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ABSTRACT 

 
PEAKFLOW PREDICTION USING AN ANTECEDENT PRECIPITATION INDEX 

IN SMALL FORESTED WATERSHEDS OF THE NORTHERN CALIFORNIA 
COAST RANGE 

 
Gregg Bousfield 

 
 

 The vast majority of small watersheds in Northwest California lack stream gage 

information.  Understanding the high flow behavior of these watersheds is crucial for 

guiding resource managers in project planning.  The purpose of this thesis was to develop 

a predictive relationship between precipitation and peakflow of streams draining small 

forested watersheds of the Northern California Coast Range.  An antecedent precipitation 

index approach was developed for this purpose.  

 The five selected watersheds are covered by coastal coniferous forests with 

drainage areas ranging from 0.4 to 34 km2.  Streamflow and precipitation data from the 

South Fork of Caspar Creek was used to create the calibration model.  Data from the 

North Fork of Caspar Creek, Hennington Creek, Little Lost Man Creek, and Freshwater 

Creek were used for independent model testing.   

 The calibration linear regression model, predicting peakflow as a function of peak 

antecedent precipitation index, resulted in a r2 of 0.83 and a residual standard error of 

1.20 L s-1 ha-1.  When peakflow was predicted, using precipitation data from test 

watersheds, the results were fair to poor with average absolute prediction errors ranging 

from 28.6 to 66.3 percent.  When the ten largest peakflows were predicted separately, the 

average absolute prediction errors were significantly lower at 10.2 to 44.9 percent.  The 
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model was positively biased at all test watersheds except Freshwater Creek.  The root 

mean square error was within 15 percent of the calibration residual standard error at all 

test watersheds except Little Lost Man Creek. 

 The variability in prediction accuracy could be explained by changing unit-

discharge relationships, heterogeneous lithologies, different cumulative land management 

effects, and spatial variation in precipitation intensity.  Prediction errors were the greatest 

for the smallest peakflows, which may be due to greater variation in interception rates 

during small rainfall events.  The antecedent precipitation index approach outlined in this 

study is best suited for predicting larger rather than smaller peakflow events that may be 

influenced more by factors other than short-term rainfall history.   
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INTRODUCTION 
 
 

The prediction of streamflow in response to precipitation is a recurring theme in 

watershed management.  Methodologies used to create rainfall-runoff models differ in 

both complexity and data requirements.  Modeling strategies range from physically based 

to empirical.  Physically based models use theoretical equations to simulate all runoff 

generation processes.  Empirical models rely on statistical relationships between 

precipitation inputs and streamflow outputs.  Most rainfall-runoff models are not purely 

physically based or empirical but lie somewhere in-between (Brooks et al. 1997). 

 Coefficients are required to adjust equations found in physical models due to the 

stochastic nature of hydrologic processes (Haan 2002).  The majority of coefficients are 

derived using statistical techniques from experimental lab data.  For example, infiltration 

rate coefficients are developed for different soil types by measuring dye wetting front 

movement rates on soil blocks in a lab.  Even cultivated soils will show extreme 

variability in infiltration rates across the wetting front (Beven 2001).  For these reasons, 

physically based models often have high costs and computational demands. 

Empirical or black-box models rely on statistical relationships with little regard to 

the inherent physical processes.  Black-box models require recalibration when applied to 

different climatic and geologic environments since they are strongly influenced by data.  

Black-box models are good for re-sizing stream crossing culverts on vast parcels of 

Federal lands where little data exists and economic incentives are low (Piehl et al. 1988, 

Cafferata et al. 2004).  Simplicity and low cost are the strengths of black-box models.

  1
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Rainfall-runoff modeling remains an important tool in watershed management, 

although there continues to be a lack of simple modeling approaches to estimate 

peakflows in small forested catchments.  Peakflow prediction in these watersheds is 

crucial for designing bridges, culverts, or channel habitat restoration structures.  

Unfortunately, natural resource practitioners may only have precipitation data available.  

Using an antecedent precipitation index (API) as the key variable for streamflow 

prediction has shown promise in environments with low data availability (Fedora 1987, 

Beschta 1990). 

  API was originally conceived to represent current soil moisture conditions in 

models predicting storm volume (Betson et al 1969, Kohler and Linsley 1951, Lee and 

Bray 1969, Sittner et al 1969).  The universal form of an API equation is as follows: 

APIt = APIt-1 C + PΔt     (1) 

where APIt is API at time t, PΔt is the precipitation occurring between times t-1 and t, and 

C is the recession coefficient.  The theory of API is that earlier precipitation should have 

less influence on present streamflow response than recent precipitation.  The recession 

coefficient represents the “memory” of a particular watershed by decaying the effect of 

accumulated rainfall at each time step.      

 A long-term API reflects seasonal moisture conditions while a short-term API 

reflects the most recent rainfall intensity governing peakflow response.  The 

determination of the recession coefficient dictates whether a particular API decays 

rapidly or slowly.  Besides a priori estimates, recession coefficients have been 

determined through optimization techniques (Moreda et al. 2006, Reid and Lewis 2007) 
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and physical parameters (Beschta 1990, Fedora 1987, Smakhtin and Masse 2000, Ziemer 

and Albright 1987).       

 Fedora (1987) developed an API methodology to predict storm hydrographs in 

small forested catchments of the Oregon Coast Range.  His API was assumed to decay at 

the average rate of storm hydrograph recession.  The relatively small watersheds used in 

the study had steep recession limbs resulting in a short-term API.  Fedora’s method 

resulted in average absolute peakflow and storm volume errors of 14.8 and 14.2 percent, 

respectively. 

  Beschta (1990) tested Fedora’s methodology in tropical environments using data 

from a small catchment and a large river basin.  Peakflow simulation of the four largest 

storms from the small catchment resulted in an average absolute error of 14 percent 

compared to 15.4 percent using a physically based model (Shade 1984).  Peak stage of 

the three largest flood events was predicted with an average absolute error of 14.8 

percent.  Fedora’s method may be widely applicable when the model has been locally re-

calibrated.  However, Beschta's study is the only published independent test of the 

methodology. 

An API model was recently developed to detect changes in peakflows following 

experimental clearcut harvesting in the North Fork of Caspar Creek (Reid and Lewis 

2007).  Three different API components were used in a non-linear model (r2 = 0.84) 

predicting daily peakflow.  The components were assumed to represent quick, subsurface, 

and groundwater flow.  Each component had different recession coefficients derived 

through optimization with quickflow having the fastest decay and groundwater flow the 
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slowest.  When compared with Fedora (1987) and Beschta (1990), the API approach 

developed by Reid and Lewis (2007) was relatively complex.     

 The purpose of this study was to develop a simple API approach for modeling 

peakflow in small forested watersheds located on the Humboldt and Mendocino County 

Coasts of California.  The recession coefficient used in this study was derived following 

the methodology developed by Fedora (1987).  The API model created in this study was 

solely for peakflow prediction, unlike Fedora’s (1987) method of simulating continuous 

hydrographs for both peakflow and stormflow volume prediction.  The research questions 

were as follows: 

1. Can streamflow and precipitation data from the South Fork of Caspar Creek 

consistently and accurately predict peakflow as a linear function of peak 

API? 

2. Will an antecedent flow rate threshold improve model precision and 

 accuracy? 

3. Can the model consistently and accurately predict peakflow elsewhere in the 

 Northern  California Coast Range? 

4. Does the model predict larger peakflows more accurately than smaller 

 peakflows?



 

MATERIALS AND METHODS 
 
 

Data Sources 
 
 

 The following criteria were used to select watersheds for API model 

development:  forested watershed within 25 km of the Pacific Ocean, rain-dominated, 

drainage area less than 50 km2, rain gage located within 5 km of the watershed centroid, 

gaging stations maintained and calibrated on a regular basis, streamflow and precipitation 

data resolution of one hour or finer, and five or more years of concurrent streamflow and 

precipitation data. 

 The distance from the Pacific Ocean was important to keep the analysis focused 

on coastal watersheds.  Rain-dominated watersheds were sought to minimize the 

influence of snowmelt on streamflow generation.  Small watersheds were necessary to 

study systems with less groundwater and channel routing influences (Gomi et al. 2002).  

Precipitation gages near the watershed centroid should better estimate average rainfall for 

the entire watershed.  Poor stage-discharge relationships can have an error of 20 percent 

or more, which makes accurate gages a necessity (Rantz 1982).  One hour or finer 

precipitation data is required since runoff in small watersheds responds rapidly to rainfall 

inputs (Beven 2001). 

 Gaging stations on the North and South Forks of Caspar Creek, Little Lost Man 

Creek, and Freshwater Creek met the criteria.  There are other gaged watersheds in the 

region, but they lack a nearby rain gage or the data are only available at a daily time step.  

The South Fork of Caspar Creek was chosen as the calibration watershed due to its

 5  
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moderate size and accurate data set.  There was also a lack of forest harvesting at the 

South Fork of Caspar Creek during the period of concurrent streamflow and precipitation 

data.  Table 1 compares basic gaging station characteristics. 

   All watersheds are dominated by mixed redwood (Sequoia sempervirens) and 

Douglas-fir (Pseudotsuga menziesii) forest.  Soils are derived from the Franciscan 

geologic formation.  The Franciscan formation contains a variety of lithologies, creating 

heterogeneous soils across the landscape (Woiska 1981).  The Freshwater Creek 

watershed also contains the Yager and Wildcat formations, which are more consolidated 

than the Franciscan (Glass 2003).  Figure 1 shows the relative location of the selected 

watersheds.  Individual watershed maps are located in Appendix A through C. 

 
Data Quality 
 
 
 The stream gaging stations have similar equipment, but different control 

structures.  Unlike the other selected watersheds, Caspar Creek Experimental Watershed 

uses flumes and weirs for artificial control.  Artificial control structures have empirically 

derived stage-discharge relationships that are relatively accurate (5 to 10 percent) and 

stable.  The Freshwater Creek and Little Lost Man Creek gage sites are natural channels 

that aggrade and degrade though time. 

 Gage sites without artificial control require routine stage-discharge re-calibration. 

Randy Klein, the primary hydrologist at Redwood National Park, does not have 

confidence in peakflows above 3.0 L s-1 ha-1 at the Little Lost Man Creek gage site after 

the 1997 water year due to a lack of rating curve measurements and changes in control 
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Table 1  Gaging station characteristics. 

 Calibration 
Watershed Test Watersheds 

 
South Fork 
of Caspar 

Creek 
Hennington

North Fork 
of Caspar 

Creek 

Freshwater 
Creek 

Little Lost 
Man Creek

Distance 
from Pacific 
Ocean, km 

6 7 6 15 5 

Elevation 
Range, m 50 - 330 130 - 320 85 -320 25 - 850 60 - 650 

Drainage 
Area, km2 4.2 0.4 4.7 34 9.1 

Rain Gage to 
Watershed 
Centroid,      

km 

2 0.8* / 2** 1.5* / 1.5** 5 3 

Years of 
Concurrent 
Streamflow 

and 
Precipitation  

18 18 18 6 5 

  * North Fork Caspar Creek (N408) tipping bucket rain gage.   
  ** North Fork Caspar Creek (N620) tipping bucket rain gage. 
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Figure 1  Watershed location map.  The Hennington gage is a sub-watershed within        

the North Fork of Caspar Creek. 
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section geometry (Klein 2007, personal communication).  Therefore, streamflow and 

precipitation data recorded at the Little Lost Man Creek gage site after 1997 was not used 

in this study. 

 Pressure transducers and tipping bucket rain gages have inherent error tolerances.  

All of the selected watersheds use similar pressure transducers to measure stage with an 

accuracy of 0.003 meters.  Campbell Scientific tipping bucket gages are used at Little 

Lost Man Creek, Freshwater Creek, and the South Fork of Caspar Creek.  The North Fork 

of Caspar Creek uses a Sierra Misco tipping bucket gage.  Rain gage errors are five 

percent for intensities less than 8.0 cm hr-1 (Lewis 2007, personal communication). 

 
API Model Development 

 
 

 The following steps were taken to develop the API model:  frequency analysis, 

hydrograph recession analysis, API calculation, storm event analysis, and least squares 

regression modeling.  Frequency analysis was undertaken to select events with peakflows 

whose return periods exceed one-year.  The analysis used the annual maximum 

peakflows recorded at the South Fork of Caspar Creek from 1964 to 2004.  The one-year 

peakflow (Q1) was determined using the Log Pearson III method (Haan 2002).  Selective 

harvesting that occurred during this period did not have a significant effect on annual 

maximum peakflows (Ziemer 1998).   

 Corresponding discharge hydrographs and rainfall hyetographs from the South 

Fork of Caspar Creek (1987 to 2004) were analyzed for their possible use in recession 

analysis.  Recession analysis refers to the systematic observation of hydrograph recession 
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limbs in order to determine the average rate of discharge decline (Sujona et al. 2004).  

This analysis used recession limbs of peakflows exceeding Q1 with data of fair or better 

quality.  Hydrographs were eliminated if additional impulses of rainfall greater than 0.1 

cm hr-1 or secondary peakflows occurred during the recession limb.  These measures 

were taken to select recession limbs that best represent the recession characteristics of the 

South Fork of Caspar Creek to discrete rainfall events.  

 Recession limbs were defined as starting at the peak discharge and ending where 

Hewlett and Hibbert's (1967) 0.0055 L s-1 ha-1 baseflow separation line intersected the 

falling limb.  Figure 2 provides an example of the recession limb selection process.  

Discharge from the selected recession limbs was plotted against discharge lagged by one 

hour.  Following the methodology of Fedora (1987), the slope of the linear regression line 

was assigned to the recession coefficient in Equation 1. 

 Hourly time series’ of API’s were calculated using data from the S620 rain gage 

in South Fork of Caspar Creek (Equation 1).  Calculations ran throughout the water year, 

since the rapidly decaying API of a prior event should have an insignificant influence 

after one or two days.  For example, after rainfall ceases a recession coefficient of 0.90 

will decay API to less than 10 percent of its peak value after 22 hours. 

Matching hourly time series’ of streamflows and API’s from the South Fork of 

Caspar Creek, (1987 to 2004) were closely investigated.  The following storm event 

attributes were investigated for peakflows exceeding Q1:  peakflow discharge rate, 

antecedent flow rate, peak API, data quality codes (Figure 3).  Successive peakflows 

occurring on the same hydrograph had to be greater than 24 hours apart and recede by    
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Figure 2  An example of a recession limb from a storm hydrograph recorded at the South 

Fork of Caspar Creek.  Recession limbs began at the peakflow discharge and ended at 
the point where Hewlett and Hibbert’s (1967) baseflow separation line intersects the 
hydrograph. 
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Figure 3  Hourly time series of discharge and API were plotted together to select        
      corresponding peak API (APIp) values and peakflows exceeding Q1.  The previous 

peaks in the hydrograph were not recorded since they did not recede to less than half 
of their peak discharge and occurred within 24 hours of the largest peakflow. 
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50 percent of their peak discharge.  Peakflows must rise to double the antecedent flow 

rate when they occur during hydrograph recession.  These restrictions ensure relatively 

independent peak API values.   

Data quality codes for both discharge and rainfall were investigated for each 

event.  Storm events were excluded from this study when the codes indicated poor 

calibration, large gaps, or data reconstruction of either rainfall or discharge.  Data quality 

codes for discharge were available only for Caspar Creek and Freshwater Creek.  Caspar 

Creek was the only watershed with rain gage quality codes. 

 Fedora’s (1987) API method revealed a different relationship for storm events 

occurring after extended periods without rain.  It was thought that these “dry” events had 

a lower peakflow response due to a low water table and unsaturated soils.  In this study, 

these conditions were investigated by recording a given storm event’s antecedent flow 

rate.  Scatterplots of peakflow as a function of peak API were studied to set an antecedent 

flow rate threshold that separated “wet” versus “dry” events. 

 The goal of least squares regression was to create a simple model of peakflow as a 

function of peak API.  A data set must meet a set of assumptions in order to use least 

squares regression analysis for statistical inference.  Since a best fit relationship for 

peakflow predictions was the main goal of this study, these assumptions were not strictly 

necessary, but were explored nonetheless.  Outliers were first inspected using residual 

diagnostic techniques, since they can greatly influence the regression modeling results.  

Outliers could express missing independent variables or multiple populations (Haan 

2002).  Tests of normality ensured that the residuals were normally distributed. 
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 Autocorrelation was tested using the Durbin-Watson statistic (Hintze 2004). 

 
Independent Model Testing 

 
 

 API calculation and storm event analysis were repeated on the test watersheds.  

The one-year peakflow, hydrograph recession coefficient, and antecedent flow rate 

threshold were the same in the test and calibration watersheds.  This was necessary to test 

the method as if rain gages were the only source of data available at the test watersheds.  

All restrictions applied to the calibration data set were also applied to data sets from the 

test watersheds for consistent evaluation of model performance.      

 Bias, precision, and accuracy were used to measure model prediction 

performance.  Statistics used to calculate relative bias, precision, and accuracy were 

average prediction error, standard deviation of the prediction error, and average absolute 

prediction error, respectively (Walther and Moore 2005).  The prediction error for each 

observation was calculated using the following equation (Green and Stephenson 1986):   

E = (Qp - Qo / Qo) * 100      (2) 

where E is the prediction error, Qp is the predicted peakflow in L s-1 ha-1 and Qo is the 

observed peakflow in L s-1 ha-1.  The average and average absolute prediction error were    

calculated using the following equations (Green and Stephenson 1986): 

Em = ( ∑ E  ) / n   (3) 

Ea = ( ∑ | E | ) / n   (4) 

where Em is the average prediction error, Ea is the average absolute prediction error, and n 

is the sample size. 
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 An absolute measure of model accuracy compared the residual standard error 

(RSE) of the calibration model to the root mean square error (RMSE) of the predicted 

regression line.  The only difference between these two terms is that the sum of the 

squared residuals is divided by n-2 in the RSE compared to n in the RMSE.  The n-2 is 

used for the calibration model to account for the information used up in estimating the 

slope and intercept.  Model fit was evaluated using the r2 from the regression of observed 

versus predicted peakflows.  Model fit was also evaluated by testing whether the slope 

was significantly different from one and the intercept was significantly different from 

zero (95 percent confidence).



   

RESULTS 
 
 

API Model Development 
 

 
 Forty-one annual maximum peakflows were recorded for South Fork Casper 

Creek with a mean and standard deviation of 10.3 and 5.08 L s-1 ha-1, respectively.  The 

largest peakflow on record had a maximum discharge rate of 21.5 L s-1 ha-1.  All 

peakflows exceeding Q1 (2.0 L s-1 ha-1) were investigated for their use in hydrograph 

recession and storm event analysis. 

 Nineteen recession limbs over the 18 years of record (1987 to 2004) for South 

Fork of Casper Creek met the stated requirements for hydrograph recession analysis.  The 

associated peakflows had a mean and standard deviation of 6.35 and 5.13 L s-1 ha-1, 

respectively.  Segments exceeding 7.5 L s-1 ha-1 were removed from five recession limbs, 

since they accounted for 2.5 percent of the discharge observations.  This may be 

explained by an unusually rapid recession following the largest peakflows.  Peakflow 

generation with a greater proportion of saturation overland flow may explain the rapid 

recession.  A regression of discharge lagged by one-hour for 758 discharge observations 

from the 19 recession limbs is shown in Figure 4.  The slope of the linear regression line 

(0.91) was assigned as the API recession coefficient. 

 With the estimated recession coefficient of 0.91, API decayed by 90 percent in 26 

hours.  The time between peakflow events averaged 15 days, but varied from one to 135 

days.  Only one storm event occurred within 26 hours of a prior event.  Peak API would 

have been reduced by 14 percent if the API time series were reset to zero between these

 16  
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Figure 4  One-hour lag plot of hourly discharge from the South Fork of Caspar Creek. 
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two events.  All peak API’s were assumed to be independent since preceding 

observations had little to no influence on subsequent observations. 

  A data set of 71 storm events was initially analyzed.  A scatterplot of peakflow as 

a function of peak API had a r2 equal to 0.60 with a RSE of 2.13 L s-1 ha-1 (Figure 5).  A 

subset of peakflows, with antecedent flow rates below 0.1 L s-1 ha-1, was substantially 

smaller for a given peak API.  Therefore, an antecedent flow rate threshold was set to 

remove these 12 “dry” events from the original data set.  The remaining 59 events had an 

average peakflow of 5.67 L s-1 ha-1 and an average peak API of 3.14 cm (Table 2). 

 A visual inspection of peakflow as a function of peak API reveals a positive 

relationship.  Residual diagnostics indicated that the largest peakflow, which occurred on 

March 24, 1999, was an outlier (Appendix D through H).  Field notes on March 24, 1999 

indicate that the V-notch weir was submerged by 0.5 feet (Lewis 2007, personal 

communication).  Average event rainfall agreed to within 10 percent, and one-hour 

maximum rainfall agreed to within 15 percent at the three Caspar Creek tipping bucket 

gages. Yet the peakflow recorded at the North Fork of Caspar Creek had a 35 percent 

lower unit-area discharge rate than that of the South Fork.  The March 24 1999 event was 

removed due to this large deviation in peakflow coupled with the residual diagnostic 

results. 

 All residual tests indicated the assumptions of normality were reasonable  

(alpha = 0.05).  The Modified Levene test showed that the residual variance was not 

constant.  Least squares regression analysis was continued regardless of this failure since 

a best fit for peakflow prediction was the main goal of this study.  The Durbin-Watson   
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Figure 5  Scatterplot of the 71 selected events with the twelve “dry” events labeled.  

Storm events were considered “dry” when their antecedent flow rate was below  
0.1 L s-1 ha-1.  The largest event was recorded on March 24 1999. 
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Table 2  Summary statistics after twelve “dry” storms out of 71 selected events were 

removed.  Storm events were considered “dry” when their antecedent flow rate was 
below 0.1 L s-1 ha-1. 

Peakflow, Antecedent Flow 
Rate, L s-1 ha-1  APIp, cm 

L s-1 ha-1 

n Mean Standard 
Deviation 

Standard 
Deviation Mean Mean Standard 

Deviation 

59 5.67 3.56 0.54 0.46 3.14 1.02 
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test for autocorrelation confirmed that peak API values were independent of one another. 

All tests of regression assumptions are summarized in Appendix I.  Summary of the final 

storm event statistics are listed in Table 3. 

The regression model used to predict peakflow as a function of peak API is: 

Qp = -3.52 + 2.90 * (APIp)    (5) 
 

 
where Qp is predicted peakflow in L s-1 ha-1 and APIp is peak API in cm.  The r2 was 

equal to 0.83 with a RSE of 1.20 L s-1 ha-1.  The slope term was highly significant  

(p < 0.0001).  Figure 6 shows the least squares regression line along with the upper and 

lower 95 percent Working-Hotelling simultaneous confidence bands (Hintze 2004).  

These are the confidence bands for all possible values of peak API along the regression 

line.  Additional regression statistics are located in Appendix J.  The resulting model may 

only be applicable for peak API within a range of 1.71 to 5.25 cm.  Peak API must be 

greater than 1.21 cm since lower values will result in negative predicted peakflows. 

 
Independent Model Testing 

 
 

 The results of the API Calculation and Storm Event Analysis on the test 

watersheds are summarized in Table 4.  The North Fork of Caspar Creek had the most 

observations, while Freshwater Creek had the fewest.  The North Fork of Caspar Creek 

had the largest mean peakflow and peak API, while Freshwater Creek had the smallest.   

 Peakflow was initially predicted twice at the North Fork of Caspar Creek and  

Hennington since two rain gages were available.  The N408 tipping bucket rain gage was 
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Table 3  Summary statistics after the March 24, 1999 outlier was removed.  
Peakflow,           
L s-1 ha-1  Antecedent Flow 

Rate, L s-1 ha-1 APIp, cm 

n Mean Standard 
Deviation 

Standard 
Deviation Mean Standard 

Deviation Mean 

58 5.40 2.90 0.54 0.47 3.08 0.91 
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Figure 6  Linear regression line fitted to the 58 selected events along with the upper and 

lower 95 percent Working-Hotelling confidence bands (bold lines).   
 

 

 

 

 

 

 
 
 

   



   24

Table 4  Summary statistics for selected storm events from the test watersheds.  

  
Peakflow, Antecedent Flow 

Rate, APIp, 

L s-1 ha-1 L s-1 ha-1 cm 

Test 
Gaging 
Station 

n Mean Standard 
Deviation 

Standard 
Deviation 

Standard  
Deviation Mean Mean 

Hennington 39 5.09 2.72 1.22 1.01 3.24 0.98 

North Fork 
of Caspar 

Creek 
49 5.70 2.98 0.79 0.55 3.49 0.97 

Little Lost 
Man Creek 35 4.82 4.95 0.74 0.59 3.46 1.44 

Freshwater 
Creek 32 4.77 3.20 0.69 0.33 2.47 0.89 
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retained for analysis with Hennington since it produced the best results.  Similarly, the 

N620 tipping bucket rain gage was retained for analysis with the North Fork of Caspar 

Creek. 

 Figures 7 through 10 show the prediction error (Equation 2) for each storm event 

at the test watersheds.  All test watersheds showed a decrease in prediction error with 

increase in peakflow.  Unlike the other test watersheds, the majority of the peakflows 

were under predicted at Freshwater Creek.  Little Lost Man Creek had the largest over 

prediction with almost a third of the errors exceeding 100 percent.  Eighty percent of the 

prediction errors ranged from -50 to 50 percent at all test watersheds, except Little Lost 

Man Creek. 

 Bias, precision, and accuracy are summarized in Table 5.  The model was 

positively biased at all test watersheds except Freshwater Creek.  Little Lost Man Creek 

had the lowest precision at 54.2 percent compared to Hennington at 31.5 percent.  Little 

Lost Man Creek had the lowest accuracy at 66.3 percent compared to Hennington at 28.6 

percent. 

 Bias, precision, and accuracy for the ten largest peakflows are summarized in 

Table 6.  The model was positively biased for the ten largest peakflows at all test 

watersheds except Freshwater Creek.  Precision ranged from 12.7 percent at the North 

Fork of Caspar Creek to 42.8 percent at Little Lost Man Creek.  Accuracy ranged from 

10.2 percent at the North Fork of Caspar Creek to 44.9 percent at Little Lost Man Creek. 
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Figure 7 Model prediction errors at the Hennington test watershed show a decrease in 

variability as peakflows increase in magnitude.  
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Figure 8 Model prediction errors at the North Fork of Caspar Creek shows a decrease in 

variability as peakflows increase in magnitude.  
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Figure 9 Model prediction errors at Little Lost Man Creek show a decrease in variability 

as peak flows increase in magnitude. 
 
 

-100
-80
-60
-40
-20

0
20
40
60
80

100

0 2 4 6 8 10 12 14 16 18

Observed Peakflow (L s-1 ha-1)

Prediction 
Error 
(%)

 
Figure 10 Model prediction errors at Freshwater Creek show a decrease in variability as 

peakflows increase in magnitude.
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Table 5  Bias, precision and accuracy of predicted peakflows at the test watersheds.   
  Bias Precision Accuracy 

  E 
Ea 

Station n Average Standard 
Deviation 

    (%) 

Hennington 39 20.7 31.5 28.6 

North Fork 
of Caspar 

Creek 
49 24.5 35.1 29.0 

Little Lost 
Man Creek 35 62.4 54.2 66.3 

Freshwater 
Creek 32 -20.1 34.4 34.0 
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Table 6  Bias, precision and accuracy for the ten largest peakflows at the test watersheds. 
   Bias Precision Accuracy 

 Observed Peakflow E 
Ea Standard 

Deviation 
Standard 
Deviation Mean Average  

Station L s-1 ha-1 L s-1 ha-1 (%) 

Hennington 10.2 1.38 4.79 20.2 15.3 

North Fork 
of Caspar 

Creek 
10.5 1.57 3.11 12.7 10.2 

Little Lost 
Man Creek 9.80 7.30 35.5 42.8 44.9 

Freshwater 
Creek 8.50 3.45 -24.6 15.8 24.6 

 
 

 

 

 

 

 

 

 

 

 

  



   30

 Figure 11 through 14 show regressions of observed versus predicted peakflow at 

the test watersheds.  These contrast with Figures 7 through 10 by showing absolute rather 

than percentage error.  Most peaks were over predicted at the test watersheds except 

Freshwater Creek.  Only the two largest peakflows were under predicted at Little Lost 

Man Creek.  An exponential relationship was observed in Figure 13.  This suggests a 

non-linear relationship between peakflow and peak API at Little Lost Man Creek. 

 Table 7 lists the least squares regression statistics of the observed versus predicted 

from the test watersheds.  The slope terms were not different from zero and the intercept 

terms were not different from one (alpha = 0.05).  The North Fork of Caspar Creek had 

the strongest correlation (r2 = 0.82).  Hennington and the North Fork of Caspar Creek had 

the lowest RMSE at 1.27 and 1.26, respectively.  Little Lost Man Creek had the lowest r2 

and highest RMSE due to a non-linear relationship. 
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Figure 11  Observed versus predicted peakflow of the 39 events selected from 

Hennington.  The one to one line of perfect agreement is displayed to compare with 
the linear regression line. 

 
 
 
 
 
 
 
 

  



   32

0

2

4

6

8

10

12

14

16

Observed 
Peakflow

(L s-1 ha-1)

0 2 4 6 8 10 12 14 16

Predicted Peakflow (L s-1 ha-1)
 

Figure 12  Observed versus predicted peakflow of the 49 events selected from the North 
Fork Caspar Creek.  The one to one line of perfect agreement is displayed to compare 
with the linear regression line. 
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Figure 13  Observed versus predicted peakflow of the 35 events selected from Little Lost 
Man Creek.  The one to one line of perfect agreement is displayed to compare with 
the linear regression line.  
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Figure 14  Observed versus predicted peakflow of the 32 events selected from Freshwater 

Creek.  The one to one line of perfect agreement is displayed to compare with the 
linear regression line. 
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Table 7  Least squares regression statistics of the observed versus predicted peakflow 
from the test watersheds.  

r2 Station n Slope Intercept RMSE 

Hennington 39 0.85 0.13 0.78 1.27 

North Fork 
of Caspar 

Creek 
49 0.95 -0.58 0.82 1.26 

Little Lost 
Man Creek 35 1.04 -1.92 0.76 2.38 

Freshwater 
Creek 32 1.11 0.73 0.80 1.42 

       

  



   

DISCUSSION 
  
 
 A positive correlation exists between peakflow and peak API at the calibration 

watershed.  The intercept is negative making the model only valid for peak API’s above 

1.21 cm.  Variability in the relationship between peakflow and peak API was 

characterized by several measures.  The r2 value indicated that peak API explained 83 

percent of the variability in peakflow.  The residual standard error was 21 percent of the 

average peakflow.  Nineteen percent of the observations fell outside of the confidence 

bands.  Variability can be attributed to a simple linear regression model being used to 

predict complex non-linear rainfall-runoff processes.  These processes, which include 

rainfall intensity, interception, evapotranspiration, soil hydraulic conductivity, pipeflow, 

and local saturation overland flow, vary spatially and temporally over a watershed 

throughout a storm event (Beven 2001).    

 The relationship between peakflow and peak API showed that “dry” events with 

antecedent flow rates below 0.1 L s-1 ha-1 produced substantially smaller peakflows for a 

given peak API.  The calibration model had a 28 percent lower r2 and a 44 percent higher 

RSE prior to the removal of the twelve “dry” events.  The results are similar to those of 

Fedora (1987) in that a recession coefficient based on hydrograph recession analysis 

caused peak API to decay so quickly that long-term antecedent moisture conditions were 

not properly addressed. 

 The muted streamflow response with low antecedent flow was most likely due to 

soil moisture and shallow groundwater deficits occurring after prolonged periods of 
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drought.  Greater antecedent flow indicates higher soil moisture and an elevated water 

table, creating a larger saturation overland flow response to rain.  However, exploratory 

multiple regression analysis revealed that antecedent flow rate was not a reliable variable 

throughout the range of peakflows analyzed in this study.    

 Antecedent flow rate was not related to peakflow or peak API, but proved a 

reliable threshold indicator of catchment wetness.  Lynch and Corbett (1982) explored 

the relationship between antecedent flow rate, antecedent soil moisture and hydrograph 

parameters.  Antecedent soil moisture was a steep function of antecedent flow rate that 

flattened to a slope of zero above 0.05 L s-1 ha-1, which is relatively close to the threshold 

set in this study.  The small watersheds in this study, like those studied by Lynch and 

Corbett (1982), have relatively “flashy” and more ephemeral streamflow response than 

larger watersheds due to less groundwater interaction in holding and releasing flows.   

Both consistent under or over prediction at the test watersheds may be due to 

variability in unit-area discharge relationships.  Unit-area discharge had less variability in 

watersheds larger than 10 km2 in drainage area (Robinson et al. 1995).  Ziemer and Rice 

(1990) found that mean flow path had a significant positive association with lag-time and 

an insignificant negative association with unit-area discharge of progressively larger sub-

watersheds within the North Fork of Caspar Creek.  These results indicate that hillslope 

processes strongly control streamflow response in the North Fork of Caspar Creek.   

 Unlike the other test watersheds, the API model was negatively biased for 

Freshwater Creek.  One would expect the API model to be biased to over predict, instead 

of under predict at Freshwater Creek, since channel roughness and bank storage should 
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increase lag-time and flatten peakflow response in larger watersheds (Gomi et al. 2002). 

A combination of clearcut and selective harvesting from 1989 to 1999 removed roughly 

82 percent of the timber volume above the stream gage (Glass 2003).  Reid and Lewis 

(2007) indicated a 29 percent increase in rainfall that reaches the forest floor after 

clearcut timber harvesting.  The under prediction of peakflows at Freshwater Creek is 

most likely due to lower interception and evapotranspiration rates. 

 The consistent over prediction at the other three watersheds could be due to skid 

trails in the South Fork of Caspar Creek.  Soil compaction due to legacy skid trails could 

cause overland flow, which artificially extends the natural drainage system.  An overland 

flow component may not have been captured in this API methodology.  This 

phenomenon is less prominent in the North Fork of Caspar Creek since cable yarding 

produced less soil compaction when compared to selective tractor yarding (Ziemer 1998). 

 Fedora (1987) analyzed the largest annual events, which resulted in only six to 20 

events from his study watersheds.  Beschta’s (1990) test of Fedora’s methodology only 

looked at four peakflows and three flood events.  In contrast, my study looked at every 

peakflow exceeding Q1, which resulted in 32 to 58 events from the selected watersheds.  

Accuracy for peakflow prediction ranged from 10.4 to 30.4 percent in Fedora’s (1987) 

study and 14 to 14.8 percent in Beschta’s (1990) study compared to 28.6 to 66.3 percent 

in my study.  Higher variability was expected in my study because the data set represents 

peakflow response over a wider range of rainfall intensities, amounts, and antecedent soil 

moisture conditions.   
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 The API model predicted peakflows at Hennington better than the other test 

watersheds with 28.6 percent accuracy.  The North Fork of Caspar Creek was equally 

accurate at 29.0 percent.  Predicted peakflow at Freshwater Creek was 32 percent more 

accurate than at Little Lost Man Creek.  As expected, the RMSE for prediction in the test 

watersheds exceeded the calibration RSE.  Prediction at the North Fork of Caspar Creek 

(RMSE = 1.26 L s-1 ha-1) and Hennington (RMSE = 1.27 L s-1 ha-1) was only slightly less 

accurate than in the calibration watershed, South Fork of Caspar Creek (RSE =  

1.20 L s-1 ha-1).  Little Lost Man Creeks RMSE was 98 percent greater than the 

calibration RSE.  Freshwater Creek had a RMSE 18 percent greater than the calibration 

RSE, which was surprisingly better than Little Lost Man Creek. 

The regression of observed versus predicted peakflow at Little Lost Man Creek 

revealed a positive exponential transition from larger to smaller peaks.  This suggests that 

the linear relationship used in this study was not adequate for peakflow prediction at 

Little Lost Man Creek.  An exponential relationship between peakflow and peak API 

should increase the predictive capability at Little Lost Man Creek.  Although not 

explored in this study, an exponential transformation of peak API may be useful to 

increase prediction power in future applications of this methodology.   

 The South Fork of Caspar Creek may not truly represent the processes that control 

streamflow generation at the test watersheds.  Errors in peakflow prediction could be due 

to localized geologic and pedologic variability.  The South Fork of Caspar Creek may 

have greater connectivity in soil macropores and pipes, creating a faster response and 

generating larger peakflows.  Even though the watersheds have relatively similar 
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geology, heterogeneous lithology could restrict preferential flow paths.  The geological 

formations in the Oregon Coast Range watersheds used by Fedora (1987) may not have 

as much variability in localized lithology as in the Northern California Coast Range.  

 Rainfall variability over a given watershed is very hard to quantify unless a dense 

network of rain gages is present.  Rain gages are sparse throughout the Northern 

California Coast Range, although Caspar Creek Experimental Watershed is an exception.  

Rainfall intensity can vary significantly within one km (Singh 1997).  Individual storms 

could have errors in rainfall measurements up to 75 percent due to the effects of wind and 

location (Dingman 2002).  Due to orographic influences on rainfall amounts and 

intensities, rain gages misrepresent a watershed’s actual mean rainfall.  Erroneous rainfall 

data may have been used to calculate peak API at the other test watersheds, since only 

Caspar Creek had rain gage error codes.  

 The different gaging station control structures could have also influenced model 

performance.  Without artificial control, the location of a gaging station can greatly affect 

the accuracy and consistency of streamflow measurements.  None of the stream gages in 

this study met all of the criteria for optimal stream gage location (Rantz 1982).  It is very 

hard to find a location in these small watersheds where the stream course is straight for 

100 m upstream and downstream.  Stage data quality was not available to remove 

erroneous data at Little Lost Man Creek.   

 When the ten largest peakflows were analyzed separately, the API model had a 

higher accuracy of 10.2 to 44.9 percent.  The average accuracy of the predicted 

peakflows at the test watersheds was increased by 40 percent.  The test of the API 
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methodology, like the findings of Fedora (1987) and Beschta (1990), revealed that the 

largest peakflows on record had the lowest errors.  These are promising results for flood 

prediction since the largest peakflows in this study had return periods which ranged from 

a 4-year to a 10-year event. 

 Better prediction of these large events was most likely due to a simplification of 

physical processes once the soils are saturated and macropores reach their maximum flow 

rate (Ziemer and Lisle 1998).  This may also be explained by decreased variability of 

interception rates as peakflows increased in magnitude (Link et al. 2004, Pypker et al. 

2005, Reid and Lewis 2007).  Smaller events could have greater variability in the 

interactions between the processes that control streamflow generation.  These interactions 

were not addressed in this study.
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LIST OF VARIABLES AND ACRONYMS 
 
 
API = Antecedent precipitation index, cm 
 
APIp = Peak API, cm 
 
C = Recession coefficient, dimensionless 
 
E = Prediction error for each observation, (%) 
 
Ea = Average absolute prediction error, (%) 
 
Em = Average prediction error, (%) 
 
P∆t = Precipitation occurring between times t-1 and t, cm 
 
RMSE = Root mean square error, L s-1 ha-1 
 
RSE = Residual standard error, L s-1 ha-1 
 
Q1 = Peakflow with a return period of one-year equal to 2.0 L s-1 ha-1 

 
Qo = Observed peakflow, L s-1 ha-1 
 
Qp = Predicted peakflow, L s-1 ha-1 
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Appendix A.  South Fork of Caspar Creek, North Fork of Caspar Creek, and 
Hennington watershed boundaries with gage sites and rain gage locations
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Appendix B.  Little Lost Man Creek watershed boundary and gage site location. 
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Appendix C.  Freshwater Creek watershed boundary and gage site location. 
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Appendix D.  Outlier detection statistics from residual diagnostics before and after the  
March 24, 1999 event was removed.  The March 24, 1999 event failed all four tests.  
The three remaining observations passed the DFFITS and Cook’s D tests.  Two out of 
the three were considered high leverage outliers based on Rstudent and Hat Diagonal, 
the other failed the Rstudent test.  All statistics were calculated using NCSS (Hintze 
2004).  

 Initial Outlier Detection Statistics 

Cook's 
D*** 

Hat 
Diagonal**** APIp Residual Rstudent* DFFITS** 

4.13 -3.3886 -2.5746 -0.476 0.1016 0.0331 

6.72 3.8943 3.5637 2.1085 1.7944 0.2593 

Outlier Detection Statistics                                         
  

after March 24, 1999 event removal 

APIp Residual Rstudent DFFITS Cook's D Hat Diagonal 

5.05 2.7111 2.3672 0.8255 0.3109 0.1084 

3.63 2.684 2.2259 0.3476 0.0558 0.0238 

4.13 -2.987 -2.5342 -0.5235 0.1231 0.0409 
* An observation is considered an outlier if the absolute value of Rstudent (also known as 
the studentized deleted residuals) is greater than two (Hintze 2004). 
** An observation is considered influential concerning prediction if the absolute value of 
DFFITS is greater than one.  DFFITS measures the influence of a single observation on 
its fitted value (Velleman and Welsch 1981). 
*** Cook’s D values greater than one indicate that the observations have a large 
influence.  It measures the influence of each observation on all fitted values  
(Velleman and Welsch 1981). 
**** Hat Diagonal measures the remoteness of the observations in the X-space.  Hat 
Diagonals greater than 2*degrees of freedom / n (2*2/59 = 0.068) are considered high-
leverage observations.  Leverage refers to the amount of influence a given observation 
has on the trend of the least squares regression estimate (Velleman and Welsch 1981). 
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Appendix E.  Rstudent as a function of peak API shows the March 24, 1999 event as an 

outlier. 
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Appendix F.  Rstudent as a function of peak API with the March 24, 1999 event removed. 

Two observations with an absolute value of Rstudent greater than two remain. These 
observations were retained because they did not deviate significantly from the cloud. 
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Appendix G.  Rstudent as a function of Hat diagonal indicates that the March 24, 1999 

event was a high leverage observation.  
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Appendix H.  Rstudent as a function of Hat diagonal with the March 24, 1999 event 

removed.  One of the observations remaining was considered an outlier, four were 
considered high leverage, and one was considered a high leverage outlier.  However, 
they all passed the DFFITS and Cook’s D test unlike the March 24, 1999 event.  
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Appendix I.  Tests of regression assumptions after the March 24, 1999 outlier was 
removed.  The Modified Levene Test indicates a lack of constant residual variance.  
The other null hypotheses were not rejected at the 0.05 alpha level.  The Durbin-
Watson test indicated a lack of positive and negative autocorrelation (alpha = 0.05). 
All statistics were calculated using NCSS (Hintze 2004).  

Do the residuals 
follow a normal 

distribution? 
Test Value Probability 

Level 

Assumption 
Reasonable     
(ά = 0.05) 

Shapiro Wilk 0.9736 0.235103 Yes 

Anderson Darling 0.6689 0.080721 Yes 

D'agnostino 
Skewness -0.8441 0.398635 Yes 

D'agnostino 
Kurtosis 0.572 0.5673 Yes 

D'agnostino 
Omnibus 1.0397 0.594621 Yes 

Constant residual 
variance?    

Modified Levene 10.7631 0.001785 No 

Durbin-Watson 
test for lack of 
autocorrelation    

Positive 1.60 0.0626 Yes 

Negative 1.60 0.9378 Yes 
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Appendix J.  API model coefficients and related statistics. 
Parameter Intercept B(0) Slope B(1) 

Coefficients -3.5222 2.8963 

Lower 95% 
Confidence Limit -4.6398 2.5482 

Upper 95% 
Confidence Limit -2.4046 3.2444 

Standard Error 0.5579 0.1738 

Standardized 
Coefficient 0.0000 0.9123 

T statistic -6.3134* 16.6668* 

                       * Significant at 0.05 alpha (p < 0.0001) 
 

 

 

 


