DAVIS, Calif.—River flow fluctuations downstream of dams are often out of sync with natural flow patterns and can have significant negative effects on aquatic species, such as native frogs, according to a team of scientists from the USDA Forest Service’s Pacific Southwest Research Station, the University of California, Davis and the University of California, Berkeley.

The team examined how altered water flows caused by hydroelectric dams impact the life cycle of the foothill yellow-legged frog (Rana boylii). The frog, which lives in foothill regions from southern California to southern Oregon, completes its life cycle exclusively in riverine environments. The species is well-adapted to predictable flow patterns that are high during the spring run-off period and low during the summer. Changes to these patterns affect the survival of eggs and tadpoles and consequently are likely to be a primary factor in limiting populations of this declining species, scientists say.

Findings from three recent research projects are published in *Copeia*, *River Research and Applications*, and *Conservation Genetics*. These studies revealed that *R. boylii* tadpoles are not strong swimmers and do not survive the high flow events that can occur during the summer months in many dammed rivers, leading to local population declines. The team tested a habitat modeling tool that is commonly used for fish, with eggs and tadpole data from *R. boylii*, and found that it could provide reliable predictions of habitat changes under different flow scenarios. Genetic research conducted by the team identified several isolated and unique populations at the extremes of the geographic range and also demonstrated the important role of river basins in defining relationships among populations. The combined results of this work can guide conservation planning for the species.

Managing water discharge from hydroelectric dams to mirror the environment’s natural flow is ideal, but this approach may not meet the needs of human consumption and energy demands.

“To conserve riverine species, one solution may be to restore some of the key characteristics of natural flow patterns, especially the timing of high and low flow periods,” says Amy Lind, wildlife biologist at the Pacific Southwest Research Station in Davis, Calif., and co-author of three recent papers on *R. boylii* ecology and genetics.

For more information about this research, go to a recently developed website focused on this species at: http://www.fs.fed.us/psw/topics/wildlife/herp/rana_boylii/

The team’s three research papers can be found at:
http://www.treesearch.fs.fed.us/pubs/37847
http://www.treesearch.fs.fed.us/pubs/37848
http://www.treesearch.fs.fed.us/pubs/37849

The Pacific Southwest Research is headquartered in Albany, Calif. The station develops and communicates science needed to sustain forest ecosystems and other benefits to society. It has laboratories and research centers in California, Hawaii and the United States-affiliated Pacific Islands. For more information, visit www.fs.fed.us/psw.