“Science affects the way we think together.”

Lewis Thomas

PRESCRIBED FIRES ARE NOT CREATED EQUAL: FIRE SEASON AND SEVERITY EFFECTS IN PONDEROSA PINE FORESTS OF THE SOUTHERN BLUE MOUNTAINS

In the mid-1990s, forest managers on the Malheur National Forest were concerned about their prescribed fire program. Although they have only a few weeks of acceptable conditions available in the spring and fall, they were worried that spring-season prescribed burning might be exacerbating black stain root disease and having negative effects on understory plants.

Working closely with forest managers, PNW Research Station scientists designed an experiment tailored to the problem. Prescribed fires were set in the fall and spring. The stands were then monitored for several years to determine the response of understory native perennial (long-lived) grasses and forbs. However, exotic and native short-lived species were more abundant in the areas burned in the fall. As with tree mortality patterns, fire severity is probably driving this pattern. Short-lived native plants showed postfire invasion and spread patterns similar to exotics, but exotics were more abundant than natives.
be more vulnerable to burning in the spring when they are actively growing.

The managers had legitimate concerns but they didn’t want to give up on spring burning. There is only a short window in the spring and the fall when prescribed fires can safely be used. Most of the year, it is either too wet to carry fire or so dry that fire is difficult to control. If spring burning were eliminated, then fire managers would be left with only a few weeks in the fall. Given the thousands of acres needing to be burned, cutting the available days in half would effectively double the challenge.

“They had interesting questions stemming from their observations. In response, several of us in the research branch designed a program of study tailored to their questions,” says Walt Thies, a research plant pathologist at the PNW Research Station in Corvallis, Oregon. What resulted was synergy between the managers on the Malheur National Forest and researchers in the Station.

In this area burned in fall 1997 (photo taken in 2002), tree mortality was higher, creating a large gap in the canopy. These areas can quickly be invaded by invasive exotic species such as the bull thistle and cheatgrass shown.

Not all postfire canopy gaps were dominated by exotic invasive species. This area was carpeted with a native annual Epilobium species. Whether an area will be dominated by exotics vs. natives after prescribed fires depends on complex interactions among site conditions, seed sources, disturbance intensity (e.g., fire severity), and operational conditions.

Science Findings is online at:
http://www.fs.fed.us/pnw

The site includes Science Update—scientific knowledge for pressing decisions about controversial natural resource and environmental issues.
FIGHTING FIRE WITH FIRE

Prescribed burning is a valuable tool for land managers in fire-prone ecosystems. For thousands of years, ponderosa pine forests, like those on the Malheur, burned frequently, every 2 to 10 years. Fires were frequent enough that fuel accumulation was limited and fires rarely killed the bigger trees. It is not surprising that forests began to change when Euro-Americans began settling the West. Fires were either excluded or actively suppressed starting in the 1920s and 1930s. Although it seemed like a logical approach at the time—after all, fire burns up the forage needed by livestock and kills the next generation of trees—over the long term, fire exclusion and suppression has threatened the health of many forests.

“The idea that ecosystems benefit from the reintroduction of historic processes, like fire, is a central tenet of ecological restoration,” says Becky Kerns, a research ecologist who specializes in understory plant communities and works in the Corvallis PNW lab. “Reintroducing fire into dry Western forests is considered key for a variety of management objectives.”

The chief objective is often fuel reduction. Prescribed fires reduce fuel loads that, if left to accumulate, may result in severe, stand-replacing fires. Burning also thins out young trees, which compete with larger trees for water and nutrients. Potentially important is that prescribed fires may also promote reproduction of understory plants. Virtually all of the plant biodiversity in these forests exists in the understory; these plant communities regulate conifer regeneration, soil retention, nutrient cycling, and provide critical wildlife habitat.

The benefits of burning are complicated by all the other changes that have occurred during the past century. Live and dead vegetation have accumulated—meaning there is now a large amount of fuel to stoke the fire. In addition, fire suppression has rearranged some plant communities, and many native species now have tenuous populations with few seed stores left in the soil. And, to make matters even worse, there is now the threat of exotic species, which regularly out-compete desirable, native species.

In the mid-1990s, Thies and Chris Niwa worked with the Malheur National Forest to lay out a replicated study design. Niwa is a research entomologist with the PNW Research Station in Corvallis, Oregon.

“There were either excluded or actively suppressed starting in the 1920s and 1930s. Although it seemed like a logical approach at the time—after all, fire burns up the forage needed by livestock and kills the next generation of trees—over the long term, fire exclusion and suppression has threatened the health of many forests.

The fires were ignited in strips with drip-torches (think flaming napalm in a tea pot), then allowed to burn. Depending on the available fuel, they periodically flared up and went out. What was left behind was a mosaic of burned and unburned patches. Overall, the fires blackened about 56 percent of the ground.

TAKING THE PULSE OF SCORCHED TREES

At first, it looked to Thies and Niwa like the managers might be on to something. Many of the spring-burned stands did have disease symptoms. But, after taking a closer look at the data, they determined that there was no difference in black stain root disease abundance between spring and fall burned plots. It seems that at least some of the manager’s fears regarding spring burning were eased. In fact, significantly more trees died—from burning, not disease—after the fall burns when compared to the spring.

But, is it really that simple? Is tree mortality really a greater risk during the fall? Maybe not. It is also true that the fall burns were more severe. In this regard, the findings about season of burn are nuanced and require a deeper understanding.

After monitoring tree mortality for several years, Thies found that by using two simple features of a fire damaged tree—the percentage of crown-scorch and height of scorch on the trunk—he can quickly estimate the probability of survival. The probability of mortality is only affected by the amount of tree damage: it does not depend on the season of burn.

Thies shed some light on the season of burn question and created a set of equations that can estimate the likelihood of tree mortality. “This is a simple tool that foresters can take into a burn and quickly estimate the probability of survival for individual trees. It should be a great help when evaluating if the objectives of a prescribed burn were met, or when planning the postfire management strategy after a wildfire,” says Thies.

“We decided on six stands, all larger than 100 acres, that were relatively homogenous in terms of tree composition and density,” they explain. “Each stand was divided into thirds and randomly assigned treatments: spring burn, fall burn, or no burn.”

Right on schedule, foresters on the Malheur conducted the burns on the appropriate units. “They took care of all the logistics and the prescribed burning. Not once did they stray from the design,” notes Thies.

Some areas with heavier fuel loads will burn up into the tree crowns and this tree may not survive.
Thies is in the process of validating these predictions by examining additional stands on the Malheur and other National Forests.

Thies also kept records of “lion’s tails” as he monitored tree mortality over several years. Some foresters have associated black stain root disease in ponderosa pine with a symptom referred to as a “lion’s tail,” which is a stunted branch, bare until the very tip, where a bunch of needles splay out looking rather like—you guessed it—a lion’s tail. Thies found no relationship between the disease and the lion’s tail pattern. “The reliability of using the lion’s tail as an indicator for black stain root diseases is questionable,” says Thies.

AN EXOTIC PROBLEM

Kerns joined the research team in 2002 to measure understory plant response to the burns. Exotic invasive plant species were a special concern. Cheatgrass and bull thistle are two aggressive exotics on the Malheur. Both plants originate from Europe. They are short lived, can be fierce competitors for water and nutrients, and have been a scourge to land managers for several decades. Cheatgrass, in particular, has become ubiquitous throughout the West. Both species are aggressive colonizers after disturbances, such as fire or grazing.

On a more positive note, “Although these exotics are spreading into many ponderosa pine forests, there are still areas that are not heavily invaded. Proactive land management, such as native seeding or weed control, may yet prevent their expansion. Other species like dalmation toadflax, Canada thistle, and knapweed are just showing up in this ecosystem, and we still have a chance to ward them off,” says Kerns.

These exotics are all aggressive colonizers, and this has put foresters working in ponderosa pine in a bind. They must address the fuels problem, or face potentially huge and severe wildfires. But, by using fuel reduction treatments and prescribed fires, they open themselves to a host of exotic species. This potentially no-win situation emphasizes the importance of research into the timing and severity of prescribed fires on understory plant response.

Kerns evaluated the composition and abundance of understory plants five growing seasons after the burns on the Malheur. “Although both exotic and native short-lived species showed similar postfire invasion and spread patterns, exotics such as cheatgrass and bull thistle were much more abundant postfire than natives, suggesting that the exotics were more successful at capturing resources for growth in these areas after fires,” she says.

Although it is true that there were more exotics in the fall-burn sites compared to the spring-burn sites, it is also true that the fall burns were more severe. Just like their findings about tree mortality, interpreting season of burn is not so simple.

From the manager’s perspective, there was good and bad news related to Kerns’ findings: Areas where prescribed burns were more severe had more exotics, irrespective of the season of burn. But spring burning did not reduce the abundance or diversity of native perennial (longer lived) plant species. In fact, there was no difference in the abundance of native perennials 5 years after the fires. But there was also no evidence that the fires stimulated the native plant community.

“Expectations for increased native plant diversity and abundance following prescribed burns, especially for perennial native forbs and grasses, may not necessarily have been met,” says Kerns.
Small microplots (1 by 1 meter) are used to visually estimate plant cover. The grid pattern can increase the accuracy of these measurements.

NOT SO SIMPLE: SEASON OR SEVERITY?

Kerns, Thies, and Niwa all stress that when we consider the effect of burning season on tree mortality and understory vegetation, we need to separate the effects of fire behavior associated with season (it may simply be hotter and drier in some seasons) from the direct effects related to burn timing and plant growth status (plant physiology differs by season).

Although there were differences between the fall and spring burns, it is hard to tell if season or severity was the primary driver. If the spring fire had been more severe, would the differences remain?

“An important factor controlling the understory response was the severity of the fire. In our case, the fall burns were more severe: the fuels were drier, there was more litter consumption, and more tree scorch. This led to more exposed soil and, thus, more available habitat for both exotic and native understory plants,” explains Kerns. The same type of phenomenon seemed to be happening with regard to tree mortality. It is severity expressed through greater tree damage, not the season of burn, that is the primary driver.

With questions remaining, the research isn’t done yet. Working with the Malheur National Forest, they reburned half of each of the units burned earlier to address questions related to the frequency of burns. Kerns added a cattle grazing component to examine how cows influence fuels and understory. Stay tuned for more findings from the next round of this unprecedented fire study.

“Conservation is the application of common sense to the common problems for the common good.”
—Gifford Pinchot, founder of the USDA Forest Service

FOR FURTHER READING

WRITER’S PROFILE

Jonathan Thompson is an ecologist and freelance writer. He lives in Corvallis, Oregon.
SCIENTIST PROFILES

BECKY KERNS is a research ecologist with the Station’s newest unit, the Western Wildland Environmental Threat Assessment Center in Prineville, Oregon. She received her B.S. in geology from University of California at Santa Barbara, and an M.S. in quaternary science and a Ph.D. in forest science from Northern Arizona University. Her research is focused on understanding the effects of disturbances such as fire (wild and prescribed), fuel reduction treatments, grazing, and other land management practices on the structure and composition of forest plant communities in space and time.

Kerns can be reached at:
Western Wildland Environmental Threat Assessment Center
3160 NE 3rd Street
P.O. Box 490
Prineville, OR 97754
Phone: (541) 416-6602
E-mail: bkerns@fs.fed.us

WALT THIES has been a research plant pathologist at the Station since 1975. He received his B.S. in forest management from the University of Missouri at Columbia and his Ph.D. in plant pathology at the University of Wisconsin at Madison studying root diseases in forest tree nurseries. He began his Forest Service career in the former Timber Management Division of the Pacific Northwest Region. His work at the Station is focused on developing management strategies for laminated root rot and other root diseases of western conifers.

Thies can be reached at:
Forestry Sciences Laboratory
3200 SW Jefferson Way
Corvallis, Oregon 97331
Phone (Walt Thies): (541) 750-7408
E-mail: wthies@fs.fed.us

CHRIS NIWA is a research entomologist at the PNW Research Station. She received an A.B. in physical anthropology from the University of California at Berkeley, M.S. in forest resources from the University of Idaho, and a Ph.D. in entomology from Oregon State University. Her research has included the use of semiochemicals for monitoring and control of native and exotic forest insects, management of cone, seed, and regeneration pests, biological diversity of soil and litter arthropod communities, and the interaction of wildland fire and bole infesting beetles.

Niwa can be reached at:
Forestry Sciences Laboratory
3200 SW Jefferson Way
Corvallis, Oregon 97331
Phone (Chris Niwa): (541) 750-7370
E-mail: cniwa@fs.fed.us

COLLABORATORS
Craig Schmitt, USDA Forest Service, PNW Region, Wallowa-Whitman National Forest
Mark Loewen, USDA Forest Service, PNW Region, Malheur National Forest

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or part of an individual’s income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, 1400 Independence Avenue, SW, Washington, DC 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.