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Abstract. A high spatial resolution QuickBird satellite image and a low spatial but high spectral resolution Landsat
Thermatic Mapper image were used to linearly regress fuel loads of 70 plots with size 30� 30m over the Daxinganling
region of north-east China. The results were compared with loads from field surveys and from regression estimations by

surveyed stand characteristics. The results show that fuel loads were related to stand characteristics, such as stand mean
diameter at breast height and stand height. As theQuickBird image using the shadow fractionmethod represented the stand
characteristics well, fuel loads were well estimated from the QuickBird image. QuickBird estimations outperformed those

from the lower spatial resolution ThermaticMapper image. Formany fuel classes, the QuickBird estimations were as good
as those regressed from surveyed stand characteristics, and thus similar to the surveyed fine and total dead fuel loads.
However, coarse fuel loads were not estimated as well using both satellite images owing to their intrinsic low association

with stand characteristics. Despite this limitation in estimating coarse fuels, very-high-resolution images such as
QuickBird are still valuable in estimating fine fuels, which are critically important in the practice of fire management.
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Introduction

Spatial information on forest fuel loads is crucial to forest fire
management. Ground surveying methods such as fixed-area
plots, planar intersect and photo loads (Sikkink andKeane 2008)
are the most accurate methods for estimating fuel loads, but are

quite labour-intensive for large-scale areas. Therefore, remote
sensing data have been widely used for fuel information
extraction, which can provide spatially continuous fuel infor-

mation. This is a promising method owing to low cost and better
information accessibility. However, most studies have focussed
on forest fuel classification (Oswald et al. 1999; Keane et al.

2000; Keane et al. 2001; Banninger et al. 2002; Giakoumakis
et al. 2002; Riaño and Chuvieco 2002; Miller et al. 2003;
Andersen et al. 2005; Arroyo et al. 2006; Jia et al. 2006; Mitri

and Gitas 2006; Lasaponara and Lanorte 2007; Mutlu et al.

2008), whereas relatively few studies have been conducted to
estimate fuel load (Scott et al. 2002; Brandis and Jacobson 2003;
Reich et al. 2004; Skowronski et al. 2007; Wang and Jin 2008).

Consequently, improving fuel load estimations from remote
sensing data remains a great challenge.

Current remote sensingmethods to estimate fuel loads can be

grouped into two categories: spectral reflectance-based (SRB)
and stand characteristics-based (SCB) methods. SRB methods
directly regress fuel loads from independent variables of image

band values and other auxiliary variables such as topography
(Reich et al. 2004; Wang and Jin 2008). Reich et al. (2004)

established fuel-loading linear prediction equations using Land-

sat Thermatic Mapper (TM) band data, slope, aspect and forest
classes as predictive variables for forest in the BlackHills, South
Dakota, USA. Wang and Jin (2008) established non-linear fuel-
loading prediction equations using TM data and topographic

variables by ridge regression for forest in Maoershan Mountain
inHeilongjiang Province, China. These are direct SRBmethods.

SCBmethods, however, retrieve stand characteristics first by

means of vegetation indices computed from remote sensing
data, then estimate fuel loads from these derived stand char-
acteristics empirically (Scott et al. 2002; Brandis and Jacobson

2003; Skowronski et al. 2007). Scott et al. (2002) first estimated
crown cover percentages from aerial photos, then estimated total
fuel loads by established linear prediction equations for three

vegetation types in the Jemez Mountains of northern New
Mexico, USA. Brandis and Jacobson (2003) used two distinct
SCBmethods to estimate fuel loads from TM data in New South
Wales, Australia. Their first method obtained vegetation types

from a classification map produced from TM data and then used
existing vegetation-specific fuel-load prediction equations by
Olson (1963) to estimate the fuel loads. Their second method

first estimated woody biomass weights from a vegetation index
composed of the pixel ratio of the near infrared band to the red
band, tree height obtained from a classified vegetation map, and

descriptive data from a field survey. Canopy biomass of leaf
and twigs was then deduced from the woody biomass weights
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via allometric relationships. Finally, the litter accumulation was
computed from relationships derived from the canopy biomass
of leaf and twigs and decomposition rate. Skowronski et al.

(2007) used LIDAR (Light Detection and Ranging) data to
estimate canopy height as the first step and then estimated total
fuel load from the canopy height through an existing

relationship.
The accuracy of a SRB method depends on empirical

correlations between fuel loads and derived spectral indices

from remote sensing data. The success of a SCB method relies
on the quality of two empirically derived relationships. One is
that of the fuel load to stand characteristics, which is determined
by the complexity of the stands studied (Keane et al. 2000). The

other is remotely sensed data to stand characteristics. The
robustness of all these empirical relationships, and hence
the accuracy of the methods, varies among indices deduced

from remote sensing images and fuel classes.
Spatial resolution of remote sensing images affects the

indices used for fuel-load estimation. Thirty metres was the

highest spatial resolution of remote sensing images previously
used for fuel load estimation except in LIDAR data. A pixel in
the image represents a 30� 30-m area in the field. This

approximately equals the size of the plot usually used for fuel-
load ground surveys. Therefore, indices can be deduced from
band values of only one pixel (hereafter referred to as a ‘one-
pixel index’). Consequently, the band values are amixture of the

reflectance of different ground objects, such as trees, shrubs,
grasses and others objects within the plot. As such, it is very
difficult to distinguish spatial information of stand structure

from these one-pixel indices.
The spatial resolution of very-high-resolution images

(VHRIs) is usually less than 5m, for example, 2.41 and

0.61m for QuickBird. Therefore, there are many pixels in the
image corresponding to a 30� 30-m plot in the field (,2500
pixels for a QuickBird panchromatic image), and indices
deduced from VHRIs for such plots are a combination of band

values of many pixels (hereafter referred to as multipixel
indices). They contain more spatial information of stand struc-
ture than one-pixel indices can provide. Stand characteristics,

such as stand mean diameter at breast height (DBH) and mean
tree height, can be accurately derived from these multipixel
indices (Kayitakire et al. 2006; Leboeuf et al. 2007). But VHRIs

have not been used for fuel load estimation.
One method of classifying forest fuels follows the USDA

Forest Service method (Deeming et al. 1972) where there are

litter, 1-h (1-h time-lag), 10-h, 100-h and 1000-h fuels (Deeming
et al. 1972), plus total dead fuel and total fuel. The branch and
twig diameters of 1-h fuel are less than 0.63 cm, 10-h fuel are
between 0.63 and 2.54 cm, 100-h fuel are between 2.55 and

7.62 cm, and 1000-h fuel are greater than 7.62 cm. Litter, 1-h and
10-h fuels are fire starters and are also called fine fuels in fire
danger rating systems. All these time-lagged fuels are collec-

tively named total dead fuel. Total fuel includes dead and live
fuels and is also very important in fire behaviour simulation,
especially for energy release computation. This fuel classifica-

tion system has been introduced and widely used in China
(Hu 2005; Hu and Wang 2005; Wang and Jin 2008).

Among these fuel classes, the total fuel load equals the
surface biomass and can be well estimated from one-pixel

indices (Zhao 2001; Zhao and Li 2001). However, other fuels,
such as fine fuels, are located below the canopy layer and their
loads are determined by two distinct factors: the annual produc-

tion and decomposition rates of the fuels (Brandis and Jacobson
2003). These two factors are closely associated with stand
characteristics (Liu et al. 1995; Hu 2005; Hu and Wang 2005,

Shan et al. 2005). Therefore, these fuel types are not directly
detectable from remote-sensed images. The total dead fuel of a
stand is also closely related to stand characteristics such asDBH,

mean tree height and closure (Liu et al. 1995; Scott et al. 2002;
Hu 2005; Hu andWang 2005, Shan et al. 2005;Mitsopoulos and
Dimitrakopoulos 2007). As fine fuel loads are more critical in
fire behaviour simulation, they need to be more accurately

estimated. Although it has been shown that fine fuel loads can
be retrieved from one-pixel indices by either the SRB or SCB
methods (Brandis and Jacobson 2003; Reich et al. 2004; Wang

and Jin 2008), high-resolution multipixel indices should per-
form even better because they can reflect more stand spatial
information, which has a strong relationship to fine fuel loads.

Consequently, it is reasonable to hypothesise that fuel-load
estimations, at least fine fuels, can be improved by using multi-
pixel indices fromVHRIs over low-resolution one-pixel indices.

To examine this hypothesis and to determine the extent of any
improvement, a VHRI QuickBird image was used to estimate
fuel load in a typical region of north-east China that is affected
by frequent severe forest fires. These estimates were compared

with those by field survey and by the higher spectral resolution
but lower spatial resolution TM image.

Materials and methodology

Study area

The study area is located at the Yanjiang Forest Farm, Tahe
Forestry Bureau, Daxinganling Region, Heilongjiang Province,
China (Fig. 1). Its central geographical coordinates are
53808025.2700N, 124818026.0000E. The area is in a cold temperate

continental monsoon climate zone, cold and dry in winter and
cool in spring and autumn. Summer is short. The annual mean
precipitation is 428mm, concentrated in the summer monsoon

wet season. The annual mean temperature is �2.88C with
accumulated temperature within growth season 1068.58C. The
zonal soil is brown forest soil. The elevation is 300–900m with

generally flat topography (Zhou 1991).
The original vegetation is larch (Larix gemelini)-dominated

boreal forest mixed with birch (Betula platyphylla) and poplar

(Poplus dividiana), occupying 49.67% of the area. Larix geme-
lini is a deciduous coniferous species that can grow on dry orwet
sites and is the most fire-resistant species in the region, with
increasing bark thickness after fires (Zhou 1991). Scots pine

(Pinus sylvestris var. mongolica), occupying 4.83% of the area,
is an evergreen conifer that grows high on dry slopes and is more
combustible than larch owing to dry site conditions. Birch and

poplar, occupying 44.99% of the area, occur in burned areas as
pioneer species after a severe burn or as accompanying species
in other stands. Fire history studies suggest that fire plays a

major role in sustaining the larch-dominated ecosystem in the
region (Zhou 1991). On average, 43 fires burned annually, with
an average burned area of 160 000 ha from 1965 through 2005 in
the whole Daxinganling Region of 8 460 000 ha (Zhang 2008).
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Current forests have either regenerated naturally following
severe fire or have become secondary forests that followed

heavy clear-cutting. Thus the stands are mainly mixed forest
with rather low heterogeneity. Fire prevention and suppression
activities have significantly reduced fire occurrence and have

prolonged the fire return intervals in the region (Jin 2002).

QuickBird and TM images

A geometrically corrected and atmospherically rectified
QuickBird image taken at 1036 : 31 hours, 11 April 2006, cov-

ering the region using 2.4-m resolution, four bands data and
0.61-m resolution panchromatic data was analysed. The image’s
solar azimuth and elevation angles are 162.68 and 58.48. The
QuickBird image covered an area of 4600 ha. The data were not
orthorectified as the study area is generally flat.

A TM image with six bands (bands 1–5 and band 7) and a

resolution of 30m of the same area was taken at 1436 : 39 hours,
5 July 2006. The image was also geometrically corrected and
atmospherically and radiometrically rectified. The image’s solar
azimuth and elevation angles are 1478 and 578. The atmospheric

corrections were made by ENVI based on the MODTRAN4þ
atmospheric radiative transfer model. The TM image was

reprojected from Transverse Mercator to Universal Transverse
Mercator projection, and the QuickBird image projection was

done with Imagine 8.6 (Leica Geosystems GIS and Mapping
LLC 2003, Leica Geosystems AG, Heerbrugg, Switzerland).

Seasonality does affect fuel estimations from remote sensing

data. The QuickBird and TM images used here were acquired
2 months apart. However, when using QuickBird images, April
is a better month for shadow fraction (SF, see definition below)

estimation than the tree-growing summer months. Summer is a
better season for estimating TM indices, which have a better
relationship with vegetation growth. Therefore, we expected

optimal fuel load estimations from these two images and any
discrepancy due to the different acquisition times was expected
to be quite limited.

Field survey

In the summer of 2006, 75 forest plots of 30� 30m each were
set and surveyed. These plots were positioned by a GPS set with
15-m accuracy. To accurately geoposition these plots on the
QuickBird image, only plots with measurable distances and

directions to identifiable landmarks (such as road intersections)
on the QuickBird image were selected. Reich et al. (2004) used

Study area

Heilongjiang
Province

P. R. China

(53°05�05.21�N, 124°12�16.72�E)

N

(53°05�07.15�N, 124°09�58.40�E)

(53°10�11.02�N, 124°11�10.00�E) (53°10�08.49�N, 124°19�20.05�E)

(53°08�22.18�N, 124°19�17.69�E)

(53°06
�13.53

�N
, 124°10

�00.25
�E

)
Fig. 1. Location of study area (the map of the study area is from the panchromatic QuickBird image).
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151 plots for a study area of more than 80 000 ha and Scott et al.
(2002) used 116 plots for an area of more than 650 000 ha. Thus,
75 plots were considered sufficiently representative for our

relatively small study area. This area posses little vegetation
variety. The stands were mainly secondary forests grown after
clear-cutting with ages ranging from 40 to 75 years.

The DBH and heights of trees with DBH greater than 5 cm
in each plot were tallied by species. A transect interception
method (Brown, et al. 1982) with transect length of 60m was

used for measuring all time-lagged fuel loads. This method
allowed quick measurement of fuel loads with sufficient
accuracy. Four quadrats of 0.5� 0.5m in each plot were
randomly set and all litter in the quadrats was weighed on site.

Samples were taken back to the laboratory and oven-dried at
1058C for 8 h, then weighed again. The fuel moisture contents of
the litter were computed and the mean of the litter masses from

the four quadrats was taken as the litter load of the plot and
prorated to per hectare. Following Feng et al. (1999), grass and
shrub loads were measured by the subplot method with sizes of

1� 1 and 2� 2m. Similarly, living tree loads were computed
from allometric equations (Feng et al. 1999). All the above dead
fuels were summed up as total dead fuel and total fuel load of

the plot.

Fuel loads estimations from stand characteristics

Five of the 75 surveyed plots, which consisted of seed orchard or

had been recently thinned, were excluded from the dataset
because the loads in these plots were significantly altered by
human activity. As all plots were in the secondary forest area

grown after severe clear-cutting, differences in species com-
position and structure among the plots were not as great as those
in the original forest. Thus, it was assumed that relationships
between fuel loads and stand characteristics of plots did not vary

with dominant species over these plots.We did, in fact, consider
dominant species in the fuel load regression. However, the result
(not shown) indicated little effect from species variation. The

data were pooled and only one set of fuel load estimation
equations was established using the surveyed fuel loads and
stand features of the remaining 70 plots by multiple regression.

The commonly used equation, hereafter referred to as SC, is:

L ¼ b0 þ b1H þ b2D ð1Þ

where L is the fuel load (Mg ha�1),D the standmean DBH (cm),
H the standmean tree height (m), and b0, b1 and b2 are regression
coefficients. This equation was also used in Liu et al. (1995) and
Hu (2005) for the same region.

To test the robustness of the regression, errors were
computed 70-fold by cross-validation. Each time, 50 plots were
randomly chosen for regression training, and the regression

model obtained was subsequently used for estimation and
validation on the remaining 20 plots. Then the same procedure
was repeated 70 times. Root mean square errors (RMSE) were

computed for validation as:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

n

i¼1

ðYi � yiÞ2
 !

=n

v

u

u

t

where Yi and yi denote the estimated and measured values, and
n¼ 20 is the number of validation plots. Twenty plots were used
instead of one for each validation to provide enough samples to

compute one RMSE. This cross-validation enabled further
multiple comparisons and prevented a random noise signal,
especially from those measurements weakly or moderately

related to fuel loads. If most of the 70 validations have similar
relationships, then the relationship is robust and unique. This
cross-validationmethodwas applied to all load estimations from

stand characteristics and images.

Fuel load estimations from the TM image

For our study, 25 compound indices (Zhang et al. 2003) were

computed for each plot using band data from the TM image.
They are B1, B2, B3, B4, B5, B7, B1�B2, B2/B1, B2/(B2þB1),
(B2�B1)/(B2þB1), (B2/B1)

0.5, (0.5þ (B2�B1)/(B2þB1))
0.5,

B4�B3, B4/(B4þB3), B3/
P

, B4/B3, (B4/B3)
0.5, (B4�B3)/

(B4þB3), (0.5þ (B4�B3))/B4þB3))
0.5, (B4�B3)/(B4þ

B3)
0.5, B7/B3, B4B3/B7, (B5þB7�B2)/(B5þB7þB2), (B4þ

B5�B2)/(B4þB5þB2), B4B5/B7, where Bi stands for the value

of band i, and
P

represents the sum of all band values. Esti-
mation of stand characteristics and biomass from remote sensing
data using these indices is similar to our study. The loads of

various fuel classes were subsequently estimated using both
SRB and SCB methods. This SRB method, hereafter referred to
as TM1, estimated the loads directly from the indices using

multiple linear equations established by conducting forward
stepwise regressions over the surveyed loads and the 25 indices.
For the SCB method, stand mean DBH and mean tree height

were estimated first from the TM indices using a multiple linear
equation established by conducting forward stepwise regres-
sions of the surveyed stand mean DBH or mean tree height with
the 25 indices. Then Eqn 1 was used to compute the respective

loads using stand characteristics deduced from TM indices.
Hereafter, we refer to this method as TM2.

Fuel load estimations from QuickBird imagery

Pixel values of the panchromatic data over each plot were
extracted with Imagine 8.6 from the QuickBird image. Taking
advantage of the high spatial resolution, stand characteristics

such as stand mean DBH and tree height were then estimated
from these panchromatic data by a SF method (Leboeuf et al.
2007). Tree shadow (TS) is caused by tree crowns in images.
The assumption is that the taller and wider the tree trunk, the

larger the tree crown, and hence the higher fraction of TS in a
plot. In the panchromatic image, when the darkness of a pixel is
higher than a given value called the TS threshold, it is regarded

as TS. The area fraction of TS in a plot is called the shadow
fraction. Two parameters, scale and TS threshold, should be
determined first before applying the method. The scale for SF is

the computational unit size, i.e. 30� 30m, which facilitates
matching the plot sizes in the field survey to the TM image pixel.
The TS thresholds for defining individual TSs were set to the
values when the maximum correlation coefficients of SF with

surveyed mean DBH and tree height occurred. Presumably the
satellite-viewing zenith and azimuth and solar zenith and azi-
muth angles vary with season and time of day and thus affect SF.

However, these variation effects can be eliminated by
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normalising SF to common geometry (Leboeuf et al. 2007). As
the area covered by the QuickBird image is only 4600 ha, these
effects were assumed to be quite limited, so SF was not nor-

malised here.
Fuel loads were estimated by two methods. For the SRB

method (QB1 hereafter), the loads were estimated directly from

SF using linear regression equations. For the SCBmethod, stand
mean DBH and H were first estimated by linear equations
established between field-surveyed DBH, H and SF computed

from the TS threshold determined above. Then the loads were
computed from the above-derived stand mean DBH and tree
height using Eqn 1 (QB2 hereafter).

Multiple comparisons (Chen et al. 1989) were conducted to

determine if statistical differences existed between fuel load
estimation errors from the aforementioned methods using the
70-fold cross-validation results.

Results

Fuel load estimations from stand characteristics

The statistics of stand characteristics, DBH and tree height, and
loads of different fuel classes from the surveyed 70 plots are

listed in Table 1. Basically, the variations of the stand char-
acteristics are not very large compared with their mean values,
but the standard deviations of each fuel load among all the plots

are comparable with their mean values. However, the variation
of the 10-h fuel is not as large as its mean value. This smaller
load variation is reflected in the total dead fuel due to the larger

contribution from the 10-h fuel.
As shown in Table 2, the regression relationships between

field-measured stand characteristics and loads of each fuel are
significant by the 70 cross-validations for litter, 1-h, 10-h, total

dead fuel and total fuel. The coefficients of determination (R2)
exceed the significant level at 0.0001 for all fine fuels except
100-h and 1000-h fuels. Therefore, we excluded these two fuel

classes from the SCB method analysis, which is presented
below. The averaged RMSEs of fuel load estimations from
stand characteristics of 70 validations are shown in the top row

in Table 3. The errors increase as fuel lag-times increase. We
discuss the remaining contents of Tables 2 and 3 when other
estimation methods are discussed.

Fuel load estimations from the TM image

The regressed fuel load equations from TM1 are given in the
middle of Table 2. The weak to moderate relationships between
fuel loads and the one-pixel indices computed from the TM

image suggest that the loads can barely be estimated by the
SRB method. We will contrast this result with those from the
TM2 method.

Stand mean DBH and tree height were determined from the
TM indices, as shown in Table 4, with moderate R2 and RMSEs
at 1.47 cm and 2.23m, when cross-validated. Although the

RMSEs are much lower than the surveyed mean or median
stand characteristics in Table 1, the magnitudes of the errors are
still comparable with the surveyed standard deviation, indicat-
ing TM is having difficulty differentiating DBH and tree height

from plot to plot. Although the significance analysis from the
70-plot cross-validation suggested that the correlations were not
random, the small R2 for TM in Table 4 indicates that fuel load

Table 1. Statistics of stand characteristics and fuel loads of 70 plots surveyed

DBH

(cm)

Mean tree

height (m)

Litter

load

1-h fuel load

(Mg ha�1)

10-h fuel load

(Mg ha�1)

100-h fuel load

(Mg ha�1)

1000-h fuel

load (Mgha�1)

Total dead fuel

load (Mgha�1)

Total fuel load

(Mgha�1)

Mean 14.9 11.8 1.852 5.081 6.719 2.583 2.411 18.646 69.101

Median 15.0 11.9 1.937 4.895 6.673 1.410 2.049 19.215 64.921

Standard

deviation

2.4 1.6 0.959 2.014 2.152 2.777 2.178 6.369 36.052

Minimum 10.4 8.3 0.156 1.290 2.667 0 0 8.085 17.244

Maximum 20.1 16.2 4.794 10.240 12.667 10.585 7.677 32.332 155.441

Table 2. Fuel load regression equations and their corresponding

coefficients of determination (R2) for each time-lag fuel load estimated

by SC, TM1 and QB1

Independent predictive variables are stand characteristics of standmean tree

height (H), stand mean DBH (D), nth index from the compound TM indices,

optimal shadow fractions computed for H and DBH (SF255 and SF212), Bi,

the value of band i, where i is the ith index computed from TM band values

(25 indices used in total). Other variables are: L, fuel load; Ltd, load of total

dead fuel; Ltotal, load of total fuel. The asterisks for R2: *, significant at

0.05 level; **, significant at 0.01 level; and ****, significant at,0.0001 level

Method Estimation equations R2

SC Llitter¼�2.188þ 0.372H� 0.128D 0.57****

L1-h¼�2.424þ 0.267Hþ 0.298D 0.28****

L10-h¼�1.392þ 0.295Hþ 0.314D 0.29****

L100-h¼�2.787þ 0.081Hþ 0.353D 0.07

L1000-h¼�1.218þ 0.089Hþ 0.194D 0.05

Ltd¼�1.001þ 1.106Hþ 1.031D 0.42****

Ltotal¼�72.672þ 5.978Hþ 4.463D 0.32****

TM1 Llitter¼�4.275þ 29.268B16þ 1.543B18 0.156**

L1-h¼ 5.646� 0.191B24 0.071**

L10-h¼ 7.23� 0.173B24 0.055*

L100-h¼�1.105þ 0.074B17 0.105**

L1000-h¼ 0.561þ 0.007B1� 23.626B16 0.124**

Ltd¼ 2.140þ 0.012B3þ 3.783B19 0.173**

Ltotal¼ 38.92þ 0.155B16� 0.049B19 0.087*

QB1 Llitter¼ 0.002þ 5.284SF255þ 2.3675SF212 0.449****

L1-h¼ 2.209þ 16.923SF255þ 6.245SF212 0.270**

L10-h¼ 3.359þ 11.192SF255þ 1.090SF212 0.265**

L100-h¼ 2.513� 9.987SF255þ 20.534SF212 0.033

L1000-h¼ 1.197� 0.310SF255þ 9.134SF212 0.0697

Ltd¼ 9.281þ 13.102SF255þ 39.372SF212 0.354****

Ltotal¼ 46.116� 151.781SF255þ 465.875SF212 0.233**
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estimations from these TM-deduced stand characteristics would
be imperfect.

The load errors for all fuel classes estimated by either TM1 or
TM2 are shown in Table 3. The errors from TM1 are signifi-
cantly higher than those estimated from surveyed SC. Although
these errors are reduced somewhat by TM2, it is not statistically

better than TM1. Note that we should treat the errors by SC as
the smallest errors TM2 could reach if stand characteristics were
perfectly estimated. TM2 errors are still significantly higher

than SC, with the largest for litter load, which is 40% more.

Fuel load estimations from QuickBird imagery

To estimate the fuel load from QuickBird (QB) imagery, we

need to determine the TS threshold by optimising the coefficient
of determination (R2) with the threshold pixel value from the
training data. Fig. 2 shows the R2 of stand mean DBH and tree

height with SFs computed at different TS thresholds of the QB
panchromatic image. The optimal TS threshold formeanDBH is
212, with 0.699 for the maximum R2 between mean DBH and
shadow fraction. The optimal threshold for mean tree height is

255 with R2 at 0.762. The regression equations of the two stand
variables by SFs at these thresholds are listed in Table 4. These
two regressed relationships correlate well with the training data.

The RMSEs are 0.92 cm and 1.21m for standmeanDBH and for
stand mean tree height, and are considerably smaller than those
from TM and the standard deviation from the survey.

Using these optimal SF212 and SF215, the regressed fuel load
equations from QB1 are given in the final part of Table 2.
Similarly to SC, loads of litter, 1-h, 10-h and total dead fuels
were better correlated with SF than those of 100-h and 1000-h

fuels. The fine fuel estimates ofQB1 are clearly superior to those
of TM1. Applying SF values from the QB image on validating
plots to the regressed equations of stand characteristics and SC

in Tables 4 and 2 respectively, loads of all but coarse fuels can be
estimated by method QB2.

The cross-validated RMSEs of QB1 and QB2 are confined to
within 2.0Mg ha�1 for each fine fuel, less than 6 Mg ha�1 for
total dead fuel and less than 35Mg ha�1 for total fuel, as shown

in Table 3. However, for fuel classes with loads that can be
estimated from the QB image, the results from these two
methods are not significantly different. They are not even

different from those of SC, except for litter by QB1. However,
they are significantly different from the TMmethods. The result
of this multiple comparison suggests that the QB imagery

Table 3. Root mean square errors (Mg ha21) of fuel load cross-validation by all regression methods

Estimation errors in the same column with the same superscript indicate that they are not statistically different from each other at the 0.05 level. 100- and

1000-h fuel loads are not given owing to the weak relationship between stands characteristics and surveyed fuel loads

Method Litter 1-h fuel 10-h fuel 100-h fuel 1000-h fuel Total dead fuel Total fuel

SC 0.686a 1.831a 1.946a – – 5.022a 32.860a

TM1 1.006b 2.215b 2.535b 2.801 2.286 6.957b 38.998b

TM2 0.962b 2.108b 2.281c – – 6.452b 37.111bc

QB1 0.766cd 1.822a 1.958a – – 5.383a 34.570ac

QB2 0.756ad 1.805a 1.943a – – 5.317a 34.483ac

Table 4. Stand characteristics regression equations and their corresponding coefficients of determination (R2)

by compound indices from TM and by shadow fraction (SF) from QuickBird images

The subscripts of SF are the chosen threshold pixel values. All relationships are significant at: ****, ,0.0001 level

Image Equations R2

TM image D¼ 8.526þ 1.396B18� 7.762B20 0.282****

H¼ 9.987þ 1.894B18� 11.597B20� 0.005B21 0.341****

QuickBird image D¼ 8.91þ 20.36SF212 0.699****

H¼ 8.48þ 22.39SF255 0.762****
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Fig. 2. Coefficients of determination between stand characteristics and

shadow fractions as a function of pixel value thresholds in the panchromatic

QuickBird image. Themarkers indicate optimal thresholds 212 and 255with

their corresponding coefficient of determination at 0.696 and 0.762, for

mean diameter at breast height (DBH) and mean height.
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derivation is not comparable with the directly surveyed DBH
and tree height in estimating fuel loads. Compared with the TM
image, the RMSEs from QB were reduced by 27.2, 20.5, 18.2

and 17.6% for litter, 1-h, 10-h and total dead fuels. This shows
that using the QB image improved the fine fuel load as well as
the total dead fuel estimations quite substantially compared with

those from the TM image. However, this improvement was not
as evident with the increase of fuel size. When it comes to total
fuel, using the QB image improved the fuel load estimation very

little compared with TM.

Discussion and conclusion

To better estimate various types of fuel loads, regression
methods using stand characteristics, TM and QB imagery were

cross-validated against surveyed field results over 70 selected
forest plots. As expected, loads of litter, 1-h fuel, 10-h fuel and
total dead fuel were better estimated with smaller RMSEs using

the VHRI QB image than using the TM image. However, using
the QB image did not improve fuel load estimation for total fuel
and showed very limited capability for estimating 100-h and
1000-h fuels.

One of the advantages of using VHRIs over TM images is
texture analysis. Texture analysis on higher-resolution images
such as QB can extract more information, so that the accuracy of

the stand feature estimates can be improved. Kayitakire et al.

(2006) showed similarly that stand structure variables could be
well estimated from a texture analysis of an IKONOS-2 image.

The errors of mean DBH and tree height estimates presented
here are smaller than those in Kayitakire et al. (2006). We
suspect this smaller error is due to the younger stands in our
study area, which have smaller DBHs as well as tree height. It is

consequently a relatively simple structure to resolve from the
imagery.

Two factors contribute to the reason why QB1 outperformed

TM1 and TM2. The first factor is the use of high-resolution
multiband and panchromatic data, which made the SF method
possible. Shadow fraction is usually associated with canopy

closure, and thus highly correlated with mean DBH and tree
height, especially for young to middle-aged stands. Thus the
multipixel index from the QB image reflects better stand

structure than the one-pixel TM index. Reinforced with the
second factor that the fuel loads are closely associated with the
stand characteristics, it is not surprising to see QB1 perform
better than TM1 and even TM2 as the QB method takes

individual stand characteristics into account. However, the
unexpected result is that QB2 offers no advantage over QB1.
In many cases, as with QB1, the QB2 regression yielded results

approaching those of SC because their stand characteristics were
accurately projected.

Our QB2 results indicate that the major sources of error were

from the empirical relationships between stand characteristics
and fuel loads. Apparently, there is still room for improvement,
particularly for the relationship between coarse fuels and stand
characteristics. The 100-h and 1000-h fuels were not closely

related with the stand characteristics because these fuels are
trees and branches felled mainly by strong wind. Thus, they
possess very weak relationships with the stand characteristics

and consequently reveal limited load estimation skill by either

TM or QB images. As these types of fallen dead branches are
primarily caused by strong wind, past history of meteorological
conditions should be included as one of the regression para-

meters in future studies. Despite this limitation, QB imagery is
still of great value in better estimating fine fuels. For fire
management, fine fuel loads are critically important in rating

fire danger and predicting surface fire behaviour.
Many stand characteristics are related to fuel load but are not

accounted for in this study. Vegetation type is one such charac-

teristic. Including vegetation type in the fuel loads regression is
supposed to improve estimation, though this is not always the
case (Skowronski et al. 2007). Determining vegetation classifi-
cation from remote sensing data introduces additional errors.

We have tried using vegetation-specific regressions to improve
fuel load estimates fromTM2 andQB2. The results showed only
marginal improvement. This is because all our plots are second-

ary forest grown after several clear-cuttings and hence the
heterogeneities among plots were not significant.

Another stand characteristic issue is the exclusion of stand

age. In fact, stand age is one of the characteristics that affect the
accumulation of fuels (Brandis and Jacobson 2003). To some
extent it is evenmore important thanmean DBH, tree height and

canopy closure (Liu et al. 1995). Unfortunately, there is cur-
rently no method to obtain age information accurately from
remote sensing data. All these factors potentially impair our
ability to use satellite images for fuel load estimation and need

further consideration.
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