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Abstract 

Understanding how tropical tree phenology (i.e., the timing and amount of seed and 
leaf production) responds to climate is vital for predicting how climate change may 
alter ecological functioning of tropical forests. We examined the effects of temper-
ature, rainfall, and photosynthetically active radiation (PAR) on seed phenology of 
four dominant species and community-level leaf phenology in a montane wet forest 
on the island of Hawaiʻi using monthly data collected over ~ 6 years. We expected 
that species phenologies would be better explained by variation in temperature and 
PAR than rainfall because rainfall at this site is not limiting. The best-fit model for 
all four species included temperature, rainfall, and PAR. For three species, including 
two foundational species of Hawaiian forests (Acacia koa and Metrosideros polymor-
pha), seed production declined with increasing maximum temperatures and increased 
with rainfall. Relationships with PAR were the most variable across all four species. 
Community-level leaf litterfall decreased with minimum temperatures, increased 

−1with rainfall, and showed a peak at PAR of ~ 400 μmol/m2s . There was considerable 
variation in monthly seed and leaf production not explained by climatic factors, and 
there was some evidence for a mediating effect of daylength. Thus, the impact of 
future climate change on this forest will depend on how climate change interacts with 
other factors such as daylength, biotic, and/or evolutionary constraints. Our results 
nonetheless provide insight into how climate change may affect different species in 
unique ways with potential consequences for shifts in species distributions and com-
munity composition. 
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climate change, Hawaiian Islands, Laupāhoehoe Forest Dynamics Plot, leaf production, seed 
production, tropical forest 

© 2020 The Association for Tropical Biology and Conservation 

wileyonlinelibrary.com/journal/btp 

www.wileyonlinelibrary.com/journal/btp
mailto:
https://orcid.org/0000-0001-8135-9266
https://orcid.org/0000-0003-4840-8921
mailto:spau@fsu.edu


826  | PAU et Al.     

 

  
 

    

      

 

 
    

         
  

 
 

        
  

       
        

   
    

 

 

      
 

          

 
         

        
 

     
  

           
 

         
 

  
 

 
  

        

  
         

 
  

 
 
 

  
   

   
  

 
 

    
        

          

 

        
        

 
 

   
 
 
 
 
 

 

 

   
 

1  | INTRODUC TION  

In the tropics, the growing season is potentially year-round and there 
is remarkable diversity in patterns of tropical flowering (Newstrom, 
Frankie, Baker, & Newstrom, 1994; Sakai, 2001), seed and leaf pro-
duction (Frankie, Baker, & Opler, 1974; Leishman, Wright, Moles, & 
Westoby, 2000; Mendoza et al., 2018; Reich, 1995). Seasonal changes 
in temperate regions are more pronounced than in the tropics. Thus, 
temperate phenological sensitivities to climate change are easier to 
identify (Cook et al., 2012; Newstrom et al., 1994; Pau et al., 2011). 
Unlike the mounting evidence from temperate regions for “spring 
advancement,” that is, the earlier occurrence of first bud burst and 
flowering due to warming temperatures, there is little information 
on changes in tropical plant phenology in response to climate change 
(Abernethy, Bush, Forget, Mendoza, & Morellato, 2018; Cook 
et al., 2012; Menzel et al., 2006). Instead, tropical plant phenology 
has been hypothesized to be more closely tied to biotic factors such 
as pollinator abundance or competition for resources rather than 

seasonal changes in climate (Pau et al., 2011). Yet underlying selec-
tive forces and proximate factors that cue phenological events often 
interact and can be difficult to separate (Rathcke & Lacey, 1985; van 
Schaik, Terborgh, & Wright, 1993). Phenological cues are usually 
consistent changes in the abiotic environment, which then trigger 
physiological processes controlling flower, fruit, or leaf production 

(van Schaik et al., 1993). 
Research on tropical plant phenology—both leaf and reproduc-

tive phenology—has focused on changes in rainfall, particularly 

in seasonally dry habitats (Borchert, 1994; Frankie et al., 1974; 
Lieberman, 1982; Reich, 1995; Sakai & Kitajima, 2019; Wright, 1991; 
Zimmerman, Wright, Calderón, Pagan, & Paton, 2007). A compre-
hensive review of Neotropical phenology studies showed that 
74.3% of studies examined rainfall as a climatic driver of fruiting 
phenology, whereas only 19.3% and 3.2% of studies examined air 
temperature or solar radiation/photoperiod, respectively (Mendoza, 
Peres, & Morellato, 2017). Many tropical and subtropical regions 
experience a dry season associated with the seasonal movement of 
the Intertropical Convergence Zone (ITCZ). Although the dry sea-
son results in seasonal water deficits, there are also often fewer 
clouds, allowing greater light interception by the canopy (but see 
Philippon, Cornu, Monteil, Gond, & Moron, 2019). Both experiments 
and observational data in tropical forests across multiple continents 

show that greater light availability is associated with greater com-
munity-level flower, fruit, and leaf production (Chapman, Valenta, 
Bonnell, Brown, & Chapman, 2018; Graham, Mulkey, Kitajima, 
Phillips, & Wright, 2003; Morellato et al., 2000; Pau et al., 2013; 
Wright & Calderón, 2006; Zimmerman et al., 2007). In Panama, flow-
ering times for ten species was predicted by increases in solar irradi-
ance, and of the 19 total species examined, none were explained by 

the timing and intensity of rainfall (Wright & Calderón, 2018). 
Although temperature has not received as much attention as an 

abiotic driver of tropical plant phenology, temperature is a fundamen-
tal constraint on numerous biological processes (Kingsolver, 2009). 
Tropical species may be adapted to a narrower range of temperatures 

and may be living closer to their upper thermal limits (Janzen, 1988; 
Tewksbury, Huey, & Deutsch, 2008; Wright, Muller-Landau, & 
Schipper, 2009). Seasonal flowering patterns were related to tem-
perature at two tropical sites with long-term data (Pau et al., 2013). 
In a lowland moist seasonal forest in Panama and a montane ev-
er-wet forest in Puerto Rico, greater flowering occurred in warmer 
months (Wright & Calderón, 2006). Few physiological experiments 
have examined the temperature sensitivity of tropical reproduction, 
but reproductive organs are known to be highly sensitive to tem-
perature (Larcher & Winter, 1981; Slot & Winter, 2016). It is unclear 
if tropical leaf phenology is also sensitive to temperature fluctua-
tions, but both leafing and flowering in the Brazilian Atlantic forest 
is tied to seasonal changes in temperature and daylength (Morellato 

et al., 2000). 
The Hawaiian flora provides unique insight into the ecology and 

evolution of plant diversity and is considered a model system due 

to its isolation, endemism and the relative simplicity of its processes 

due to low species diversity (Price & Wagner, 2004; Sakai, Wagner, 
Ferguson, & Herbst, 1995; Wagner & Funk, 1995). Yet there are few 

published studies on the reproductive phenology of Hawaiian for-
ests (e.g., Berlin, Pratt, Simon, & Kowalsky, 2000; Drake, 1992; van 

Riper III, 1980). More work has examined monthly leaf litterfall, yet 
these studies have generally focused on leaf litter's role in nutrient 
cycling and contributions to aboveground net primary productivity 
(e.g., Austin, 2002; Raich, 1998; Schuur & Matson, 2001; Vitousek, 
Gerrish, Turner, Walker, & Mueller-dombois, 1995), not seasonality 

and responses to climatic variability. This lack of understanding limits 

our knowledge of how climate change may alter Hawaiian forest phe-
nology and associated ecosystem functions. Hawaiian forests have 

lower tree diversity, but are structurally similar to other continen-
tal tropical forests (Ostertag, Inman-Narahari, Cordell, Giardina, & 

Sack, 2014) with tropical phenological strategies represented. Their 
extreme isolation in the Pacific makes them a unique signal for cli-
mate change impacts on ecological communities, unlike forests such 

as the Amazon, which experience large local feedbacks between the 

canopy and atmosphere (Kooperman et al., 2018), complicating the 

climate signal. In this study, we examine monthly seed production 

of the four dominant tree species and community-wide leaf litterfall 
from a montane wet forest on the Island of Hawaiʻi. We expect that 

species phenologies will be better explained and more sensitive (i.e., 
magnitude of response) to variation in temperature and PAR than 

rainfall because rainfall at this site is not limiting, and that some spe-
cies will be more sensitive to climatic variation than others. 

2  | METHODS  

2.1 | Study site, phenology, and climate data 

The Laupāhoehoe Forest Dynamic Plot (FDP; 19°55′N, 155°17′W), part 
of the Forest Global Earth Observatory (ForestGEO) network (https:// 

forestgeo.si.edu/), is a montane wet forest at 1,120 m in elevation on the 

Island of Hawaiʻi. The forest includes 18 woody flowering tree species, 

https://forestgeo.si.edu/
https://forestgeo.si.edu/
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3 tree fern species, and the vegetation is highly representative of mon-
tane wet forests in Hawaiʻi (see Ostertag et al., 2014 for detailed site 

information). Mean annual precipitation is 3,440 mm, and mean annual 
temperature is 16°C based on long-term island-wide extrapolation of cli-
mate records over a 30-year period (Giambelluca et al. 2013). 

To monitor reproductive and leaf phenology, sixty-four litter 
traps within a 4-hectare plot were placed in a regular grid, 10-meters 

apart, and monitored as part of the Hawaiʻi Permanent Plot Network 
(HIPPNET). Reproductive (fruit and seeds) and leaf litterfall were 
censused each month following standard protocol (Wright, Muller-
Landau, Calderón, & Hernandéz, 2005). Fruits and seeds were iden-
tified to species and converted to number of seeds for each fruit. 
Leaf litterfall, for all species combined, was weighed to the nearest 
0.1 grams. Sixty-five months of fruit/seed data were available be-
tween the months of October 2009 to March 2018 (with occasional 
missing collections between 2009 and 2014, only part of 2015 and 
2017 collected, and none of 2016 collected; a full 12-month record 
was only available for two years prohibiting year-to-year models; 
see Figure S1). Thirty-two months of community leaf litterfall data 
were available. Because some collections could only be attributed to 
a month and year, leaf litterfall rates (e.g., g/m2 day−1) could not be 
determined accurately. 

The climate station at Laupāhoehoe FDP was established in 
2009 is maintained by HIPPNET and record daily temperature (° C; 
HMP45C-L, Vaisala), rainfall (mm; tipping bucket rain gauge; TB3 

CS700, Hydrological Services), and photosynthetically active radi-
ation (PAR; μmol/sm−2; Quantum sensor). All climate data were ag-
gregated to monthly averages except for rainfall, which was summed 
each month. 

Of the 21 plant species present at Laupāhoehoe, 12 were pres-
ent at least once in the litter baskets and 4 dominant species were ul-
timately examined (in order of abundance): Metrosideros polymorpha 
(‘ōhi‘a lehua; bird or insect pollinated, wind dispersed, Myrtaceae), 
Acacia koa (koa; insect pollinated, wind dispersed, Fabaceae), 
Coprosma rhynchocarpa (pilo; wind pollinated, bird dispersed, 
Rubiaceae), and Cheirodendron trigynum (ʻōlapa; bird or insect polli-
nated, bird dispersed, Araliaceae). These four dominant species ac-
count for 57.5% of the total number of trees and 52.7% of the total 
basal area of the Laupāhoehoe FDP and were the trees that reached 
canopy and sub-canopy levels (Ostertag et al., 2014). The other 8 
species occurred too infrequently in the litter traps for statistical 
analysis. For these four species, as well as for leaf litterfall, circular 
histograms were created showing the average seed production or 
leaf litterfall each month to visualize monthly seasonality. 

2.2 | Statistical analyses 

The coefficient of variation (CV) across months was calculated each 

year, using only years where all twelve months were represented, 
for seed production and leaf litterfall. To examine relationships be-
tween seed production (counts) and leaf litterfall (grams) with cli-
matic factors, we used generalized additive mixed models (GAMMs) 

to estimate flexible, potentially non-linear smoothing functions to 

predictors and response variables (for mathematical descriptions see 
Venables & Ripley 1999; Wood 2006; Zuur, Ieno, Walker, Saveliev, & 
Smith, 2009; Polansky & Boesch, 2013; Polansky & Robbins, 2013). 
We used a Poisson log-link likelihood for seed production and a 
Gaussian log-link likelihood for leaf litterfall. We estimated response 
curves (i.e., “smooth terms”) using cubic regression splines for the 

climatic predictors—temperature, rainfall, and PAR—as well as for 
“month” (to account for monthly seasonality independent from cli-
matic seasonality) and “time,” which was a variable of sequential 
months from the first census (to account for any long-term trend, 
which is not the focus of this study). We included “trap” as a ran-
dom effect to account for spatial variation among traps and non-
independence within traps. Rainfall was log-transformed because a 
few large values resulted in a skewed distribution. We also included 

daylength as a predictor, but large (>0.80) concurvity values (i.e., a 
generalization of collinearity for smooth terms in GAMs) limited ac-
curate interpretation (see Supporting Information; Figure S2 and S3, 
Table S1). Because time-series data are often non-independent, we 

accounted for serial autocorrelation in the error term using an AR(1), 
that is, an autoregressive term of 1 month. Model residuals were ex-
amined and showed no significant autocorrelation. Seed production 

was modeled separately for each species using concurrent monthly 
climate data because fruit maturation, dispersal, and germination 
should be timed to climate (van Schaik et al., 1993). Leaf litterfall, 
however, is not as clearly associated with climate as leaf production 
might be. Thus, leaf litterfall was examined using collection dates 
lagged one month prior to collection (when leaves had not yet fallen 
and are still on the canopy). A one-month lag resulted in higher 
Pearson correlation coefficients than a two- or three-month lag. 

Because phenology may be linked to climatic extremes (Butt 
et al., 2015), we compared the statistical responses of seed produc-
tion and leaf litterfall to minimum and maximum temperatures in ad-
dition to mean temperatures using the corrected Akaike Information 
Criterion (AICc) (Burnham & Anderson, 2010). AICc indicates the 
likelihood of the data given the model, penalizing for the number of 
additional parameters in the model. After choosing which tempera-
ture metric bestfit the data, we compared the full model—includ-
ing all climatic factors—with all possible reduced models to assess 
which climatic factor or combination of factors best explained the 
data using AICc. The “month” and “time” parameters, as well as the 
random effect of “trap” were included in all model comparisons. 
Statistical analyses were conducted using the functions “UGamm” 
and “dredge” in the packages “mgcv” and “MuMIn” in R version 3.6.0. 

3  | RESULTS  

3.1 | Seed production 

The most strongly seasonal species was C. rhynchocarpa, with pro-
tracted annual seed production from June to February and peak seed 

production in December (Figure 1). The other three species generally 
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produced seeds year-round; however, some still exhibited seasonality 

in seed production. C. trigynum had a clear peak season of seed pro-
duction from July to November, whereas seed production by A. koa 
and M. polymorpha were highly variable throughout the year. A. koa 
had the most variable monthly seed production with a coefficient of 
variation (CV) ranging each year from 0.85 to 3.00. The CV of monthly 

seed production ranged from 0.65 to 1.35 for C. trigynum, from 0.77 

to 1.18 for M. polymorpha, and from 0.22 to 1.05 for C. rhynchocarpa. 
Across years, A. koa seed production had the largest interannual vari-
ation indicated by the highest CV (1.24), followed by C. rhynchocarpa 
(0.74), C. trigynum (0.64), and M. polymorpha (0.38). 

Seed production was not better explained by temperature and 
PAR than by rainfall based on AICc model comparisons. The best-
fit models for all species’ seed production included all three cli-
matic factors with close to 100% AICc weight (Table S2a-d), and 
all GAM smooth terms (i.e., response curves to climatic factors) 
were significant (p < .001; Figure 2a–d). For three species, A. koa, 
C. rhynchocarpa, and M. polymorpha, using maximum temperatures 
resulted in the lowest AICc, whereas C. trigynum seed production 
was best explained by mean temperatures (Table S3 a-d). Response 
curves to other climatic factors did not change substantially when 
using maximum versus. mean temperatures. Seed production by A. 
koa, C. rhynchocarpa, and M. polymorpha markedly declined at high 

F I G U R E  1   Circular histograms of 
average monthly seed production of four 
dominant species in a Hawaiian montane 
wet forest. Maximum seed totals are 
labeled underneath each histogram so 
relative differences each month can be 
compared. 

maximum temperatures, whereas C. trigynum showed less dramatic 

declines at high mean temperatures. Seed production by all species 

was positively associated with greater rainfall with the exception of 
C. rhynchocarpa, which showed an initial rapid increase with rainfall 
up to ~ 200 mm per month followed by a gradual decline at higher 
values of monthly rainfall. Responses to PAR were the most vari-
able across species, with A. koa increasing with PAR, C. rhynchocarpa 
declining with PAR, M. polymorpha saturating between ~ 400 and 
500 μmol/sm−2 , and C. trigynum showing a protracted peak in seed 
production between ~ 300 and 400 μmol/sm−2 . 

Comparing species, A. koa and C. rhynocparpa were more sensitive 
to climatic variation than M. polymorpha and C. trigynum (Figure S4).  
Comparing climatic factors, the seed production of A. koa and C. rhyn-
chocarpa was most sensitive (i.e., magnitude of response) to variation 

in PAR relative to other climatic factors (Figure 2). The seed production 

of C. trigynum was most sensitive to changes in rainfall and that of M. 
polymorpha was sensitive to all three climatic factors similarly. 

3.2 | Leaf litterfall 

Leaf litterfall did not show strong seasonality (Figure 3). All GAM 
smooth terms were significant (p < .001) and model comparisons 
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F I G U R E  2   Monthly seed production relationships to climatic factors holding other climatic factors at their mean. The best-fit model 
(ΔAIC > 10) included all climatic factors for all species. All GAM smooth terms were significant for all species (p < 0.001; gray shading shows 
95% confidence intervals). (a) A. koa, (b) C. trigynum, (c) C. rhynchocarpa, and (d) M. polymorpha. Note: different y-axis scale. 
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based on AICc showed that the best-fit model included all three cli- 4.1 | Seed production 
matic factors with close to 100% AICc weight (Table S1e). Leaf litter-
fall was best-fit using minimum temperatures compared with mean 
or maximum temperatures (Table S3e). Leaf litterfall decreased with 
rising minimum temperatures, increased with more rainfall, and in-
creased with PAR up to ~ 400 μmol/sm−2 , after which leaf litterfall 
declined (Figure 4). Of the three climatic factors, leaf litterfall was 
most sensitive to changes in rainfall. 

4  | DISCUSSION  

Seed and leaf production are highly responsive to climatic variation 

in unique ways at our tropical montane forest site. Because the 

low latitudes are thought to be climatically stable and many species 

are active year-round, variation in tropical species’ phenologies 

have been understudied (Chambers et al., 2013; Cook et al., 2012; 
Mendoza et al., 2017). However, many tropical plant species exhibit 
distinct phenological patterns that are linked to seasonal changes 

in the abiotic environment (Newstrom et al., 1994; Sakai, 2001; 
van Schaik et al., 1993). The degree of sensitivity among tropical 
species to climatic variation is unknown in many regions, impeding 

our ability to understand their differing vulnerabilities to climate 

change. 

F I G U R E  3   Circular histogram of average monthly community-
wide leaf litterfall in a Hawaiian montane wet forest. Gray lines 
represent increments of 10 grams of leaf litterfall. The month of 
May averaged 0.7 grams. 

Seed production of three species, including two foundational spe-
cies in Hawaiian forests (A. koa and M. polymorpha), declined as maxi-
mum temperatures increased. The declines in seed production may 

have dramatic repercussions for future forest functioning given ris-
ing global temperatures. However, the magnitude of declines with 

temperature was generally smaller than positive responses to other 
climatic factors. For example, A. koa seed production declined with 

temperature, but increases with more rainfall and PAR were larger in 

magnitude. It is unclear how interactions between all three climatic 

factors will affect seed production and continued monitoring or con-
trolled experiments will be critical to disentangling these interactions. 

Factors other than climate are important for understanding driv-
ers of phenology. The eight species that reproduced too irregularly 
(and at low numbers) for statistical analyses appear to not be highly 

sensitive to climate variability at this site. For the four dominant spe-
cies examined, much of the variability in seed production per trap 
each month was unexplained by our models (Figure S5). There was 
some support for the effect of daylength for all four species exam-
ined (see Supplementary Information). In addition, unexplained vari-
ability in seed production may be due to the spatial distribution and 

behavior of individual trees in the plot. For example, disturbances 
such as canopy gaps allow for more light, which could promote 
greater seed production in only localized regions. We additionally 
did not examine biotic factors such the presence of pollinators or 
seed predators, and competition for resources. While biotic factors 
may exert underlying selective pressures on the timing of fruit and 
leaf phenology, plants may still rely on a climatic cue, and further-
more, the productivity (versus. timing) of fruits and leaves should be 
influenced by climatic conditions and resource availability. 

Another unexamined factor that may explain climatic cues is con-
servatism within lineages (Davies et al., 2013; Wright & Calderón, 
1995). A unique feature of Hawaiian plants is that founder popula-
tions come from both temperate and tropical regions. Thus, pheno-
logical patterns may not necessarily indicate local adaptations or be 
timed to local conditions. Instead, they may reflect phylogenetic con-
servatism from distant ancestors. The four species considered here 
are all of Australasian descent, with colonists of A. koa from Australia 

and colonists of M. polymorpha, C. trigynum, and C. rhynopcarpa from 

New Zealand (Price & Wagner, 2018). However, the drivers of their 
founder populations’ phenologies are difficult to determine in part 
because these lineages occur in diverse habitats (temperate, arid, 
tropical dry, tropical wet, etc.) with potentially distinct phenologies. 

Although seed production should follow flower production, 
there can be different climatic cues or resource requirements for 
seed rather than flower production (Augspurger, 1983; Slot & 
Winter, 2016; Wright & Calderón, 2006). A. koa flowers often but 
seed development does not always follow. While the presence 
of flowers was not recorded in censuses, PhenoCam (i.e., a tow-
er-based digital camera; Richardson et al., 2009, 2018) observations 

overlapped with censuses from 2017 to 2018, and seed production 
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F I G U R E  4   Monthly leaf litterfall relationships to climatic factors holding other climatic factors at their mean. All GAM smooth terms 
were significant (p < 0.001; gray shading shows 95% confidence intervals). 

followed flowering both years (Figure S6). Flowering of A. koa in 
PhenoCam images generally occurred December—March (although 

it began in February in 2018) while seed production peaked, on av-
erage, between February and April (Figure 1). 

Even when viable seeds are produced, conditions for estab-
lishment may limit recruitment (Inman-Narahari et al., 2013). For 
example, M. polymorpha and C. trigynum do not appear to be seed 
or dispersal limited, but instead limited by favorable sites for estab-
lishment (Drake, 1992; Inman-Narahari et al., 2013). In other cases, 
seed limitation and dispersal failure may contribute to the decline of 
native species on Hawaii (Chimera & Drake, 2010; Inman-Narahari 
et al., 2013). 

4.2 | Community-level leaf litterfall 

Monthly leaf litterfall was better explained by climatic variation than 
seed production (Fig. S5). Leaf litterfall was more responsive in mag-
nitude to increasing rainfall compared with temperature or PAR. A 
synthesis of leaf litterfall from tropical South America showed that 
across sites, litterfall seasonality was associated with rainfall season-
ality, wherein sites that had more seasonal litterfall also had more 
seasonal rainfall (Chave et al., 2010) However, there was no rela-
tionship between leaf litterfall accumulation and total annual rainfall 
(Chave et al., 2010). 

Responses of leaf litterfall to rainfall and PAR were in the same 

direction. This could be explained by a large diffuse component of 

PAR, which can scatter more light through the canopy, as opposed 

to casting strong shadows, increasing light availability (Butt, New, 
Lizcano, & Malhi, 2009; Butt et al., 2010; Pau et al., 2013; Roderick, 
Farquhar, Berry, & Noble, 2001). Satellite and eddy-covariance 

measurements have shown positive greening or productivity re-
sponses to increases in light availability in tropical wet forests 

(Huete et al., 2006; Saleska, Didan, Huete, & da Rocha, 2007). 
In contrast, water-limited sites have shown reduced photosyn-
thesis during the dry season, thus different tropical forest types 

can exhibit distinct responses to climatic variability (Pau, Okin, 
& Gillespie, 2010; Wu et al., 2016; Zhang, Wang, Hamilton, & 

Lauer, 2016). The dry season greening of tropical forests, even 

in wet sites, has been intensely debated (Morton et al., 2014; 
Samanta et al., 2010), and there are rarely ground measurements 

of tropical leaf phenology to corroborate satellite measures (Asner 
& Alencar, 2010). One of the few studies that compared satel-
lite observations and ground-based measures of leaf litterfall in 

Amazonian forests showed that litterfall was associated with the 

production of new leaves and greater canopy LAI, which drove in-
creases in satellite measures of greenness (Wu et al., 2016). On the 

contrary, leaf litterfall records from a Panamanian forest appear to 

coincide with reduced standing leaf area (Detto, Wright, Calderón, 
& Muller-Landau, 2018). Given the divergent interpretations of 

the relationship between leaf litterfall and standing leaf area in 

tropical forests, identifying site- and species-specific relationships 

using ground-based observations are necessary for understanding 

mechanisms underlying satellite patterns of greenness and drivers 

of leaf phenology and productivity. 

4.3 | Phenological shifts to long-term 
climate change 

Plant phenology has important cascading effects throughout the 
community by structuring the timing of food availability for many 
organisms. Species responding differently in magnitude or direction 

to climate change may result in phenological mismatches and novel 
ecological communities (Thackeray et al., 2016; Visser & Both, 2005). 
Species-poor island flora may be accompanied by low functional re-
dundancy, that is, species perform unique roles in their communities 
(McConkey & Drake, 2015). Thus, communities with strong species’ 
dependencies are more vulnerable to shifts in the timing of seed or 
leaf production. 

Shifts in phenology may therefore be viewed as having neg-
ative impacts on a community (i.e., phenological mismatch) or 
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viewed positively as an ability to adapt to climate change (Visser 
& Both, 2005). Species that track climate change by adjusting their 
phenologies may be more likely to persist under future conditions 
(Cleland et al., 2012). Indeed, research has shown that phenological 
sensitivity to climate is associated with increased population sizes; 
however, most of this evidence is from temperate regions where 
phenological sensitivity is defined as the number of days a species’ 
shifts a phenological event per degree temperature change (Cleland 
et al., 2012). These species can maintain optimal performance (e.g., 
flowering or fruiting at a different time), whereas species that do not 
track climate change may face unfavorable conditions (e.g., climate 
that is too warm for optimal seed production). 

Given the length of our record (~ 6 years), we do not examine 
phenological tracking. But we show that four dominant species at 
our site are highly sensitive to monthly climatic variability, and the di-
rection of responses represents favorable or unfavorable conditions 

for growth and reproduction. End of the century climate projections 
show an average temperature increase of 2 – 4°C over the Hawaiian 
Islands with more warming at higher elevations. Increased rainfall 
and more cloud cover are projected for the windward side of the 
islands, where this study site is located, whereas the leeward side is 

projected to become drier with fewer clouds (Lauer, Zhang, & Eliosn-
Timm, 2013; Zhang, Xiao, et al., 2016). Although tropical regions are 
not warming as much or as fast as high latitude regions (IPCC, 2014), 
the tropics may experience novel climates outside of their historical 
range much sooner (Mahlstein, Knutti, Solomon, & Portmann, 2011; 
Mora et al., 2013, 2015; Williams, Jackson, & Kutzbach, 2007). 
Consequently, the physiological tolerance of tropical species com-
bined with the pace of environmental change will determine their 
vulnerability to future climate change (Kingsolver, 2009; Tewksbury 
et al., 2008). 

Understanding climate change impacts on species and commu-
nities has focused on predicting species’ range shifts using biocli-
matic envelopes (i.e., correlative models of species presence and 

mean climate; Elith & Leathwick, 2009; Guisan & Thuiller, 2005). 
Shifts in some species’ range and distribution but not others may 

result in the formation of novel communities (Williams et al., 2007). 
The range of a species can expand in unfavorable conditions if 
there is continual dispersal. However, stable populations at equi-
librium require conditions that allow a species to complete their 

life cycle. Thus, each species’ distinct reproductive niche is critical 
for understanding species range shifts (Bykova, Chuine, Morin, 
& Higgins, 2012; Chuine, 2010). Divergent responses to climate 

change could alter community composition if reproduction or 

growth declines for some species but not others. How the repro-
duction and growth of different species will respond to climate 

change has potential consequences for future shifts in species dis-
tributions and the persistence of biodiversity. 
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