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Warmer air temperatures = volume and timing
shifts in highly seasonal mountain systems:
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Subwatershed
scale - what can
we learn from
comparisons
across the region?
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Driving questions:

m How do we predict future changes in
stream temperatures with today’s
hydrologic models?

m  How might future climatic changes
Impact the hydrology and water
guality in unimpaired western
mountain basins?

Temp, DO, Sediment

m What are differences across GCMs,
emission scenarios, different regions
and elevations

m What could the projected changes
mean for agquatic ecosystems?




Commonly stream temperature is modeled solely
as function of air temperatures

S-shaped function

m SWAT: stream temp from
air temp relationship
by Stefan and
Prued’homme [1993]

Tyaer = 9.0+ 0.75* T

T,ater = @ve daily water
temperature (°C)

.ir — ave daily air temperature
(°C)

T

Mohseni et al., 1998
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New stream temperature model
based on air temp & hydrologic
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Step 1: Calculate water T from

local hydrologic inputs

Step 2: Mixing with upstream

water

New stream temperature model approach

Step 3: Air temperature influence
while water is traveling in

subbasin
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Model tested with 7 high quality
sites in North American West
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Comparison
of old SWAT
and new
stream temp
model with
observations
and under 4
degC
Increase:
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New stream temperature

§
model generally matches :
observed records
better than original
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Hydrologic components (snowmelt, surface flow, ET, subsurface flow, soil
storage, groundwater, streamflow)

Water quality (stream temperature, dissolved oxygen, sediment)

For 16 GCMs, 2 emission scenarios, subbasin scale, through 2100
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Alr
temperature
changes:

Expect warming
by 2-5 C
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Precipitation
changes more
variable,
generally
drying
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B1 emission scenario Z A2 emission scenario

— Hydrologic Components

m Western Sierras

m  Snowpulse advanced and
diminished

m  Winter and spring declines
of surface runoff

m Earlier ET
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m Regional differences in soil
storage and importance of
snowmelt runoff pulse
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Spring: A2 emission scenario
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Average annual snowmelt
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. Parcent change from historical streamflow

. Percent change from historical streamflow

2080s A2 emission scenario

40
\ ‘ Spring
4 A Westside Siermas ‘
20 4 Eastside Sierras 4‘
A A v A -
a A A A
-
A “:“A‘
- A
100 <+ s - + 4
0 100 200 300 400
Historical average streamflow (m’s)
Summer
0 -
A 4 Westside Sierras
ey & Eastside Sierras
-20 1 -
» A A 4
40 A. Asd a 4 4 Aa A -
a A B AL
A #e
: a M POV
-60 2. A
-
'Y
00 4
20 T T T
0 20 49 80 80 100 120 140

Historical average streamflow (m’s)

% change In flow
VS. basin size

Large basins:

~20-40% less
flow In Spring
~30-60% In
Summer



"

Sagehen
Creek

Contains Rainbow
Trout!

1.6

Streamflow (mals)

15

Dissolved oxygen (mg/L)
=

8

- 2 .
N W s

—_
—
3

o

Streamflow

Streamflow

J F M A M J J A § O ND
Dissolved oxygen

Dissolved Oxygen

J F M A M J J A S OND
Month

2080’s
Water temperature
14
5 Water temp
@ 19
=
g 8
o
E, 6
2

0+

55

45

Sediment concentration (mg/L)

25

Historical

B1 scenario
A2 scenario
B1 25" and 75" percentiles

50

40,7

J F M A M J J A S OND

Sediment concentration

Sediment

J F M A M J J A S OND
Month

A2 25" and 75" percentiles



N
Spring: A2 emission scenario
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Summer: A2 emission scenario
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Historic and projected DO levels

Summer: A2 emission scenario
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Pacific salmon

m  Warmer temperatures
above optimum
Change migration
timing
Reduce growth rates

Reduce available
oxygen

Increase susceptibility
to toxins, parasites,
predators, disease

m Reduced flows

Further increase
temperatures

May not be enough flow
for migration
m Very high flows may
wash away gravel at
spawning sites.

Typical Life Cycle
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4 Sockeye salmon
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) Fresh water Wrocean
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What do the higher temperatures

mean for fish?
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What we have learned

m need to examine if existing tools can capture changes, development of new
tools

m Projected climatic change impacts
Earlier timing of runoff

Earlier timing of other hydrologic components (soil storage, subsurface
flow, groundwater flow)

m Decreasing moisture availability not only in stream but throughout watershed
m Effects of plants not considered

Substantial effects on stream water quality
m Increasing stream temperature, decreasing DO, especially in summer
= Shifts in the timing and volumes of sediment transport

What else?

Systematic examination of occurrence of extreme conditions
Systematic examination of potential ecologic consequences
Region-to-region comparisons

More model testing



