);
GetData(nestedlist, "NESTED SCREEN", 10, 19, 20, 60, NO_REENTRY, NO);

// write data from the nested screen to a file
write_to_file(nestedlist, second_ptr);
restore_data_video(10, 19, 20, 60, screen);

// return to the first screen at the third field
GetData(datalist, "TEST TEMPLATE", 0, 21, 0, 79, 2, YES);

// --
// ---

// Write the data from the first screen to a file
write_to_file(datalist, fptr);
FindContinueVariable(datalist, &do_again);
FirstTime = NO;

}

14 USDA Forest Service Gen. Tech. Rep. PSW-GTR-148. 1994.

fclose(fptr);

fclose(second_ptr);

cls();

mouse_hide();

return(0); //no errors

}

/*

set_list

Purpose: To initialize the data entry linked list.

To use: Argument: Name of the list
example-
datalist = set_list(datalist);

Returns: An initialized linked list.

*/
struct dnode *set_list(struct dnode *datalist)
{

datalist=add_entry(datalist,0,6,6,34,16,"Integer field","enter 4 digits", INTEGER,
NOT_NESTED, 4,4);

datalist=add_entry(datalist,1,10,12,23,16,"Floating-point field","enter 2 digits to
left, 3 to right of decimal",FLOATING,NESTED,2,3);

datalist=add_entry(datalist,2,16,16,33,16,"Character field","enter characters or numbers",
CHARACTER, NOT_NESTED,35,35);

datalist=add_entry(datalist,3,2,2,61,51,"Continue?","Enter Y or N", CHARACTER,
NESTED, 1,1);

return(datalist);
} // set_list()

/*

set_nested_list

Purpose: To initialize the nested linked list.

To use: Argument: Name of the list
example-
nested_list = set_nested_list(nested_list);

Returns: An initialized linked list.

*/
struct dnode *set_nested_list(struct dnode *nested_list)
{

nested_list=add_entry(nested_list,0,13,13,46,25,"Enter today's date","mm/dd/yy", CHARACTER,
NOT_NESTED, 8, 8);

nested_list=add_entry(nested_list,1,15,15,47,25,"Enter your initials","Enter all caps",
CHARACTER, NESTED,3,3);

return(nested_list);
} // set_nested_list()

/*

FindContinueVariable

Purpose: To determine whether or not to continue data input.

USDA Forest Service Gen. Tech. Rep. PSW-GTR-148. 1994. 15

--

--

To use:	 First argument: name of the list
Second argument: address of continue variable
example-
FindContinueVariable(datalist, &do_again);

*/
void FindContinueVariable(struct dnode *datalist, int *do_again)
{

struct dnode *base;
char temp[80];

base = datalist;
while (datalist != NULL) {

if (datalist->type == CHARACTER) {
strcpy(temp, datalist->array);
if ((temp[0] == 'Y') || (temp[O] == 'y') || (!strcmp(temp,"")))

*do_again = YES;
else

}
*do_again = NO;

datalist=datalist->next;
}
datalist = base;

} // FindContinueVariable()
/*

write_to_file

Purpose: To write the contents of a linked-list to file.

To use: First argument: name of the list
Second argument: file pointer

example-
write_to_file(datalist, fptr);

*/
void write_to_file(struct dnode *datalist, FILE *fptr)
{ 	

int field_len;
struct dnode *base;

base = datalist;
while (datalist != NULL) {

switch (datalist->type) {
case INTEGER :
field_len = datalist->leftofdec;
fprintf(fptr, "%*ld ” , field_len, datalist->i);
break;
case FLOATING :
field_len = datalist->leftofdec + datalist->rightofdec + 1;
fprintf(fptr, "%*.*f " , field_len, datalist->rightofdec, datalist-
>f);
break;

case CHARACTER :
field_len = datalist->leftofdec;
if (strcmp("Continue?", datalist->prompt))
fprintf(fptr, "%*s " , field_len, datalist->array);

16 USDA Forest Service Gen. Tech. Rep. PSW-GTR-148. 1994.

break;
}
datalist=datalist->next;

}
datalist = base;

fprintf (fptr, "\n");
} // write_to_file()

An explanation of what changes were made to the basic source code in appendix A to create the
nested pop-up screen follows. A function prototype is needed for the function that initializes the
nested screen.

struct dnode *set_nested_list(struct dnode *);

The linked-list for the nested screen is defined.

struct dnode *nestedlist=NULL;

Next, a buffer (called screen) is needed to hold the contents of the screen that the nested screen
will overwrite. This buffer needs space allocated to it by using malloc. The header file for malloc
(malloc.h) was included at the very beginning of the source code.

unsigned char *screen;

screen=(unsigned char *) malloc (2 * (24-0+1) * (79-0+1));

In this example, the contents of the nested screen are written to a file. To do this, a file pointer is
needed, and the file needs to be opened. Another option is to copy the contents of the nested screen
to variables and use those variables as needed in the program.

FILE *second_ptr;

second_ptr = fopen("nestfile", "a");

Next, the nested screen needs to be initialized. set_nested_list is set up similar to set_list in
that it defines what types the prompts and fields are for the nested screen and where they should
appear on the screen.

nestedlist = set_nested_list(nestedlist);

The last thing to be done before the nested screen is used is to change the add_entry statement
for the field in the first screen that will lead to the nested screen. Because the “Floating-point
field” prompt displays the nested screen, the NOT_NESTED parameter had to be changed to
NESTED. This will make the program exit GetData and execute the code after this point. This
is where the source code for the nested screen needs to be placed.

The general format for displaying a nested screen is

GetData (call first screen)
GetData (call nested screen)
GetData (return to first screen)

Here is the code to do this:

USDA Forest Service Gen. Tech. Rep. PSW-GTR-148. 1994. 17

GetData(datalist, "TEST TEMPLATE", 0, 21, 0, 79, NO_REENTRY, YES);
// ---
//THE CODE BELOW CREATES A NESTED SCREEN THAT POPS UP AFTER THE
// USER ENTERS DATA FOR THE "Floating-point field" PROMPT
// --
// Call a nested screen from the second field in the first screen

clear_list(nestedlist);
save_data_video(10, 19, 20, 60, screen);
PaintBox(10, 19, 20, 60, B_BLUE);
GetData(nestedlist, "NESTED SCREEN", 10, 19, 20, 60, NO_REENTRY, NO);
// write data from the nested screen to a file
write_to_file(nestedlist, second_ptr);
restore_data_video(10, 19, 20, 60, screen);

After you enter data for the last prompt and enter Y or N for the “Continue?” prompt, the data
from the first screen is written to the file “data.” This implementation allows a programmer to
add as many nested screens to the program as he wants without worrying about the code to
generate the nested screens. All that is required is to call GetData to display the pop-up screens.

18 USDA Forest Service Gen. Tech. Rep. PSW-GTR-148. 1994.

The Forest Service, U.S. Department of Agriculture, is responsible for Federal leadership in forestry.
It carries out this role through four main activities:
• Protection and management of resources on 191 million acres of National Forest System lands
•	 Cooperation with State and local governments, forest industries, and private landowners to help

protect and manage non-Federal forest and associated range and watershed lands
•	 Participation with other agencies in human resource and community assistance programs to

improve living conditions in rural areas
• Research on all aspects of forestry, rangeland management, and forest resources utilization.

The Pacific Southwest Research Station
•	 Represents the research branch of the Forest Service in California, Hawaii, American Samoa

and the western Pacific.

Persons of any race, color, national origin, sex, age, religion, or
with any handicapping conditions are welcome to use and enjoy
all facilities, programs, and services of the U.S. Department of
Agriculture. Discrimination in any form is strictly against agency
policy, and should be reported to the Secretary of Agriculture,
Washington, DC 20250.

United States
Department
of Agriculture

Forest Service

Pacific Southwest
Research Station

General Technical
Report PSW-GTR-148

DESIGN: A Program to Create Data Entry Programs

