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Abstract. Accurate vegetation mapping is critical for natural resources management, ecological analysis, and hydrological mod
eling, among other tasks. Remotely sensed multispectral and hyperspectral imageries have proved to be valuable inputs to the 
vegetation mapping process, but they can provide only limited vegetation structure characteristics, which are critical for differ
entiating vegetation communities in compositionally homogeneous forests. Light detection and ranging (LiDAR) can accurately 
measure the forest vertical and horizontal structures and provide a great opportunity for solving this problem. This study in
troduces a strategy using both multispectral aerial imagery and LiDAR data to map vegetation composition and structure over 
large spatial scales. Our approach included the use of a Bayesian information criterion algorithm to determine the optimized 
number of vegetation groups within mixed conifer forests in two study areas in the Sierra Nevada, California, and an unsupervised 
classification technique and post hoc analysis to map these vegetation groups across both study areas. The results show that the 
proposed strategy can recognize four and seven vegetation groups at the two study areas, respectively. Each vegetation group has 
its unique vegetation structure characteristics or vegetation species composition. The overall accuracy and kappa coefficient of 
the vegetation mapping results are over 78% and 0.64 for both study sites. 

Résumé. La cartographie précise de la végétation est essentielle entre autres pour la gestion des ressources naturelles, l’analyse 
´ el´ etection se sont ecologique, et la modélisation hydrologique. Les approches d’imagerie multispectrale et hyperspectrale par t´ ed´
avérées de précieuses contributions au processus de la cartographie de la végétation, mais elles ne peuvent fournir qu’un nombre 
limit´ eristiques sur la structure de la v´ etation, qui sont essentielles pour diff´ es v´ etalese de caract´ eg´ erencier les communaut´ eg´
dans les forets de composition homogˆ enes. La t` ´ ed´el´ etection par laser «light detection and ranging» (LiDAR) peut mesurer avec 
precision les structures verticales et horizontales de la for´ et, et fournit une formidable opportunitˆ ´ esoudre ce probl`e de r´ eme. Cette 
etude pr´ esente une strat´ ´ ` erienne et des donn´egie qui utilise a la fois l’imagerie multispectrale a´ ees LiDAR pour cartographier la 
composition et la structure de la v´ etation ` echelles spatiales. Notre approche comprenait l’utilisation d’un algorithme eg´ a grandes ´
du critere d’information Bay` esien pour d´ ´ eg´ ets mixtes de conif`eterminer le nombre optimal de groupes de v´ etation dans les forˆ eres 
sur deux zones d’´ ee et une etude dans les Sierra Nevada, en Californie, ainsi qu’une technique de classification non supervis´
analyse post hoc pour cartographier ces groupes de veg´ etation dans les deux zones d’´ ´ esultats montrent que la strat´etude. Les r´ egie 
propos´ eg´ etude respectivement. Chaque groupe de ee peut reconnaitre quatre et sept groupes de v´ etation dans les deux zones d’´
veg´ etation a des caract´ ´ eg´ eces de la v´ etation. La pr´eristiques uniques de structure de la v´ etation ou de composition des esp` eg´ ecision 
globale et le coefficient kappa des r´ eg´esultats de la cartographie de la v´ etation sont de plus de 78% et 0,64 pour les deux sites 
d’étude. 

INTRODUCTION 
Vegetation mapping is the process of characterizing vegeta

tion units across a landscape from measured environmental pa
rameters (Franklin 1995; Pedrotti 2012). Typically, these units 
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convey information about the dominant plant species present 
and the morphological structure of the vegetation (e.g., a mesic 
hardwood or a high-elevation meadow). Accurate and up-to
date vegetation maps are critical for managers and scientists 
because they serve a range of functions in natural resource man
agement (e.g., forest inventory, timber harvest, wildfire risk con
trol, wildlife protection), ecological and hydrological modeling, 
and climate change studies (Chuvieco and Congalton 1988; Tal
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bot and Markon 1988; Daly et al. 1994; Stephens 1998; Pearce 
et al. 2001; Mermoz et al. 2005; Alvarez et al. 2013). Traditional 
methods for vegetation mapping usually rely on field surveys, 
literature reviews, aerial photography interpretation, and collat
eral and ancillary data analysis (Pedrotti 2012). However, these 
methods are expensive and time consuming. Consequently, veg
etation maps produced by the traditional approaches reflect past 
conditions when released and are not updated frequently (Daly 
et al. 1994). 

Remote sensing has proved to be a powerful tool for vege
tation mapping by employing image classification techniques. 
Multispectral remote sensing imagery such as Landsat, SPOT, 
MODIS, AVHRR, IKONOS, and QuickBird are among of the 
most commonly used. For example, Franklin (1986) used the 
Landsat Thematic Mapper (TM) simulator data to discriminate 
the composition of conifer forests in the Klamath Mountains in 
northern California. Carpenter et al. (1999) produced a lifeform 
map for the Sierra Nevada mountain range in California from 
Landsat TM data by applying the ARTMAP neural network 
method. Liu et al. (2006) mapped the distribution of forest dis
ease, sudden oak death, in northern California from two-year 
images obtained by Airborne Data Acquisition and a Registra
tion system. Mallinis et al. (2008) used an object-based clas
sification method to delineate vegetation polygons in a conifer 
forest from Quickbird imagery. Wang et al. (2004) combined 
pixel-based and object-based classification methods to map the 
different mangrove canopy types along the Caribbean coast of 
Panama. Zhang et al. (2003) and Knight et al. (2006) monitored 
vegetation to produce phenology-based land cover maps from 
MODIS data. As well as multispectral data, hyperspectral im
agery is another frequently used data type in vegetation mapping 
(Hirano et al. 2003; Li et al. 2005). The use of hyperspectral data 
can produce more finely classified vegetation mapping results 
than multispectral data can (Xu and Gong 2007; Adam et al. 
2010), because hyperspectral sensors are designed to collect 
data from hundreds of continuous spectral channels compared 
with multispectral sensors with broad wavelength intervals. 

All of these studies that use both multispectral and hyper
spectral imagery usually focus only on mapping either the land 
cover type or the vegetation composition. Examining the de
tailed structure characteristics in forests has rarely been con
sidered because of the limited penetration capability of mul
tispectral and hyperspectral data. However, this information 
also plays a very important role in many ecological studies. 
For example, Lindenmayer et al. (2000) advocated that forest
structure-based parameters can impact biodiversity and should 
be taken into account in forest management. Zielinski et al. 
(2006) and Garcı́a-Feced et al. (2011) demonstrated that for
est structure information was critical for mapping the habitat 
of Pacific fisher (Pekania pennanti) and California spotted owl 
(Strix occidentalis occidentalis). Graham et al. (2004), Agee 
and Skinner (2005) and Peterson et al. (2005) all pointed to the 
important role that forest structure has on wildfire behavior and 
argued that modifying forest structure through forest treatment 

might be necessary to reduce fire risk in many dry conifer forest 
types. Developing methods to integrate structure information 
into the process of vegetation mapping is an important area of 
research. 

Light detection and ranging (LiDAR), an active remote sens
ing technique, can accurately measure the three-dimensional 
distribution of surface objects (Lefsky et al. 2002). The focused 
and narrow laser beam used by LiDAR sensors has a strong 
penetration capability in forest areas (Lim et al. 2003; Jensen 
2009; Su and Guo 2014). It has been well documented that 
LiDAR data can be used to derive highly reliable forest struc
ture parameters such as tree height (Nilsson 1996; Andersen 
et al. 2006; Su et al. 2015), canopy cover (Lim et al. 2003; Ko
rhonen et al. 2011), leaf area index (Ria ño et al. 2004; Jensen 
et al. 2008), stand volume (Nilsson 1996; Naesset 1997), and 
tree diameter (Popescu 2007; Huang et al. 2011). The capacity 
to resolve forest structure parameters provides a great opportu
nity for developing vegetation-mapping strategies (Kramer et al. 
2014). Donoghue et al. (2007) and Heinzel and Koch (2011) ex
plored the possibility of identifying tree species mixtures from 
parameters derived from LiDAR data. Ørka et al. (2009) and 
Kim et al. (2009) used LiDAR intensity data to differentiate 
broadleaf and needleleaf trees. Reitberger et al. (2008) used 
full-waveform LiDAR data to classify deciduous and conifer
ous trees. Holmgren and Persson (2004) identified individual 
tree species, including Norway spruce (Picea abies L. Karst), 
Scots pine (Pinus sylvestris L.), and deciduous trees, by analyz
ing individual crown shape and rich tree structure parameters 
derived from LiDAR data. However, due to the lack of forest 
canopy spectral information, the accuracy of tree species clas
sification from LiDAR data is limited in complex vegetation 
conditions. 

The integration of LiDAR data and multispec
tral/hyperspectral imagery has been used to address the 
limitation of using only LiDAR data in vegetation mapping. 
For example, Cho et al. (2012), Colgan et al. (2012) and 
Naidoo et al. (2012) mapped tree species compositions in 
African savannas through the combination of LiDAR data and 
hyperspectral data using maximum likelihood, Random Forest, 
and Support Vector Machine classifiers, respectively; Dalponte 
et al. (2012) and Hill and Thomson (2005) classified tree 
species compositions of broadleaf and coniferous mixed forests 
through the fusion of spectral and LiDAR data; Holmgren et al. 
(2008) and Koukoulas and Blackburn (2005) used a maximum 
likelihood classifier to identify individual tree species from 
LiDAR-derived structure parameters and multispectral infor
mation in deciduous and coniferous forests, respectively. It has 
been reported that the integration of LiDAR data and optical 
imagery can increase the vegetation composition classification 
accuracy by 16%–20% in rangelands, compared to using only 
LiDAR data or optical imagery (Bork and Su 2007). However, 
most of these studies on mapping vegetation units are still 
focusing mainly on classifying vegetated from nonvegetated 
areas or detecting differences in species composition. Forest 
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FIG. 1. The geolocations and terrain information of the Last Chance and Sugar Pine study sites with the distribution of field plots. 

structure characteristics, which can be estimated by statistical 
imputation methods that incorporate field measurements with 
LiDAR data and optical imagery (Falkowski et al. 2010; 
Hummel at al. 2011; Wallerman and Holmgren 2007), are 
rarely considered in classification systems. 

The objective of this study is to develop and test a new strat
egy to map vegetation communities in two mixed conifer forests 
by considering both the dominant tree species composition and 
vegetation structure characteristics. Multispectral aerial imagery 
and airborne LiDAR data were integrated, along with a robust 
network of systematically established field plots in the vegeta
tion mapping process. An unsupervised classification scheme 
using an automatic cluster determination algorithm based on 
Bayesian information criterion (BIC) and k-means classifica
tion was applied to the fused data to map the vegetation, and 
a post hoc analysis based on field measurements was used to 
interpret the ecological properties for each vegetation unit. 

MATERIALS AND METHODS 

Study Areas 
Our two forest study sites are located in the Sierra Nevada 

mountain range, California, USA (Figure 1). The northern site, 
Last Chance, covers an area of 92.1 km2, and the southern 

site, Sugar Pine, covers an area of 72.8 km2. The elevation 
ranges from 280 m to 2190 m for the Last Chance site and 
from 500 m to 2650 m for the Sugar Pine site, and the average 
elevation for both study sites is over 1500 m. Trees common 
to the Sierran mixed conifer and true fir forests dominate the 
vegetation cover at both sites. The major species present include: 
ponderosa pine (Pinus ponderosa), incense-cedar (Calocedrus 
decurrens), sugar pine (Pinus lambertiana), white fir (Abies 
concolor), California red fir (Abies magnifica), and Douglas
fir (Pseudotsuga menziesii). Within the mixed conifer stands, 
the major hardwoods are black oak (Quercus kelloggii) and 
canyon live oak (Quercus chrysolepis). Forest cover is relatively 
homogeneous at both the study sites, but the Last Chance site 
has more heterogeneity than the Sugar Pine site. 

Field Measurements 
Plot measurements (12.62 m in radius and 500 m2 in area) 

were taken in the summer of 2007 and 2008 (Figure 1). The same 
plot selection procedure was applied to determine the location 
of 372 and 268 evenly distributed plots at the Last Chance 
site and Sugar Pine site, respectively. A random point was first 
chosen to be used as the center of the first plot in each study 
site. Then, this plot center was taken as a seed point to build 
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a grid on a 500 m spacing in the four cardinal directions, and 
the following plot centers were placed on the intersections of 
the grid. Within watersheds for specific research purposes (e.g., 
studying hydrological responses to forest fuel treatments), the 
sampling was intensified to a 250 m by 250 m grid. The position 
of each plot center in the field was located using a TrimbleTM 

GeoXH GPS. If there were any landing or road surfaces within 
the plot footprint, the plot center was randomly moved by 25 m 
in one of the four cardinal directions. 

Within each plot, field measurements on individual live trees 
included: tree species, tree height, diameter at breast height 
(DBH, breast height = 1.37 m) and height to live crown base. 
Trees were defined as individuals at least 5 cm in DBH. More
over, the plot-level canopy cover was measured using a sight 
tube with 25 sampling points. The plot-level Lorey’s height and 
total basal area were calculated from field measurements and 
used in the vegetation mapping process in this study, and these 
can be calculated from the following equations. 

nz 
BAi × Hi 

LHz = i=1 
nz 

BAi 
i=1 

nz 
TBAz = BAi , 

i=1 

where LHz and TBAz represent the Lorey’s height and total 
basal area of the zth plot, and BAi and Hi are the basal area and 
tree height of the ith tree in the zth plot. 

LiDAR Data 
Small footprint airborne LiDAR data covering the Sugar Pine 

site and Last Chance site were acquired in September 2007 and 
September 2008 using an Optech GEMINI airborne laser ter
rain mapper (ALTM) from the National Center of Airborne 
Laser Mapping at the University of Houston. It was mounted on 
a twin-engine Cessna Skymaster and was flown at 600 m–700 m 
above the ground. The ALTM sensor was operated at 100 kHz 
with a scanning frequency of 40 Hz–60 Hz and a total scan 
angle of 24◦–28◦. The average swath width of a single pass 
was around 510 m, and the overlap between two adjoining 
swaths was 65% of the swath width. The point density was 
6–10 points/m2, and positioning accuracy was about 10 cm hor
izontally and 10 cm–15 cm vertically. 

Overall, there are 13 layers derived from the raw LiDAR 
point cloud for both study sites, including the canopy height 
model (CHM), canopy cover, and 11 canopy quantile metrics. 
The CHM was calculated by the difference between the LiDAR
derived digital elevation model (DEM) and digital surface model 
(DSM), which were interpolated from the LiDAR ground re
turns and LiDAR first returns, respectively. The interpolation 
algorithm used in this study was ordinary kriging, which has 
been proved to be more accurate than other schemes (e.g., in

verse distance weighted or spline) for interpolating DEM and 
DSM from LiDAR -derived elevation points (Lloyd and Atkin
son 2002; Clark et al. 2004; Guo et al. 2010). 

The canopy cover was calculated by a CHM-based method, 
a reliable and consistent approach for estimating canopy cover 
from LiDAR data (Lucas et al. 2006). First, a fine resolution 
CHM (1 × 1 m2) was calculated from the LiDAR point cloud 
using the aforementioned algorithm, and the pixels above a 
selected height threshold were coded as 1 or 0 otherwise. The 
height threshold was set as 2 m in this study to match field-
based canopy cover measurements. Then, this coded CHM was 
used to overlap with a 20 × 20-m2 grid, and the canopy cover 
was calculated as the percentage of the number of coded CHM 
pixels with a value of 1 to the total number of coded CHM pixels 
within each 20 × 20-m2 grid. The final canopy cover layer was 
produced in 20-m resolution to roughly match the scale of field 
plots. 

Canopy quantile metrics, representing the height below X% 
of the LiDAR point cloud, are one of most frequently used 
LiDAR products for estimating the forest parameters that cannot 
be obtained directly from a LiDAR point cloud, e.g., DBH and 
biomass (Lim and Treitz 2004; Thomas et al. 2006). In this 
study, 11 quantile metrics, including 0%, 1%, 5%, 10%, 25%, 
50%, 75%, 90%, 95%, 99%, and 100%, were calculated in 20-m 
resolution directly from the LiDAR point cloud. 

Aerial Imagery 
The 2005 National Agriculture Imagery Program (NAIP) 

color-infrared (CIR) aerial imagery in 1 × 1 m2 resolution 
(composed of green band, red band, and near-infrared (NIR) 
band) are used in the vegetation mapping procedure of this 
study. The NAIP program is run by the Farm Service of the US 
Department of Agriculture (USDA) for the purpose of making 
high-resolution digital orthographies available to maintain com
mon land units. All NAIP images were taken under permitted 
weather conditions, and followed the specification of no more 
than 10%-cloud cover per quarter quad tile. The Aerial Pho
tography Field Office has adjusted and balanced the dynamic 
range of each image tile to the full range of digital number 
(DN) value (0–255), and orthorectified each image file using 
the National Elevation Dataset before releasing the data (Hart 
and Veblen 2015). To ensure the NAIP imagery coregistered 
with LiDAR data, we georeferenced the NAIP imagery using 
over 20 correspondence points for each study site selected from 
NAIP imagery and LiDAR-derived products (i.e., DEMs and 
CHMs). 

In addition to the three spectral bands, seven texture layers 
(including mean, variance, homogeneity, contrast, dissimilarity, 
entropy, and second moment) were extracted from each spectral 
band using the gray-level co-occurrence matrix (GLCM) filter
ing method. GLCM is defined over an image to be the distribu
tion of co-occurring values at a given offset ('x, 'y) (Haralick 
et al. 1973; Anys et al. 1994; Soh and Tsatsoulis 1999), which 
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FIG. 2. Procedure for the vegetation-mapping strategy used in this study. 

can be mathematically described as 
⎧ 

m n ⎨ 1, ifI (p, q) = iand 
GLCM'x,'y (i, j ) = I (p + 'x, q + 'y) = j ⎩ 

p=1 q=1 0, otherwise, 

where (i, j) is one DN values combination of the image I at the 
given offset ('x, 'y), (p, q) are the spatial position indexes in 
the image I, and (m, n) are the number of rows and columns of 
the image I. The offset ('x, 'y) is determined by the angular 
relation between the neighboring pixels and spatial resolution of 
the image. The texture parameters for the corresponding GLCM 
can be calculated using equations provided by Haralick et al. 
(1973), and will not be discussed in detail here. In this study, 
a 3  × 3 moving window was used to generate GLCMs and 
calculate corresponding texture parameters for each cell. To 
match the spatial scale of the field plots and LiDAR products, 
the NAIP imagery and obtained texture layers were resampled 
to the resolution of 20 × 20 m2 using the weighted mean value 
method (Jakubowksi et al. 2013). All of the following vegetation 
mapping procedures used the resampled NAIP imagery and 
texture layers. 

Vegetation Mapping Strategy 
There are, overall, 24 aerial imagery derived features (includ

ing the spectral bands and derived texture layers) and 13 LiDAR
derived features initially available for this analysis. This large 
number of potential input layers for vegetation mapping could 
negatively influence the results, given the likelihood of redun
dant information captured by the layers. Many algorithms have 

been developed to reduce the dimensionality of an input dataset, 
e.g., principal component analysis (PCA), linear discriminant 
analysis, correspondence analysis, and detrended correspon
dence analysis. As one of the most commonly used techniques, 
the PCA algorithm has been proven to be effective at remov
ing redundant information in remotely sensed data (Mutlu et al. 
2008; Pohl and Van Genderen 1998). Therefore, in this study, 
the standardized PCA method was first applied separately to the 
aerial-imagery-derived and LiDAR-derived features (Figure 2). 
The first three PCA components from aerial-imagery-derived 
features and the first three components from LiDAR-derived 
features were combined as the input for the vegetation mapping 
strategy. An unsupervised classification strategy and post hoc 
analysis integrated with field measurements was then applied 
on the six PCA components to define vegetation groups and 
delineate the boundaries of different groups (Figure 2). The de
tailed descriptions for the unsupervised classification strategy 
and post hoc analysis are provided following. 

Unsupervised Classification Strategy 
The specific number and character of vegetation groups 

within a particular forest are usually unknown prior to the 
vegetation-mapping process. Thus, one of the main challenges 
for vegetation mapping is to identify distinct vegetation groups 
and delineate boundaries among groups. In this study, an au
tomatic cluster-number determination algorithm based on BIC, 
developed by Chiu et al. (2001), was combined with k-means 
unsupervised classification to initially map the vegetation. BIC 
is a robust measure for model selection among a finite set of 
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models and is defined as: 

BICk = −2lk + rk log n, 

where k is the cluster number, lk is the classification likelihood 
function, rk is the number of independent parameters, and n is 
the number of observations. 

To obtain the optimized cluster number, a large maximum 
cluster number was first defined. In this study we used the hier
archical cluster analysis of species composition (linkage method 
= Ward’s; distance measure = Euclidean) following the method 
described in McCune et al. (2002) to determine the maximum 
number of vegetation groups in both study sites. BIC values for 
all possible cluster numbers (from one to the defined maximum 
cluster number) were then calculated. With these BIC values, 
the optimized number of clusters was determined in two steps. 
First, the initial value of the cluster number was estimated. Let 
dBIC(k) be the change of BIC values from two adjacent clus
ter numbers (dBIC(k) = BICk − BICk−1),and rBIC(k) be the  
ratio of BIC from k clusters and BIC from only one cluster 
(rBIC(k) = BICk/BIC1). If the dBIC(2) was larger than 0, the 
initial cluster number was set as one; otherwise, the initial cluster 
number was set equal to the number of clusters where rBIC(k) 
was smaller than 0.04 for the first time. Second, if the initial 
cluster number was one, the final cluster number was set as one; 
otherwise, the ratio change in log-likelihood distance was fur
ther used to optimize the cluster number. Let R(k) be the ratio 
of log-likelihood distances (dk) from two adjacent cluster num
bers (R(k) = dk/dk−1). The ratio of change in log-likelihood 
was computed as R(k1)/R(k2), where k1 and k2 were the cluster 
numbers of the two largest R(k) smaller than the obtained initial 
cluster number. If the ratio of change was larger than 1.15, the 
final cluster number was set equal to k1; otherwise, it was  set  
equal to the maximum value between k1 and k2. It should be 
noted that all the thresholds used in the BIC algorithm were 
determined by statistical experiments by Chiu et al (2001). 

With the optimized cluster number, we used a k-means clus
tering algorithm to delineate the boundary of different vegetation 
types. K-means divides observations into a predefined number 
of clusters, and each observation belongs to the cluster with 
the nearest mean (Hartigan 1975), which can be mathematically 
described as: 

kBI C   2  arg min  xj − ui , 
i=1 xj ∈Si

where kBIC is the predefined number of clusters, xj is the jth 
observation vector, Si is the ith set of observation vectors, and 
μi is the mean point of the ith set. In this study, the maximum 
iterations for k-means unsupervised classification was set to 10, 
and the change threshold of the mean points was set to 5%. 

Post hoc Analysis 
Field measurements were used to describe the dominant tree 

species composition and forest structure characteristics. The 
unsupervised vegetation group for each plot was extracted by 
overlapping the plot location with an unsupervised classification 
result. Then, for all plots belonging to the same unsupervised 
classification group, we analyzed their dominant tree species 
and forest structure characteristics measured from the field. The 
dominant tree species were defined by the proportions of differ
ent tree species weighted by basal area, and the forest structure 
characteristics were defined by the plot-level basal area, Lorey’s 
height, and canopy cover. Finally, these plot-derived dominant 
tree species information and forest structure characteristics were 
used to determine the property of each unsupervised classifica
tion group. It should be noted that approximately two-thirds of 
the plots (273 in Last Chance and 177 in Sugar Pine) were ran
domly selected and used to define vegetation group properties. 
The other plots were reserved to validate the vegetation mapping 
result. 

Accuracy Assessment 
PCA ordination analysis, one type of multivariate analy

sis that can depict species relationships in low-dimensional 
space (Gauch 1982), was used to evaluate the capability of 
proposed vegetation mapping strategy on differentiating tree 
species. It has been widely used as a complement to other data
clustering techniques that help identify repeatable vegetation 
patterns and discontinuities in species composition (Lepš and 
Šmilauer 2003). In this study, relative species abundance for or
dination analysis was represented by basal area (i.e., the ratio of 
basal area for each tree species to the total basal area of all trees at 
a plot). Moreover, the permutation test, a type of robust nonpara
metric statistical significance test (Nichols and Holmes 2002), 
was used to evaluate the capability of the proposed vegetation
mapping strategy on recognizing different structure characteris
tics, because the field-measured forest structure parameters are 
not normally distributed based on the Shapiro–Wilk test (α = 
0.05) (Table 1). 

In addition, the total accuracy (TA) and kappa coefficient (κ) 
were also calculated for the purpose of evaluating vegetation-
mapping results, which can be denoted as 

a 
TA = 

N 
Pr(a) − Pr(e)

κ = ,
1 − Pr(e) 

where a is the number of plots whose vegetation group agree 
with the vegetation-mapping result, N is the total number of 
plots used for accuracy assessment; Pr(a) is the relative ob
served agreement, and Pr(e) is the hypothetical probability of 
chance agreement. The 95% confidence interval for the TA was 
calculated using the method provided by Foody (2009). About 
one-third of the plot measurements at each study site were used 
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TABLE 1 
Tests of normality for the forest structure parameters using Shapiro–Wilk test 

Last Chance Site Sugar Pine Site 

Statistic df Sig. Statistic df Sig. 

Lorey’s Height 0.630 370 0.000 0.988 268 0.030 
Basal Area 0.489 370 0.000 0.941 268 0.000 
Canopy Cover 0.988 370 0.003 0.048 268 0.000 

to calculate TA and κ . The vegetation group assignments for 
these test plots were determined by the minimum Mahalanobis 
distance between these plots and the center of each vegetation 
group. The parameters used for calculating the Mahalanobis 
distance include the three forest structure parameters and the 
coordinates on the primary and secondary axes from the ordina
tion analysis. The center for each vegetation group was calcu
lated by the means of plots used to name vegetation groups. To 
minimize the influence of the different scales of parameters, all 
parameters were normalized before calculating the Mahalanobis 
distance. 

RESULTS 

Optimized Cluster Number Determination 
In this study, the hierarchical cluster analysis result showed 

that there was never any support for more than eight vegetation 

classes at either study site. Thus, as a conservative starting point, 
we approximately doubled the estimate from preliminary results 
(i.e., 15 vegetation classes) and set it as the upper limit of the BIC 
cluster number determination algorithm. As shown in Table 2, 
all dBIC values for the Last Chance site were smaller than zero, 
and the cluster number was 14 when the rBIC was smaller than 
0.04 for the first time. The initial cluster number was set as 14 
for the Last Chance site. When the cluster number was smaller 
than 14, the two largest R(k) values were from results having two 
clusters and seven clusters. Due to the fact that the ratio between 
these two R(k) was smaller than 1.15, the final optimized cluster 
number for the Last Chance site was set to seven. Similarly, the 
final optimized cluster number for the Sugar Pine site was set 
to four. It should be noted that the initial cluster number for 
the Sugar Pine site was set to 15 (i.e., the predefined maximum 
cluster number) because all the rBIC values were larger than 
0.04. 

TABLE 2
 
The optimized cluster number determination results using Bayesian information criterion (BIC) algorithm for the Last Chance
 

and Sugar Pine study sites
 

Last Chance Site Sugar Pine Site
 

k BIC dBICa rBICb R(k)c k  BIC  dBICa rBICb R(k)c
 

1 1390210.558 1 1478604.199 
2 1132790.048 −257420.510 1.000 1.942 2 1216658.927 −261945.272 1.000 2.154 
3 1000327.759 −132462.289 .515 1.386 3 1095132.435 −121526.492 .464 1.177 
4 904805.634 −95522.126 .371 1.236 4 991913.123 −103219.312 .394 1.920 
5 827541.566 −77264.068 .300 1.139 5 938229.015 −53684.108 .205 1.055 
6 759733.224 −67808.342 .263 1.502 6 887345.487 −50883.528 .194 1.140 
7 714639.554 −45093.670 .175 1.774 7 842710.399 −44635.088 .170 1.237 
8 689292.817 −25346.737 .098 1.139 8 806647.821 −36062.578 .138 1.461 
9 667049.072 −22243.744 .086 1.119 9 782010.413 −24637.409 .094 1.047 
10 647181.368 −19867.704 .077 1.318 10 758479.133 −23531.280 .090 1.029 
11 632149.235 −15032.134 .058 1.165 11 735610.756 −22868.377 .087 1.009 
12 619263.081 −12886.154 .050 1.098 12 712946.401 −22664.355 .087 1.008 
13 607542.700 −11720.381 .046 1.407 13 690455.682 −22490.719 .086 1.321 
14 599259.290 −8283.410 .032 1.162 14 673467.151 −16988.531 .065 1.058 
15 592152.613 −7106.676 .028 1.014 15 657416.013 −16051.138 .061 1.005 

aThe changes (dBIC) are from the previous number of clusters in the table.
 
bThe ratios of changes (rBIC) are relative to the change for the two-cluster solution.
 
cThe ratios of distance measures (R(k)) are based on the current number of clusters against the previous number of clusters.
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FIG. 3. Labeled vegetation-mapping results for the Last Chance and Sugar Pine sites. 

The vegetation mapping results for the Last Chance and 
Sugar Pine sites are shown in Figure 3. Both sites are domi
nated by Sierran mixed conifer trees. Specifically, 56% of the 
Last Chance site was classified as the mature mixed conifer for
est, 19% as young mixed conifer forest, and 12.6% as mixed 
conifer woodland. The young mixed conifer forest was mainly 
scattered within the mature mixed conifer forest (Figure 3(a)). 
Pine- and open true fir-dominated forest types were less abun
dant, covering 7.3% and 3.7% of the study area, respectively 
(Table 3). These forest types were found mainly at the north 
end of the study site, and their coverage increased with ele
vation (Figure 1 and Figure 3(a)). The proportion of the low
and high-shrub types were very small, both around 0.6%. At 
Sugar Pine, the mature mixed conifer forest again was the 
most common type, occupying 57.1% of the landscape (Figure 
3(b)). Closed-canopy mixed conifer forest was the next most 
common type, at 25.9% of area, with the greatest concentra
tion in the middle of the study site. The pine-cedar woodland 
and open pine-oak woodland were distributed at the southeast 
and northwest of the study site, occupying 13.8% and 3.2%, 
respectively. 

The forest vertical structure information and dominant tree 
species composition for each vegetation group are shown in Ta
ble 3. Naming conventions for the unsupervised groups were 
based on the dominant tree species (Table 3). If the tree species 
composition for two vegetation groups is similar, the name rec

ognizes the differences in the forest structures. For example, at 
the Last Chance site, composition of the dominant tree species 
for young mixed conifer forest and mature mixed conifer forest 
are similar, but the mature mixed conifer forest has larger, taller 
trees and greater canopy cover (Table 3). Note there is no tree 
information for groups identified as low shrub and high shrub, 
because no trees were measured with a DBH of 5 cm or greater 
in these groups. 

The capability of the proposed vegetation-mapping strategy 
to differentiate among dominant species was evaluated by or
dination analysis. In Figure 4, the first two axes for both study 
sites represent over 50% information of all data. The tree species 
composition among vegetation groups differ greatly with each 
other at the Last Chance site (Figure 4 (a)). Although the tree 
species composition of young mixed conifer forest and mature 
mixed conifer forest are similar (Table 3), the proportion of 
white fir for the mature mixed conifer forest is larger than that 
of the young mixed conifer forest, and that for ponderosa pine is 
smaller (Table 3). At the Sugar Pine site, the proportion of black 
oak trees for open pine-oak woodland is higher than the other 
three vegetation groups, which makes it unique among all four 
vegetation groups (Figure 4 (b)). The tree species compositions 
for the other three vegetation groups are similar, especially the 
mature mixed conifer forest and closed-canopy mixed conifer 
forest. The proportion of white fir and California red fir for 
the pine-cedar woodland is relatively smaller, compared to the 

http:species(Table3).If
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TABLE 3
 
Forest structure parameters and dominant tree species for each vegetation group obtained from the k-means unsupervised
 

classification procedure; the dominant tree species are evaluated by the relative basal area of each tree species(Note that certain
 
tree species with too-small relative basal areas for all groups (<1%) were not included in the table)
 

Basal Lorey’s Canopy Dominant Tree Speciesb
 

Area Height Cover Relative Basal Area (%)
 

Group ID Vegetation Type (m2/ha) (m) (%) ABCO ABMA CADE PILA PIMO PIPO PSME QUKE LO 

Last Chance Site 

G1 Low Shrub N/Aa N/Aa N/Aa Manzanita (Arctostaphylos spp.) 

G2 High Shrub N/Aa N/Aa N/Aa Manzanita (Arctostaphylos spp.) 

G3 
G4 
G5 
G6 
G7 

Open True Fir 
Pine Woodland 
Mixed Conifer Woodland 
Young Mixed Conifer Forest 
Mature Mixed Conifer Forest 

4.0 
11.2 
20.3 
24.7 
48.3 

10.1 
13.2 
15.6 
18.5 
26.3 

9.2 69 19 
21.8 15 5 
36.4 44 2 
46.1 24 1 
61.5 34 4 

Sugar Pine Site 

0 
0 
8 
8 
6 

0 
22 
5 

18 
18 

1 
0 
0 
0 
0 

11 
41 
21 
26 
12 

0 
17 
18 
21 
22 

0 
0 
3 
1 
3 

0 
0 
0 
1 
0 

G1 Open Pine-Oak Woodland 11.4 12.2 14.7 0 0 0 3 0 72 0 24 0 
G2 Pine-Cedar Woodland 19.8 17.6 38.1 11 1 20 11 0 30 0 10 17 
G3 Mature Mixed Conifer Forest 47.3 25.3 66.8 26 1 28 8 0 19 0 8 10 
G4 Closed-canopy Mixed Conifer 68.0 32.4 74.6 40 1 29 13 0 9 0 5 2 

aN/A means the value is not available for corresponding blank.
 
bSpecies code: ABCO, white fir (Abies concolor); ABMA, California red fir (Abies magnifica); CADE, incense-cedar (Calocedrus decurrens);
 
PILA, sugar pine (Pinus lambertiana); PIMO, western white pine (Pinus monticola); PIPO, ponderosa pine (Pinus ponderosa); PSME, Douglas-fir
 
(Pseudotsuga menziesii); QUKE, black oak (Quercus kelloggii); LO, canyon live oak (Quercus chrysolepis).
 

mature mixed conifer forest and closed-canopy mixed conifer 
forest. 

The capability of the proposed vegetation-mapping strategy 
to differentiate the forest vertical structure characteristics was 
examined by permutation testing under the null hypothesis that 
the means of vegetation vertical structure parameters among 
vegetation groups have no difference. Because there were no 
forest structure parameters for the plots within the low-shrub 
and high-shrub groups at Last Chance, these two groups were 
excluded from the permutation test. At the Last Chance site, 
this null hypothesis is rejected for differences in parameters 
among all vegetation groups (α < 0.05), except the difference 
of Lorey’s height between open true fir and pine woodland 
and that between pine woodland and mixed conifer woodland 
(Table 4). For differences in Lorey’s height between these two 
group combinations, the null hypothesis can still be rejected at 
the significant level of α = 0.10. At the Sugar Pine site, the 
variation in vegetation structure parameters among groups is 
not as pronounced as at the Last Chance site. The vegetation 
parameters for the closed-canopy mixed conifer forest are the 
most distinct. The p-values for the differences in all three pa
rameters among the closed-canopy mixed conifer forest and the 
other three vegetation groups are all smaller than 0.05 except for 
the difference in canopy cover with mature mixed conifer forest. 

The basal area and Lorey’s height of the mature mixed conifer 
forest are significantly different from all other groups (α < 0.05). 
However, its canopy cover has no significant difference from all 
other vegetation groups. The differences in all three parameters 
between open pine-oak woodland and pine-cedar woodland are 
not significant. 

The accuracy of the vegetation-mapping results was evalu
ated by the independent plot measurements (Table 5). As can 
been seen, the overall accuracies of the vegetation-mapping re
sults are around 80% with a 95% confidence interval of ∼ 8% for 
both study sites, and kappa coefficients are higher than 0.65. At 
the Last Chance site, the commission errors and omission errors 
for most vegetation groups are lower than 20%, except the com
mission errors for the mixed conifer woodland and young mixed 
conifer forest and the omission error for the mixed conifer wood
land. At the Sugar Pine site, all commission and omission errors 
are lower than 30%, except the omission error for the pine-cedar 
woodland. The omission rate of the pine-cedar woodland is as 
high as 41%, and six out of seven omitted pine-cedar woodland 
plots were misclassified as mature mixed conifer forest. 

DISCUSSION 
Remote sensing technology has been shown to be extremely 

helpful for mapping and monitoring vegetation over large spatial 

http:measurements(Table5).As
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FIG. 4. Ordination analysis results for the Last Chance and Sugar Pine sites. The “+” symbol in each color represents the 
centroid of the vegetation group represented by the corresponding color in each figure. Species code: ABCO, white fir (Abies 
concolor); ABMA, California red fir (Abies magnifica); ALRH, white alder (Alnus rhombifolia); CADE, incense-cedar (Calocedrus 
decurrens); CONU, mountain dogwood; LO, canyon live oak (Quercus chrysolepis); PILA, sugar pine (Pinus lambertiana); PIMO, 
western white pine (Pinus monticola); PIPO, ponderosa pine (Pinus ponderosa); PSME, Douglas-fir (Pseudotsuga menziesii); 
QUKE, black oak (Quercus kelloggii); SALIX, peachleaf willow (Salix amygdaloides); SEGI, giant sequoia (Sequoiadendron 
giganteum). 

scales (Xie et al. 2008). However, choosing a classification sys
tem that comprehensively captures vegetation community com
position and structure is still a major challenge for vegetation 
mapping from remotely sensed data (Rapp et al. 2005). Tradi
tionally, the number of vegetation units and/or the properties 
of vegetation units within a forest have been predefined by the 
prior knowledge of experts from previous experience or field 
sampling data (Bork and Su 2007; Carpenter et al. 1999; Naidoo 
et al. 2012). However, this could lead to biased or inconsistent 
classification systems across regions and might not result in op
timal breaks among different vegetation communities. Heinzel 
and Koch (2011) found that the accuracy of vegetation mapping 
can increase from 57% to 91% with corresponding decreases 
in the number of vegetation classes from six to two. It is crit
ical to determine the optimal number of groups that balances 
the value of recognizing differences in vegetation structure and 
composition with the reliability of identifying these differences. 

By combining the LiDAR data and high-resolution aerial 
image, this study used a novel automatic cluster number de
termination algorithm and k-means unsupervised classification 
to define an optimized classification system. The classification 
of each vegetation group was determined by fully considering 
both the vegetation structure characteristics and dominant tree 
species composition. The results at both study sites show that 
the proposed vegetation mapping strategy can differentiate veg
etation groups by vegetation structure parameters or dominant 
species composition or both (Figure 3). At the Last Chance 

site, the small differences in the relative abundance of the com
mon tree species were captured along with steep gradients in 
structure (Figure 4a, Table 3, and Table 4). Although the tree 
species composition for the young mixed conifer forest and 
mature mixed conifer forest were very similar, trees in mature 
mixed conifer forest were considerably larger than in young 
mixed conifer forest (Table 3). Similarly, for the low-shrub and 
high-shrub groups, which were both dominated by manzanita 
(Arctostaphylos spp.), the latter was about 30 cm higher on 
average than the former, based on the LiDAR-derived CHM. 
At Sugar Pine, the unsupervised classification clearly detected 
the pine-oak vegetation type from the matrix of mixed conifer 
forests (Figure 4b) as well as the structural gradient present 
(Table 3, Table 4). 

Forest structure information, which has been difficult to in
corporate in previous vegetation-mapping strategies, is an im
portant factor that has influence on various ecological applica
tions (Peterson et al. 2005; Zielinski et al. 2006) and should be 
used in the procedure of developing vegetation maps for forest 
management (Lindenmayer et al. 2000). This is particularly true 
in more compositionally homogeneous forests. In these forests, 
traditional vegetation-mapping methods, which rely on passive 
remote sensing data, might miss the underlying structural differ
ences within the forest. By including LiDAR data, the proposed 
vegetation-mapping strategy can detect differences in vegetation 
vertical structure characteristics that, in turn, inform the assess
ment of wildlife habitat suitability, wildfire hazard, and water 
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TABLE 4
 
The p-values of permutation test for the differences in forest structure parameters among different vegetation groups in the Last
 

Chance and Sugar Pine study sites
 

Basal Area Lorey’s Height Canopy Cover 

G3a G4a G5a G6a G7a G3a G4a G5a G6a G7a G3a G4a G5a G6a G7a 

Last Chance Site 

G3a 1.000 0.004 0.001 0.000 0.000 1.000 0.066 0.009 0.001 0.000 1.000 0.000 0.000 0.000 0.000 
G4a 0.004 1.000 0.002 0.000 0.000 0.066 1.000 0.078 0.001 0.000 0.000 1.000 0.000 0.000 0.000 
G5a 0.001 0.002 1.000 0.013 0.000 0.009 0.078 1.000 0.037 0.000 0.000 0.000 1.000 0.001 0.000 
G6a 0.000 0.000 0.013 1.000 0.000 0.001 0.001 0.037 1.000 0.000 0.000 0.000 0.001 1.000 0.000 
G7a 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 1.000 

G1a G2a G3a G4a N/Ab G1a G2a G3a G4a N/Ab G3a G4a G5a G6a G7a 

Sugar Pine Site 

G1a 1.000 0.920 0.109 0.013 N/Ab 1.000 0.806 0.245 0.014 N/Ab 1.000 0.403 0.684 0.000 N/Ab 

G2a 0.920 1.000 0.000 0.000 N/Ab 0.806 1.000 0.019 0.000 N/Ab 0.403 1.000 0.613 0.000 N/Ab 

G3a 0.109 0.000 1.000 0.000 N/Ab 0.245 0.019 1.000 0.000 N/Ab 0.684 0.613 1.000 0.334 N/Ab 

G4a 0.013 0.000 0.000 1.000 N/Ab 0.014 0.000 0.000 1.000 N/Ab 0.000 0.000 0.334 1.000 N/Ab 

aG3 to G7 and G1 to G4 for the Last Chance site and Sugar Pine site represent the corresponding vegetation group listed in Table 3. 
bN/A means value is not available for corresponding blank. 

yield. For example, the Sugar Pine site is dominated by three The field measurements of species composition and plot-
vegetation types, pine-cedar woodland, mature mixed conifer level forest structure support the results obtained by the un
forest, and closed-canopy mixed canopy forest (Figure 3(b)), supervised classification strategy. The proposed vegetation
which have similar tree species composition (Table 3). Without mapping strategy can produce sufficiently high overall accura
considering forest vertical structure characteristics from LiDAR cies (nearly 80% in both cases) and kappa coefficients (over 0.64 
data, these three vegetation groups might be classified only as at both sites) for most applications in which the vegetation map 
one larger group. provides the essential classification and scaling information. 

TABLE 5
 
The confusion matrices and accuracy assessments for the vegetation mapping results of Last Chance site and Sugar Pine site
 

Last Chance Site Sugar Pine Site 

Reference Commission Kappa Reference Commission Kappa 

Predicted G1a G2a G3a G4a G5a G6a G7a Error (%) Coefficient G1a G2a G3a G4a Error (%) Coefficient 

G1a 1  0  0  0  0  0  0  0.0  0.70  1  0  0  0  0  0.64  
G2a 0  1  0  0  0  0  0  0.0  0  10  1  0  9.1  
G3a 0  0  4  0  0  0  0  0.0  0  6  42  5  20.7  
G4a 0 0 0 11 2 0 0 15.4 0 1 6 18 28.0 
G5a 0  0  0  2  5  0  3  50  N/Ab N/Ab N/Ab N/Ab N/Ab 

G6a 0 0 0 0 3 12 6 42.9 N/Ab N/Ab N/Ab N/Ab N/Ab 

G7a 0 0 0 0 1 3 46 8.0 N/Ab N/Ab N/Ab N/Ab N/Ab 

Omission 0.0 0.0 0.0 15.4 54.5 20.0 16.3 N/Ab 0.0 41.2 14.3 21.7 N/Ab 

Error (%) 
Overall 80.0±7.9 (95% confidence interval) 78.9±8.3 (95% confidence interval) 

Accuracy 
(%) 

aG1 to G7 and G1 to G4 for the Last Chance site and Sugar Pine site represent the corresponding vegetation group listed in Table 3. 
bN/A means value is not available for corresponding blank. 

http:cies(nearly80%inbothcases)andkappacoefficients(over0.64
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Moreover, the overall accuracy and kappa coefficient obtained 
from the proposed vegetation-mapping strategy are comparable 
to most previous supervised vegetation-mapping strategies in
tegrating LiDAR data and multispectral imagery (Bork and Su 
2007; Dalponte et al. 2012; Cho et al. 2012). 

Although the commission and omission errors for certain 
vegetation groups were high, they might be caused by mis-
registration between plot measurements and remotely sensed 
data (LiDAR data and aerial imagery). The plot locations were 
measured using a GPS in the field. Although it can produce 
centimeter-level positioning accuracy in most cases, the block
ing effect of forest canopy can reduce the GPS positioning accu
racy significantly (Sigrist et al. 1999). The possible positioning 
error may lead to poor coregistration with remotely sensed data. 
Particularly, this misregistration could have a pronounced effect 
on the commission and omission errors of vegetation groups that 
do not cluster together. For example, the young mixed conifer 
forest in the Last Chance site had both a relatively high commis
sion error and omission error. Instead of aggregating together, 
young mixed conifer forest was mainly scattered within mature 
mixed conifer forest (Figure 3(a)). A commission error of 66.7% 
for young mixed conifer forest was due to the misclassification 
as mature mixed conifer forest. 

The quality of NAIP aerial imagery could be another fac
tor that influences the vegetation-mapping accuracy. As known, 
there is nonlinear color balancing effect existing in the NAIP 
imagery due to the dynamic range of different image tiles and 
different data-acquiring time (Hart and Veblen 2015). More
over, the absolute horizontal accuracy for the NAIP imagery is 
around 6 m at a 95% confidence level (USDA Farm Service 
Agency 2015). Although this study has tried to reduce the in
fluence of misregistration between NAIP imagery and LiDAR 
products by matching correspondence points, it still cannot be 
totally eliminated. Further study is still needed to address how 
the nonlinear color balancing effect and horizontal accuracy in
fluence the vegetation-mapping accuracy. Moreover, it has been 
frequently reported that hyperspectral data outperformed multi
spectral data in recognizing plant species (Adam et al. 2010; Xu 
and Gong 2007), and there have been studies showing that the 
integration of hyperspectral data and LiDAR data can produce 
more accurate vegetation maps than the integration of multi-
spectral data and LiDAR data (Dalponte et al. 2012). 

CONCLUSIONS 
This study proposed a vegetation-mapping strategy through 

the combination of multispectral aerial imagery and LiDAR 
data. Both the vegetation structure and composition information 
were taken into consideration of the determination of classifica
tion system. The BIC algorithm was used to automatically op
timize the number of vegetation units within two mixed conifer 
forests, and the property of each vegetation group was identified 
by post hoc analysis based on field measurements. The results 
show that the proposed vegetation-mapping strategy is a robust 
method to map vegetation in mixed conifer forests with a suffi
cient high accuracy. The overall accuracy and kappa coefficient 

are over 78% and 0.64 for both study sites. Each identified veg
etation group can be differentiated from others by vegetation 
structure parameters or dominant species composition or both. 
The obtained vegetation maps have the potential to consider
ably improve the identification of critical habitat for species of 
concern (e.g., Pacific fisher and California spotted owl), as well 
as identifying wildfire risk through characterizing ladder fuels 
(Kramer et al. 2014). 
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