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Abstract. Large trees are important to a wide variety of wildlife, including many species of conservation 
concern, such as the California spotted owl (Strix occidentalis occidentalis). Light detection and ranging 
(LiDAR) has been successfully utilized to identify the density of large-diameter trees, either by segmenting 
the LiDAR point cloud into individual trees, or by building regression models between variables extracted 
from the LiDAR point cloud and field data. Neither of these methods is easily accessible for most land 
managers due to the reliance on specialized software, and much available LiDAR data are being underuti-
lized due to the steep learning curve required for advanced processing using these programs. This study 
derived a simple, yet effective method for estimating the density of large-stemmed trees from the LiDAR 
canopy height model, a standard raster product derived from the LiDAR point cloud that is often delivered 
with the LiDAR and is easy to process by personnel trained in geographic information systems (GIS). 
Ground plots needed to be large (1 ha) to build a robust model, but the spatial accuracy of plot center was 
less crucial to model accuracy. We also showed that predicted large tree density is positively linked to 
California spotted owl nest sites. 
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INTRODUCTION (Strix occidentalis occidentalis) (CSO) association 
with large, old-growth trees, and structurally 

Large trees are critical components of many complex stands used for nesting and roosting 
temperate forest ecosystems (Franklin et al. 2002, (Bias and Gutierrez 1992, Gutierrez et al. 1992, 
Lutz et al. 2012). Large trees have features that Moen and Gutierrez 1997, Keane 2014). CSO 
directly provide habitat for wildlife (e.g., broken populations are declining in the Sierra Nevada, 
tops and cavities), in addition to indirectly pro- and they are currently under review for potential 
viding habitat by contributing to greater com- listing under the Endangered Species Act. Thus, 
plexity in forest structure. Both aspects of large information on the distribution and abundance 
trees have been shown to be important for wild- of important large tree habitat elements and 
life species of conservation concern. Numerous structurally complex forest stands is needed 
studies have shown the California spotted owl’s to inform assessment and development of 
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conservation strategies for CSOs, and more 
broadly, Sierra Nevada forest landscapes. In 
addition to CSOs, large tree habitat is important 
for numerous wildlife species including fishers 
(Martes pennanti), northern goshawks (Accipiter 
gentilis), woodpeckers, and others (Beier and 
Drennan 1997, Greenwald et al. 2005, Seavy 
et al. 2009, Hollenbeck et al. 2011, Zielinski 
2014). 

In the past, imagery from passive remote sen-
sors, such as LANDSAT, was widely used to esti-
mate the structure of forests (Forsman 1995, 
Hunter et al. 1995, Moen and Gutierrez 1997, 
McDermid et al. 2005). Light detection and rang-
ing (LiDAR) is a form of active remote sensing 
that is better able to detect the height of vegeta-
tion than passive remote sensing, and therefore 
may be a very useful tool for identifying wildlife 
habitat (Lefsky et al. 2002, Vierling et al. 2008, 
Martinuzzi et al. 2009, Selvarajan et al. 2009, 
Kelly and Di Tommaso 2015, Kramer et al. 2016). 
This is particularly true in areas with tall (and 
likely large diameter) trees (Bergen et al. 2009, 
Wing et al. 2010, Garcıa-Feced et al. 2011, Ackers 
et al. 2015). Ackers et al. (2015) found that 
LiDAR was a better predictor than LANDSAT of 
Spotted Owl habitat, which depended heavily on 
large tree density and overall canopy height 
(Ackers et al. 2015). 

Methods for estimating large tree density from 
LiDAR include individual tree segmentation and 
statistical modeling that utilizes one to many 
LiDAR-derived independent variables. Tree seg-
mentation algorithms segment the canopies of 
individual tree crowns from the LiDAR point 
cloud (Popescu et al. 2003, Chen et al. 2006, Li 
et al. 2012, Jakubowski et al. 2013a). Using these 
algorithms, it is possible to estimate the location 
of dominant or isolated stems and predict the 
number of large trees in a given area; however, 
the accuracy of these predictions decreases with 
dense canopy cover, when stems are close 
together, and when trees are codominant, inter-
mediate, or suppressed (Kaartinen et al. 2012, 
Swetnam and Falk 2014). Tree segmentation has 
been successfully implemented in wildlife stud-
ies (Garcıa-Feced et al. 2011), and while it 
requires fairly simple LiDAR input, it necessi-
tates a multi-step process (where errors can be 
compounded) to calculate the density of stems in 
a given diameter class: (1) calculate each stem’s 

location and maximum crown height, (2) back-
calculate each tree’s diameter, and (3) calculate 
the stem density of the diameter range of inter-
est. Furthermore, this analysis also requires train-
ing data where all stems are mapped, which can 
be very labor intensive, especially for larger plots 
(>0.1 ha). Unfortunately, this work flow is not 
possible for most land managers due to the lim-
ited availability of LiDAR with high point densi-
ties (due to funding limitations or age of LiDAR 
acquisition), equipment, personnel for fieldwork, 
limited training in and access to tree segmenta-
tion software, and limited time to carry out com-
plex processing tasks. 
Statistical models using LiDAR to predict tree 

density can be more abstract, and while less 
accurate than predictions of tree height or basal 
area, are also able to make useful predictions 
(Hudak et al. 2006, Lee and Lucas 2007, Jaku-
bowski et al. 2013b). While these models do not 
require the complex algorithms and high-density 
LiDAR needed by tree detection algorithms, they 
often utilize a suite of LiDAR-derived variables. 
These variables are not standard deliverables 
from LiDAR acquisitions and typically require 
expertise of a LiDAR specialist. Furthermore, 
once a model is created, it can be hard to under-
stand the ecological underpinnings, and the 
model must be re-evaluated when moving 
between different areas or forest types. Simpler 
models (e.g., fewer variables, less intensive statis-
tics) are uncommon in LiDAR applications for 
natural resources. 
In this study, we explore regression-based 

approaches for accurately quantifying the den-
sity of large trees. While tree segmentation is 
another option, we intentionally avoided it to 
investigate less demanding approaches in terms 
of LiDAR point density, field plots, processing 
hardware and software, and expertise of process-
ing personnel. Our specific research questions 
were as follows: (1) When estimating large tree 
density from LiDAR, what is the difference in 
predictive accuracy between (A) a multiple 
regression model comprised of many LiDAR-
derived variables and (B) a simple linear regres-
sion model derived from the canopy height 
model (CHM)? (2) Does plot size or plot center 
accuracy influence the strength of this relation-
ship? and (3) Can our LiDAR-derived large tree 
density estimates be used to identify important 
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structural habitat characteristics of California 
spotted owl (CSO) nest sites? 

METHODS 

Study area 
Our study was conducted in the Meadow Val-

ley area of the Plumas National Forest, which is 
in the northern Sierra Nevada of California (cen-
tered at 39°550 N, 121°030 W; Fig. 1). With a 
Mediterranean climate, most of its 1050 mm/yr 
of precipitation falls during the winter (Ansley 
and Battles 1998). The 22,510-ha (55,623 ac) land-
scape is made up of forest, montane chaparral, 
and meadows, and falls between 1050 and 
2150 m in elevation (Collins et al. 2013, Kramer 
et al. 2014). Mixed conifer tree species predomi-
nate, including ponderosa pine (Pinus ponderosa), 
Jeffrey pine (Pinus jeffreyi), sugar pine (Pinus lam-
bertiana), Douglas-fir (Pseudotsuga menziesii), 
white fir (Abies concolor), incense-cedar (Caloce-
drus decurrens), and California black oak (Quercus 
kelloggii) (Schoenherr 1992, Barbour and Major 
1995). At higher elevations, smaller pockets of 
red fir (Abies magnifica) and western white pine 
(Pinus monticola) can be found. Lower densities 
of lodgepole pine (Pinus contorta), western juni-
per (Juniperus occidentalis), California hazelnut 
(Corylus cornuta), dogwood (Cornus spp.), and 
willow (Salix spp.) also occur. Before fire sup-
pression began in the early 1900s, the historic fire 
regime consisted of primarily low- to moderate-
severity fires burning at 7- to 19-year intervals 
(Moody et al. 2006). 

Many different fuel reduction treatments were 
implemented across this landscape between 1999 
and 2008 as part of the Herger-Feinstein Quincy 
Library Group Pilot Project (Herger and Fein-
stein 1998). The fuel treatments occurred across 
approximately 20% of the landscape and were 
intended to mitigate potential for uncharacteristi-
cally large and severe wildfire while conserving 
critical habitat for CSO and other species 
(Moghaddas et al. 2010). Multiple nesting sites of 
CSO have also been located and monitored 
across this study area (Stephens et al. 2014). 

Field data 
The entire Meadow Valley study area was sys-

tematically surveyed for CSO nesting sites 
between 2002 and 2012 using standardized 

survey protocols to determine occupancy and 
reproductive status (Blakesley et al. 2010, Ste-
phens et al. 2014). As part of these protocols, 
efforts were made to locate the specific nest tree 
used by breeding owl pairs each year. A total of 
13 CSO nest tree locations were documented and 
sampled using the standard Forest Inventory 
and Analysis (FIA) protocol described below. 
Field plots were sampled between 2004 and 
2009. Plots were centered on all 13 known CSO 
nest trees within the study area and at 132 CSO 
foraging locations. Foraging locations were esti-
mated from 10 owls using standard radio-tele-
metry techniques (White and Garrott 1990, 
Kenward 2001); we conducted vegetation plots 
at a random subsample from 436 total foraging 
locations, with each owl sampled equally. In 
addition, any foraging location within a fuels 
treatment also received a vegetation plot. Error 
ellipses for radio-telemetry locations are depen-
dent on distance to the animal, change in angle 
between bearings, and elapsed time between 
bearings; we sampled vegetation only at foraging 
locations in which the error ellipse was less than 
1 ha, the size of the largest vegetation subplot 
(Gallagher 2010). A total of 145 plots were sam-
pled (of which 134 were used for our study due 
to incomplete coverage by the LiDAR point 
cloud or inaccuracies between spatial and non-
spatial datasets). Plot centers were recorded with 
a Trimble GeoExplorer3, with a reported accu-
racy of 2–5 m (actual accuracies for each plot 
were not recorded). 
Standard FIA plot protocol was implemented 

to collect plot and subplot data (USDA Forest 
Service 2001). Additionally, trees over 76 cm 
(30 in) in diameter at breast height (dbh) were 
measured on a 1-ha plot that encompassed all 
subplots. Only a single subplot of each size was 
utilized to maintain subplot independence and 
control for slight inaccuracies in plot center coor-
dinates due to lower accuracy GPS. These plots 
measured 1 ha (2.47 ac), 1/10th ha (0.247 ac), 
and 1/60th ha (0.041 ac), with plot radii of 56.41, 
17.95, and 7.31 m (185.1, 58.9, and 24.0 ft), 
respectively, laid out concentrically around the 
recorded plot center. The plot and subplot 
arrangement that we used is illustrated in Fig. 2. 
In all plots, trees over 76 cm (30 in) in dbh were 
measured and considered for our analyses to 
reflect the harvesting regulations described in the 

❖ www.esajournals.org 3 December 2016 ❖ Volume 7(12) ❖ Article e01593 

http:www.esajournals.org


�

 

Lassen 
National 

Forest 

A/manor 

Plumas National 

0 5 10 mi 

0 5 10 km 

Transverse Mercator Projection: North American Datum 1983 UTM Zone 10N 

ECOSPHERE 

N 

A 

KRAMER ET AL. 

Fig. 1. Meadow Valley study area on the Plumas National Forest, California, measuring 22,510 ha. 

US Forest Service 2001 Framework and the 2004 
Sierra Nevada Forest Plan Amendment (US For-
est Service 2001, 2004). 

LiDAR data and processing 
Watershed Sciences, Inc. collected aerial LiDAR 

over the Plumas and Lassen National Forests 
between 31 July 2009 and 11 August 2009. A 
Leica ALS50 Phase II laser system was used to 
collect LiDAR points utilizing a scan angle of 
14° from nadir. A Leica RCD-105 39 megapixel 

digital camera was used to capture orthopho-
tographs, which were processed with Leica’s Cal-
ibration Post Processing software v.1.0.4. IPASCO 
v.1.3 (Heerbrugg, Switzerland) and the Leica Pho-
togrammetry Suite v.9.2 were used to spatially 
place the photos. The vendor reported that 

average vertical and horizontal accuracy were 
2.6 cm (1.02 in) and 7.2 cm (2.83 in), respectively, 
based on the mean divergence of points from 
ground survey point coordinates (3089 ground 
points were analyzed across four surveyed areas). 
An average point density of 4.68 points/m2 

(0.43 points/ft2) was achieved. Although a variety 
of fuel reduction treatments were implemented 
on the landscape between field plot sampling and 
the LiDAR flight, no fuels were altered in the field 
plots. 
The LiDAR point cloud was normalized, and 

variables were extracted for each 1-ha plot using 
LAStools (Isenburg 2011). Topographic and 
canopy structural variables were calculated (a 
total of 21 metrics; see Appendix S1: Table S1 for 
a detailed description of each metric). The CHM 
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Fig. 2. Layout of the three concentric plot sizes that 
were used for this study. Note that all standard Forest 
Inventory and Analysis plots were collected, but only 
a single plot of each size was used to minimize spatial 
autocorrelation between macro- and subplots. 

was generated at 2 m resolution using FUSION 
(McGaughey 2012). ArcGIS was then used to clip 
the CHM to each plot area (1 ha, 1/10th ha, 1/ 
60th ha) and analyze these for “% tall cover.” The 
“% tall cover” variable describes the proportion 
of the plot area with a canopy height over a given 
breakpoint. Breakpoints tested ranged from 26 to 
38 m, at 2 m intervals (a total of seven metrics; 
see Appendix S1: Table S1). Fig. 3 shows the 
detailed work flow and illustrates how we used 
the LiDAR data to answer our key questions. 

Statistical analysis 
We used a combination of methods in the R 

software program (R Development Core Team 
2008) to develop and evaluate linear regression 
models that estimated large diameter (>76 cm 
(30 in) dbh) tree density from LiDAR, without 
the use of tree segmentation. We chose the 

Fig. 3. Project work flow used to analyze light detection and ranging (LiDAR) and field data. 
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threshold of >76 cm (30 in) dbh to match the size 
threshold for trees collected in the largest, 1 ha 
plot size, as well as for both subplot sizes. This is 
also the maximum diameter limit guiding most 
forest management treatments specified in the 
2001 Framework and the 2004 Sierra Nevada 
Forest Plan Amendment (US Forest Service 2001, 
2004). 

To avoid a non-normal response variable 
distribution according to the Shapiro–Wilk 
normality test (Shapiro and Wilk 1965), we 
transformed the field-based large tree count by 
taking its square root. We also used Q-Q plots to 
visually identify non-normal distributions of 
independent variables and bring their distribu-
tions closer to normality through transformation. 
A complete record of transformations is detailed 
in Appendix S1: Table S1. Applying these trans-
formations increased the predictive ability of 
models and eliminated model heteroscedasticity, 
tested with the Breusch–Pagan test in the car 
package of R (Breusch and Pagan 1979, Fox et al. 
2009). 

Once variables were transformed, we calcu-
lated the best simple linear regression model (the 
model with the highest R2 value), as well as the 
best multiple regression model. Because LiDAR-
derived independent variables were highly corre-
lated, an iterative model building approach was 
taken: (1) The best simple linear regression 
model was chosen based on the lowest Akaike’s 
information criterion (AIC) score (Akaike 1987) 
using the leaps package in R (Lumley and Miller 
2009). (2) Variables that were strongly correlated 
with the chosen independent variable (correla-
tion >0.6 in either Pearson or Spearman correla-
tions) were removed. (3) The process was 
repeated to find the next best independent vari-
able. The final model was that with the lowest 
AIC and with all independent variables signifi-
cant at P < 0.05. We recorded both AIC values 
and the 10-fold cross-validation error, calculated 
with the CVTools package in R (Alfons 2012). 

We also derived predictive models for large 
tree density for the 1/10th ha (1012 m2; 0.247 ac) 
and 1/60th ha (168 m2, 0.041 ac) plots using the 
above methodology to test whether plot size 
influences the strength of the relationship. We 
wanted to evaluate whether the most reliable 
predictor changed and by how much the correla-
tion coefficient degraded as plot size was 

reduced, especially as the plot size recommended 
for aerial LiDAR validation ranges between 300 
and 600 m2 (0.074 and 0.15 ac; Laes et al. 2011, 
Ruiz et al. 2014). Mascaro et al. (2011) examined 
the influence of plot size on model accuracy for 
predicting carbon density in a tropical forest and 
found that prediction accuracy scales with plot 
size due, in part, to decreased relative edge in 
larger plots. We predict that this relationship will 
be similar for estimating large tree density 
because in both cases LiDAR returns from pri-
marily tree crowns are used to infer information 
about tree boles. Some of these factors are illus-
trated by Fig. 4, where two nearly identical plots 
have very different stem counts due to leaning 
stems, stems near the plot edge, and trees with 
uneven crowns. 
Based on evaluation of model performance at 

the 1/60th ha, 1/10th ha, and 1-ha plot scales (see 
Results), we chose the simple linear regression 
model and the 1-ha plot for further analysis. This 
model was preferable as it had the highest 
adjusted R2 value, uses the CHM (a commonly 
derived LiDAR product) as its base for predic-
tion, and is simple enough to make logical sense 
for its predictions. 
To address whether plot center accuracy influ-

ences the strength of this relationship, we shifted 
all 1-ha plots in a random direction (illustrated in 

Fig. 4. Tree arrangements for two theoretical plots 
with 25% cover. Plot 1 contains three stems, while plot 
2 contains none. Three tree characteristics that can lead 
to model inaccuracies, if they occur near the plot edge, 
are as follows: (A) stem lean, (B) stem near plot bound-
ary, (C) uneven crown. 
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Fig. 5. Illustration of plot center shift of 2, 5, 10, and 
15 m. The black dot and dark circle represent the origi-
nal plot center and area, respectively, while the lighter 
dot and circle represent the location of the 15-m shifted 
plot. Other shifts are shown as outlines. At 15 m, this 
shift represents a highly inaccurate GPS point, yet with 
the 1 ha plot size, over 83% of the original plot is con-
tained by the shifted plot. 

Fig. 5) and recalculated the model coefficients, as 
well as the correlation coefficient. We repeated 
this shift and recalculation 100 times, and per-
formed the analysis at shift distances of 2, 5, 10, 
and 15 m. For each shift distance, we compared 
the distribution of values for the model coeffi-
cients and correlation coefficient. We chose these 
distances because they are common values for 
the horizontal accuracy of many mid-range GPS 
units that are commonly used by a non-LiDAR-
specific field crew when recording plot centers. 

Large tree density centered on CSO nest trees 
was examined at multiple scales to evaluate the 
potential utility of using this variable to quantify 
habitat associations. Large tree density across the 
Meadow Valley study area was estimated and 
mapped using our single-regression model. 
Large tree density was extracted from this layer 
for areas within 50, 100, 500, and 1000 m of nest 
trees and at 100 randomly chosen points on the 
landscape for comparison. T tests were used to 
compare large tree density between owl and ran-
dom sites at each spatial scale. 

RESULTS 

Large diameter tree density 
Due to high collinearity between independent 

variables (described in Appendix S1: Table S1), 

combined with these variables quickly becoming 
insignificant to the model at the P < 0.05 level, 
the multiple linear regression only contained two 
independent variables and was only slightly bet-
ter able to predict large tree density than the sin-
gle regression model, as shown in Table 1. Eq. 1 
shows the best single regression linear model, 
where the independent variable was the percent-
age of the plot area where the CHM was over 
32 m (CHM32). Eq. 2 shows the best multiple 
linear regression model, where the independent 
variables included CHM32 and the variance of 

�ð logðVARÞ þ 1Þ 

point heights above 2 m (VAR). 

Sqrtðtrees=haÞ ¼ 1:10 þ 0:817 sqrtðCHM32Þ 
(1) 

Sqrtðtrees=haÞ ¼ 2:37 þ 0:786 
0:909 

sqrtðCHM32Þ 

(2) 

Both models had very similar AIC and cross-
validated prediction error (Table 1). Both models 
had a cross-validation error below a single tree 
per ha, and an adjusted R2 value of 0.77, which is 
accurate enough to be highly useful for managers. 

Importance of plot size 
Of the three plot sizes evaluated, the 1-ha plot 

was the best predictor of large tree density, with 
a model adjusted R2 of 0.77 (Table 1). Model pre-
diction accuracy decreased as plot size shrank. 
Even plots 1/10th ha in size (considered large by 
most managers and field crews) were poor pre-
dictors of large tree density, with the best model 
producing an adjusted R2 of only 0.54 compared 
with 0.77 for the 1-ha plot. This decrease in 

Table 1. Model statistics for the best single and multiple 
linear regression models based on the 1-ha plot size. 

10-fold cross-
Variables included validation 

in model AIC error† Adjusted R2 

CHM32 347 0.88 0.77 
CHM32, VAR 344 0.87 0.77 

Notes: These include the predictor variables, AIC score, 
cross-validation error, and adjusted R2 value for each model. 
CHM32 refers to the relative percentage of plot area where 
the CHM is over 32 m; VAR refers to variance among point 
heights. AIC, Akaike’s information criterion; CHM, canopy 
height model. 

† The cross-validation error is reported for the square root 
of trees/ha. 
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Table 2. Plot area with corresponding best linear 
model information for plot sizes <1 ha. 

Explanatory 
Plot type Plot area variable Adjusted R2 P-value 

Subplot 1/60th ha COV32-34 0.21 <0.01 
Macroplot 1/10th ha CHM34 0.54 <0.01 

Notes: COV32-34 represents the relative percent cover of 
all LiDAR returns between 32 and 34 m. CHM34 refers to the 
relative percentage of plot area where the CHM is over 34 m. 
CHM, canopy height model. 

predictive accuracy based on plot size has been 
demonstrated by Mascaro et al. (2011). Even so, 
large tree density in both the 1-ha and 1/10th ha 
plots was best predicted by a CHM-derived vari-
able. The best independent variable for each plot 
size, as well as coefficient of determination for 
each model for 1/10th and 1/60th ha plots are 
reported in Table 2. Note that while multiple 
regression was attempted, no variables beyond 
the first were significant. 

To help explain the difference in model accu-
racy, Table 3 details the average number of large-
diameter trees, as well as the proportional 
amount of edge to area, for the three plot sizes. 
These factors were likely both contributors to the 
poor predictive power of models built using 
smaller plot sizes. Table 3 shows that 1/60th and 
1/10th ha plots had less than 0.5 and two large 
trees per plot, respectively, making prediction 
inherently difficult. Furthermore, the large ratio 
of plot edge to plot area likely contributed to 
model inaccuracy as well, with 1/60th ha plots 
having eight times as much relative edge than 
1-ha plots (Table 3). 

Importance of plot center accuracy 
Plot centers were randomly shifted up to 15 m, 

but none of these shifts dramatically changed the 
single linear regression model accuracy or coeffi-
cient values. Boxplots displaying the model fit 

Fig. 6. The distribution of model values associated 
with predicting the large tree density using single 
linear regression (R2, as well as the slope and intercept 
of the model), and how these changed on the 1-ha plot 
size as the coordinates of plot center were shifted 2, 5, 
10, and 15 m in a random direction (n = 100). Original 
model values are shown as a gray dashed line. 

and coefficients are shown in Fig. 6. Adjusted R2 

ranged between 0.72 and 0.78 for models built 
with shifted plot centers (the non-shifted model 
had an adjusted R2 value of 0.77). Values for 
slope and intercept varied between 1.06 and 1.22, 
and 0.78 and 0.84, respectively (unshifted model 
values were 1.10 and 0.82, respectively). 

Large trees around nest sites 
Large diameter tree density was modeled for 

the entire study area and is shown with 13 CSO 
nest sites in Fig. 7. Smaller buffers around nest 
trees had a disproportionately high density of 
large trees, which dropped off gradually as the 
search radius from the nest tree increased, illus-
trated in Fig. 8. Within 50 m of nest trees, com-
pared to random locations, large tree densities 
were significantly different, with 31 vs. 12 trees/ 
ha, respectively. Area near nest sites remained 

Table 3. Plot characteristics for the different plot sizes analyzed. 

Average large 
Plot area trees per plot Radius (m) Circumference (m) Area (ha) Edge:Area 

1/60th ha 0.47 7.31 45 0.016 0.273 
1/10th ha 1.74 17.95 112 0.101 0.111 
1 ha 15.56 56.41 354 0.999 0.035 

Notes: Large trees are >76 cm (30 in) in diameter at breast height. A lower edge to area ratio indicates less edge effect. Note 
that the 1/60th ha plot has almost eight times as much relative edge as the 1-ha plot. 
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Fig. 7. Study area, showing large (over 76 cm (30 in) diameter at breast height) tree density and California 
spotted owl nest sites. Large tree density was derived from the canopy height model via single linear regression. 

significantly different from random at distances 
of 50, 100, and 500 m. Only at a buffer distance 
of one km was large tree density no longer signif-
icantly different between CSO nest sites and 
random locations. 

DISCUSSION 

Large trees are a critical habitat component for 
several wildlife species of concern and are pre-
sently lacking in many western forests relative to 
historical forest conditions (Franklin and Johnson 

2012). In the case of the CSO, reductions in the 
number of large trees and structurally complex 
older forest stands due to past forest manage-
ment and the more recent effects of wildland fire 
may be a contributing factor to current CSO pop-
ulation declines (Stephens et al. 2016a). Further, 
recent studies have documented high rates of 
large tree mortality due to interacting effects of 
drought, climate change, wildfire and insect 
activity (Lutz et al. 2009, Knapp et al. 2013, 
Dolanc et al. 2014). Thus, estimating large tree 
distribution and abundance is important for 
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Fig. 8. Large (over 76 cm (30 in) diameter at breast 
height) tree density near 13 California spotted owl nest 
sites and 100 random sites over a range of search radii 
is shown. Plots with significantly different distribu-
tions (at P < 0.01) of large tree density are indicated by 
“*.” Large tree density was derived from the canopy 
height model via single linear regression. 

identifying and managing large tree habitat ele-
ments and older forest stands important to CSOs 
and other associated species. We show that aerial 
LiDAR can be successfully utilized to estimate 
the density of large trees, and that areas near CSO 
nest sites have a disproportionately high density 
of large trees, which corroborates the current 
understanding of preferred CSO habitat (Garcıa-
Feced et al. 2011, Ackers et al. 2015). Both multi-
ple and simple linear models accurately predicted 
the density of trees over 76 cm (30 in) dbh across 
1-ha plot areas. However, the strength of this rela-
tionship decreased as plot size shrank to 1/10th 
ha and 1/60th ha, indicating that the plot size 
should be at least 1 ha when using the CHM to 
predict the density of large trees. Mascaro et al. 
(2011) found that for carbon density estimations, 
error associated with edge effect stabilized at a 
1-ha plot size. We suspect that much of this differ-
ence in model accuracy was due to edge effect, 
illustrated by Fig. 4, and small sample size for 
smaller plots. Other factors that can decrease the 
accuracy of this estimate include trees that have 
non-standard crown:dbh relationships, including 
individuals with damaged crowns, sheared 
branches, or broken tops, and species with differ-
ent ratios of crown area:stem diameter. 

We also show that while shifting the place-
ment of plot center (simulating decreased gps 

spatial accuracy of plot center) slightly decreases 
the accuracy of the large tree density model 
when 1-ha plots are used and marginally 
changes the model’s coefficients, the model is still 
strong (adjusted R2 never dropped below 0.72) 
with shifts in plot center of up to 15 m. This is 
likely due to the fact that with such a large plot 
size, much of the original plot area is included in 
the sampled LiDAR (83% of the original 1-ha plot 
is retained when the center is shifted 15 m). This 
indicates that for variables such as large tree den-
sity, which require large plots to accurately mea-
sure, a highly accurate (sub-meter) plot center 
may not be necessary. While most long-term plot 
networks do not utilize plot sizes as large as 
1 ha, this study stands as a reminder that some 
datasets can still be useful to LiDAR validation, 
despite having less than ideal accuracy for plot 
centers. 
Recently, many researchers have focused on 

producing a standardized LiDAR plot protocol 
(Laes et al. 2011, Ruiz et al. 2014), where recom-
mended plot sizes range between 300 and 
600 m2 and nothing less than a mapping grade 
GPS is required. While this is an excellent step 
toward helping managers best prepare for maxi-
mizing the utility of new LiDAR acquisitions, it 
may also lead managers to assume that plots col-
lected outside of these standards are useless for 
LiDAR analysis. This study suggests that these 
protocols might be less rigid for a variable such 
as large diameter tree density, where much larger 
plots are necessary to develop a robust predictive 
model. A similar relationship was found between 
plot size and prediction error by Mascaro et al. 
(2011), who show that relative prediction error 
decreases with increasing plot area for carbon 
density estimations in tropical forest. We suspect 
that in addition to large tree density and carbon 
density, this would also be the case for forest 
attributes such as basal area, where stem loca-
tions and characteristics are modeled from 
LiDAR returns that primarily represent the 
crowns of trees. We advise managers and 
researchers to critically examine the scale of the 
variable in which they are interested before 
deciding on an ideal plot design. This was an 
observational study based on one location, albeit 
a relatively large area, introducing the potential 
for locational bias in our analysis. Furthermore, 
because our study area is a single sample of the 
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landscape, results from this study should be 
carefully applied to other areas, and may require 
additional groundtruth analysis based on large 
plots from the new area. Regarding the plots 
themselves, placement was designed and imple-
mented to sample CSO use areas and may not be 
representative of the entire landscape. Further-
more, plot center accuracy was not high by cur-
rent standards (likely below 2 m, but possibly up 
to 5 m). However, our analysis showed that 
slight shifts in plot center did not influence 
results, so model inaccuracy from this source 
should be minimal. 

Because this canopy-height-derived variable 
identifies the area of tall canopy, it assumes a link 
between canopy area and tree density, as well as 
a link between stem diameter and tree height. 
This means that our statistical model likely is 
unable to capture large trees when a significant 
portion of the tree tops are broken. However, to 
the extent that broken-top trees are still emergent 
in the dominant tree canopy or these large bro-
ken-top trees are often found near other large-
diameter individuals without broken tops, our 
model would be expected to predict an accurate 
large tree density. Because tree species differ in 
the relationship between canopy height, canopy 
volume, and stem diameter, this model will need 
to be evaluated and perhaps recalibrated based 
on local knowledge of tree species and crown 
extents. However, for the purpose of a general 
prediction, this basic model performed surpris-
ingly well, and is a simple and relatively accurate 
method for managers and researchers to evaluate 
large diameter stem density across the landscape 
in Sierra Nevada mixed conifer forests. 

Future research 
Additional studies to augment this research 

include carrying out similar analyses in different 
forest types. We suspect that these results will 
perform best in forests where the majority of 
large trees are coniferous, as these are identified 
by the CHM. Because of the variable quality of 
LiDAR available to land managers, investigation 
of the necessary point density to make accurate 
predictions is also essential. 

Our work indicates that estimation of large 
tree density via LiDAR-derived CHM could be a 
useful method for identifying CSO nesting 
habitat. We encourage wildlife researchers to 

investigate the usefulness or improvement of this 
variable for modeling wildlife habitat for species 
associated with large tree habitat elements or for-
est stands with high densities of large trees, such 
as the CSO. 
Our results show that older plots, which may 

not be ideal for traditional LiDAR-based deriva-
tions due to imprecise data or inaccurate plot 
center coordinates, could still be useful for other 
variables. We encourage others to explore their 
plot data and think critically about what can be 
compared to available LiDAR data. 

Immediate implications for managers 
Forest managers are challenged by the need to 

identify and manage large tree habitat across the 
Sierra Nevada. Information needs may range 
from identifying individual large trees that func-
tion as an important nesting/den habitat element 
within an area of generally younger, smaller for-
est, to identifying forest stands or patches with 
high densities of large trees across a landscape. 
We encourage thoughtful implementation of our 
methods to identify large trees and assess large 
tree density across landscapes. Such information 
on distribution and abundance of large trees can 
be used to identify areas of importance to associ-
ated wildlife species, such as the CSO, and to 
inform forest management options. Further, little 
to no information exists on large tree densities 
across the Sierra Nevada; thus, estimates of large 
tree density may be an important variable to 
incorporate into models of wildlife habitat. How-
ever, site productivity, dominant tree species 
composition, and management history are linked 
to the specific CHM threshold that is most appro-
priate, and we caution users to test multiple 
CHM cutoffs before finalizing their model. In 
other Sierra mixed conifer forests, we encourage 
managers with access to a LiDAR-derived CHM 
and a network of FIA plots that include the 1 ha 
plot size to derive a similar equation to predict 
the density of large trees. This would be a 
relatively simple project for anyone familiar 
with GIS and statistics, and could result in a 
highly useful layer for managers and wildlife 
ecologists. Large tree information could assist in 
the development of a long term management 
plan to conserve the CSO with an overall goal of 
increasing forest resilience to fires, insects, and 
drought (Stephens et al. 2016b). 
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CONCLUSIONS 

Based on our method, managers can use the 
CHM, a common LiDAR deliverable, to accu-
rately estimate large tree density, even when only 
lower density LiDAR (inappropriate for tree seg-
mentation) is available. This can be accomplished 
without any specific LiDAR-processing hard-
ware, software, or expertise, and does not require 
any LiDAR-specific plot protocol. This method 
demonstrates an excellent method for managers 
to put their LiDAR to practical use, although 
there are a few caveats. 

We also show that older data traditionally 
labeled as “unusable” for LiDAR comparison, 
due to inaccurate plot center GPS coordinates, 
can provide valuable information for certain 
LiDAR-derived variables. For plots such as these 
to be successfully compared to LiDAR data, 
either (1) plots must be large enough to minimize 
GPS inaccuracy or (2) the variable must vary at a 
larger spatial scale than the potential inaccuracy 
of plot center. 

Estimates of large tree density across the Sierra 
Nevada are lacking. Such information is needed 
to inform development of conservation and 
restoration strategies for CSOs and Sierra 
Nevada landscapes. Our methods provide an 
approach for generating this information in areas 
where LiDAR data are available. 
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