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ABSTRACT 
Treatments to reduce forest fuels are often performed in forests to 
enhance forest health, regulate stand density, and reduce the risk 
of wildfires. Although commonly employed, there are concerns 
that these forest fuel treatments (FTs) may have negative impacts 
on certain wildlife species. Often FTs are planned across large 
landscapes, but the actual treatment extents can differ from the 
planned extents due to operational constraints and protection of 
resources (e.g. perennial streams, cultural resources, wildlife habi-
tats). Identifying the actual extent of the treated areas is of primary 
importance to understand the environmental influence of FTs. 
Light detection and ranging (lidar) is a powerful remote-sensing 
tool that can provide accurate measurements of forest structures 
and has great potential for monitoring forest changes. This study 
used the canopy height model (CHM) and canopy cover (CC) 
products derived from multi-temporal airborne laser scanning 
(ALS) data to monitor forest changes following the implementa-
tion of landscape-scale FT projects. Our approach involved the 
combination of a pixel-wise thresholding method and an object-
of-interest (OBI) segmentation method. We also investigated forest 
change using normalized difference vegetation index (NDVI) and 
standardized principal component analysis from multi-temporal 
high-resolution aerial imagery. The same FT detection routine 
was then applied to compare the capability of ALS data and aerial 
imagery for FT detection. Our results demonstrate that the FT 
detection using ALS-derived CC products produced both the high-
est total accuracy (93.5%) and kappa coefficient (κ) (0.70), and was 
more robust in identifying areas with light FTs. The accuracy using 
ALS-derived CHM products (the total accuracy was 91.6%, and the 
κ was 0.59) was significantly lower than that using ALS-derived CC, 
but was still higher than using aerial imagery. Moreover, we also 
developed and tested a method to recognize the intensity of FTs 
directly from pre- and post-treatment ALS point clouds. 
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1. Introduction 

Forests of the Sierra Nevada mountain range in California, USA, are extensive, but face 
increasing risk of wildfire, largely due to fire suppression, fuel build-up, and changes in 
climate (Stephens, Millar, and Collins 2010). In 2013 alone, the American Fire and the Rim 
Fire burned over 111 km2 of the Tahoe National Forest (located at the northern Sierra 
Nevada) and over 1,041 km2 of forest in the Stanislaus National Forest and Yosemite 
National Park (located at the southern Sierra Nevada), respectively. To reduce the loss 
from uncharacteristically large and high-severity wildfire, the United States Department 
of Agriculture (USDA) Forest Service (referred to as USFS hereafter) and other land 
management agencies conduct mechanical forest fuel treatments (FTs) on areas with 
high fire risk in the Sierra Nevada. Through forest thinning and mastication, these 
mechanical FT activities aim to modify wild-land fire behaviours and minimize negative 
impacts on the forest health and enhance forest fire suppression capabilities (Collins 
et al. 2010). However, there have been concerns over potential negative impacts of 
these fire mitigation treatments on the habitat of protected animals, particularly the 
California spotted owl (Strix occidentalis occidentalis) and the Pacific fisher (Martes 
pennant). 

Knowing the actual (as opposed to planned) extent of FTs (note that FTs referred to 
hereafter are mechanical FT activities) is critical for understanding how FTs affect the 
wildfire risk, wildlife, and forest health. The method for reporting completed FTs, which 
is still being used currently, involves using planned treatment boundaries and then 
updating them based on field observations. Planned FT boundaries are often geogra-
phically distinct from the actual extents due to operational constraints and the protec-
tion of resources (e.g. perennial streams, cultural resources, wildlife habitat). Thus, 
mapping the actual FT extent relies heavily on field observations, which are extremely 
labour-intensive and time-consuming processes. Moreover, currently, the intensity of FTs 
is commonly reported by FT types (e.g. low, crown, or selection thinning) (Agee and 
Skinner 2005) or harvesting methods (e.g. mastication, thinning, or cable thinning). 
Fundamentally, there remains a lack of accurate methods to quantitatively evaluate 
both the extent and the intensity of FTs. 

Remote sensing, which can expand both spatial and temporal scales of land-surface 
observations, provides an alternative way to detect forest structure changes due to FTs. 
Change detection, defined as the process of identifying differences in the state of an 
object or a phenomenon by observing it at different times (Singh 1989), is the most 
commonly used method to identify land-surface changes from multi-temporal passive 
remote-sensing data. Generally, change detection can be divided into three groups: 
image algebra, transformation, and classification methods (Lu et al. 2004; Singh 1989). 
Image algebra methods apply algebraic calculus (e.g. image differencing, regression, 
ratioing) on multi-temporal remotely sensed data at the pixel level to obtain a change 
image (Allen and Kupfer 2000; Lunetta et al. 2006; Patra, Ghosh, and Ghosh 2011; 
Prakash and Gupta 1998; Sohl 1999). Transformation methods use statistical procedures 
[e.g. principal component analysis (PCA), Kauth–Thomas (KT) transformation, Gramm– 
Schmidt (GS) transformation, and chi-square transformation] to minimize the redundant 
information in multi-temporal data and derive change images (Collins and Woodcock 
1994, 1996; Li and Yeh 1998; Qin et al. 2013; Ridd and Liu 1998; Seto et al. 2002). Both 
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algebra and transformation methods have to determine thresholds to differentiate the 
changed and unchanged areas (Guerra, Puig, and Chaume 1998; Yousif and Ban 2013). 
Classification methods identify change areas by comparing the image classification 
results from multi-temporal remote-sensing data (Desclée, Bogaert, and Defourny 
2006; Hame, Heiler, and San Miguel-Ayanz 1998; Hao et al. 2014; Li and Xu 2010; 
Walter 2004). However, few studies have mapped FT areas using passive remote-sensing 
data because of the limited ability of these sensors for penetrating the forest canopy 
(Weishampel et al. 2000). Because FTs typically remove smaller and subdominant trees 
to reduce fuel laddering and use mastication of shrubs to remove surface fuels, the 
changes in forest surface spectral characteristics may be too slight to be identified with 
passive remote sensing. 

Light detection and ranging (lidar), an active remote-sensing technique, uses a 
focused short wavelength laser pulse, which can penetrate the forest canopy more 
effectively. It has been proved that lidar can be used to accurately estimate forest 
parameters, such as tree height (Clark, Clark, and Roberts 2004; Hudak et al. 2002; 
Zimble et al. 2003), leaf area index (LAI) (Morsdorf et al. 2006; Riano et al. 2004; 
Richardson, Moskal, and Kim 2009; Zhao and Popescu 2009), and aboveground biomass 
(Bortolot and Wynne 2005; Popescu et al. 2011; Zhao, Popescu, and Nelson 2009). Clark, 
Clark, and Roberts (2004) used the airborne laser scanning (ALS) data to accurately 
estimate sub-canopy elevation and tree height in a tropical rainforest landscape. 
Korhonen et al. (2011) found that ALS discrete data can be used to obtain comparable 
estimations of forest vertical canopy cover (CC), angular canopy closure, and LAI. 
Andersen et al. (2005) estimated the canopy fuel parameters (e.g. crown fuel weight, 
crown bulk density, canopy height, and canopy base height) using regression analysis 
between ALS data-derived metrics and field measurements. Kramer et al. (2014) found 
that the forest percentage cover between 2 and 4 m derived from ALS data is a good 
indicator of ladder fuels, which are an important forest structural attribute contributing 
to wildfire hazard. Kane et al. (2013, 2014) evaluated the effects of wildfire on forest 
spatial structure at different height strata through the fusion of optical imagery and ALS 
data, and found that three forest spatial structures (i.e. canopy gap, clump-open, and 
open) were associated with the fire severity. 

Accurate estimations of these forest parameters from ALS data are highly desirable 
for understanding the composition and structure information of forests and therefore 
monitoring forest changes (Dubayah et al. 2010). For example, Yu et al. (2004, 2006) 
estimated tree growths and monitored harvested trees using canopy height models 
(CHMs) derived from multi-temporal ALS data in a conifer forest. However, to the best of 
our knowledge, few studies have been conducted on using multi-temporal ALS to detect 
FT extents. Moreover, research comparing the capability of ALS data and aerial images 
for detecting FT extents is still lacking. 

The main objective of this article is to study the capability of ALS data for identifying 
FTs using change detection routines that combine the pixel-wise thresholding (i.e. 
algebra or transformation methods) and the object-of-interest (OBI) segmentation (i.e. 
classification methods). As a comparison, the same change detection routine is also 
applied on multi-temporal high-resolution aerial imagery. Additionally, this study aims to 
investigate the possibility of quantitatively mapping the FT intensity directly from multi-
temporal ALS data. 
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2. Data 

2.1. Study area 

The Last Chance study site (39°07ʹN, 120°35ʹW) covers 92.1 km2 of the Tahoe National 
Forest, California, USA (Figure 1). It is on the southwest side of the Sierra Nevada crest. 
The elevation ranges from 228 m to 2189 m, and the slope ranges from 0° to close to 
90°. Over 90% of the study area is covered by vegetation, and the average CC is around 
67%. The study site is covered by mixed conifer forests, which are dominated by white 
fir (Abies concolor), ponderosa pine (Pinus ponderosa), incense cedar (Calocedrus decur-
rens), sugar pine (Pinus lambertiana), and Douglas fir (Pseudotsuga menziesii) (Su et al. 
2016). Within the mixed conifer stands, the major hardwoods are black oak (Quercus 
kelloggii) and canyon live oak (Quercus chrysolepis) (Su et al. 2016). The FTs detected in 
the study area were implemented between 2008 and 2012. The main FTs conducted in 
this area were mechanical forest thinning, which aimed at reducing the ladder fuels by 
removing small to mid-sized trees from low and intermediate canopy strata within the 
treatment areas. It is important to note that these treatments intended to leave larger 
overstorey trees intact and have post-treatment CC between 40% and 50% (Collins et al. 
2011). 

Figure 1. The Last Chance study area showing the distribution of field plots, terrain elevations, and 
the proposed forest fuel treatment (FT) footprints from the United States Forest Services (USFS). 
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2.2. Field measurements 

A total of 408 plots (12.62 m in radius and 500 m2 in area) were selected in the study site 
(Figure 1). The first plot was randomly chosen and the following plots were placed on 
500 m × 500 m grids. Within specific watersheds, the sampling was intensified to 
250 m × 250 m. When locating each plot by using a TrimbleTM GeoXH GPS in the 
field, the plot centre had to be farther than 12.62 m away from any landing or road 
surfaces. If the plot needed to be offset, we randomly chose one of the four cardinal 
directions and moved the plot 25 m in that direction. In each plot, the CC measurement 
and the treatment condition were collected from the field. The CC was measured by a 
sight tube on a 5 m × 5 m regular grid centred on the plot centre (total of 25 points per 
plot). These measurements were made twice, first in the summer of 2007 (prior to 
treatment implementation) and again in 2013 (after treatment implementation). It 
should be noted that 39 plots were eliminated from the analysis of this study because 
their treatment conditions were not collected in the field. Among the remaining 369 
plots, 46 plots were recognized as treated. Besides these plot measurements, polygons 
of the intended treatment areas (created by the USFS) were also used in this study to 
evaluate the FT detection accuracy (Figure 1). 

2.3. Small footprint ALS data 

The pretreatment ALS data used in this study were acquired in September 2007, and the 
post-treatment ALS data were acquired in November 2012 and August 2013 (the 2012 
flight was stopped by snow). An Optech GEMINI airborne laser terrain mapper (ALTM) 
from National Center of Airborne Laser Mapping at the University of Houston was used 
for both pre- and post-treatment ALS data acquisition. The sensor was operated at 
100 kHz with a scanning frequency of 40–60 Hz and a scan angle of 12–14° on either 
side of nadir. It was mounted on a twin-engine Cessna Skymaster, which flew at 
600–800 m above the ground. The average swath width of a single pass was around 
510 m with over 50% overlap between two adjacent flight lines, and the obtained point 
density was 9.6 points/m2 on average. The ALS footprint size is about 15–20 cm in 
diameter. To ensure the pre- and post-treatment ALS flights aligned together, more than 
800 ground checkpoints, positioned by ground GPS, were set to calibrate and assess the 
vertical and horizontal accuracies of the ALS flights. The obtained horizontal accuracy 
was around 10 cm and the vertical accuracy was from 5 to 35 cm. 

Pre- and post-treatment CHM and CC products were calculated from ALS point clouds 
to detect FTs. To derive the CHM products, digital surface model (DSM) and digital 
elevation model (DEM) products were interpolated from the first returns and ground 
returns, respectively. The ground returns were identified using the software Terrascan 
following the standard industrial procedure. The interpolation scheme used was the 
ordinary Kriging algorithm, because it has been proved to be more accurate than other 
interpolation methods (such as inverse distance weighted and spline) for interpolating 
DEM and DSM from ALS-derived elevation points (Clark, Clark, and Roberts 2004; Lloyd 
and Atkinson 2002; Guo et al. 2010). The CHM was calculated by the differences between 
the DSM and the DEM. Note that CHMs and the corresponding DEMs and DSMs were 
produced at two different resolutions (1 m and 20 m). The 1 m-resolution CHMs were 
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used to generate CC products (in 20 m resolution) using a CHM-based method that 
showed a good correspondence with field measurements (Lucas et al. 2006). Each of 
1 m × 1 m CHM cell with a value above a selected height threshold was coded as 1. A 
height threshold of 2 m was selected in this study to generate equivalent CC estimations 
from ALS data with the field measurements. The CC was calculated by the percentage of 
the number of coded CHM cells within each 20 m × 20 m grid. The accuracy of the ALS-
derived pre- and post-treatment CC products was evaluated by the pre- and post-
treatment field measurements, respectively. 

The obtained 20 m-resolution CHMs and CCs were then used in the following FT 
detection procedures. The differences between the pre- and post-treatment CHMs and 
CCs were used to represent changes in forest structure, respectively. Because mechanical 
forest thinning, the main FT type conducted in the study area, usually incorporated the 
removal of vegetation to reduce the forest fuel load, CHM and CC were expected to 
have a drop in treated areas compared with control areas. 

2.4. High-resolution aerial imagery 

Aerial imagery (1 m resolution) from the National Agriculture Imagery Program (NAIP) 
was used in this study for the purpose of comparing the capability of ALS data on FT 
detection with that of traditional passive remote-sensing data. The 2005 colour-infrared 
(CIR) imagery (composed of green band, red band, and near-infrared (NIR) band) was 
used to represent the pretreatment forest, and the 2012 CIR imagery was selected to 
represent the post-treatment forest. Both pre- and post-treatment NAIP data were 
resampled to a resolution of 20 m using the weighted mean value method to obtain 
comparable results with field measurements. The misalignment of digital number (DN) 
values for time-invariant objects is one of the major error sources for applying change 
detection techniques on multi-temporal aerial images (Canty and Nielsen 2008; Lu et al. 
2004; Singh 1989), and therefore radiometric normalization is one of the prerequisites 
for performing change detection algorithms on multi-temporal aerial images. To com-
prehensively compare the FT accuracy from aerial imagery with that from ALS data, two 
different techniques [normalized difference vegetation index (NDVI) differencing and 
standardized PCA] were applied to obtain change images from multi-temporal aerial 
imagery. 

2.4.1. Radiometric normalization 
We used an automatic iteratively re-weighted Multivariate Alteration Detection (IR-MAD) 
transformation method developed by Canty and Nielsen (2008) to determine the time-
invariant pixels. These time-invariant pixels were then used to normalize the pre- and 
post-treatment aerial images. The IR-MAD method can calculate the no-change prob-
ability of pixels by transforming multi-temporal images into a set of mutually orthogonal 
difference images (Nielsen 2007). Only the pixels with no-change probability above the 
selected threshold (0.95 is a commonly used threshold) were selected as time-invariant 
pixels. In this study, the pretreatment aerial image was used as the reference image in 
the radiometric normalization procedure, and the post-treatment aerial image was used 
as the target image that needed to be normalized. Overall, 1,071 time-invariant pixels 
were selected. Two-thirds of them (714 pixels) were used as training pixels to normalize 
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the aerial images, and the remaining 357 pixels were saved to be used as testing pixels. 
It should be noted that all of the procedures described next related to aerial images 
were processed based on the radiometrically normalized aerial images. 

2.4.2. NDVI differencing method 
NDVI is one of most robust and frequently used vegetation indices in monitoring 
vegetation status and estimating vegetation parameters (Anyamba and Tucker 2005; 
Carlson and Ripley 1997; Carreiras, Pereira, and Pereira 2006; Pettorelli et al. 2005), which 
is defined as follows: 

�ð DNÞRðDNÞNIRNDVI ¼ ; (1)ðDNÞNIR þ ðDNÞR 

where DNNIR and DNR are the DN values in the NIR band and the red band, respectively. 
In this study, the pre- and post-treatment NDVI were calculated from the normalized 
aerial images, and the change image was represented by the difference between the 
pre- and post-treatment NDVI. 

2.4.3. Standardized PCA method 
Standardized PCA, one type of PCA algorithm, requires all input parameters to be 
standardized before performing the PCA algorithm. Eastman and Filk (1993) and Mas 
(1999) found that it is better for statistical control than the non-standardized PCA 
method and can improve the accuracy of change detection. Thus, in this study, all the 
six bands from normalized pre- and post-treatment aerial images were first standardized 
by the following equation: 

ðDNÞ �xnormDNstd ¼ ; (2)
σ 

where DNstd is the standardized DN values, DNnorm is the original normalized DN values, 
and �x and σ are the mean and standard deviation of the corresponding band, respec-
tively. Then, both standardized pre- and post-treatment aerial images were used as the 
input for PCA transformations. In the standardized PCA routine outputs, the component 
having the poorest correlation with other components usually highlights the changed 
information, and therefore was selected as the change image. As shown in Table 1, in  
each row (or column), the R2 for the relationship between the component represented 
by that row (or column) and component 4 is the smallest when related to all other 
components. Therefore, component 4 was selected to be used as the change image for 
the standardized PCA method in the FT detection routine described next. 

Table 1. Correlations (represented by the R2) between six components obtained from the standar-
dized principal component analysis (PCA) for normalized pre- and post-treatment aerial images. 

Component 1 Component 2 Component 3 Component 4 Component 5 Component 6 

Component 1 1.00 0.85 0.93 0.20 0.34 0.36 
Component 2 0.85 1.00 0.98 0.07 0.64 0.62 
Component 3 0.93 0.98 1.00 0.14 0.55 0.56 
Component 4 0.20 0.07 0.14 1.00 0.07 0.27 
Component 5 0.34 0.64 0.55 0.07 1.00 0.97 
Component 6 0.36 0.62 0.56 0.27 0.97 1.00 
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3. FT detection methods 

3.1. FT detection strategy 

The same FT detection routine, combining pixel-wise thresholding and OBI segmenta-
tion, was applied to the above-mentioned change images (Figure 2). An unfiltered pixel-
wise FT result was first obtained by using a threshold to differentiate treated and 
untreated pixels in the change image. In this study, we assumed that the change 
parameter should be normally distributed, and the variation within the 95% confidence 
should be recognized as the background information. Thus, µ ± 1.96σ was used as the 
threshold to differentiate the treated and untreated pixels, where µ and σ are the mean 
and standard deviation of the change image, respectively. It should be noted that the 
threshold was only selected at one side (either µ + 1.96σ or µ–1.96σ) because FTs only 
remove trees and can only result in unidirectional movement of the selected change 
parameters. 

However, we anticipated that noise would still remain in the unfiltered pixel-wise 
results. To further remove the noise, the OBI segmentation method was used to filter the 
pixel-wise result considering the fact that FTs were usually conducted in spatially 
continuous areas (Zhang, Xiao, and Feng 2013). The OBI segmentation was conducted 
using the ‘Segment Only Feature Extraction Workflow’ module in Exelis Environment 
Visual Information (ENVI) software. The mean of a change image within each segmented 
polygon was then used to determine its treatment attribute. If its value exceeded the 
threshold (µ +/- 1.96σ) used in the pixel-wise thresholding procedure, this polygon was 
recognized as treated, and vice versa. The identified isolated treated polygons with an 

Figure 2. The procedure for forest treatment detection that combines a pixel-wise threshold control 
method and an object-of-interest segmentation method. Note that µ and σ are the mean and 
standard deviation of the change image, respectively. 
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area smaller than 800 m2 were further removed in the OBI segmentation workflow. 
Finally, the detected unfiltered FT pixels within the retained treated polygons were 
recognized as the final pixel-wise FT extents. 

3.2. FT intensity recognition 

Within the detected FT extents from the method producing the highest accuracy, we 
further developed and tested a method to identify the FT intensity directly from multi-
temporal ALS point clouds. We hypothesized that FT activities can change the vertical 
structure of forests and therefore influence the vertical distribution of ALS points. 
Therefore, we chose the vertical profile area change between the pre- and post-treat-
ment ALS points within a pixel to represent the FT intensity. The profile area change can 
be calculated from pre- and post-treatment raw ALS point clouds using the following 
procedure. (1) Normalize the height of raw ALS points using DEM. (2) Normalize the 
height of ALS points from Step 1 to 0–1 within each 20 m × 20 m cell. This aimed at 
reducing the influence of different vegetation heights on the FT intensity recognition 
result. (3) Sort all ALS points from Step 2 within each 20 m × 20 m pixel ascendingly by 
height, and draw a height percentile ranking profile for each pixel (Figure 3). (4) 
Compute the area composed by the percentile ranking profile and the x-axis (i.e. the 
axis labelled as Point Count in Figure 3) for each 20 m × 20 m cell. (5) Calculate the 
profile area change as the difference between the profile areas of post- and pretreat-
ment ALS point clouds (i.e. the highlighted grey zones in Figure 3). 

The profile area change can range from −100% to 100%, theoretically. When a pixel 
contains no trees in the pretreatment condition but the post-treatment condition has 
dense enough trees that prevent the ALS signal from penetrating the forest canopy, its 
profile area change should be −100%. Conversely, if a pixel contains dense trees in the 
pretreatment condition but all are cut down by FT activities, then the profile area 
change should be 100%. If there are no FT activities in a pixel, the corresponding profile 
area should be very similar and the profile area change should be close to 0%. Figure 3 
shows two typical examples (i.e. with and without FT) in the study area. As shown in 

Figure 3. Examples of pre- and post-treatment percentile ranking profiles (a) in a 20 m × 20 m pixel 
that has not been treated, and (b) in a 20 m × 20 m pixel that has been treated. 
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Figure 3(a), for a pixel without FT, the pre- and post-treatment profiles are almost 
identical, and the slight tree growth during the time span of the two ALS flights results 
in a small negative profile area change (−0.95% for Figure 3(a)). In a pixel with FT 
(Figure 3(b)), the number of post-treatment ALS points in upper height levels is sig-
nificantly increased and the number in lower height levels can be decreased. These 
changes can lead to a relatively large positive profile area change (11.94% for Figure 3 
(b)), and the higher the profile area change is, the higher the FT intensity should be. 

3.3. Accuracy assessment 

Polygons from the USFS that illustrate the intended FT boundary were used to compare 
with FT detection results of the different methods. The proportions of the detected FT 
areas within the USFS treatment footprints were calculated for all FT detection results. 
Additionally, plot measurements were also used to evaluate the FT detection accuracy 
by the total accuracy (τ) and kappa coefficient (κ), which can be denoted as 

a 
τ ¼ ; (3)

N 

po pe
κ ¼ ; (4)

1 pe 

where a is the number of plots agreeing with the FT detection result, and N is the total 
number of plots; po is the relative observed agreement, and pe is the hypothetical 
probability of chance agreement (Jensen 2005). It should be noted that a 20 m-radius 
buffer was made for each plot to compare with the FT detection result considering the 
influence of plot size and the mis-registration between the plots and ALS data and aerial 
images. If the plot was labelled as treated in the field, it would be recognized as true 
positive (correctly identified by FT detection results) when any part of its buffer over-
lapped with a treated pixel from FT detection results; otherwise, it would be recognized 
as false positive (incorrectly identified by FT detection results). If the plot was labelled as 
untreated in the field, it would be recognized as true negative (correctly rejected by FT 
detection results) when its buffer was isolated from the treated pixels from the FT 
detection results; otherwise, it would be recognized as false negative (incorrectly 
rejected by FT results). 

4. Results 

4.1. ALS-derived CC 

Both pre- and post-treatment CCs were positively correlated with the field measure-
ments (Figure 4). The coefficients of determination (R2) for the correlations between 
both pre- and post-treatment ALS-derived CC and field measurements are above 0.5. 
The R2 for the post-treatment correlation is slightly higher than that for the pretreatment 
correlation. The mean difference between the pretreatment ALS-derived CC and field 
measurements is 13.7%, and that for the post-treatment is 5.5%. The absolute value of 
coefficient of variation of the root mean square error (CV(RMSE)) for the pretreatment is 
slightly lower than that for the post-treatment. Figure 5 shows the change in CC 
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Figure 4. Comparison between the ALS-derived canopy cover (CC) and field-measured CC for both 
(a) pretreatment and (b) post-treatment. R2 represents the coefficient of determination, and CV 
(RMSE) represents the coefficient of variation of the root mean square error. 

Figure 5. Histogram of changes between pre- and post-treatment field-measured CC (post-treat-
ment CC minus pretreatment CC). µ represents the mean difference, and σ represents the standard 
deviation. 

observed from the field measurements. In general, the study area has a 3% increase in 
CC. However, the changed area is widely distributed from −60% to 80%. 

Both pre- and post-treatment ALS-derived CCs are systematically higher than the field 
measurements. More than 83% and 63% of the pre- and post-treatment ALS-derived CCs 
are higher than the pre- and post-treatment field measurements, respectively. This result 
is expected since the sight tube can recognize a finer canopy gap than the CHM method 
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Table 2. The comparison between the field-measured canopy cover (CC) and ALS-derived CC for 
plots that were identified as treated areas in the field but with an increase in field-measured CC. 

Field-measured CC (%) ALS-derived CC (%) 

Plot ID Pretreatment Post-treatment Post-Pre* Pretreatment Post-treatment Post-Pre* 

109 48 56 8 65.1 53.7 −11.4 
131 32 68 36 84.7 81.7 −3.0 
216 60 64 4 51.6 62.6 11.0 
224 48 56 8 51.0 30.5 −20.5 
233 52 60 8 78.1 61.2 −16.9 
242 56 60 4 68.3 55.0 −13.2 
266 24 32 8 62.2 54.6 −7.6 
281 28 32 4 33.7 29.9 −3.8 
283 20 36 16 45.3 40.67 −4.7 
322 36 48 12 72.6 54.8 −17.8 
337 40 52 12 71.3 57.9 −13.4 
354 52 64 12 57.0 53.7 −3.3 

*‘Post-Pre’ means using the post-treatment CC minus the pretreatment CC. 

used in this study. Besides, the ALS-derived CC may be more consistent than the field 
measurements. FTs usually involve the selective removal of trees, which can result in a 
decrease in CC. However, based on field measurements, there are 12 out of 46 treated 
plots with an increase in CC. Eleven of these plots showed a drop in CC from ALS data, 
and only one has an increase in CC (Table 2). This phenomenon might have resulted 
from the insufficient sampling points to measure the CC in the field. Studies have found 
that the CC obtained using a sight tube with 23 points had a 5.5% underestimation 
compared with the CC using 195 points (Korhonen et al. 2006), and might be insufficient 
to capture the variation in forest canopy (Fiala, Garman, and Gray 2006). 

4.2. Radiometric normalization for aerial images 

The built radiometric normalization equation for each band using the IR-MAD method is 
shown in Figure 6. The  R2 for the green and red bands are both higher than 0.9, and that for 
the NIR band is slightly lower. The accuracy assessment by the 357 time-invariant testing 
pixels is listed in Table 3. The  differences of means and variances between the normalized 
post- and pretreatment aerial images are 98% and 70% smaller than those between the 
original post- and pretreatment aerial images on average, respectively. Moreover, the 
p-values for the test of equal means and variances between the pretreatment aerial 
image and the normalized post-treatment aerial image are higher than the significance 
level of α = 0.05, which indicates that means and variances between the pretreatment aerial 
image and the normalized post-treatment aerial image have no significant differences. 

4.3. FT detection results 

The unfiltered pixel-wise FT detection results are shown in Figure 7. To quantitatively 
describe the noise rate, the detected FT areas outside the USFS FT footprints are temporally 
considered as ‘noise’, and the noise rate is defined as the ratio of ‘noise’ area to all detected 
FT area. As can be seen, the noise rate for the FT detection result using CC from ALS data is 
the lowest at 37%. The noise rates using CHM from ALS data and NDVI and standardized 
PCA methods from aerial imagery are slightly higher at 41%, 51%, and 41%, respectively. 
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Figure 6. Scatter plots for the 714 time-invariant training pixels obtained from IR-MAD normalization 
method and the corresponding simulated radiometric normalization equations for (a) green band, 
(b) red band, and (c) near infrared (NIR) band of aerial images. 

Table 3. Comparison of means and variances for the 357 time-invariant testing pixels of pretreat-
ment, post-treatment, and normalized post-treatment aerial images. Paired t-test and F-test were 
used to test equal means and variances between the pretreatment aerial image and the normalized 
post-treatment aerial image. 
Variables Green band Red band NIR band 

Pretreatment mean 130.6 121.3 158.9 
Post-treatment mean 87.6 69.4 123.9 
Normalized post-treatment mean 130.1 120.8 159.8 
p-value (paired t-test) for means 0.15 0.12 0.11 
Pretreatment variance 211.0 311.1 304.0 
Post-treatment variance 290.3 510.9 293.9 
Normalized post-treatment variance 182.9 288.6 339.1 
p-value (F-test) for variances 0.18 0.48 0.30 

After applying the OBI segmentation routine to filter the pixel-wise results, the noise rate for 
all FT detection results was found to have a significant decrease (Figure 8). Most of the noise 
from the ALS-derived CC method and the aerial image-derived NDVI method are concen-
trated in the northeastern and southwestern areas, and most of the noise from the 
standardized PCA method are concentrated in the southwestern areas. 

The accuracy of the FT detection method was further assessed by plot measurements. 
The FT detection using the ALS-derived CC showed the highest accuracy among all the 
results. The total accuracy for the FT detection result using ALS-derived CC is about an 
average of 4% higher than the other three methods, and the κ is about an average of 23% 
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Figure 7. Unfiltered pixel-wise FT detection results from the methods using (a) ALS-derived canopy 
height model (CHM), (b) ALS-derived CC, (c) aerial imagery-derived normalized difference vegetation 
index (NDVI), and (d) aerial imagery-derived standardized principle component analysis (PCA) 
change component. The location of the study site is presented in Figure 1. 

higher (Table 4). This is further supported by its producer accuracy, defined as the percen-
tage of correct predictions based on field measurements. Its producer accuracy for the 
treated areas is 74%, compared with 59%, 63%, and 70% for the CHM method, the NDVI 
method, and the standardized PCA method, respectively; its producer accuracy for the 
untreated areas is about 96%, compared with 96%, 94%, and 92% for the other three 
methods, respectively (Table 3). Moreover, it accurately identified the FT activity in the USFS 
FT footprints within the rectangles ‘A’, ‘B’, ‘C’, and  ‘D’ in Figure 8. All the other three methods 
detected close to nothing from these areas, except the CHM method within the rectangle ‘A’ 
(Figure 8(a)). The area within rectangle ‘E’ in Figure 8 was only recognized as treated by the 
method using the ALS-derived CC. This area may have true FT detection for the fact that 
there were plots recognized as treated in it. 

The CHM method from ALS data has slightly better accuracy than the NDVI method 
and the standardized PCA method using aerial images. Both total accuracy and κ using 
the ALS-derived CHM method are higher than the two methods using aerial images. The 
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Figure 8. Filtered pixel-wise FT detection results from the methods using (a) ALS-derived CHM, (b) ALS-
derived CC, (c) aerial imagery-derived NDVI, and (d) aerial imagery-derived standardized PCA change 
component. Areas in black rectangles marked with ‘A’–‘H’ are examples for different scenarios. Area ‘A’ 
can be identified by methods using lidar data but not methods using aerial imagery; area ‘B’ to area ‘D’ 
can only be identified by the lidar-derived CC method; area ‘E’, area  ‘H’, and  area  ‘I’ can be identified by at 
least one of the four FT detection methods used in this study, but are not within the USFS FT footprints; 
area ‘F’ and area ‘G’ are within the USFS FT footprints, but cannot be identified by any of the four FT 
detection methods. The location of the study site is presented in Figure 1. 

two methods using aerial images provided similar accuracies. Although the total accu-
racy for the result using the NDVI method is higher than that using the standardized PCA 
method and its κ is lower, their differences are extremely small, which are only 0.27% 
and 0.01, respectively (Table 4). 

4.4. FT intensity distribution 

As mentioned in Section 4.3, the ALS-derived CC produced the FT detection result with 
the highest accuracy. Therefore, we tested the proposed FT intensity recognition 
method based on the FT extents from ALS-derived CC. Figure 9 shows the distribution 
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Table 4. Forest treatment detection accuracy assessment by comparing with field plot 
measurements. 

CHM CC NDVI* Standardized PCA 

Treated Non-treated Treated 
Non-
treated Treated 

Non-
treated Treated 

Non-
treated 

Field data Treated 
Non-treated 

Total accuracy (%) 
Kappa coefficient 

27 
12 

19 
311 

91.6 
0.59 

34 
12 

12 
311 

93.5 
0.70 

29 
21 

17 
302 

89.7 
0.55 

32 
25 

14 
298 

89.4 
0.56 

*Normalized difference vegetation index. 

of profile area changes (pretreatment minus post-treatment) within the FT extents. All 
profile area changes within the FT extents are larger than 0% (Figure 9). The intensity of 
FTs conducted in the southern part of the study area is relatively larger, where the 
profile area change is over 20% in general. The profile area changes of FTs conducted in 
the middle and northern parts of the study area are concentrated in values from 5% to 
20%. Based on our plot measurements, the only two plots labelled as cable thinning in 

Figure 9. The FT intensity distribution of the study area indicated by the profile area change in each 
20 m × 20 m pixel (pretreatment profile area minus post-treatment profile area). Note that this 
result is based on the FT detection result using the lidar-derived CC method, which has the highest 
detection accuracy. The location of the study site is presented in Figure 1. 
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the field (indicating the removal of big trees) have profile area change values larger than 
15%, and the only two plots labelled as mastication (indicating the removal of surface 
fuels, e.g. bushes) have profile area change values between 3% and 5%. Regarding the 
other 42 treated plots, they were labelled as general forest thinning, and therefore we 
cannot perform a detailed evaluation on the FT intensity recognition result currently. 

5. Discussion 

In this study, we compared our FT detection results with other published works on using 
change detection techniques to monitor forest changes or map wildfires, and the 
accuracies of the FT detection results from all four methods in this study are comparable 
to these studies. For example, Desclée, Bogaert, and Defourny (2006) monitored the 
land-cover changes including forested areas in Eastern Belgium from Satellite Pour 
l’Observation de la Terre-High Resolution Visible (SPOT-HRV) imagery using a statistical 
OBI method and obtained an accuracy of over 90%; Kennedy, Cohen, and Schroeder 
(2007) detected forest disturbance dynamics in western Oregon, US, from Landsat TM 
imagery using a trajectory-based change detection method and obtained an overall 
accuracy of 90%; Schroeder et al. (2011) mapped wildfire and clear-cut harvest distur-
bances from Landsat TM imagery in central Saskatchewan and obtained a total accuracy 
of around 90%. In this study, the total accuracies of the results of all four methods can 
reach approximately 90%, which are similar to the values of these studies. 

Among the four FT detection methods in this study, the FT detection results from the 
ALS-derived CC method achieved the highest accuracy. A possible explanation for this 
may be related to the possible superiority of the ALS-derived CC method in identifying 
less-intensive FTs. Examining an example in areas within rectangle ‘B’ in Figure 8, nearly 
all removed trees in this area were short-statured trees (usually lower than 5 m in height) 
and were dispersed. We can clearly see that the removal of these small trees can still 
lead to a decrease in CC (Figure 10(a,b)), which may increase the possibility for the ALS-
derived CC method to effectively detect these FT areas. Moreover, this result is also in 
agreement with other previously published works. Stephens et al. (2009) found that the 
CC decreased significantly in forests with mechanical FTs, and Kramer et al. (2014) found 
that the lidar percentage cover between 2 and 4 m was strongly correlated to the forest 
ladder fuels and could be used to differentiate treated areas from untreated areas. To 
examine the influence of different height cut-offs on the FT detection results, we 
performed the same FT detection routine using the ALS-derived CC products at 5 m 
and 10 m cut-offs, respectively (Figure 11). The omission rate of the results using a 5 m 
cut-off was only increased by around 8% compared with the results using a 2 m cut-off. 
After the cut-off reached 5 m, the omission rate increased rapidly, and the omission rate 
of the results using a 10 m cut-off was 100%. 

The accuracy of FT detection from methods using aerial imagery (NDVI and standardized 
PCA) is generally lower than methods using ALS data. Both of these two methods poorly 
detected areas with less-severe FTs. As mentioned, due to the penetration limitation, the 
aerial images can reflect the forest surface spectral characteristics, but may not provide 
accurate forest structure information (Weishampel et al. 2000). This is particularly proble-
matic for detecting change in areas where overstorey trees are unaffected, which is 
common for most FTs (Agee and Skinner 2005). Moreover, both of these two methods 
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Figure 10. Comparison between the pre- and post-treatment three-dimensional point clouds within 
the rectangle ‘B’ ((a) and (b)) and the rectangle ‘H’ ((c) and (d)) in Figure 8. 

using aerial imagery have relatively high false FT detection rates, which are located at the 
northeast and southwest of the study area, respectively. The high false detection effects 
were commonly observed in previous studies using NDVI to map forest fires (Remmel and 
Perera 2001). One of the possible explanations is the light cloud contamination suppressed 
the NDVI (Remmel and Perera 2001). Another possible reason may be related to the tree 
mortality in those areas, which can result in a significant change in forest surface spectral 
reflectance (Jensen 2005; Liu, Kelly, and Gong 2006). Dead trees, especially those far away 
from the road (greater than 60 m), may not be removed from the forest. 

Among the so-called noise areas, there are some common areas that were detected by 
several methods, which are concentrated in the north of the study site (within the rectangle 
‘H’) and the south of the study site (within the rectangle ‘I’) (Figure 8). Although these areas 
are not included in the USFS FT footprints, this may not mean that these areas have not 
been treated. Figure 10(c,d) shows the comparison between the pre- and post-treatment 
point clouds in the sub-area within rectangle ‘H’. It can clearly be seen that there are trees 
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Figure 11. Comparison between FT detection results using the ALS-derived CC products computed 
at height breaks of (a) 5 m and (b) 10 m, respectively. 

that have been removed, suggesting that this area might have been treated. There are some 
areas within the USFS FT footprints but cannot be detected by any of the four methods, e.g. 
areas within rectangles ‘F’ and ‘G’ in Figure 8. It is possible that in these areas the intact 
overstorey trees, which were not removed in the FTs, obstructed our ability to detect the 
removal of small tress with both ALS data and aerial imagery. There are eight field plots 
within the USFS FT footprints under these two squares, and six of them were identified as 
non-treated in the field. Even for ALS data, the capability for mapping understorey shrubs in 
dense forest stands can be limited (Estornell et al. 2011; Hodgson et al. 2005; Jakubowksi 
et al. 2013). 

The proposed FT intensity recognition method shows the potential to detect the 
conducted FT types by comparing with a limited number of field measurements. As 
mentioned, Kramer et al. (2014) found that the lidar percentage cover between 2 and 
4 m was highly correlated with forest ladder fuels. However, the height breaks or strata 
may not be consistent for different areas or treatment types. The proposed method 
directly examines the change in the vertical distribution of ALS point clouds, and may be 
applicable in different areas. Unfortunately, owing to the lack of detailed ground truth 
data, we cannot map different profile area change values to different FT types in the 
current study. Moreover, different point cloud densities of different ALS flights may also 
influence the value of the profile area change. In this study, the pre- and post-treatment 
ALS data were acquired using the same protocol, and were accurately co-registered 
together using ground control points. This made the point cloud densities of the pre-
and post-treatment flights very close. However, in most cases, the ALS point density 
from different ALS flights may significantly differ from each other. Further study is still 
needed to identify how different ALS point densities influence the profile area changes. 

Recently, the cost of ALS data acquisition has decreased (Tilley et al. 2004) and is 
comparable to or even less expensive than the cost of large-scale field data collection 
and image data analysis (Hummel et al. 2011; Jakubowski, Guo, and Kelly 2013). For 
example, Hummel et al. (2011) compared the cost of using ALS data to examine forest 
structural attributes with the cost of using field measurements, and found that the cost 
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of ALS data (6.31 points/m2) acquisition and process was $2.63/ac (acre) (US dollar) 
compared with $2.46/ac (US dollar) to collect field measurements. Johansen, Phinn, and 
Witte (2010) evaluated the costs of using ALS data (3.98 point/m2), QuickBird imagery, 
and SPOT-5 imagery to study a stream network with a length of 26,000 km, and the total 
research costs using these three data sets were $3.8 M, $6.4 M, and $2.6 M (Australian 
dollar), respectively. Besides, considering the improvement of using ALS-derived CC 
products to detect FTs (an increase of around 23% in κ compared with the methods 
using aerial imagery) and the capability of ALS data on mapping the FT intensity, it may 
be a better choice for forest managers to use ALS data to manage FT activities. 

6. Conclusions 

This study developed a method combing pixel-wise thresholding and OBI segmentation 
to identify FT extents from ALS-derived CC and CHM. A systematic comparison using the 
same FT detection routine as using ALS data was made to evaluate the capability of ALS 
data and aerial imagery on detecting FT extents. The results demonstrate the ability of 
ALS data to penetrate forest canopy, making it a more effective tool than aerial imagery 
for capturing forest structure change following FTs. Both ALS-derived CHM and CC 
provided higher accuracy in their FT detection results. The ALS-derived CC, which can 
reflect the vertical structure information of a forest, produced an even better result than 
the ALS-derived CHM method. Its total detection accuracy is over 93%, and its κ is 0.7, 
both of which are the highest among all the methods. FT detection results using NDVI 
and standardized PCA from multi-temporal aerial imagery produced almost identical 
total accuracy and κ. Both methods showed relatively limited capacity to detect light FT 
areas, and had higher false detection rates (recognized untreated areas as treated areas) 
compared with the methods using ALS-derived parameters. 

Moreover, this study developed and tested a method to detect FT intensity directly 
from ALS point clouds. Based on a limited number of plot measurements, the 
methods show great potential to identify different FT types. However, we cannot 
make  a detailed evaluation on  the  result  due to  the  lack  of ground  truth in the  
current study. Besides, the change of ALS point densities of different ALS flights still 
needs to be further studied.  
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