AN EVOLVING PROCESS: PROTECTING SPOTTED OWL HABITAT THROUGH LANDSCAPE MANAGEMENT

The more intensely we have protected the forest from fire, insects, and disease, the worse many of our problems have become. —James Agee

The Northwest Forest Plan was adopted in 1994 to break the legal stalemate over logging versus wildlife habitat protection. Years of controversy had culminated in a court-ordered injunction against federal timber harvests in the region. The plan guides management on federal land within the range of the northern spotted owl in Washington, Oregon, and northern California. The northern spotted owl is a threatened species protected by the Endangered Species Act, and its preferred habitat is old forests. The plan sought to preserve spotted owl habitat by creating a network of late-successional reserves. These reserves are set within a matrix of lands assigned various levels of active management.

After 16 years of conservation efforts through implementation of the Northwest Forest Plan, spotted owl populations continue to decline. Loss of habitat continues to be an issue—but instead of losing it to logging, in dry forests, a significant amount of habitat is being lost to wildfire. Since the plan’s inception, some forest managers have questioned if the reserve strategy can address the complex problem of managing dry mixed-conifer forests with high fire danger while maintaining viable...
Mixed-conifer forest landscapes are dynamic systems where fire, insects, and other disturbances play key roles in shaping patchy and shifting landscape mosaics. Fire suppression and other management activities over the 20th century have created unstable and unpredictable forest conditions.

A whole-landscape-management approach would help maintain habitats in dynamic landscapes; restore ponderosa pine and mixed-conifer forests; restore natural fire ecology; and maintain populations of species associated with old forests, such as the threatened northern spotted owl, especially given projected climate change scenarios.

Over the last century, the acreage of 100- to 150-year-old forests in eastern Washington and Oregon has increased, but the condition of these older forests is unsustainable under current fire regimes. Research shows where late-successional and old forest historically persisted and where current old forest can persist if managed in a sustainable landscape context.

Purpose of PNW Science Findings

To provide scientific information to people who make and influence decisions about managing land.

PNW Science Findings is published monthly by:
Pacific Northwest Research Station
USDA Forest Service
P.O. Box 3890
Portland, Oregon 97208

Send new subscriptions and change of address information to:
pnw_pnwpubs@fs.fed.us

Rhonda Mazza, editor; rmazza@fs.fed.us
Cheryl Jennings, layout; cjennings@fs.fed.us

Science Findings is online at: http://www.fs.fed.us/pnw/publications/scfi.shtml

Comparisons of presettlement era (historical) and current forest vegetation, fire, and insect vulnerability in a watershed in the Crooked River subbasin, Oregon.
spotted owls apparently evolved. Instead, stand-replacement patches were less common and more variable in size, most being less than 1,000 acres,” Hessburg says.

“More importantly, when we compared historical landscapes to our existing landscapes, we saw that our past management had inadvertently set up a near perfect-storm scenario for wildfires, bark beetles, defoliators, dwarf mistletoes, and root diseases. We are learning that we need to evaluate large landscapes by considering a variety of features and processes, asking how do they currently function and how would they naturally function as landscapes in this or any other future climate? Management can then adjust patterns of forest structure, fuels, and composition accordingly to enhance species and process functionality of entire landscapes,” says Hessburg.

“The trouble with large unmanaged reserves on the east side today,” Hessburg continues, “is that they’re wildfire habitats with a bull’s-eye on them. A 10,000-acre reserve has so much edge that fires migrating from many directions can find them. If you want to keep stand-replacing wildfires from spreading over great distances, you have to alter the mosaic of surface and canopy fuels to create a resistance to fire spread and intensification.”

Hessburg and Lehmkuhl think that this troubling situation can be addressed by restoring some of the spatial isolation of late-successional forest patches that once characterized the native landscape. This can be done by treating the surface and ladder fuels in between untreated late-successional patches. This reduces the likelihood that fires will spread across the landscape. They theorize that based on reconstructions of historical landscape dynamics, certain landscape patterns of forest structure and composition lessen the ability of fires and insects to move from one stand to another, whereas others actually facilitate their spread.

The scientists base their ideas on key spatial characteristics of the historical dry-forest mosaics. No two mosaics were ever alike, but they exhibited patterns within a particular set of conditions. Their research over the years has attempted to characterize those patterns in terms of the way fire, insects, and even pathogens functioned within them.

THE STRATEGY’S EVOLUTION

The two scientists’ theory of whole-landscape management evolved from their collaboration in the early 1990s on ecosystem management projects. Lehmkuhl was examining the influence of landscape changes on habitats and species abundance, while Hessburg was focused on landscape composition, structure, and interactions with fire and other disturbance processes. Hessburg recognized in Lehmkuhl a wildlife biologist who not only understood the habitat dynamics of species of various sizes and mobility, but also the way landscapes worked.

At the time, much research underway at the Wenatchee Forestry Sciences Laboratory focused on fire regimes, fire history, and the condition of the inland Northwest landscape. When the Northwest Forest Plan was adopted, Hessburg, Lehmkuhl, and Richard Everett, a now retired range ecologist, began thinking...
about managing for ecological objectives across the landscape, regardless of the land’s reserve status. They were intrigued by the idea of providing suitable habitat in spatial configurations that worked for wildlife and the species they prey on, in a landscape that was highly dynamic.

Lehmkuhl and Hessburg also saw the similarities between fire and insect as disturbance processes. Both disturbances have the ability to move from one susceptible habitat location to another. To Lehmkuhl and Hessburg, that meant patterns of forest conditions really mattered across the landscape. For example, tree-killing bark beetles seek susceptible, weakened hosts after they emerge from the host trees where they develop and reach maturity. If stands of host trees of adequate size and species are adjacent to each other, beetle populations can keep expanding, and tree mortality expands along with them. The same is true of wildfires. If many adjacent forest stands, including those in reserves, have large accumulations of surface and canopy fuels, severe wildfire can spread among them.

“Landscape management is a dynamic problem-solving process where properties of the landscape are continuously emerging over space and time,” Hessburg says. “Planning needs to acknowledge this dynamism and work with it.” According to Hessburg, landscape management tries to simultaneously influence the behavior of disturbance processes such as insects and fires while providing networks of habitats that can work over space and time. The other virtue of this approach, the scientists say, is that managers do not have to keep the whole forest free from fire. Instead, they can look at the patterns that supported the kind of desired fire behavior and then manage landscapes accordingly.

CHARTING A NEW COURSE

In 2008, the U.S. Fish and Wildlife Service contracted the Sustainable Ecosystems Institute (SEI) in Portland, Oregon, to conduct a third-party science review of written comments from three scientific societies on the Draft Northern Spotted Owl Recovery Plan. The SEI gathered together a panel of recognized scientists, and asked them to assess the comments. In their review, the SEI concluded, that “a simple reserve network is unsustainable in east-side fire-prone habitats. Conservation strategies, to be viable, must be designed and implemented at the landscape level.”

The whole-landscape approach would require some management changes. On one hand, it would give land managers more flexibility and simplify management by eliminating the differing rules and guidelines for reserve and matrix lands. By looking at the bigger picture, rather than treating a particular patch of fire-prone owl habitat and risk losing it in the process, that patch could be protected by treating neighboring patches to prevent fires and insects from migrating to it. Silvicultural treatments could be planned now to provide replacement habitats later—and with plenty of redundancy to allow for fire and nature’s unpredictability.

Lehmkuhl and Hessburg have been working with managers and other scientists to address on-the-ground issues of managing for such ecological objectives, particularly how to write silvicultural prescriptions for ecologically functional stands. With several colleagues, Lehmkuhl is working on a computer program called FuelSolve to help land managers decide how much fuel to remove and where treatments would effectively maintain ecological values such as spotted owl habitat. FuelSolve is unique among landscape planning programs because it helps users find a set of optimal solutions that trade-off multiple goals. Other optimization planning programs typically find a single optimal solution for a single goal like fuel reduction, for example. Having a set of solutions, instead of just one solution, gives managers options to achieve their multiple goals for that landscape, and importantly, it makes ecological goals equivalent to fuel reduction, rather than acting as constraints on fuel reduction as with typical optimization planning.

“None of us know the perfect way to realize these multiple goals in the first cut, but we see a path clearly,” says Lehmkuhl. He continues, “In terms of a scientific process, we’ve done a lot of research that indicates that we could accomplish them. We do know a lot about the needs of the spotted owl in terms of habitat, prey, and what kind of stands they use. We also know a lot about vegetation, fire behavior, and stand characteristics. We need to put our minds together and then get started in the spirit of adaptive management, building in ways to assess our methodology and validate and adjust tactics and assumptions systematically along the way.”

There’s nothing wrong with change, if it is in the right direction

—Winston Churchill
LAND MANAGEMENT IMPLICATIONS

• Under a whole-landscape-management approach, the ecological and regulatory complexity of management could be simplified by a unifying standard and guideline for maintaining ecological integrity.

• Using a whole-landscape-management approach, managers would have more flexibility to manage forests across the landscape to meet both conservation and societal objectives. Conservation would no longer be mostly relegated to reserves. Landscape units would be managed according to their needs and potential, not by arbitrary lines around land allocations.

• The spatial allocation of management across the landscape requires innovative planning solutions, decision-support systems, and an adaptive-management approach.

• New landscape-level silviculture prescriptions would need to be developed to integrate fuels reduction, vegetation management, wildlife habitat networks, and other ecological considerations into management.

FOR FURTHER READING


WRITER’S PROFILE

Michael Feinstein is principal of Feinstein Group, Ltd., based in the Puget Sound region and specializing in producing publications about natural resources, education, and other areas.

An example of optimal allocation of fuel reduction treatments around spotted owl locations on the Mission Creek Drainage, Okanogan-Wenatchee National Forest. To arrive at this solution, the FuelSolve planning tool simultaneously considered the dual goals of minimizing potential fire behavior and maximizing the maintenance of spotted owl habitat. The open round circles are protected habitat around owl nest sites; the black patches are treated stands.
SCIENTIST PROFILES

JOHN F. LEHMKUHL is a research wildlife biologist with the Pacific Northwest Research Station. He earned a Ph.D. degree in forest resources from the University of Washington, an M.S. degree in wildlife biology from the University of Montana, and a B.S. degree in wildlife biology from Humboldt State University. He has worked in various professional and technical positions for the Forest Service and the National Park Service, has specialized in the ecology and management of south Asian tropical forests and grasslands, and was a volunteer with the Peace Corps and Smithsonian Environmental Program in Nepal. His current research and management interests are the integration of wildlife and disturbance ecology in Pacific Northwestern forests.

PAUL F. HESSBURG is a research ecologist with the Pacific Northwest Research Station. He earned a Ph.D. degree in botany and plant pathology from Oregon State University, and a B.S. degree in forest resource management from the University of Minnesota. He has worked for the Forest Service in various positions in research and forest health protection for the past 25 years, specializing in forest pathogen and insect ecology, epidemiology, and management, and in landscape ecology. His current research interest is the study of mechanisms of landscape resilience and of forest landscape pattern and process interactions.

Lehmkuhl and Hessburg can be reached at:
USDA Forest Service
Pacific Northwest Research Station
1133 N Western Ave.
Wenatchee, WA 98801

Lehmkuhl:
Phone: (509) 664-1737
E-mail: jlehmkuhl@fs.fed.us

Hessburg:
Phone: (509) 664-1722
E-mail: phessburg@fs.fed.us

COOPERATORS

Richard Everett, Pacific Northwest Research Station (retired)
Bill Gaines and Richy Harrod, Okanogan-Wenatchee National Forest
James K. Agee and E. David Ford, School of Forest Resources, University of Washington
Stephen Courtney, Andrew Carey, Martin Cody, Katherine Engel, Katherine Fehring, Jerry Franklin, Mark Fuller, Rocky Gutiérrez, Miles Hemstrom, Scott Stephens, Lisa Sztukowski, and Lenny Young; Northern Spotted Owl Science Advisory Committee, Sustainable Ecosystems Institute, Portland, Oregon