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ABSTRACT

A one-dimensional, finite difference model of saturated subsurface flow within a hillslope
was developed. The model uses rainfall, elevation data, a hydraulic conductivity, and a
storage coefficient to predict the saturated thickness in time and space. The model was
tested against piezometric data collected in a swale located in the headwaters of the North
Fork Caspar Creek Experimental Watershed near Fort Bragg, California. The model was

limited in its ability to reproduce historical piezometric responses.
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fluid density

dimensionless bedrock elevation

spatial step size [m]

hydraulic head [m]

initial hydraulic head values [m]
dimensionless hydraulic head

spatial node subscript

temporal node subscript

mass flux of a fluid

hydraulic conductivity [m d™]

horizontal distance from the piping site to the top of the swale [m]
spatial distance from datum to bedrock [m]
accretion [in d™]

point in space

darcy velocity [m d™]

dimensionless accretion

root mean squared error

storage coefficient

specific mass storativity related to potential changes

time [d]

total number of spatial nodes

dimensionless time

approximation of H at the i, j node

spatial distance along the horizontal profile line [m]
dimensionless spatial distance along the horizontal profile line
horizontal spatial distance [m]

vertical spatial distance [m]
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RATIONALE FOR PROJECT

From hydrologic year 1990 to the present, the U.S. Forest Service has monitored the
subsurface hillslope flow of the E-road swale. The swale is located in the Caspar Creek
watershed, Fort Bragg, CA. Monitoring has consisted of piezometric data from well sites
located throughout the swale with samples being taken on average of every fifteen minutes.
In hydrologic year 90 a logging road was built across the middle section of the hillslope
followed by a total clear cut of the area during the following year. The development of such
a road has resulted in a large build up of subsurface waters behind the road. The road
behaves as a dam and road and slope stability are a major concern. Landslides occur during
rainstorms when soil saturation reduces soil shear strength. Pore water pressure is the only
stability variable that changes over a short time scale. Theory predicts that a slope can move
from stability to instability as saturated thickness increases due to rainfall percolation.
Previous studies of subsurface hillslope flow indicate that very little is understood about the
subject. Further studies in this area will only help to improve existing techniques in the

design and maintenance of mountain roads.

OBJECTIVE

The objective of this project is to better understand the hydrologic controls which govern the
behavior of subsurface waters. A model will be developed which describes the groundwater
system at E-road. An investigation on results of the model will be used to explain the

mechanisms behind the historical observed behavior of the subsurface aquifer.



METHODOLOGY

The governing equation which will be used to model the (unconfined) subsurface flow is the
Boussinesq equation, a nonlinear parabolic differential equation. This equation
oversimplifies the E-road conditions, however, it is the foundation equation which can later
be modified to better describe the system. The hydrologic system will be viewed as one
dimensional and homogenous throughout the aquifer (hydraulic conductivity = constant). A
FORTRAN-77 program will be written which utilizes a finite difference approximation of
the governing equation and solves for a numeric solution using a predictor-corrector method.
Advantages to the predictor-corrector method are its ability to give solutions of second order

correctness while being algebraically explicit.

A completed model will then be tested with a simple hypothetical aquifer. The simulated
results are then verified with a one-dimensional analytical solution. Once verification is
complete the model will be applied to E-road field conditions. The model will be used to
generate, with historical rainfall data, numerical simulations which can then be compared to

observed piezometric data.

LITERATURE REVIEW

Field investigations of subsurface hillslope flow has shown that piezometric response is
sensitive to rainfall, soil porosity, and topography. Swanston (1967) showed that there is a
close relationship between rainfall and pore-water pressure development. As rainfall
increases, pore-water pressure increases, rapidly at first, but at a decreasing rate as rainfall
continues, reaching an upper limit determined by the thickness of the soil profile. Additional
studies of shallow-soiled hillslopes during the wet seasons showed that there was little lag
time between rainfall and piezometric response (Swanston, 1967; Haneberg and Gokce,
1992). Furthermore, Hanberg and Gokce (1992) showed that the rate of piezometric rise was

dependent on available porosity and rainfall rate.



Based on field evidence, Whipkey (1965), Hewlett and Nutter (1970), and Weyman (1970)
suggested that the presence of inhomogeneities in the soil may be a crucial factor in the
generation of subsurface stormflow. These inhomogeneities may either be permeability
breaks associated with soil horizons that allow shallow saturated conditions to build up. Harr
(1977), Mosley (1979), Beven, (1980) suggest inhomogeneities may be the result of
structural and biotic macropores in the soil that allow for very fast flow rates. With a
significant portion of the total subsurface flow taking place in the macropores, a higher
hydraulic conductivity will be perceived for the entire soil profile (Whipkey, 1965; Mosley,
1979). In addition field studies of subsurface stormflow have shown that the direct
application of Darcian flow to subsurface flow in forested watersheds may not be realistic
(Whipkey, 1965; Mosley, 1979).

The second approximation of Boussinesq (1904), also called the Dupuit-Forchheimer
equation, will be used to describe the subsurface system. The equations development, based
on Darcy’s law and incorporating a non-horizontal bottom, was described by Bear (1972).
Both analytical and numerical models have been developed for the nonlinear Boussinesq

equation.

Bear (1972), Sloan and Moore (1984), and Buchanan (1990) have all developed analytical
solutions to predict piezometric response for subsurface saturated flow on a one-dimensional
uniform slope. While these models describe oversimplified groundwater systems quite well,
the analytical solutions are unable to describe anything complex in nature (e.g. a system
found in the environment). However, attempts have been made to further develop an
analytical model which handles complex transient recharge in a sloping aquifer of finite
width (Singh, 1991).

A numerical model developed by Hanberg and Gokce (1992), modeled the full, one
dimensional Dupuit-Forchheimer equation for a hillside with changing slope angle and
transient rainfall. The predicted response rose with the historical observed response but
receded more quickly. They hypothesized that seepage out of the bedrock lengthened the

observed recession.



Reddi (1990) numerically modeled saturated subsurface flow over two horizontal directions.
In the overall down slope direction the Dupuit-Forchheimer approach was used. Flow in the
transverse direction was assumed horizontal and was not topographically driven. Their

predictions differed significantly from field observations in timing and magnitude.

Jackson and Cudy (1992) additionaly modeled over the two horizontal directions utilizing a
finite difference model for hillslope flow. The advancement of this particular model over the
two previous numerical models was its ability to deal with complex topography (e.g.
topographic holes). They found that peak piezometric response was largely dependent on
rainfall rate and storage coefficient while the recession curve was influenced mainly by the
hydraulic conductivity. The model was tested against piezometric response measured in a

hillslope hollow and showed promising results.

Brown (1995), in a two-dimensional model, incorporated both infiltration partitioning and
overland flow into the hillslope flow model. Model simulations using available field data
were compared to field observations of rainfall-pore pressure responses and were found to be

in reasonable agreement.

Two techniques were looked at for solving the Boussinesq equation. The first technique,
utilized by Chu and Willis (1992), reduced the nonlinear equation to a linear partial
differential equation and used a forward in time, central in space explicit finite difference
method for their simulation model. The second, more robust technique involved a predictor-
corrector approximation of the solution (Douglas and Jones, 1963) which Remson (1971)

presented for the one dimensional nonlinear Boussinesq equation.



STUDY AREA

The E-Road swale lies in the headwaters of the North Fork Caspar Creek Experimental
Watershed, in the Jackson Demonstration State Forest near Fort Bragg, California, USA.
The topography is youthful, consisting of uplifted marine terraces that date to the late
Tertiary and Quaternary periods (Kilbourne, 1986). The swale occupies an area of 0.9895
acres. Hillslope ranges from 3 to 35% with an average of 19% . Elevations within the study

area range from 95 m to 128 m.

The groundwater study first began in hydrologic year 1990 and involved the monitoring of
hydraulic heads at specified peziometer sites (R1P2, R2P2, R3P2, R4P2, R5P2, R6P2) over
time. During the summer of 1990 the construction of a logging road across the swale took
place. In the summer of 1991 the swale was clear-cut utilizing a cable yarding technique.
Figure 1 depicts the swale pre road building while figure 2 depicts the swale post road

building.



NFCC E_ROAD Swale
pre road building

Piezometer Sites
—— Drainage Path
— Piping Site

Map Compiled by D. Lamphear November 25, 1997
J/USER15/CASPAR/PIPING/E_ROAD/SURFACE/FIG2.MAP

Figure 1: E-Road swale pre road building.



NFCC E_ROAD Swale
__ post road building
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FIGURE 2: E-Road swale post road building

The soil series within the E-Road swale is Vandamme, a clayey, vermiculitic, isomesic typic
tropudult, derived from sedimentary rocks, primarily Franciscan greywacke sandstone.
Textures of both surface soils and subsoil are loam and clay loam respectively. The

permeability within the soil is considered moderately slow (Huff et al., 1985).

Precipitation within the study area is characterized by low-intensity rainfall, prolonged
cloudy periods in winter, and relatively dry summers with cool coastal fog. Between October
and April 90% of precipitation takes place with a mean annual precipitation of
approximately 1190 mm. Temperatures within the swale rage from a maximum of 25 °C in

summer to freezing in winter.



MODEL FORMULATION AND DEVELOPMENT

The following steps were used in the development of the ground-water model. These steps

follow a commonly used order as outlined in Fetter (1994).

1.

2
3.
4

© N o O

Determine purpose of model.

Gather data and create a conceptual model of the system.

Develop the computer code that will be used.

Prepare model design. The model discritization, boundary conditions, and initial
conditions are selected.

Validate the model by comparing model output to a known head distribution.
Predict head distribution with applied stresses.

Perform sensitivity analysis on head distribution.

Present results.

The first three steps have already been presented. The remaining steps are outlined below.

MODEL DESIGN

The construction of a one-dimensional model first required that the swale system be

simplified. In figure 3 a profile line was established through the center of the swale

connecting each of the piezometer sites.



NFCC E_ROAD Swale
post road building
with profile
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Map Compiled by D. Lamphear November 25, 1997
JUSER15/CASPAR/PIPING/E_ROAD/SURFACE/FIG3.MAP

FIGURE 3: E-Road swale post road building

The profile line then allowed for the construction of a side view representation of swale
system (Figure 4). With the exception of the bedrock, the spatial locations for each of the
side view components (e.g. ground surface, piezometer sites, etc.) were known. With little
known about the bedrock it was necessary to construct a bedrock profile which best
represented E-Road conditions. A discussion on the establishment of the bedrock profile will

be presented later in the report.



SIDE VIEW OF E-ROAD
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FIGURE 4: Side view of E-Road swale post road building

Graphical information concerning the development of the model can be found in figure 5.
The unconfined aquifer system was modeled in one dimension with a lower Dirchlet
boundary condition (hg = constant) at the piping site and a Neumann boundary condition

( h/ x_=0) at the top of the swale. An impervious bedrock bottom contains the system in
the soil region located between the bedrock and ground surface. Note that an upper limit for
the simulated hydraulic heads was placed at the ground surface. That portion of the
hydraulic head which exceeds the ground surface will be considered runoff, a hydrologic

process which was not accounted for in the model.
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FIGURE 5: Model information for E-Road swale
where:

dx is a spatial step size (uniform)

h(x,t) is the spatial distance from datum to phreatic surface

i is a spatial node subscript

L is the horizontal distance from the piping site to the top of the swale
n(x) isthe spatial distance from datum to bedrock

X is the spatial coordinate scheme.

The governing equation for unconfined subsurface flow assuming the aquifer is
homogeneous and isotropic is the Boussinesq equation. The development of the Boussinesq
equation described by Bear (1972) was achieved by incorporating both the Dupuit

approximation and the continuity equation.

11



DUPUIT APPROXIMATION

Dupuit assumptions:

1. equipotential surfaces are vertical

2. flow essentially horizontal

3. the slope of the water table at some point on it represents the constant hydraulic gradient

along a vertical line passing through this point.

The Dupuit assumptions lead to the specific discharge for an isotropic medium as:

q, = —K%E q, = —K%%; h = h(x,y,t)

where :

q is the specific discharge, darcy velocity

K is the hydraulic conductivity 1)

h is the hydraulic head
X is a spatial location
tis time

CONTINUITY EQUATION

Consider a non-deforming control volume of dimensions dx, dy, dz, parallel, respectively,

to the X, y, z coordinates around a point P(X, y, z) in the porous medium domain. The control
volume is bounded by a horizontal impervious bottom and the phreatic surface above. Let a
vector J, with components in the X, y, z directions, denote the mass flux of a fluid of density
P. Over atime interval of dt, the excess of inflow over outflow through the surfaces of the
control volume, located at x- dx/2, x+dx/2, y-dy/2, y+ dy/2, is expressed as a difference for
x and y terms:

= Dl Y+,

y—=(3y/2),z _ix|x,y+(6y/2),zkxdy& (2)

By developing in a Taylor series around P and neglecting terms of second order and higher

|.‘] | -(ox/2).y

x+ 6x/2
gives:

EL %xéyét 3)

Oox oy O

12



In the z direction, only inflow from accretion takes place
AN (x, y, t)ox oyt (4)

A positive downward N means accretion while a negative upward N means evaporation
and/or transpiration . Summing masses in both horizontal (3) and vertical directions (4)

gives:

dJ
—E% +§y§&6y6t +PN(x,y,t)oxdy & ()

If J =pq then:

) %,
U X %

Eéxéyét + N (x,y,t)oxdy &t (6)
O

By the principle of mass conservation, this must be equal to the change of mass within the
control volume during dt. The change of mass is accounted for in two ways. First, the
phreatic surface rises by a vertical distance dh so that a volume of porous medium becomes
saturated.

Syl —1.]

where : S is the storage coefficient

(7)

Second, the pressure everywhere in the water-saturated control volume hdxdy rises.

hs, ho
*Dat0 ®)
where : §, 4 is the specific mass storativity related to potential changes

Therefor, total change in mass is the addition of equations (7) and (8):

bh Ooh
POy i+ Sy (o (10)

However, sinceS >> 5% , total change in mass during a &t time interval is :

bh
p85xéyDEE§t (11)

13



Setting equations (6) and (11) equal to each other, the entire continuity equation can be

written as:
O
d(pg ) 9(eg
_E (@Z ), (ON v)éaxéy& + PN (%, y, )Xoyt = PS‘SX‘SV%Ba 4

Dividing through by dx, dy, dt, and p gives:
+N = SDED (13)
Introducing Dupuit’s assumptions (1) for gy and gy gives:

O O
dD thd hdh+N [bhr

IR T
(14)
oo, o D [bhO
h— h +N =S —
o §< wE B 8N To0a0
which is known as Boussinesq’s equation for unsteady flow in a phreatic aquifer with

accretion. For a homogeneous aquifer, K = constant:

2840, 9 MEH, =g
K @(D &y% N = s (15)

For a non-horizontal bottom, see figure 2, let h(x, y, t) represent the elevation of the phreatic

surface and n(x, y) denote the elevation of the aquifer’s bottom, both with respect to a datum.

The Boussinesq equation now becomes:
220 25 DLy -
(16)
x0 H0 0 &0 0 "\ "o

Averaging the system over the y-direction with a unit depth allows for the one dimensional

Kﬂﬁ%@mﬂ" oh[H_ amom OH M, _ o

form of the governing equation:
chg 00 o oh

KB% x0 w0 xE V5% (17

14



Dividing through by the hydraulic conductivity, K, gives:
92325 200
Equation (18) is the final form of the governing equation which was used to develop the
mathematical model used to describe unconfined subsurface hillslope flow. The initial and
boundary conditions are described as follows:

initial conditions :

h(x,0) = f(x) = hy(x)

boundary conditions :

h(0,t) =h
@ =0
Xl

In order to solve equation (18), a non-linear partial differential equation, a finite difference

approximation was made and solved utilizing a predictor-corrector method.

PREDICTOR-CORRECTOR

The predictor-corrector method, as outlined by Remson (1971), first requires that the

governing equation (18) be transformed into its non-dimensional form:
Transformations :
h
H=—; B:E; X:E; )
L L L SL
Governing Equation :

initial conditions : (19)
H(X,0) = Ho(X)
boundary conditions :

H(O,T): H
Mo
@( X=1

15



Expanding using the chain rule and solving for (02 H/dxz) gives:

OCH__ 1 DH DoHd  OBrwHg U 20)
Xr  (H-B)Er OxO OxMaxOD O

With the governing equation now in its non-dimensional form the predictor-corrector scheme
may be implemented. The predictor solves for a half time step ahead while the corrector,

utilizing the predictor solution, solves for a full time step ahead.

PREDICTOR: Advanced the solution to the end of the time step.

dz(Hi,Ho_s) 1 M0 FH, | og i, o O

dx? -BHIdT O Odx O "OixCOdx O g

(21)

Note that i and j represent spatial and temporal subscripts, respectivily, and that the
approximation of H at the i, j node is represented as W;;. Substituting the following finite

difference approximations into equation (21),

2
d (Hi,j+o.5) [ \Ni+1,,-+o.5 - 2Wi, j+05 +Vvi—1,j+0.5

0 central difference approx.

dx? (&X)°
dH.. W . . .s—-W.
b g2 i forward difference in time approx.
dT AT[2
dH.. W.-W_, .
d>21 O— 12 O packward difference approx.
dB. . -
-1 [ B -8 00 backward difference approx.
dXx AX
gives the predictor as:
0 2axy B —2(BX)*W
VVi+ j+0.5 — iy — i,j+0. +VVi— j+0. :— i
1,j+0.5 [12 AT(V\/,-—Bi)gN'J 05 1,j+0.5 AT ] 3)

(22)
, vy -w 1,)W i8-8 _(aXFR
( —B) [ i—l,j 3 i l] ( —B)

16



CORRECTOR
dz(Hi,j+1_Hi,j _ 1 %Humsﬂ HjHuﬁosD EH_BL IJ+05|:|

20X? Howos—BH) dT O 0 dx O TOgx[O gx O

-R . (23)
H

Introducing the following finite difference approximations into equation (23),
0 (Hu) Wy —2W + W
dx? (AX)

dz(HiyJ'+1) u Wi+1,j+1 _2Wi,j+1 +VVi—1,j+l
dx? (ax)

dHi,j Wi+1,j+1 _\Nl,j

dT AT

dH W

i,j+05 i,j+05 _\Ni—l,j+0.5
dX AX
dB, B -8,
dXx AX

yields the corrector equation as:

2y & 2(MX)'W,

W, .o D’g+( . B)ATQMHHW_LM:(VVWO,S—B,)I’AT

cee 2(W1+05 W 1J+05)[ W|,j+o.5 +Vvi—l,j+0.5 + B. _Bi—l °ee

W 105 -B)
Z(AX) R (I+1J +W1j

( 'J+05_B)

OO central difference approx.

OO central difference approx.

O forward difference in time approx.

[0 backward difference approx.

[0 backward difference approx.

(24)

The governing equation (18) is now reduced to two systems of algebraic equations.
Computer code which simultaneously solves each of the systems algebraic equations has

been developed and may be found in appendix A.

PHASES OF MODEL DEVELOPMENT
A three phase process was incorporated in order to develop a working model which describes
the E-road system. Associated with each phase is a more complex numerical model. The

three phases are described below.

17



PHASE |

The first phase, shown in figure 6, consists of a homogenous isotropic groundwater system.
In the vertical direction the system is contained below by an impervious horizontal bedrock
layer. The ground surface may be viewed as an infinite distance from the bedrock allowing
water to propagate upward through the soil with no boundary limitations. In the horizontal

direction, Dirchlet boundary conditions (hy = constant and h_ = constant) contain the system.

e
i

FIGURE 6: Side view of Phase |

PHASE II

The second phase, shown in figure 7, consists of a system identical to Phase | with the
following exceptions. Where Phase | viewed the right hand horizontal boundary condition as
a Dirchlet B.C. (h_ = constant), Phase Il views the boundary as a Neumann B.C. (Ah /At = 0).

The hydrologic process of accretion was accounted for in the Phase 11 model.

FIGURE 7: Side view of Phase Il

18



PHASE IlI

In the third phase, shown in figure 8, the topography of the E-Road ground surface was
identified by the model and simulated hydraulic heads were not allowed to exceed ground
surface elevations. Those hydraulic heads which would theoretically breach the surface were
considered surface runoff. A limitation for the model was its inability to then allow the
established runoff to infiltrate back into the groundwater. The model was additionally
modified to incorporate a non-horizontal bedrock bottom. Specifically the bedrock
configuration for the E-Road swale. Due to the difficult nature of defining bedrock
elevations, a method of interpolation was used. With known bedrock elevations identified
during the boring of the piezeometric holes, a linear interpolation was used to fabricate
bedrock elevations between these known elevations. To complete the interpolations at the
boundaries of the system guesses were made as to where the bedrock elevations were

located.

FIGURE 8: Side view of Phase IlI

VALIDATION

MODEL COMPARISON

As a check of the finite difference approximation for Phase Il, the problem was solved and
compared with numerical results found by Yeh and Tauxe (1971). Yeh and Tauxe had
previously validated their results with published experimental data. Initial and boundary

conditions are as follows:

19



h(x,0) =1.0

h
h(0,T) = % =05 (25)
oh(x,T) 0
OX x=L=1.0

Figure 9 shows the comparison of water table profiles for different dimensionless times, T.
The solid lines represent results found with the Phase Il model while the circles represent

solutions found by Yeh and Tauxe (1971). Note that the comparisons are excellent.

A COMPARISON BETWEEN NUMERICAL

O O 9]

O

T=0.025
T=0.10
[ T=025
T=0.50

h , hydraulic head

00 01 02 03 04 05 06 07 08 09 10

X , spatial distance

Figure 9: Comparisons between phase Il solutions, shown above as solid lines, and those numerical solutions
found by Yeh and Tauxe [1971], shown above as circles.

STEADY STATE
To further validate the model an experiment was performed for Phase Il conditions to

reproduce a known hydraulic phenomenon. Water will always flow from a higher potential
to a lower potential. Setting up the model with boundary conditions at ho; = 10 m and h_ o =
15 m we would expect to see the higher potential hydraulic head at x = L, h; o, to drop over
time until it eventually reaches the lower potential hydraulic head at x = 0, hy;. At that time,
when the two hydraulic heads are equal (ho = h o ), the system will have achieved stability
and remain constant throughout time. Hydraulic heads of equal potential imply a stagnate

system. The models response, shown in figure 10, behaves as expected reaching steady state

after approximately 50 days.
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HYDRAULI C HEAD RESPONSE OVER TI ME
dx = 1m L = 30m dt = lday; K= .02md; S = .01; |

15 h(0,t)=10m h(L, 0)=15m ——t = 0 day
14 + t = 1 day
13 + t = 5 day

—t = 10 day
12 T

—t = 15 day
11 t = 25 day
10 1 t = 50 day
9 —t—t+——F—F+———F—F— ——1t =100 day

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

spatial distance [m

FIGURE 10: Hydraulic head response over time with Phase 1l conditions.

MODEL RESULTS

HISTORICAL AND SIMULATED

A comparison between historical and simulated results can be found in figure 11. The
comparison was made by observing over time both the historical and predicted hydraulic
head response at the R4P2 piezometric hole. The time period chosen for observation was

between 1/1/95 and 2/15/95. Table 1 gives the model variables used in the simulation.

VARIABLE VALUE
dx 1m
dt 1 day
K 0.025 m/d
S 0.01
n(0) 94 m
n(L) 118 m
h(0,t) 96 m
h(L,0) 127 m

TABLE 1: Model variables
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A piezometer response was simulated by inputting into the model historical rainfall rates
associated with the time period of the simulation. These rainfall rates were not the actual
recorded rainfall rates for the area; the precipitation was scaled to reflect water loss due to
piping, evapotranspiration, and soil moisture storage. The initial groundwater conditions

represent the water levels of the 100 day simulation period.

A large difference was found between historical and simulated results. While their general
response to rainfall was similar, the model consistently over predicted hydraulic heads by
approximately 5.5 m. This over prediction of hydraulic head was believed to have resulted
from an inaccurate representation of the bedrock within the swale. The 1-d model represents
the bedrock as a distinct boundary to the system when in reality the bedrock can not so easily
be defined. The actual bedrock layer consists of shale pieces which become increasingly
more dense as depth increases. Those bedrock elevations defined through the boring of the
piezometric holes are believed to have been within the upper boundary of the actual bedrock
layer. A large portion of the permeable media would then be unaccounted for by the model

resulting in the over prediction of the hydraulic head.

An additional difference between historical data and model predictions was found for the
drainage of the swale. During times of little or no rainfall those hydraulic heads simulated by
the model would subside more quickly when compared to historical subsidence levels. The
increase in subsidence rate was believed to have resulted from the assumption of

homogeneity within the aquifer system.
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FIGURE 11: Historical data vs. model simulation for the R4P2 site.

SENSITIVITY
Both the simulation approach and an evaluation of the root mean squared error (RMSE) were
used to describe the sensitivity of the models variables. The following equation describes the

RMSE.

(26)

h is the head at a node after some parameter variation (m)
h; is the initial head values (m)
tn is the total number of nodes

RMSE is the root mean squared error value
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PHASE | SENSITIVITY

A sensitivity analysis for Phase | was performed on dx, dt, K, and S utilizing the RMSE

approach. The base case simulation which all other simulations were compared can be found

in table 2.
VARIABLE VALUE
dx 0.1m
L 10 m
dt 1 day
t 20 days
K 0.02 m/day
S 0.01
h(0, t) 2m
h(L, t) 5m

TABLE 2: Phase | model variables

Figure 12 shows the RMSE versus the spatial step size, dx. It was inherent in the numerical
approximation of hydraulic heads that the smaller the spatial step size the greater the
accuracy within the solution. A linear relationship was observed between spatial step size
and RMSE.

SPATIAL STEP (PHASE 1)

RMSE Vs. dx
L=10m; dt=1d; t=20d; K=.02m/d; S=.01; h(0,t)= 2m; h(L,t)=5m

0.025
0.020 T
0015 T
Z0010 T
0.005
0.000

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
dx [m]

FIGURE 12: Sensitivity analysis for dx under Phase I conditions.

Figure 13 shows the RMSE versus the temporal step size, dt. Smaller temporal step sizes
resulted in greater accuracy within the solution. As At increased past 1.5 m the RMSE values

exponentially grew in size indicating a loss of accuracy within the solution.
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TEMPORAL STEP (PHASE I)

RMSE Vs. dt
dx=.1m; L=10m; t=20d; K=.02m/d; S=.01; h(0,t)=2m; h(L,t)=5m

0.010
0.008 T '
“gio.ooe T
& 0.004 T
0.002 T
0.000 ° i p—t t
0 1 2 3 4 5 6 7 8 9 10
dt [m]

FIGURE 13: Sensitivity analysis for dt under Phase | conditions.

The hydraulic conductivity, K, is a function of both fluid and medium properties. Figure 14,
demonstrates how changes in K effect the solution of the Phase | model. The sensitivity
analysis shows that magnitudes of K between 0.002 and 0.08 m/day resulted in little to no
change within the solution. However, K values less than 0.002 m/day resulted in extremely
rapid changes in RMSE while K values greater than 0.08 m/day showed a gradual increase in
RMSE.

HYDRAULIC CONDUCTIVITY (PHASE 1)

RMSE Vs. K
dx=.1m; L=10m; dt=1d; t=20d; S=.01; h(0,t)=2m; h(L,t)=5m

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
K [m/day]

FIGURE 14: Sensitivity analysis for hydraulic conductivity, K, under Phase I conditions.
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The storage coefficient, S, is defined as the volume of water released or taken into storage
per unit cross-sectional area per unit change in the hydraulic head. Results from the
sensitivity analysis, shown in figure 15, indicate that there will be no change within the

solution for S values between 0.005 and 0.05.

STORAGE COEFFICIENT (PHASE I)

RMSE Vs. S
dx=.1m; L=10m; dt=1d; t=20d; K=.02m/d; h(0,t)=2m; h(L,t)=5m

0.20

0.15 T /-
L o
2010 T
& o
005 T /
) 1 1 1 1 1 1 1 1 1

0.00 -®e=e T T T T T T T T T

FIGURE 15: Sensitivity analysis for the storage coefficient, S, under Phase | conditions.

PHASE Il SENSITIVITY

A sensitivity analysis for Phase Il was performed on dx, dt, K, S, and N. Both dx and dt
utilized the RMSE while K, S, and N relied upon a simulation approach for the sensitivity

analysis. For the RMSE analysis the base case simulation can be found in table 3.

VARIABLE VALUE
dx 0.1m
L 10 m
dt 1 day
t 20 days
K 0.02 m/day
S 0.01
N 0 in/day
h(0, t) 2m
h(L, 0) 5m

TABLE 3: Phase Il model variables
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Manipulations of Ax within the Phase Il model are shown in figure 16. It was inherit in the
model that the smaller the spatial step size the greater the accuracy within the solution. A
comparison between Phase | (Figure 12) and Phase Il sensitivity results for Ax shows that
RMSE values are slightly greater for Phase Il results. Additionally, the linearity between Ax
and RMSE found in the Phase | model was not seen in the Phase Il model. The absence of
linearity was the result of the Neumann boundary condition found in the Phase Il model. In
order to deal with the no-flux boundary condition the model views h, equal to h, 4 for all
time steps. Setting the two hydraulic heads equal results in an increase in the deviation
between solutions of differing spatial steps as well as a limiting effect on the RMSE as Ax

increases in size.

SPATIAL STEP (PHASE 1)

RMSE Vs. dx
L=10m; dt=1d; t=20d; K=.02m/d; S=.01; h(0,t)= 2m; h(L,0)=5m; N =0

0.030
0.025
L, 0.020
20.015
X 0.010
0.005
0.000

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
dx [m]

FIGURE 16: Sensitivity analysis for dx under Phase Il conditions.

Figure 17 shows RMSE versus the temporal step size. As the temporal step size increased
the RMSE values exponentially grew in size indicating a loss of accuracy within the solution.
A comparison between Phase | (Figure 13) and Phase |1 sensitivity results for At indicate that

the Phase Il model was slightly more sensitive to changes in dt.
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TEMPORAL STEP (PHASE 1I)

RMSE Vs. dt
dx=.1m; L=10m; t=20d; K=.02m/d; S=.01; h(0,t)=2m; h(L,0)=5m; N =0

0.20
0.15
t
= 0.10
ad
0.05
0.00
0 1 2 3 4 5 6 7 8 9 10
dt [m]

FIGURE 17: Sensitivity analysis for dt under Phase Il conditions.

A sensitivity analysis on the hydraulic conductivity was performed utilizing a simulation
approach. Figure 18, shows a number of phreatic surfaces generated with differing
magnitudes of K. After 20 days a hydraulic conductivity of .0002 m/d resulted in a phreatic

surface far from steady state conditions where a K of 0.2 m/d easily achieved steady state.

HYDRAULIC CONDUCTIVITY (PHASE 1)
dx=.1m; L=10m; dt=1d; t=20d; S=.01; h(0,t)=2m; h(L,0)=5m; N =0

5.0
45 T
T 40 + K=0.0002 m/d
2 454 K=0.002 m/d
£ EL 0 4 - — K=0.02 m/d
8 - —— k=0.2 m/d
‘.5 25 T / i
2 20 —
15 f f f f f f f } }

0 1 2 3 4 5 6 7 8 9 10

spatial distance [m]

FIGURE 18: Sensitivity analysis for the hydraulic conductivity, K, under Phase Il conditions.
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Figure 19, shows a number of phreatic surfaces generated utilizing different magnitudes of
the storage coefficient. Results from the sensitivity analysis indicate that smaller S values
allowed for more rapid movement of water where larger S values hindered the movement of

water within the aquifer.

STORAGE COEFFICIENT (PHASE II)

RMSE Vs. S
dx=.1m; L=10m; dt=1d; t=20d; K=.02m/d; h(0,t)=2m; h(L,0)=5m; N =0

4

35 T
s $=0.1
< 37T — oo
ST $=0.05
Ei =25 7T — $=0.01
S 2 — $=0.001
2

15 } } } } } } } } }

0 1 2 3 4 5 6 7 8 9 10

spatial distance [m]

FIGURE 19: Sensitivity analysis for the storage coefficient, S, under Phase Il conditions.

Figure 20, shows the hydraulic head response resulting from different magnitudes of
accretion held constant over time, t. Results indicate a mounding affect where the larger the

N value the larger the mound size.

HYDRAULIC HEAD RESPONSE DUE TO

CHANGES IN ACCRETION (PHASE 11)
dx=.1m; L=10m; dt=1day; t=100d; K=.02m/d; S=.01; h(0,t)=2m;
h(L,0)=2m; N [in/d]

8
o 'EG T — N=0.5
S5 = | N=0.25
C 5
5 3 ——N=0.1
22 —— N=0.0
0 : — : : : — : '

0 1 2 3 4 5 6 7 8 9 10

spatial distance [m]

FIGURE 20: Hydraulic head response to changes in accretion under Phase Il conditions.
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PHASE I1I SENSITIVITY

Using the simulation approach, a sensitivity analysis for Phase Il conditions was performed

on the bedrock profile, boundary conditions, K, S, and N.

As discussed in the model formulation for Phase 111, the whereabouts of bedrock elevations
for the horizontal boundaries of the swale are unknown. Figure 21, displays the bedrock
configurations for both the upper and lower sections of the swale which were used in the

sensitivity analysis of the bedrock profile.

VARIATIONS IN BEDROCK ELEVATIONS

125 Ground surface
120 \
E 115 Variations in
g lower bedrock
® 110 . ® f

<] .
< elevations
2105
>
S 100 ot .\ Variations in
o
£ 95 Known bedrock upper_bedrock
elevations elevations
90

spatial distance [m]

FIGURE 21: Variations in bedrock elevations

Simulations were made, shown in figure 22, which looked at the sensitivity of the model to
bedrock configurations for the upper portion of the swale. Each run of the model was made
with accretion set to zero in an attempt to simulate the drying out of the swale. By watching
the phreatic surface propagate downward over time it was discovered that the model was
severely limited in its ability to simulate a dry swale. Dry conditions were not permutable
due to the models inability to model non-saturated swale conditions. A transition was
needed between the Boussinesq equation for saturated flow and the Richards equation for
unsaturated subsurface flow. The no-flux boundary condition allows for a vertical drop in
hydraulic head at x = L, however, when bedrock was reached the phreatic surface was then
limited in its ability to propagate downward any further. The natural progression of the

phreatic surface down the bedrock slope towards x = 0 could not be simulated. The higher
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the elevation of bedrock at x = L the quicker the model was limited in its movement. For

each of the three simulations made, limiting times were found at 7, 50, and 187 days.

UPPER BEDROCK SLOPE
dx=1; dt=1; K=0.025; S=0.01; N=0; h(0,t)=96m; h(L,0)=127.5m

LIMITED @ t=7d

124

LIMITED @ t=50d
= 119

T 114

100 T T ;

104 - - LIMITED @ t=187d

hydraulic he

©
©

(o]
I

0 10 20 30 40 50 60 70 80

spatial distance [m]

FIGURE 22: Variations in bedrock elevations within the upper portion of the swale

Results from a sensitivity analysis on the lower bedrock configuration are displayed in figure
23. Impacts associated with variations in lower swale bedrock depths were only detectable
within the lower portion of the swale. In the lower swale, higher bedrock elevations forced
the phreatic surface upward until contact was made with the ground surface. The shape of
the phreatic surface was then dictated by the topography of the ground surface. Lower

bedrock elevations resulted in a funneling effect of the groundwater through the lower
portion of the swale.
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LOWER BEDROCK SLOPE
dx=1m; L=86m; dt=1d; t=30d; K=0.025; S=.01; N=0; h(0,t)=96m;

h(L,0)=127.5 m —
107 T - -

105
E103
101
99
97
95 T
93 T
9 +—rtr—t—trt+ttt) )]

0 2 4 6 8 10 12 14 16 18 20 22 24

hydraulic head

spatial distance [m]

FIGURE 23: Variations in bedrock elevations within the lower portion of the swale

The sensitivity of the model to variations in lower boundary constant head elevations are
displayed in figure 24. From the figure it was clear that the model was extremely sensitive to
the magnitude of constant hydraulic head at x = 0. Lower constant head elevations resulted

in the restriction of exiting flow which in turn caused a backup of waters within the system.

DIRCHLET BOUNDARY CONDITION
MINIPULATIONS OF CONSTANT HEAD AT X=0

dx=1m; dt=1d; t=25d; K=0.025; S=0.01; h(L,0)=127.5; N=0

129

124
=119 === Ground Surface
= —— h(0,)=96.5m
o
g 114 h(0,t)=95.5m
< 109 N
© h(0,t)=94.5m
§ 104 === Bedrock
S 99
=

0 10 20 30 40 50 60 70 80

spatial distance [m]

FIGURE 24: Manipulations of constant head at x = 0
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An additional impact associated with having a lower elevation at the constant head boundary
was the instability produced within the solution. This instability can be found in the spiky
nature of the phreatic surface shown in figure 25. Within the lower portion of the swale, both
the h(0,t) = 95.5 m and h(0,t) = 94.5 m simulations produced the spiky behavior. The

majority of the solution, however, remained stable within the upper portions of the swale.

STABILITY
MINIPULATIONS OF CONSTANT HEAD AT X=0
dx=1m; dt=1d; t=25d; K=0.025; S=0.01; h(L,0)=127.5; N=0 /

108
— 106 === Ground Surface
E 104 _ -
) h(0,t)=96.5m
$ 102 h(0,t)=95.5m
© 100 — h(0,)=94.5m
3 98 === Bedrock
©
> 9

94

spatial distance [m]

FIGURE 25: Impacts from manipulations of constant head at x = 0 for the lower portion of the swale.
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A sensitivity analysis of K can be found in figure 26. Results from the analysis indicate that
the larger the magnitude of K the quicker the swale drains. Furthermore, lower magnitudes

of K will result in a backup of water within the system.

HYDRAULIC CONDUCTIVITY
dx=1m; dt=1m; t=25d; S=0.01; h(0,t)=96m; h(L,0)=127.5m; N=0

129
124
‘€119 Ground Surface
S 114 -~ — K=0.002 m/d
2 - K=0.02 m/d
% 109 — K=0.2m/d
g 104 == Bedrock
2 929

0 10 20 30 40 50 60 70 80

spatial distance [m]

FIGURE 26: Sensitivity analysis for hydraulic conductivity, K, under phase Ill conditions.

Figure 27, shows a number of phreatic surfaces generated utilizing different magnitudes of
the storage coefficient. Results from the sensitivity analysis indicate that small magnitudes

of S allow for quick drainage while larger S values produce a backup of groundwater within

the swale.
STORAGE COEFFICIENT
dx=1m; dt=1m; t=25d; K=0.025; h(0,t)=96m; h(L,0)=127.5m; N=0
129
124
‘119 = Ground Surface
/ S
109 $=0.01
§ 104 == Bedrock
E 99
94
0 10 20 30 40 50 60 70 80
spatial distance [m]

FIGURE 27: Sensitivity analysis for storage coefficient, S, under phase Il conditions.
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An analysis of the systems response to accretion was made with the construction of
simulations which modeled both storm and drought conditions. Figure 28 gives the results
for the first scenario which models a single storm event under dry initial conditions. For the
first 50 days of the simulation accretion was set to zero allowing for dry swale conditions.
After 50 days, accretion was then set to 0.05 m/d in an effort to simulate a storm event. In
figure 28, phreatic surfaces are given for a number of temporal locations throughout the

simulated storm event.

ACCRETION EFFECTS

FOR DRY INITIAL CONDITIONS
dx=1m; dt=1d; K=.025; S=.01; h(0,t)=96m; h(L,0)=126m
N = 0 for 0<t<50; N = 0.05 in/d for t>50

129

124 Ground Surface
% 119 t=170 days
< 114 t=130 days
o E
El 109 — =90 days
i 104 t=50 days
< 99 Bedrock

94

0 10 20 30 40 50 60 70 80

spatial distance [m]

FIGURE 28: Accretion effects for dry initial conditions

The second scenario models drought conditions given an initially saturated system. For the
first 50 days of the simulation accretion was set to 0.2 m/d in an attempt to completely
saturate the system. After 50 days, a period of drought was simulated with accretion set to
zero. In figure 29, phreatic surfaces are given for a number of temporal locations throughout

the drought event. As time goes by the phreatic surface propagates downward through the

soil matrix.
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ACCRETION EFFECTS

FOR WET INITIAL CONDITIONS
dx=1m; dt=1d; K=.025; S=.01; h(0,t)=96m; h(L,0)=126m
N = 0.2 in/d for 0<t<50; N = 0.0 for t>50

129

124 = Ground Surface
% 119 t=50 days
< 114 — t=60 days
o &
E =109 t=70 days
5 104 = t=80 days
2 99 === Bedrock

94

0 10 20 30 40 50 60 70 80

spatial distance [m]

FIGURE 29: Accretion effects for wet initial conditions

CONCLUSIONS

» The models over prediction of hydraulic head was the result of an inaccurate
representation of the bedrock within the swale.

e The 1-d model was unable to successfully simulate the drying out of the swale due to the
models inability to simulate unsaturated soil conditions.

» Describing the E-Road swale as a homogeneous aquifer oversimplifies the system and
was believed to produce abnormally high drainage rates.

* The magnitude of the Dirchlet B.C. at x = 0 made substantial impacts on the phreatic
surface throughout the aquifer.

» Smaller spatial and temporal step sizes resulted in greater accuracy within the solution.

» Larger magnitudes of the hydraulic conductivity resulted in quicker drainage rates within
the swale.

» Larger magnitudes of the storage coefficient resulted in slower drainage rates within the

swale.
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SUGGESTIONS FOR FURTHER RESEARCH

FIELD RESEARCH

Further modeling endeavors require that a detailed map of bedrock elevations be
constructed for the E-Road swale.
Efforts should be made to better describe the soil properties within the swale.

A tracer study would help to determine the interaction between piezometric holes and

piping.

COMPUTATIONAL RESEARCH

To better understand the impacts associated with alternative bedrock configurations
additional simulations of the 1-d model should be run and compared to historical data.
Modeling the E-Road system with an existing 3-d finite element model
(3DFEMWATER).

The development of a 2-d finite difference model over the horizontal and vertical
directions which would allow for a simplified representation of non-homogeneity,

surface runoff, and piping within the aquifer system.
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APPENDIX A

PHASE Il COMPUTER CODE
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PROGRAM PHASE3

C

C Unconfined subsurface flow, non-horizontal bottomw th constant
C B.C at x =0 and ano flowB.C. for x = L.

C

C VAR ABLE DI CTI ONARY

C

C arrc() = center tridiagonal coef.

C arrl() =left hand tridiagonal coef.

C arrr() =right hand tridiagonal coef.

C B() = di mensi onl ess base i nformation

C BL = L.H S. piez. boundary condition (m

C BR = RHS. piez. boundary condition (m

C bound() = known information

C dxx = spatial step size which renains constant (n)

C dX = di mensi onl ess spatial step

C dT = di mensi onl ess tenporal step

C dtt = tenporal step size which renains constant (day)

C fileout = file which contains output information

C half() = those piez. heads produced after the PREDI CTOR step (n)
C i,j = index counter

C K = hydraulic conductivity (niday)

C L = length of base (m

C lbound = left hand piez. boundary condition (m

C n = spatial nodes

C new() = those piez. heads produced after the CORRECTOR step (n)
C node = spatial node place hol der

C nt = tenporal nodes

C ntinme = tenporal node place hol der

C old() = piez. heads introduced at begining of time step (m
C out = spatial distance fromL.H S. boundary (m

C period = period of time which to simulate over (day)

C rrr() = rainfall rate (in/day)

C R() = dinmensionless rainfall rate information

C rbound = right hand piez. boundary conditions (n)

C surf() = elevations of ground surface (m

CcC S = porosity

C TRID AG = subroutine called to solve Ax=b

C xx() = inital inner piez. heads (m

C

C

integer i,j,n,nt

real |bound, rbound, BL, BR, dxx, dX, dT, dtt, L, peri od, S, node, nti ne
real rrr,K

real arrc(1000), arrl (1000), arrr(1000), bound(1000)

real hal f(1000), new( 1000), ol d(1000), xx(1000), surf (1000)

real R(1000), B(1000)

character fileout*30

C
Wlte(* *) LR S R I b b R I I O I R R I S I I I S S O I
wite(*,*) '* A subsurface nodel of one-di nensional *
wite(*,*) '* unconfined fl ow based on Darci an assunptions. *
wite(*,*) '* Non- hori zontal bottom *!
Wlte(* *) LR S R b I O I R R I S I I I S S I
wite(*,*)
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Open output file

open(17,fil e=" bedrock',status="old")
open(16,file="surface',status="old")
wite(*,*)

Spatial information

wite(*,' (A $)') ' Enter the spatial step size (m:
read(*,' (f5.2)") dxx

wite(*,'"(A$)') ' Enter the length of the aquifer (m:
read(*,"' (f7.2)') L

wite(*,*)

node=L/ dxx

n=l NT( node)

Tenporal information

wite(*,'"(A $)') ' Enter the tenporal step size (day):
read(*,' (f5.2)') dtt

wite(*,'(A$)') ' Enter the period of tine to sinulate (day):
read(*,' (f7.2)') period

peri od=REAL( peri od)

wite(*,*)

nti me=peri od/dtt

nt =l NT(nti nme)

Physi cal paraneters

wite(*,'(A$)') ' Enter the hydraulic conductivity (nfday):
read(*,' (f5.4)') K

wite(*,'(A $)') ' Enter the storage coefficient:'

read(*,"' (f5.4)') S

wite(*,*)
Boundary Conditions

wite(*,'(A$)') ' Enter the left-hand constant B.C. (m:
read(*,' (f5.2)"') | bound

wite(*,"(A$)') ' Quess the right-hand B.C. (m:
read(*,' (f5.2)') rbound

wite(*,*)

Transformations/Initializing array's

wite(*,"(A$)') ' Enter the rainfall rate [in/day]:
read(*," (f5.2)") rrr

Do 20 i=1,n+1
read(17,*) B(i)
B(i)=B(i)/L
read(16,*) surf(i)
surf(i)=surf(i)/L
xx(i)=((rbound-1bound)/L)*(dxx*(i-1)) + | bound
old(i)=xx(i)/L
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hal f (i) =1.
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20 Cont i nue

C
C Rainfall is converted frominches to neters and nade di nensionl ess
C
Do 21 j=1,nt
R(j)=(rrr/39.37)/K
21 Conti nue
C
C Dinensionless variables
C
BL=l bound/ L
BR=r bound/ L
hal f (1) =BL
hal f (n+1) =BR
dX=dxx/ L
dT=(K*dtt) / (S*L)
C
C Start tenporal |oop
C
Do 30 j=1,nt
C
C Start spatial |oop
C
Do 40 i=2,n
C
C Devlop PREDI CTOR tridi agonal
C
If (i.EQ2) then
arrl (i)=0.0
arrc(i)=-1.*(2 + (2*dxX**2)/((ol d(i)-B(i))*dT))
arrr(i)=1.0
bound(l):(( 2.%(dx**2)*ol d(i))/ (dT*(ol d(i)-B(i))))
2 + (((old(i)-old(i-1))/(old(i)-B(i))))
3 (oId(| 1)-old(i)+B(i)-B(i-1))
4 + ((-L.*(dx**2)*R(j))/ (ol d(i)-B(i))) - BL
El seif (i.EQ n) then
arrl(i)=1.0
arrc(i)=1.+(-1.%(2 + (2*dXx**2)/((old(i)-B(i))*dT)))
arrr(i)=0.0
bound(i)=((-2.*(dX**2)*ol d(i))/(dT*(old(i)-B(i))))
2 + (((old(i)-old(i-1))/(old(i)-B(i))))
3 * (old(i-1)-old(i)+B(i)-B(i-1))
4 + ((-1.*(dx**2)*R(j))/ (ol d(i)-B(i)))
El se
arrl(i)=1.0
arrc(i)=-1.*(2 + (2*dxX**2)/((ol d(i)-B(i))*dT))
arrr(i)=1.0
bound(i)=((-2.*(dX**2)*ol d(i))/(dT*(old(i)-B(i))))
2 + (((old(i)-old(i-1))/(old(i)-B(i))))
3 * (old(i-1)-old(i)+B(i)-B(i-1))
4 + ((-1.*(dx**2)*R(j))/ (ol d(i)-B(i)))
Endi f
C
40 Conti nue
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O 000

o000 o000
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Call tridiagnal solver
Call TRID AG (n,arrl,arrc,arrr, bound, hal f)

hal f (1) =BL
hal f (n+1) =hal f (n)

Start spatial |oop again.
Do 41 i=2,n
Devel op CORRECTOR tri di agonal

If (i.EQ2) then

arrl (i)=0.0
arrc(i)=-1.*(2 + (2*dX**2)/ ((hal f(i)-B(i))*dT))
arrr(i)=1.0
bound(i)=((-2.*(dX**2)*ol d(i))/((hal f(i)-B(i))*dT))
2 + ((2 *(hal f(i)-half(i-21)))/(half(i)-B(i)))
3 * (-1.*hal f(i)+hal f(i-1)+B(i)-B(i-1))
4 - ((2.%(dx**2)*R(j))/ (hal f(i)-B(i)))
5 (old(i+1)-2.*old(i)+old(i-1)) - BL
Elseif (i.EQn) then
arrl(i)=1.0
arrc(i)=1.+(-1.*(2 + (2*dX**2)/((hal f(i)-B(i))*dT)))
arrr(i)=0.0
bound(i)=((-2.*(dX**2)*ol d(i))/((hal f(i)-B(i))*dT))
2 + ((2.*(half(i)-half(i-1)))/(half(i)-B(i)))
3 * (-1.*hal f(i)+hal f(i-1)+B(i)-B(i-1))
4 ((2.*(dx**2)*R(j))/ (hal f(i)-B(i)))
5 (-1.*old(i)+old(i-1))
El se
arrl(i)=1.0
arrc(i)=-21.*(2 + (2*dX**2)/ ((hal f(i)-B(i))*dT))
arrr(i)=1.0
bound(i)=((-2.*(dX**2)*ol d(i))/((hal f(i)-B(i))*dT))
2 +(( .*(half(i)-half(i-1)))/(half(i)-B(i)))
3 * (-1.*hal f(i)+hal f(i-1)+B(i)-B(i-1))
4 - ((2.%(dx**2)*R(j))/ (hal f(i)-B(i)))
5 (ol d(i+1)-2.*old(i)+old(i-1))
Endi f
Cont i nue

Call tridiagnal solver
Call TRIDIAG (n,arrl,arrc,arrr, bound, new)
Save the peiz. heads fromt into an old() array
Do 35 i=2,n

if(new(i).GI.B(i).AND.newmi).LT.surf(i)) then

ol d(i)=new(i)
el seif(new(i).LE. B(i)) then
ol d(i)=B(i)+.0000001
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elseif(new(i).GE surf(i)) then
ol d(i)=surf(i)
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35

Cc

endi f
Conti nue
ol d(1)=BL
ol d( n+1) =ol d(n)
if(old(n+l).LT.B(n+1)) then
ol d( n+1) =B( n+1)
endi f

conti nue

wite(*,*)
wite(*,*)
wite(*,*) 'SOLUTION: hydraulic head [’
Do 50 i=1, n+l
out =(ii *dxx) - dxx
wite(*,*) old(i)*L
Conti nue

st op
end

Ck**********************************************************************

C*

TRI DI AG SUBRQUTI NE *

Ck**********************************************************************

10

31

subroutine TRIDIAG (ndistl,dl1,dil,dul, bl, H 1)
implicit none

integer i,ndistl

real dl 1(1000), di 1(1000), dul(1000)

real b1(1000), Ht 1(1000), xmul t

Do 10 i =3, ndist1l
if(dl1(i).ne.0.0)then
xmul t=di 1(i-21)/dl 1(i)
di 1(i)=dul(i-1)-xmult*di1l(i)
dul(i)=-xmul t*dul(i)
b1(i)=bl(i-1)-xmult*bl(i)
endi f
Cont i nue
Ht 1( ndi st 1) =b1(ndi st 1)/ di 1(ndi st 1)
Do 31 i=ndist1,2,-1
H 1(i)=(b1l(i)-dul(i)*H 1(i+1))/di1(i)
Conti nue
return
end
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APPENDIX B

OUTPUT FROM PHASE |11l MODEL
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Fhhkhkhkkkkhkhhkdhddhhhkrxdxhkhhkhddddrrrdrrxxrkhdddddrrrrxxx%x

* A subsurface nodel of one-dinensional *
* unconfined fl ow based on Darci an assunptions. *
* Non- hori zontal bottom *

dhkhkkkkkkhkhkhkhhhhhdhhkrdxhkhhkhdkdddrrrrrxxrkhhkddddrrrrxxx*x

Enter the spatial step size (m: 1.
Enter the length of the aquifer (m:86

Enter the tenporal step size (day):1
Enter the period of tine to sinulate over (day):50.

Enter the hydraulic conductivity (niday):.025
Enter the storage coefficient:.01

Enter the left-hand constant B.C. (m:96
Quess for the right-hand B.C. (m:126.

Enter the rainfall rate [in/day]:.02

SCLUTI ON: hydraul i c head [ nj
96. 00000
96. 46834
96. 92689
97. 37561
97. 81886
98. 25777
98. 69318
99. 12352
99. 55211
99. 97929
100. 4054
100. 8281
101. 2509
101. 6739
102. 0300
102. 4200
102. 9300
103. 3800
103. 7300
104. 1000
104. 6100
105. 1900
105. 8000
106. 3344
106. 7214
107. 0772
107. 4079
107. 7208
108. 0181
108. 3018
108. 5728
108. 8323
109. 0812
109. 3208
109. 5511
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1009.
110.
110.
110.
110.
111.
111.
111.
111.
112.
112.
112.
113.
113.
113.
114.
114.
114.
114.
114.
115.
115.
115.
115.
115.
115.
116.
116.
116.
116.
116.
116.
117.
117.
117.
117.
117.
117.
117.
117.
118.
118.
118.
118.
118.
118.
118.
118.
118.
118.
118.
118.

7733
0031
2417
4892
7466
0144
2929
5832
8863
2030
5339
8798
1961
4878
7595
0140
2528
4783
6913
8933
0852
2673
4407
6116
7797
9452
1077
2675
4242
5781
7287
8762
0204
1612
2984
4321
5618
6877
8096
9269
0397
1473
2498
3463
4366
5197
5951
6612
7167
7587
7835
7835
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APPENDIX C

SPLUS - FORTRAN 77 CODE
GRAPHICAL REPRESENTATION OF HISTORICAL AND SIMULATED DATA
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SPLUS DRIVER FUNCTION: “submodel()”

function(horiz = T, K, S, lbound, rbound, hole, sd, ed, percentr)

{ p r i nt (' TEAAEAAAAIEAXAAAAAAXAXAXAAAAXAAAAAAXAAAAAAXAAAAAAAAAAAAAXALAXT ')
print('* A subsurface model of one-dimensional >
print(""* unconfined flow based on Darcian assumptions. *')
(o] g 121 X Giaiaiaialaiaiaiaiaiaiaiaiaiaiaialaiaiaiole D)
print(""™) #

# Horizontal/non-horizontal conditions
if(horiz == T) {

dxx <- 1
L <- 10

else {

T
K <- a
S <- a

n <- (L/dxx) + 1
B <- rep(0, n)

aquifer <- "einfo2"

aquif <- scan(paste(c("/home/rsl2/jfisher/Modelld/", aquifer),
collapse = "), what = list(distance = 0, base = O,
surface = 0), flush = T)

aquif <- as.data.frame(aquif)

B <- aquif$base

surf <- aquif$surface

dxx <- aquif$distance[2] - aquif$distance[1]

L <- max(aquif$distance) - 1

s.numeric(K)
s.numeric(S) #

# Boundary Conditions

Ibound
rbound

<- as.numeric(lbound)
<- as.numeric(rbound) #

# Piezometric hole to be observed

piez <
filena

- dist2piez(hole)
me <- paste(c(‘'subsk2", hole), collapse = """)#

# Spatial and temporal intormation

dtt <-
stime
etime
ms <-
ds <-
ys <-
sdate
me <-
de <-
ye <-
edate
sd <-
ed <-
period

1
<-0
<- 2400
as.numeric(substring(sd, 1, 2))
as.numeric(substring(sd, 4, 5))
as.numeric(substring(sd, 7, 8)) + 1900
<- julian(ms, ds, ys, origin = c(12, 31, 1983)) - 100
as.numeric(substring(ed, 1, 2))
as.numeric(substring(ed, 4, 5))
as.numeric(substring(ed, 7, 8)) + 1900
<- julian(me, de, ye, origin = c(12, 31, 1983))
dates(sd)
dates(ed)

<- as.numeric(edate - sdate) + 1 #

# Rainfall Rate

days <
norain
subfral
comb <

- c(rain$cd[1]:rain$cd[length(rain$cd)])

<- c(rep(0, length(days)))
me <- as.data.frame(list(days = days, norain = norain))
- merge(subframe, rain, by = 1, all.x = T)
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comb$precip[comb$precip == "NA"] <- c(rep(0, length(comb$precip[comb$
precip == "NA"])))

rain <- comb[, c('days'", "precip')]

segm <- seq(along = rain$days)[rain$days > (sdate - 1) & rain$days < (
edate + 1)]

minsegm <- min(segm)

maxsegm <- max(segm)

rain <- rain[minsegm:maxsegm, ]

percentr <- percentr/100

R <- rain$precip * percentr #
# Download historical piezometric hole information
hist <-
scan(paste(c('/userl5/water/data/subsurface/er/analysis/recon/",
filename), collapse = "), what = list(Day = 0, Time = 0, Elev
= 0, Code = 0), flush = T) #

# Run numerical fortran model
span <- dates(sdate:edate, origin = c(12, 31, 1983)) #
model <- list(day = span, head = rep(0, length(span)))
model <- list(day = span, head = rep(0, 200))
model$head <- stepplus.fortran(dxx, L, dtt, period, K, S, lbound,
rbound, piez, R, B, surf)
model$head <- model$head[101:length(span)]
model$day <- span #
# Graph boundaries

ymin <- 999
ymax <- -999
Irain <- 666
hrain <- -666 #

# Graphics window set up

if(is.null(dev.list()))
openlook()

par(mfrow = c(1, 1), mar = c(4, 5, 3, 2))

colors <- xgetrgb('lines™)

background <- xgetrgb("'background™)

images <- xgetrgb('images’™)

ps.options.send(colors = colors, background = background, image.colors
= images) #

#
sdate <- format(sd)
edate <- format(ed)#
#
top <-1
mid <- 0.2
bot <- 0 #

# Graph everything up
X <- subdump2(hist, filename, sdate, stime, edate, etime, ymin, ymax,
top, mid, bot, lrain, hrain, model, rain)
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SPLUS FUNCTION: “stepplus.fortran()”

function(dxx, L, dtt, period, K, S, lbound, rbound, piez, R, B, surf)

# Calls fortran function for piez information
if(lis.loaded(Fortran.symbol (*"_stepplus_"))) dyn.load(
""/userl5/water/data/subsurface/er/analysis/stepplus.o™)
nt <- 200
result <- numeric(nt)
-Fortran(*'stepplus",
as.double(result),
as.double(dxx),
as.double(L),
as.double(dtt),
as.double(period),
as.double(K),
as.double(S),
as.double(lbound),
as.double(rbound),
as.integer(piez),
as.double(R),
as.double(B)
as.double(surf))[[111
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FORTRAN77 SUBROUTINE: *“stepplus.f”

subroutine
stepplus(result,dxx,L,dtt,period,K,S, Ibound, rbound,piez,R,B,surf)
C
C Unconfined subsurface flow, non-horizontal bottom with constant boundary
C conditions. Designed to link with Splus.
C

integer i,j,n,nt,piez

double precision lbound,rbound,BL,BR,dxx,dX,dT,dtt,K,L

double precision period,S,node,ntime

double precision arrc(200),arrl(200),arrr(200),bound(200),half(200)
double precision new(200),01d(200),xx(200)

double precision R(200),B(200)

double precision result(200),surf(200)

node=L/dxx
n=INT(node)
ntime=period/dtt
nt=INT(ntime)

Initial Conditions

OO0

xx(1)=1bound
xx(n+1)=rbound
Do 10 i=2,n
xx(1)=(((rbound-1bound)/L)*i1)+Ibound
0 Continue

Account for initial result
result(1l)=xx(piez)

Transformations/Initializing array”s

eXeXe] O0O0OkrR

Do 20 i=1,n+1
old(1)=xx(i)/L
half(i)=1.
B(i1)=B(i)/L
surf(i)=surf(i)/L

20 Continue

BL=old(1)
BR=old(n+1)
half(1)=BL

hal f(n+1)=BR
dX=dxx/L
dT=(K*dtt) 7/ (S*L)

Do 33 j=1,nt+1
R()=(R{)/39.37)/K
33 Continue
C
C Start temporal loop
C
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Do 30 j=2,nt+1
Start spatial loop

Do 40 i1=2,n

OO0 eXeXe]

Devlop PREDICTOR tridiagonal

IT (i.EQ.2) then
arrl(i)=0.0
arrc(i)=-1.*(2 + (@2*dx**2)/((old(i)-B(i))*dT))
arrr(i)=1.0
bound(1)=((-2.*(dX**2)*old(1))/(dT*(old(i)-B(i))))
+ (((old(i)-old(i-1))/old(i)-B(i))))
* (old(i-1)-old(®)+B(1)-B(i-1))
+ ((-1.*(@dX**2)*R(())/(old(i)-B(i))) - BL
Elseif (i.EQ.n) then
arrl(i)=1.0
arrc(i)=1. + (-1.*(2 + @*dx**2)/((old(1)-B(1))*dT)))
arrr(i)=0.0
bound(1)=((-2.*(dX**2)*old(1))/(dT*(old(i)-B(i))))
+ (((old(i)-old(i-1))/old(i)-B(i))))
* (old(i-1)-old(®)+B(1)-B(i-1))
. + ((-1.*@dX**2)*R(G))/(old(i)-B(i)))
se

arrl(i)=1.0
arrc(i)=-1.*(2 + (@2*dx**2)/((old(i)-B(i))*dT))
arrr(i)=1.0
bound(1)=((-2.*(dX**2)*old(i1))/(dT*(old(i)-B(i))))
+ (((old(i)-old(i-1))/old(i)-B(i))))
* (old(i-1)-old(®)+B(1)-B(i-1))
+ ((-1.*@dX**2)*R(G))/(old(i)-B(i)))

AWN

AWN

AWN

Endif
0 Continue
Call tridiagnal solver

Call TRIDIAG (n,arrl,arrc,arrr,bound,half)

@] O0OOLrO

half(1)=BL
hal f(n+1)=half(n)

Start spatial loop again.

Do 41 i=2,n

[eXeX®] [eXeX®]

Develop CORRECTOR tridiagonal

IT (i.EQ.2) then
arrl(i)=0.0
arrc(i)=-1.*2 + @2*dx**2)/((half(i)-B(i))*dT))
arrr(i)=1.0
bound(i)=((-2.*(dX**2)*old(1))/((hal T(i)-B(i))*dT))
2 + (@.*Chalf(i)-half(i-1)))/halT(i)-B(i)))
3 * (-1.*half(i)+half(i-1)+B(i)-B(i-1))
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4 - (. *@dX**2)*R())/ (halT(i)-B(1)))

5 - (old(i+1)-2.*old(i)+old(i-1)) - BL
Elseif (i.EQ.n) then
arrl(i)=1.0
arrc(i)=1. + (-1.*@2 + @*dX**2)/((half(i)-B(i))*dT)))
arrr(i)=0.0

bound (i)= (( —2.*%(dX**2)*old(i))/((hal F(i)-B(i))*dT))
+ (2.*(halF(i)-halF(i-1)))/(half(i)-B(i)))
(-1.*hal F(1)+hal F(i-1)+B(i)-B(i-1))
(2-*(dX**2)*R(3))/ (hal F(i)-B(i)))
(-1.*old(i)+old(i-1))

1 %+

AaArhWN

Else
arrl(i)=1.0
arrc(i)=-1.*(2 + (@2*dx**2)/((half(i)-B(i))*dT))
arrr(i)=1.0
bound(i)=((-2.*(dX**2)*old(i))/((hal T (i)-B(i))*dT))
(@.*(half(i)-half(i-1)))/(half(i)-B(i1)))
(-1.*half(i)+half(i-1)+B(i)-B(i-1))
(@.*@x**2)*R(J))/ (half(i)-B(i)))
(old(i+1)-2_*old(i)+old(i-1))

* +

arwWN
I

Endif

=

Continue
Call tridiagnal solver
Call TRIDIAG (n,arrl,arrc,arrr,bound,new)

Save the peiz. heads from t into an old() array

OO0 O0OOr~O

Do 35 i=2,n
if(new(i).LT.B(i)) then
old(i)=B(i)+0.00000001
elseif(new(i).GT.surf(i)) then
old(i)=surf(i)
else
old(i)=new(i)
endif
35 Continue
old(1)=BL
old(n+1)=old(n)
result(j)=old(piez)*L

C
30 continue
C
return
end
C
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B R

10

31

B R T e

subroutine TRIDIAG (ndistl,dl1,dil,dul,bl,Htl)
implicit none

integer i,ndistl

double precision dI11(200),di1(200),dul(200)
double precision b1(200),Ht1(200),xmult

Do 10 i=3,ndistl
if(dl1(i).ne.0.0)then
xmult=dil(i-1)/dI1(i)
dil(i)=dul(i-1)-xmult*dil(i)
dul(i)=-xmult*dul(i)
b1(1)=b1(i-1)-xmult*bl(i)
endif
Continue
Htl(ndistl)=bl(ndistl)/dil(ndistl)
Do 31 i=ndistl,2,-1
Ht1()=(b1(1)-dul()*Ht1(i+1))/dil(i)
Continue
return
end

60

R R R



SPLUS FUNCTION: “axis.time2()”

function(xdump, filename, sdate, stime, edate, etime, ymin, ymax, top, mid,
bot,

Irain, hrain, model, rain, ...)
{
# ""subdump™ is a plotting function which is called upon by "multisub™.
#
# Parameters:
# xdump = a list object containing subsurface information
# filename = the filename which was origionally scaned in "multisub”
# sdate = start date, character string (##/##/##)
# stime = start time, numeric (#)
# edate = end time date, character string (#/##/##)
# etime = end time, numeric (#)
# ylimit = logical, if true the user determines the y-axis limits
# flag = logical, if true precipitation is plotted
# top,mid,bot = format parameters used by subplot()
#

X <- xdump

y <- Filename

sprint <- sdate
eprint <- edate

stp <- zfill(stime, 4)
etp <- zfill(etime, 4)

stprint <- paste(c(substring(stp, 1, 2), ":", substring(stp, 3, 4)),
collapse = ")

etprint <- paste(c(substring(etp, 1, 2), ":", substring(etp, 3, 4)),
collapse = ")

syear <- as.numeric(substring(sdate, first
eyear <- as.numeric(substring(edate, first
file <- substring(y, first = 7, last = 10)
year <- substring(y, first = 11, last = 12)
if(top == 1) {

title <- paste("PIEZOMETER HOLE **, file)

7, last = 8))
7, last = 8))

else title <- "

ms <- as.numeric(substring(sdate, 1, 2))

ds <- as.numeric(substring(sdate, 4, 5))

ys <- as.numeric(substring(sdate, 7, 8)) + 1900

sd <- julian(ms, ds, ys, origin = c(12, 31, 1983)) +
mt2msm(stime)/1440

me <- as.numeric(substring(edate, 1, 2))

de <- as.numeric(substring(edate, 4, 5))

ye <- as.numeric(substring(edate, 7, 8)) + 1900

ed <- julian(rme, de, ye, origin = c(12, 31, 1983)) +

mt2msm(etime)/1440
#
# Establish base
if(file == "r1p2™) {
L <- 1.37
E <- 102.38
Yo
if(file == "r2p2") {
L <- 3.6
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E <- 105.13

3

if(File == "r3pl™) {
L <- 3.71
E <- 107.94

3

if(File == "r3p2™) {
L <- 6.4
E <- 107.97

3

if(File == "r4pl™) {
L <-1.79
E <- 110.81

}

if(File == "r4p2™) {
L <- 8.39
E <- 110.7

Yo

if(File == "r5p2™) {
L <- 5.72
E <- 114.51

}

if(File == "r6p2™) {
L <- 7.77
E <- 117.41

3

if(File == "r6p3™) {
L <- 6.39
E <- 117.39

}

bottom <- E - L
ystuff <- c(bottom, bottom)
xstuff <- c(sd, ed)#
# Convert Time list from min to days and put into a seperate array
wholedate <- dates(x$Day, origin = c(12, 31, 1983))
comb <- wholedate + (mt2msm(x$Time)/1440)
sdate <- dates(sdate)
edate <- dates(edate)
ndays <- as.numeric(edate - sdate)
Days <- x$Day
x$Day <- x$Day + (mt2msm(x$Time)/1440)
seg <- seq(along = x$Day)[x$Day > sd & x$Day < ed]
minseg <- min(seqQ)
maxseg <- max(seg) #
# Add the newly formed array to the x list
X <- append(x, list(Sum = comb), after = 2) #
# Convert the "x" list into a data.frame
X <- as.data.frame(x)
X <- X[minseg:maxseg, ] #
# Y-axis set if limits are not predetermined
ymin <- min(min(x$Elev), min(model$head))
ymax <- max(max(x$Elev), max(model$head))
subplot(x = c(0, 1), y = c(mid, top), fun = {
plot(x$Day, x$Elev, type = "n", xlab = "', ylab = "', main
title, xlim = c(sd, ed), ylim = c(ymin, ymax), axes

---)

F’
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axis(2, las = 2, mgp = c(2.2, 0.4, 0), cex = 0.5)

lines(model$day, model$head, type = "I, Ity = 3, co

mtext(paste(''BASE AT, bottom, "m '), side = 3, lin
cex = 0.4, adj = 1)

mtext("'Water Elev. (m)", side = 2, line = 2.5, cex = 0.5)

if(top == 1) {

5)

1
e

-0.6,

mtext(date(), side = 3, adj = 1, line = 0.2, cex = 0.5)

}
mtext(paste("'START =", stprint, "on", sprint), side = 3, adj
0, line = 0.5, cex = 0.4)

mtext(paste("'END =", etprint, "on", eprint), side = 3, adj

= 0, line = 0.1, cex = 0.4) #

# Fill in gaps in data

diffs <- diff(x$Sum)
startgaps <- seq(along = diffs)[diffs > 2]
starts <- 1 + c(0, startgaps)
ends <- c(startgaps, length(comb))
for(i in seq(along = starts)) {
series <- starts[i]:ends[i]
xseries <- x$Day[series]
yseries <- x$Elev[series]
cseries <- x%$Code[series]

lines(xseries[cseries = 3], yseries|[cseries 1= 3], co

# Indicate manual measurements

# Box graph

points(x$Day[x$Code == 3], x$Elev[x$Code == 3], pch = 3, cex
0.5, col = 2) #

box() #

# Add a legend

by

print("'Click to place upper-left corner of legend™)

legend(locator(l), c('tracer’, "observed", "model'), marks =
, 3, -1), mkh = 0.06, Ity = c(1, -1, 3), col = c(4, 2,
5), background = -999999)
) _
subplot(x = c(0, 1), y = c(bot, mid), fun = {
if(hrain == -666) {
plot(rain$days, rain$precip, axes = F, xlab = """, ylab
="', type = "n", xlim = c(sd, ed))
else {
plot(rain$days, rain$precip, axes = F, xlab = """, ylab

# Recontruct

=", type = "n", xlim = c(sd, ed), ylim = c(
Irain, hrain))

mtext('Precip. (in)", side = 2, line = 2.5, cex = 0.5)

c(

segments(rain$days, rep(0, length(rain$days)), rain$days, rain$

precip, col = 5) #
the x-axis
if(ndays < 61)
axis.time2(sdate, edate)
else axis.time3(sdate, edate, ndays, syear, eyear, flag)
axis(2, las = 2, mgp = c(2.2, 0.4, 0), cex = 0.5)
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box()
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