Mountain Thunderstorms
Their Formation and some Field-Forecasting Guidelines

Jim Bishop, March 2007
The author...who is this guy anyway?

Basically I am a lifelong student of weather, educated in physical science. I have undergraduate degrees in physics and in geology, a masters degree in geology, and some advanced courses in atmospheric science. I served as a NOAA ship’s officer using weather information operationally, and have taught meteorology as part of wildfire-behavior courses for firefighters. But most of all, I love to watch the sky, to try understand what is going on there, and I’ve been observing and learning about the weather since childhood.

It is my hope that this description of thunderstorms will increase your own enjoyment and understanding of what you see in the sky. It emphasizes what you can see. You need not absorb all the quantitative detail to get something out of it, but it will deepen your understanding to consider it.

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summer storm</td>
<td>2</td>
</tr>
<tr>
<td>An overview</td>
<td>2</td>
</tr>
<tr>
<td>Setting the stage</td>
<td>3</td>
</tr>
<tr>
<td>Early indications, small cumulus clouds</td>
<td>4</td>
</tr>
<tr>
<td>Further cumulus development</td>
<td>5</td>
</tr>
<tr>
<td>Onward and upward to cumulonimbus</td>
<td>6</td>
</tr>
<tr>
<td>Ice formation, an interesting story and important development</td>
<td>8</td>
</tr>
<tr>
<td>Showers</td>
<td>9</td>
</tr>
<tr>
<td>Electrification and lightning, & Lightning Safety Guidelines</td>
<td>10</td>
</tr>
<tr>
<td>Gauging cloud heights, advanced field observations</td>
<td>12</td>
</tr>
<tr>
<td>Summary</td>
<td>13</td>
</tr>
<tr>
<td>Glossary</td>
<td>14</td>
</tr>
<tr>
<td>References</td>
<td>16</td>
</tr>
</tbody>
</table>

Summer storm

High on the spine of the White Mountains you have hiked and worked all week in brilliant sunshine and clear skies, with a few pretty afternoon cumulus clouds to accent the summits of the Whites and the Sierra Nevada to the west. The late-summer morning begins clear, the skies above are deep blue, as you hike up and set about your work on the high ridges. Hardly noticed, a transient shred of cloud appears over a nearby peak just before mid-morning. As the morning wears on friendly cumulus clouds arise across the range...a glorious day in the mountains. By lunch time the sky seems largely cloud-covered, with some darker cloud bases...hmmm, might need that warm shirt. A couple of hours later, intent on your work, you are surprised by the low rumble of thunder. You look up to see dark sky overhead, massive clouds over the Sierras, and a bright wall of clouds over the desert ranges to the east. As you wonder whether you'll get finished in time a few scattered raindrops fall. You press ahead to get the last observations done. But your decision is forced as the sharp crack of thunder follows closely on the heels of a brilliant lightning flash. It is time to retreat from the exposed ridge, and you pack your gear, put on your jacket and head down in a hurry. Within minutes you are drenched by heavy rain then pelted by hailstones, as lightning crackles all around. Visibility is poor, and the footing is wet and slippery. Wow, this is not fun anymore, and you are driven on by real concern about being so exposed. Fortunately you reach the shelter of your car, soaking wet, but otherwise unharmed. What happened? How was today different, and how could you have noticed sooner?

An overview of thunderstorm development, to be more fully elaborated

Air rises buoyantly above the summits, cooling as it ascends. When it cools to its ‘dew point temperature’ water droplets form and cloud appears. Further ascent results in more condensation and the cloud top rises, ever colder, deepening the cloud mass to several thousands of meters. Some droplets freeze, a critical step. They then grow quickly, mostly by stealing water from liquid water droplets. The growing ice particles begin to fall downward through the updraft, gaining mass rapidly by collision with smaller droplets in their path. As the falling graupel (ice particles onto which droplets have frozen) collides with tiny ice crystals, electrical charges separate in the cloud. When the cloud reaches sufficient depth and maturity, precipitation and lightning can occur at the ground.

The thunderstorm process proceeds with observable signs all along the way...to be described in detail below. Noticing the progression of cloud development certainly raises one’s awareness and leads to better decisions about avoiding thunderstorm hazards. But a nice additional benefit is the pleasure of enjoying the beautiful and dramatic spectacle in the light of better understanding and fuller appreciation of what is going on. It is wonderful fun to watch.
Setting the Stage

Two atmospheric conditions are needed for typical mountain thunderstorms. 1. An air mass that will allow deep convection, air rising buoyantly for several kilometers. Such condition is called “unstable”, and it basically depends on having an atmospheric environment that is warm enough at the bottom compared to cooler temperatures aloft. 2. Sufficient moisture to produce a cloud that is on the order of 4 km (13,000 ft) in depth or more, rising from a base at or below roughly 6 km (~20,000 ft) altitude. Condensation of cloud also contributes to the buoyancy of the rising air. To get things started, the air needs to be warmed at the bottom. That occurs daily as the sun heats the mountains, which then stand as elevated warm islands in a sea of cooler air, making them the source of the highest-rising air currents. Other processes can also impel or encourage upward motion, such as airflow against the slopes deflecting upward, influx of cooler air aloft (which makes rising columns more buoyant), and dynamically driven convergence of low-level air and/or divergence of air aloft. But the main impetus for a typical summer thunderstorm is the heating of the mountains by the sun. Warming of the slopes and ridges by the sun can be assumed for any summer day, the initial impetus is there, unless reduced by cloud cover.

The stability and moisture of cloud-free air are impossible to judge in the field just by looking, though the evidence of that will unfold throughout the day, and there are sometimes early signs. Guidance beforehand on the potential for thunderstorms is best gleaned from the meteorological forecast. The forecast might hint at thunderstorms with comments on such things as monsoon moisture, south or southeast flow aloft, or deep instability. Explicit predictions of thunderstorms are of course meaningful, including “isolated” or “scattered” thunderstorms, and there have been some very thundery days with a forecasted probability-of-precipitation of no more than 20% (see Glossary). The lightning activity level (LAL) given in the fire-weather forecast is also helpful and embodies the scale shown below in Figure 1. Any LAL of 2 or higher should be taken as an indicator of thunderstorm potential that can affect a mountaineer.

Sometimes the presence of adequate moisture and instability is suggested by altocumulus castellatus (or ‘castellanus’) clouds. These are patches of cloud in the mid-levels of the troposphere that have usually drifted in from elsewhere, and are not necessarily associated with high elevations of the terrain, nor with afternoon heat. The tops of the patches sprout small turrets, like miniature cumulus clouds growing from a broader base (Figure 2). Their presence signifies that the air at middle-altitudes is sufficiently moist and unstable to encourage upward motion of buoyant cloud columns. Any cumulus clouds that grow that day will benefit from those conditions of instability and moisture when they reach that altitude, conditions that favor thunderstorms.

<table>
<thead>
<tr>
<th>Lightning Activity Level (LAL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is a scale which describes lightning activity. Values are labeled 1-6:</td>
</tr>
<tr>
<td>LAL 1</td>
</tr>
<tr>
<td>LAL 2</td>
</tr>
<tr>
<td>LAL 3</td>
</tr>
<tr>
<td>LAL 4</td>
</tr>
<tr>
<td>LAL 5</td>
</tr>
<tr>
<td>LAL 6</td>
</tr>
</tbody>
</table>

Figure 1. Lightning activity level. LAL is used largely in fire weather forecasting, but can be a very useful guide to the potential for thunderstorm development.
Figure 2. Altocumulus castellatus (Acc) clouds. The clouds are at atmospheric mid-levels, not necessarily over elevated terrain, and often already present when the sun rises. The convective turrets that sprout from the cloud base (2 shown by arrows) are driven by the release of heat-of-condensation, but are not dependent on currents arising from heating of the ground. The presence of Acc clouds is evidence of moisture and instability in the middle troposphere, and those conditions favor thunderstorms.

Early indications…small cumulus clouds

As the ground is warmed by the sun, buoyant blobs of air rise invisibly. At first the rising columns don’t get very far before mixing with the surrounding air and losing their buoyancy. But as warming continues they extend ever higher. As air rises it cools by expansion (even though it remains warmer than the surrounding air…or else it would not be buoyant), at a rate of about 1°C per 100 meters (5.4°F per 1000 ft). Eventually the tops of the columns cool to the dew point of the air, and cloud droplets condense on tiny airborne particles that act as nuclei. Small, transient clouds appear, usually first above the highest topographic points. They are often just ragged shreds that soon vanish. The sooner and lower they appear, the moister is the air. It is common to see the first small cumulus clouds by midmorning on a day with thunderstorm potential, and the sign inherent in clouds forming in the morning should not be ignored.

Figure 3. The first cumulus cloud of the day forms as air rising above the sun-heated ground reaches the altitude at which condensation takes place. It is usually an indicator of further cloud development to come, and when it appears early in the day it commonly heralds the development of thunderstorms.
The rising columns of air penetrate further upward as the day progresses. Condensation of cloud droplets releases heat that helps the rising air maintain its loft. The developing cumulus clouds can deepen, become more numerous, and spread out into larger cloud patches. Just how high the cloud tops rise, at what altitude they spread out, depends on where they encounter layers that either suppress or favor upward motion—where the air is stable (which resists rising columns) or unstable (which accelerates rising columns). The flat cloud bases mark the altitude where air cools to its dew point temperature, and that altitude depends on the difference between the surface air temperature and the dew point...larger difference means higher cloud bases.

A sign that the clouds are quite limited in their vertical growth (by a relatively stable layer) is that they are wider than they are tall. Columns that are capped by stable air flatten out and aggregate into flat, wide clouds, with all of the column-tops being at about the same altitude (Figure 4, left). The cloud tops are not bright white, and the bases are not very dark. In contrast, columns that are rising vigorously in unstable air are taller than they are wide (Figure 4, right), and they aggregate into clouds that are vertically extended, at least as deep as they are broad, showing bright white tops and distinctly darker bases. Fresh columns often extend above the columns nearby, as we’ll discuss in the next section, ‘Further cumulus development’.

So what is there in a small cumulus cloud? That lovely white cloud floating above the landscape is a mass of tiny water droplets condensed from the rising air. The droplets number in hundreds per cm3, and are most frequently several to about 15 microns (µm, micrometers) in diameter, roughly the size of cells in your body. There is relatively little variation in droplet size, and none are large enough to fall downward as precipitation. Their fall speeds are on the order of mm/sec, and they are easily suspended by even weak currents of rising air. On the cloud edges, where cloudy air mixes with the drier surrounding air it quickly evaporates, giving rise to ragged edges and shreds of cloud. Slowly some drops grow larger, to maybe 20 or 30 µm diameter. But not much else happens. More water for further condensation is lacking for lack of continued upward growth. No precipitation falls. If all stays at that stage, the day will be fine. But keep your eyes on the clouds for signs of renewed or further growth.

Figure 4. Left panel shows cumulus clouds (Cumulus humilus) over the Bodie Hills, in broad patches, limited in their vertical growth by stable air. The cloud tops are not especially bright white and the bases are not especially dark. The right panel, in contrast, shows a vigorously rising column (or thermal), taller than it is wide, in unstable air. The cloud behind the thermal also has a column rising at its left end.

Further cumulus development

It is very common for the upward growth of the clouds to take place in stages as the day progresses, rather than steadily, moderated by variations in stability with height. When cumulus growth is not strongly capped by a resistant stable layer, the continual heating of the ground pushes the rising columns higher, deepening the clouds. Fresh columns will surge above the general level of the cloud tops, bright white turrets against the sky (Figure 5). “Turrets” are the tops of convective columns/towers, and are typically 1 to 3 km in diameter; “tufts” are the smaller, rounded bumps on a turret, and typically 100 to 200 meters in diameter.

Often the new turret will slow down as it becomes less buoyant, and will mix out into the surrounding air and be dissipated. Other turrets rise and in their turn fade away, their complete dissipation indicating that they are composed of small water droplets, not of ice. But as time goes on, the air is being moistened by the water being transported...
upward in rising turrets, and new turrets have a better chance of persisting. The tops of the cumulus clouds come to define a new cloud-top, higher than the old one.

Figure 5. Rise of a new turret above an earlier cloud-top level. Time progresses from left to right, and is on the order of minutes. Red arrows mark the original upper limit of convection and the new upper limit. After it stops rising the new turret mixes with the surrounding air and fades away, with only a small cloud remnant remaining in the last panel. The quickly-dissipating remnants are composed of small liquid water droplets.

Rise of successive turrets deepens the cumulus clouds, and commonly much of the sky over the mountains gradually becomes full of moderately deep cumulus clouds (Figure 6, right). The individual clouds tend to be about as deep as they are wide, but it is not always obvious what is “a cloud” and what is a group of them. We can view a cloud as being a group of several contiguous columns or turrets, each individual column being taller than it is wide. The fresh turrets have clean, sharp, bright edges. The numerous small droplets formed in rapidly ascending new turrets scatter sunlight very well and make the cloud bright white. The cloud bases are darker than for the shallower cumulus, simply because the deeper clouds under bright turrets more effectively shade their own bases.

The total mass of liquid water in these taller clouds is larger than in the shallow cumulus clouds, and the spread in droplet sizes is a little greater. But still precipitation does not occur…myriad tiny droplets hang suspended in the updrafts.

Figure 6. Deeper cumulus cloud (Cumulus mediocris). Compare this figure to Figure 4, left panel. The individual clouds here tend to be about as deep as they are wide. “A cloud” (example on left side) can be thought of as a contiguous group of several columns or turrets, each individual column being taller than it is wide. And the fresh turrets have clean, sharp, bright edges. The cloud bases are darker than for the shallower cumulus that existed previously, because the deeper clouds more effectively shade their own bases. In both panels there are also cloud patches that have not yet deepened. Right panel is later in the day in the area shown in Figure 3.

Onward and upward to cumulonimbus
If turrets rise still further, becoming ever colder as they do, they reach temperatures well below freezing. Figure 7 shows a surge of growth above the previous level, and is a continuation of the cloud sequence shown in Figure 5. The three separate stages, or altitudes reached by the cloud over the course of the day, are visible (red arrows). The uppermost stage is showing signs of ice formation (blue arrow)...a critically important step in the formation of precipitation and lightning, as discussed below in ‘Ice formation’.
Figure 7. *Cumulus congestus* transitioning to *Cumulonimbus calvus*. Turrets rise above the second stage, with arrows marking 3 stages or levels of cloud development. Even though the tops of fresh turrets are bright white and sharp-edged, composed of supercooled water droplets, signs of ice formation are present. The blue arrow indicates an area that is ‘glaciating’, becoming composed of ice particles. The clear, high-contrast outlines of tufts and turrets are here becoming less clear, less bright white, more diffuse, with a ‘silky’ texture (see ‘Ice formation’ below).

Sometimes the atmosphere is unstable from the ground all the way to the level of a thunderstorm top, and lacks intermediate layers of modest stability that cause cumulus clouds to deepen in stages. Then, powerful columns can rise rapidly and without pausing to their full vertical extent, reaching well above the freezing level (Figure 8). That process more often occurs in the afternoon. Such towering cumulus are called *Cumulus congestus*, and they indicate that thunderstorms are in the making. Especially telling are towering columns under a gray sky (Fig. 8, right), as that attests to moist upper levels and to vigorous convection even with subdued solar warming of the surface.

Figure 8. *Towerling cumulus* (*Cumulus congestus*) When there is deep instability the upward rise of convective columns is vigorous and continuous, resulting in tall, powerful columns. The vertical cumulus development in such cases does not “pause” at lower altitudes before continuing.
Ice formation, an interesting story and an important development

Cloud droplets don’t freeze when they are cooled below 0°C (32°F)...they become supercooled. It takes sub-freezing temperatures and an appropriate ‘ice nucleus’ to trigger droplet freezing or to initiate the direct crystallization of ice particles. An extremely small number of nuclei can initiate freezing at -4°C (25°F), and the number of potential ice nuclei increases as the temperature decreases. At -20°C (-4°F) there is roughly one such ice nucleus in a liter of air (while there are hundreds of thousands of supercooled droplets in the same liter of air).

Until the temperature in a continental cumulus cloud falls to about -10°C (14°F) there are essentially no ice particles in it. At cloud temperatures in the range -10°C to -20°C (14°F to -4°F), the rapid multiplication of ice particle numbers can take place. Ice formation begins in small regions at the very tops of the highest turrets, where the temperatures are the lowest in the cloud, and where cloud mixes with clear air. Most of the water droplets there are no more than 10 or 15 µm in diameter, and a small but important %-age are 2 or 3 times that big. Some of the supercooled water droplets at least 25 µm in diameter are induced to freeze, by ice nuclei that are contained within them or that contact them. A droplet freezes only partially at first, in an internal ice network, then as heat is dissipated it freezes from the surface inward. Expansion of the freezing core shatters the outer layers into ice fragments, which then act as potent ice nuclei. By now the concentration of ice particles (frozen drops and ice crystals) might be on the order of several or a dozen per liter. As frozen droplets of about 25 µm diameter or more drift downward they collide with supercooled droplets. The liquid droplets freeze onto the frozen drop in a process called riming, and eject many ice splinters, creating more ice particles. The rapid increase in ice particle concentration in cold cloud tops takes place on a time scale of minutes. The foregoing description fits many observations, and with current ideas on ice formation in clouds. But many questions remain, and ice formation is an active area of research in cloud microphysics.

Soon the population of ice particles, including both frozen droplets and ice crystals, reaches 10s or a 100 per liter (far more than the number of naturally occurring ice nuclei, a situation called ‘ice enhancement’). Though the ice concentration has dramatically increased, it is still no more than 1/1000th or so of the concentration of supercooled water droplets. But that small frozen-particle fraction will lead to great changes, as described below in ‘Showers’.

Ice cloud textures are distinctive and can be discerned in the cloud visually (though not at the earliest onset of ice production). Because ice particles evaporate only slowly in clear (subsaturated) air—in contrast, water droplets evaporate quickly in subsaturated air—they can spread out and present a more diffuse, less bright, ‘silky’, and less cleanly-outlined appearance (Figure 9). Tufts and turrets lose their clear, ‘cauliflower’ shapes. Often the highest turrets, just as they are reaching their maximum height, exhibit small blunt “spikes” jutting out from the rounded form...perhaps these are tufts within which ice formation has just begun. Seeing evidence of the transition to ice in a cloud should alert you to the rapid and significant progress toward both showers and electrification within the cloud.

Figure 9. Ice textures. Left panel: on the lower-left is ice cloud and on the upper right is liquid-water cloud. Right panel: much of the cloud appears diffuse, lacks clear turrets, and is glaciating, while the two bright white turrets rising at upper right are still supercooled water droplets.

The glaciation of the cloud also provides additional buoyancy and commonly induces a significant increase in the rate at which the top of the cloud rises. Cloud tops might rise roughly only halfway to the tropopause over several hours, and then when glaciation begins tops can surge the rest of the way to the tropopause in 30 minutes or so. At the tropopause the ice particles spread out under the base of the very stable stratosphere, forming the classic ‘anvil
cloud’ typical of mature thunderstorms (Figure 10). Upper-level winds will spread the anvil downwind, which often indicates the direction that the storm is moving in. A strong column can temporarily surge above the tropopause and into the lower stratosphere, often showing as a low dome above the anvil top, which soon settles back.

Figure 10. Anvil top, cumulonimbus. The updraft spreads out under the stable base of the stratosphere, and the ice particles carried up in the updraft spread out to form the flat-topped anvil-shaped cloud. The ice particles settle slowly downward having descended farther nearest the main cloud and least at the outer edges. Being ice, the anvil has a soft-edged, diffuse texture.

Showers

It’s not that easy to turn zillions of tiny cloud droplets into precipitation that can fall from a cloud. It takes a million or more cloud droplets collected to make a decent raindrop. Somehow a relatively few particles have to collect the water from a lot of small droplets. In these thunderclouds, ice is the key.

Cloud droplets are constantly losing as well as gaining molecules from the water vapor in the air. When the air is saturated, equilibrium prevails and the droplets persist. When ice appears things change. Ice grips water molecules more tightly than does liquid water, and can lower the concentration of water vapor below that required for maintaining liquid droplets. Therefore the gain-vs-loss balance of water molecules shifts in favor of ice, and ice particles grow rapidly by deposition at the expense of water droplets...few ice particles gain while many water droplets lose. The frozen droplets grow large enough (~60 µm diam.), and ice crystals become plates big enough (~1 mm across), to settle downward at an appreciable rate. They begin to fall through the smaller cloud droplets, collecting them as they go, becoming graupel (ice pellets) …getting larger, falling faster, collecting more… The process is called ‘coalescence’, and it accelerates the transfer of water to the larger particles. You can sometimes see young showers as they were developing, when high-rising towers stall, mix out, and dissipate, leaving strands of the ice that was forming within them visible (Figure 11).

Growing ice particles become precipitation about 1 to 3 mm in diameter, and showers develop in the cloud—on time scales of 30 or 40 minutes after ice first appears. The precipitation, falling at meters-per-second, can reach the ground within roughly 10 or 20 minutes after showers begin to form high in the cloud (Figure 12), often as graupel. If the originally-frozen precipitation falls a significant distance through air above 0°C (32°F) it melts and reaches the ground as rain. If strong updrafts allow the graupel to continue to grow by gathering droplets, hailstones can form, and hailstones can fall a long way in air above freezing temperature without melting. In general, deeper clouds and stronger updrafts mean larger hail or raindrops. Raindrops don’t grow as big as hailstones because they break up when they get to be about 8 or 10 mm in diameter.

Showers drive strong downdrafts (by drag and by evaporative cooling) that can hit the ground hard and spread laterally as strong, gusty winds. Such wind gusts often arrive just before the rain or hail begins. They can be very strong, with 30 or 40 mi/hr winds. They tend to be strongest where channeled by the terrain (cold, dense airflows follow slopes and drainages), and/or on the side of the storm toward which it is moving (usually the side toward which the anvil cloud is extended).

The production of showers requires several things: enough water condensed in the cloud, the creation of some larger particles (in mountain thunderstorms, primarily by ice formation) that can fall and accumulate droplets, and a long enough fall distance to grow to raindrop size (at least 1 mm in diameter).
All of that is possible in clouds that are deep enough from base to top. The minimum depth for shower formation in cumulus clouds over land is often observed to be about 4 to 4½ km (~13,000 to 15,000 ft). Over the oceans the required cloud depth for showers is less. It all depends on the type and concentration of the original nuclei on which cloud droplets form. Compared to maritime air masses, air over the continents has more nuclei, and continental cumulus clouds consist of more and smaller droplets of narrower size distribution. With more and smaller droplets and fewer large ones (as is typical of clouds over the continents) it takes a greater cloud depth, and ice formation, to get a group of larger particles to grow and then fall down and gather the smaller droplets. As will be discussed in ‘Gauging cloud heights’, you can sometimes estimate the cloud depth and whether it is sufficient for showers.

Figure 11. An evaporating cloud tower. Ice showers that were forming within this convective tower remain as the water droplets in the tower dissipate, appearing as diffuse strands that trail downward.

Figure 12. Showers fall from the base of a thundercloud. Large shaft of precipitation on the right probably contains hail. Newer showers are emerging from the cloud base center and left. Cloud- to-ground lightning commonly begins about when showers emerge from the cloud base, and often near the fringes of showers—but always assume that lightning could hit the ground anywhere under or near (even a few miles away) a thundercloud..

Electrification and lightning

Not only are showers forming as the ice phase begins within a cumulonimbus cloud, the ice particles are also instrumental to its electrification. Within the mid-levels of the cloud, water droplets, ice crystals, and graupel pellets all coexist simultaneously. At the level where temperatures are about -10°C to -20°C (14°F to -4°F) collisions between graupel and ice crystals leave a negative charge on the graupel and a positive charge on the ice crystals. The larger graupel falls downward while the tiny ice crystals are swept upward in the updraft, to eventually form the anvil. Lower down, where temperatures are warmer, the charge transfer between colliding graupel and ice crystals reverses,
leaving the graupel positively charged. The cloud becomes electrically stratified, with a negative-charge layer some kilometer thick centered at the -15°C (5°F) level, a positive charge in the upper cloud, and also a (smaller) positive charge near the cloud base. Lightning rarely occurs before the cloud top has reached the -15°C to -20°C level, and in radar observations strong electrification occurs after graupel or hail can be detected in the cloud.

When the voltage difference becomes great enough, lightning discharges occur between oppositely charged portions of the cloud, and between the cloud and the ground (mainly between the negative layer and the ground). The first lightning is typically intracloud, and can occur within minutes of shower formation in the cloud. Cloud-to-ground flashes begin soon after the first intracloud discharges, often when the shower emerges from the cloud base. Lightning can strike the ground anywhere beneath the cloud and even several miles from the cloud. But the first strikes commonly occur near the outer zone of the shower curtain.

Lightning can obviously be fatal, but there are many more injuries than deaths and those injuries are often severe and permanent. It is a real danger in the high mountains, and awareness and caution are called for. Lightning-safety guidelines are below…read them. Lightning is a very real hazard. The following is excerpted (with minor edits of nonessential material) from materials published by the National Oceanic and Atmospheric Administration.

Lightning Safety Guidelines

The lightning safety community reminds you that there is NO safe place to be outside in a thunderstorm. If you absolutely can't get to safety, this section is designed to help you lessen the threat of being struck by lightning while outside. Don't kid yourself--you are NOT safe outside.

The SAFEST location during lightning activity is a large enclosed building, not a picnic shelter or shed. The second safest location is an enclosed metal vehicle, car, truck, van, etc., but NOT a convertible, bike or other topless or soft top vehicle.

Being stranded outdoors when lightning is striking nearby is a harrowing experience. Your first and only truly safe choice is to get to a safe building or vehicle. If you are engaged in outdoor activities and cannot get to a safe vehicle or shelter, follow these last resort tips. These will not prevent you from being hit, just slightly lessen the odds.

- Do **NOT** seek shelter under tall isolated trees. The tree may help you stay dry but will significantly increase your risk of being struck by lightning. Rain will not kill you, but the lightning can!
- Do **NOT** seek shelter under partially enclosed buildings
- Stay away from tall, isolated objects. Lightning typically strikes the tallest object. That may be you in an open field or clearing.
- Know the weather patterns of the area. For example, in mountainous areas, thunderstorms typically develop in the early afternoon, so plan to hike early in the day and be down the mountain by noon.
- Know the weather forecast. If there is a high chance of thunderstorms, curtail your outdoor activities.
- Do not place your campsite in an open field on the top of a hill or on a ridge top. Keep your site away from tall isolated trees or other tall objects. If you are in a forest, stay near a lower stand of trees. If you are camping in an open area, set up camp in a valley, ravine, or other low area. A tent offers NO protection from lighting.
- Wet ropes can make excellent conductors. This is BAD news when it comes to lightning activity. If you are mountain climbing and see lightning, and can do so safely, remove unnecessary ropes extended or attached to you. If a rope is extended across a mountain face and lightning makes contact with it, the electrical current will likely travel along the rope, especially if it is wet.
- Stay away from metal objects, such as fences, poles and backpacks. Metal is an excellent conductor. The current from a lightning flash will easily travel for long distances.

If lightning is in the immediate area, and there is no safe location nearby, stay at least 15 feet apart from other members of your group so the lightning won't travel between you if hit. Keep your feet together and sit on the ground out in the open. If you can possibly run to a vehicle or building, DO so. Sitting or crouching on the ground is not safe and should be a last resort if a enclosed building or vehicle is not available.

For more information check the following website of the National Oceanic and Atmospheric Administration.

http://www.lightningsafety.noaa.gov/outdoors.htm
Gauging cloud heights...advanced field observations

This section describes ways of estimating the heights of cloud base and top, and cloud depth. It isn’t always practical, and it is not necessary to monitoring thunderstorm development. It is not possible for clouds overhead, and best done looking at clouds in the distance. But when it can be done it provides some interesting information, and helps you gain a more refined sense of cloud dimensions and the potential for thundershowers.

As was mentioned above in ‘Showers’, the minimum cloud depth required for showers to develop in cumulus clouds in continental settings is about 4 to 4½ km (~13,000 to 15,000 feet). It is also interesting to note both cloud base height (as a measure of the water content of the air) and top height (as it relates to temperature and the freezing level). The cloud depth is the distance between the cloud base and its top. The top/base heights, and cloud depth, can be estimated by comparing them to a baseline distance scaled against terrain features.

The clouds have to be about the same distance away as the terrain features, best seen over an adjacent range. With clouds seen growing over particular mountains, the distance scale can be derived from those mountains. Sometimes points of known elevation can provide a vertical scale directly, but often more accurate distances can be scaled horizontally between known points and then applied to the vertical. You can “measure” the apparent separation between two points with any convenient object held at arms’ length, your fingers, hand, pencil, etc.

Figure 13 shows thunderstorms building over the White Mountains as seen looking east from Sherwin Grade, with White Mtn. Peak on the left and Mt. Barcroft in the center. The apparent distance between White Mtn. Peak and Mt. Barcroft from this vantage point is about 5.6 km—for our estimating let’s call it 6 km (~20,000 ft). Upending the scale to touch Mt. Barcroft (elev. 4 km, 13,000 feet) provides a scale for judging the cloud base and cloud top heights, and cloud depth. You can shift such a scale up or down to fit the feature you are scaling. Cloud base and top are marked in blue.

The base is about 1/7th of 6 km, some 0.9 km (3000 ft), above Mt. Barcroft, an altitude of approximately 4.9 km (16,000 ft). The highest cloud top happens to be at the top of the scale, about 6 km above Mt. Barcroft, an altitude of approximately 10 km (33,000 ft). The cloud depth is roughly 6/7th of 6 km, 5 km or so…deep enough for shower formation. On this day the 0°C altitude was at about 5 km, and the -15°C altitude at about 7.6 km.

You can also estimate the height of the cloud base from the surface air temperature and dew point. Rising (clear) air cools, and approaches the dew point at about 8°C per km rise (4.4°F per 1000 ft). Divide the difference between surface & dew point temperatures (°C) by 8 for cloud-base height (above the surface) in km.

Figure 13. Thunderstorms over the White Mountains. The distance between White Mtn. Peak on the left and Mt. Barcroft in the center is about 5.6 km. Blue lines mark cloud base and top. Showers are not visible, but are probably forming in the deeper cloud masses.
Summary: Recounted here are the stages described above for mountain thunderstorm development, and the field observations you can make to monitor their development.

- Favorable conditions: Deep unstable layer to permit convection, sufficient moisture for cloud development. Note the forecast of thunderstorm potential, including LAL, and the presence of altocumulus castellatus clouds.

- First cumulus clouds: Small fragments of cloud appearing in the morning, above the high points. Earlier and lower appearance of such clouds indicates more water and/or instability available for cumulus development.

- Cumulus growth: Potential for further growth is indicated by turrets rising above general cloud-top level, by individual cloud columns that are taller than wide, and by cumulus clouds that are at least as high as they are wide.

- Towering cumulus: Large clouds showing multiple turrets on top and sides surge upward rapidly, and in overall shape are taller than they are wide. Powerful towers under gray skies are especially telling forerunners.

- Glaciation: Ice forms in the high, cold cloud tops, initiating shower formation, the electrification that leads to lightning, and a surge in cloud growth. Visual indicators include softening of cloud edges, less bright white, silky texture, diffuse veils and streaks. You can assume ice formation when the tops reach the -10°C level and colder.

- Shower formation: When ice forms, showers develop in the cloud, in about 30 or 40 minutes. Evidence can sometimes be seen in the diffuse streaks that remain when a recently-grown tower dissipates. Graupel, rain, or hail can reach the ground in the next 10 or 20 minutes after initial shower formation within the cloud.

- Lightning: Electrification arises from the precipitation process, and can reach discharge potential in minutes. First lightning usually occurs within the cloud, and strikes to the ground follow within minutes. Lightning can hit the ground even miles outside of the cloud base.

Figure 14 shows cumulonimbus clouds growing over the Sierras, and captures several stages in thunderstorm development. Wind is from right to left. The younger clouds, and newer towers within clouds, appear on the right with the older ones to the left. The older sections are glaciating, and some ice showers are visible. Try to pick out some new vigorously rising towers, towers reaching their maximum height and just beginning to glaciate, well glaciated portions, and the beginnings of anvil cloud.

Figure 14. Cumulonimbus growing over the Sierras, showing stages in development ranging from vigorous convective towers to glaciated areas.
Glossary

Altocumulus cloud Cloud in the midlevels of the troposphere, not generated by air currents rising from the ground. Motions within altocumulus clouds are driven by combinations of radiative warming of the bases, cooling of the tops, and heat released by condensation. *Castellatus* (or *castellanus*) refers to altocumulus that have small turrets rising from the cloud mass, driven by the heat released as condensation takes place.

Anvil top The flat-topped ice cloud formed as ice particles are carried aloft in the updraft spread outwards at the tropopause, and slowly settle out, leaving a cloud that is thickest near the center and thinning toward its edges.

Coalescence The capture of smaller droplets by larger droplets or ice particles that fall down through them, and a key mechanism for creating precipitation. It becomes very efficient and the dominant precipitation process when the larger particles come to be at least 60 µm in diameter and are falling through droplets about 20 µm in diameter.

Convection Movement of a fluid (including air) that is driven by differences in density. In the atmosphere that takes the form of buoyantly rising columns of air that are warmer than the surrounding air (sinking air if cooler). Even though rising air is warmer than the surrounding air, clear air is cooled by expansion at 9.8°C per km rise (5.4°F per 1000 ft). If the air is cloudy the rate of cooling is less.

Cumulonimbus cloud A cumulus cloud that is producing showers. Often a tall cumulus that is glaciating is also called cumulonimbus on the assumption that showers are developing in the cloud even if they are not yet seen. *Calvus* refers to cumulonimbus that are just beginning to glaciate.

Cumulus cloud Clouds that form in convection currents that rise from the ground, and therefore have their bases in the lower troposphere. *Humilis* refers to cumulus that are not deep, much broader than deep, and tend to not be especially bright white on top. *Mediocris* refers to cumulus that have deepened to the point that they are roughly as deep as they are wide, and with some bright white turrets on top. *Congestus* refers to cumulus that are very deep, taller than they are wide, with fresh bright turrets, and often capable of generating showers.

Dew point temperature For a particular concentration of water vapor (a gas) in the air, it is the temperature at which that vapor will begin to condense as liquid (on a surface). For example (at mountain elevations), for a water vapor concentration of about 8 g/kg the dew point temperature will be 6°C (43°F). The higher the concentration of water vapor the higher is the dew point.

Graupel Ice particles collect supercooled cloud droplets as they collide with them, and the water droplet freezes onto the ice particle. The ice particle has bubbles and voids, and forms a frozen pellet called graupel.

Ice enhancement At a given temperature there is a certain concentration of aerosol particles that can act as nuclei for the deposition of ice. The concentration of ice particles in a cloud commonly exceeds the ambient concentration of ice nuclei by orders of magnitude, and that is called ‘ice enhancement’.

Probability-of-precipitation (PoP) The probability, expressed as a %-age, that measurable precipitation (0.01” or more) will fall at a randomly chosen point in the forecast area during the forecast period. The terms “slight chance” and “isolated” correspond to a PoP of 10-20%; “chance” and “scattered” to PoP 30-50%; “likely” and “numerous” to PoP 60-70%; and 80-100% PoP is just stated as the forecasted weather (“rain”, “thunderstorms”, etc.) without qualifiers.

Relative humidity The actual concentration of water vapor in the air as a %-age of the saturation concentration (see below) at that temperature. For each 10.5°C (19°F) change in air temperature RH changes by a factor of about 2.

Saturation The condition in which the air contains the maximum concentration of water vapor that will remain a gas, in equilibrium with a flat water surface, at that temperature. Any lowering of temperature will cause condensation of liquid, if a suitable surface or nucleus is available to condense on. Saturation corresponds to 100% relative humidity.
Stable air Air in which convection is precluded or rapidly damped out. The vertical temperature distribution in stable air is warm enough with height so that rising air is not warmer than the surrounding air and cannot remain buoyant.

Stratosphere The major layer above the troposphere. Temperature is nearly constant with height in the lower stratosphere and then cools with height in the upper stratosphere. It is very stable, resistant to convection.

Subsaturation The condition in which the air contains less than the maximum concentration of water vapor that will remain a gas at that temperature. Liquid water will evaporate, such as where cloud mixes with clear air. Subsaturation corresponds to relative humidities less than 100%.

Supersaturation The condition in which the air contains more than the maximum concentration of water vapor that will remain a gas at that temperature. Water vapor will condense. Supersaturation corresponds to relative humidities greater than 100%. The (liquid water) supersaturation levels in clouds are typically only a fraction of 1% above 100% RH (and for ice can be on the order of 10 or 20%).

Tropopause The top of the troposphere, base of the stratosphere. It is higher in the tropics and lower near the poles, averaging about 11 km altitude in the midlatitudes. It can be visualized as the surface coinciding with the top of the anvil cloud on a thunderstorm.

Troposphere The lowest major layer of the atmosphere, in our latitudes about 11 km deep (though somewhat variable), and overall warmer at the surface and cooler upward. It is in the troposphere that convective mixing, storms, and precipitation…most of what we call ‘weather’…occur.

Tuft A smaller, rounded mound on the surface of a turret, where much of the mixing of cloud and clear air takes place.

Turret The top of a rising convection column (column, tower, thermal, and updraft are all equivalent terms in describing cumulus convection).

Unstable air Air in which convection is possible. The vertical temperature distribution in unstable air is cool enough with altitude so that rising air (though it is cooling as it rises) is always warmer than its surroundings and therefore remains buoyant. If cloud is condensing in the rising air the requirement for instability can be met with a lower rate of cooling with altitude, because condensation gives the cloudy convection column a thermal boost.
References

Berdeklis, P. The ice crystal-graupel collision charging mechanism of thunderstorm electrification Thesis (PhD). University of Toronto, Canada (2000)

Christian, H., et al, Insights into thunderstorm electrification and glaciation emanating from recent lightning measurements, unknown publication (2006), with support from NASA/USAR

Tinsley, B., Rohrbaugh, R., Hei, M., Electroscavenging in clouds with broad droplet size distributions and weak electrification, accepted for publication in Atmospheric Research, June 2001

