Resilience and sensitivity of high-severity fire regimes to climatic variability from centuries to millennia

AGU13 - GC24A-01

Philip Higuera¹*
Ryan Kelly²
Feng Sheng Hu²
Univ. of Idaho¹, Univ. of Illinois³
*PhilipHiguera, phiguera@uidaho.edu

(c) P. Higuera - please contact for use.
Climate Change and Wildfires

Continued warming could transform Greater Yellowstone fire regimes by mid-21st century

Anthony L. Westerling¹, Monica G. Turner¹, Erica A. H. Smithwick², William H. Romme³, and Michael G. Ryan⁴

The Telegraph

Australian bushfires: Nearly 100 dead in deadliest ever blaze

Australia's worst ever bushfires have left at least 100 people dead and hundreds homeless as blazes continue to rage amid fears the death-toll could rise even further.

Fire in the Earth System

Fire is a worldwide phenomenon that appears in the geological record soon after the appearance of terrestrial plants. Fire influences global ecosystem patterns and processes, including vegetation

The wildfire factor

David Schimel and David Baker

Events such as wildfires, occurring on a tiny area of the globe, can have a huge impact on the global carbon cycle. This much is plain from investigation of the terrible fires that afflicted Indonesia five years ago.

Implementation of National Fire Plan treatments near the wildland–urban interface in the western United States

Tania Schoennagel¹, Cara R. Nelson³, David M. Theobald⁴, Gunnar C. Carnwth⁵, and Teresa B. Chapman⁶
Climate Change and Wildfires

Recent burning of boreal forests exceeds fire regime limits of the past 10,000 years

Ryan Kellya, Melissa L. Chipmanb, Philip E. Higuerac, Ivanka Stefanovad, Linda B. Brubakere, and Feng Sheng Hua,b,1

aDepartment of Plant Biology and bDepartment of Forest, Rangeland, and Fire Sciences, University of Idaho, Moscow, Idaho 83844 USA; cSchool of Environmental and Forest Sciences, University of Washington, Seattle, Washington 98195 USA; dSchool of Geosciences, Louisiana State University, Baton Rouge, Louisiana 70803 USA; eDepartment of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4 Canada.

Long-term perspective on wildfires in the western USA

Jennifer R. Marlona,1, Patrick J. Bartleinb, Daniel G. Gavinb, Colin J. Longb, R. Scott Andersond, Christy E. Brilesc, Kendrick J. Brownf, Daniele Colombog, Douglas J. Halletth, Mitchell J. Poweri, Elizabeth A. Scharlj, and Megan K. Walshk

aDepartment of Geography, University of Wisconsin, Madison, WI 53706 USA; bDepartment of Geography and Urban Planning, University of Wisconsin, Oshkosh, WI 54901 USA; cSchool of Earth Sciences and Environmental Sustainability, Northern Arizona University, Flagstaff, AZ 86011 USA; dSchool of Geography and Environmental Science, Monash University, Victoria 3800, Australia; eCanadian Forest Service, Victoria, BC, Canada V8Z 1M5; fOsos Tanner Centre for Climate Change Research, Institute of Plant Sciences, University of Bern, Switzerland; gDepartment of Anthropology, University of Alberta, Edmonton, Alberta T6G 2H4, Canada; hNatural History Museum of Utah, University of Utah, Salt Lake City, Utah 84112 USA; iDepartment of Geography, University of North Dakota, Grand Forks, North Dakota 58202 USA; jDepartment of Geography, Northern Arizona University, Flagstaff, Arizona 86001 USA; kDepartment of Geography, Southern Illinois University, Carbondale, Illinois 62901 USA.

Resilience and regime change in a southern Rocky Mountain ecosystem during the past 7,000 years

T. A. Minckley1,4, R. K. Shriner1,5 and B. Shuman2,3

1University of Wyoming, Department of Botany, Laramie, Wyoming 82071 USA; 2Department of Botany, University of Wyoming, Laramie, Wyoming 82071 USA; 3Department of Botany, University of Wyoming, Laramie, Wyoming 82071 USA; 4Department of Earth and Space Sciences, University of Washington, Seattle, Washington 98195 USA; 5Department of Geology and Geophysics, University of Wyoming, Laramie, Wyoming 82071 USA.

Vegetation mediated the impacts of postglacial climate change on fire regimes in the south-central Brooks Range, Alaska

Philip E. Higuera1,2, Linda B. Brubaker1, Patricia M. Anderson2, Feng Sheng Hu3 and Thomas A. Brown4

1College of Forest Resources, University of Washington, Seattle, Washington 98195 USA; 2Department of Earth and Space Sciences and Quaternary Research Center, University of Washington, Seattle, Washington 98195 USA; 3Department of Plant Biology, University of Illinois, Urbana, Illinois 61801 USA; 4CAMS, Lawrence Livermore National Laboratory, Livermore, California 94551 USA.
Drivers and Interactions

Climate

Vegetation

Fire Regime

Moisture avail.

Biome, stand level

Stand-replacing
Consequences

Moisture avail.

Climate

Vegetation

Biome, stand level

Stand-replacing

Fire Regime
When do we see changing fire regimes in the past?

1. Reconstructing the past

2. Examples of sensitivity and resilience; inferred mechanisms

“…ability of [a] system to absorb changes of…driving variables…and still persist.”

Holling (1973)
Fire history from continuous sediment records

Theoretical / modeling:

\[C_{\text{air}} = f(d) \]

\[C_{\text{lake}} = f(C_{\text{air}}, \text{slope wash}) \]

\[C_{\text{core}} = f(C_{\text{lake}}, \text{redeposition, mixing}) \]

Empirical tests:

Higuera et al. 2007, 2013
Peters and Higuera, 2007

Kelly et al. 2013 PNAS
When do we see changing fire regimes in the past?

1. ...when climate change directly influences fuel moisture

2. ...when millennial-scale climate change results in vegetation shifts that change flammability
1. Increased burning with post-glacial warming

*Sensitivity at multi-millennial time scales

1. Increased burning with post-glacial warming

Climate → Fire → Veg. Regime

Charcoal accumulation (z-score) vs. Mean annual temperature (z-score)

Generalized additive model
Temp. explains ≈ 56% of var.

Daniau et al. 2012, Global Biogeochemical Cycles
2. Increased burning with boreal forest development

Higuera et al. 2009, Ecological Monographs
Brubaker et al. 2009, Ecology
2. Increased burning with boreal forest development

Sensitivity at multi-millennial time scales
2. Increased burning with boreal forest development

*Vegetation mediated impacts of climatic change

Climate

Veg. → Fire Regime

(c) P. Higuera - please contact for use.
2. Increased burning with boreal forest development

Relatively stable mean fire return intervals, at 2000-yr scale
Recent burning of boreal forests exceeds fire regime limits of the past 10,000 years

Ryan Kellya, Melissa L. Chipmanb, Philip E. Higuerac, Ivanka Stefanovad, Linda B. Brubakere, and Feng Sheng Hua,b,1
3. Sensitivity to centennial-scale climate variability

*Increased fire severity during MCA

*Biomass burned sensitive to climate variability

*Fire frequency non-varying [except recent decades]

Kelly et al. 2013, PNAS
3. Fire-vegetation-fire feedbacks

*Increased deciduous species limited fire frequency

Johnstone et al. (2010)
Mechanisms for climate impacts on fire regimes

<table>
<thead>
<tr>
<th>Pathway</th>
<th>Proximal Mechanism</th>
<th>Time Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate</td>
<td>Altered fuel moisture</td>
<td>Years to decades</td>
</tr>
<tr>
<td>Climate</td>
<td>Biome-scale vegetation shifts</td>
<td>Centuries to millennia</td>
</tr>
<tr>
<td>Veg.</td>
<td>Successional vegetation shifts</td>
<td>Years to centuries</td>
</tr>
</tbody>
</table>
Summary

Lessons from PaleoEcology

1. Paleo records illustrate both resilience and sensitivity to climate change

2. Direct climate impacts from centennial through millennial scales

3. Vegetation-mediated impacts from decadal through millennial scales, including feedbacks
Lessons from PaleoEcology

1. Paleo records illustrate both resilience and sensitivity to climate change

2. Direct climate impacts from centennial through millennial scales

3. Vegetation-mediated impacts from decadal through millennial scales, including feedbacks