PACIFIC ISLANDS
PNW-FIADB User’s Manual
A data dictionary and user guide for the Pacific Islands PNW-FIADB database

Inventory Data for the Pacific Islands
The Pacific Northwest Forest Inventory and Analysis Database

The database includes data for:

America Samoa
Guam
Palau
Hawaii (documented here; data to be compiled in 2015)

For more information or help, please contact:

Olaf Kuegler 503-808-2028 okuegler@fs.fed.us
Jane Reid 907-743-9411 jereid@fs.fed.us
Ashley Lehman 907-743-9415 adlehman@fs.fed.us
Sharon Stanton 503-808-2019 sharonmstanton@fs.fed.us

Forest Inventory and Analysis
Pacific Northwest Research Station
Portland, Oregon

This documentation is based on the National FIADB manual
A customized version for the Pacific Northwest FIA program
Foreword

The mission of Forest Inventory and Analysis (FIA) is to determine the status and trend in forest resources. FIA is a continuing endeavor mandated by Congress in the Forest and Rangeland Renewable Resources Planning Act of 1974 and the McSweeney-McNary Forest Research Act of 1928.

The USDA Forest Service, Pacific Northwest Research Station is responsible for conducting inventories in the U.S. affiliated Pacific Islands. Specifically, the Forest Inventory and Analysis program within the Resource Monitoring and Assessment Program (known as RMA-FIA), collects data in cooperation and collaboration with Island governments, land owners, and citizens; compiles data and creates databases for distribution to the public; and publishes summary reports to document and interpret the information.

The island groups inventoried by RMA-FIA include American Samoa, Guam, Hawaii, the Republic of Palau, the Commonwealth of the Northern Mariana Islands, the Federated States of Micronesia, and the Republic of the Marshall Islands.

Note that older data are being reorganized to fit into the current database structure, and will be added to the database over time. Currently the database includes data for American Samoa, Guam, and Palau.

This data dictionary provides details on database structure, column definitions, valid codes, and more. All inventories strive to use a common plot design and common data collection procedures, resulting in consistency among the Pacific Islands and mainland United States. When things differ between Islands or the Inventory Year, data column definitions will note inconsistencies caused by different sampling designs and processing methods.

The PNW-FIADB is a customization of the national database structure. It contains inventory data collected and compiled with national protocol and algorithms, as well as regional data that are collected only by the PNW RMA-FIA program and only in the Pacific Islands. Data columns that do not pertain to the PNW or Pacific Islands have been deleted from tables in this database. And, columns are reorganized and sorted by name to make it easier to find an individual column. Some frequently used columns have been moved to the beginning of each table.

The PNW RMA-FIA program hopes this customized version of the FIADB will simplify the use of FIA inventory data, and that analysts and other interested individuals will turn to the PNW-FIADB when data are needed for projects and analyses of Pacific Island forests.

<table>
<thead>
<tr>
<th>Island Group</th>
<th>Initial measurement</th>
<th>Re-measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>America Samoa</td>
<td>2001</td>
<td>2012</td>
</tr>
<tr>
<td>Guam</td>
<td>2002</td>
<td>2013</td>
</tr>
<tr>
<td>Palau</td>
<td>2003</td>
<td>2014</td>
</tr>
<tr>
<td>Hawaii</td>
<td>2010-2014</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(may not be included in the database at the time of this printing)</td>
<td></td>
</tr>
</tbody>
</table>

Although we have reviewed the data and documentation extensively, if you find any errors, typos, or other problems with anything in the PNW-FIADB package, we would appreciate it if you would let us know.
TABLE OF CONTENTS

Chapter 1 -- Introduction ..5

Chapter 2 -- FIA Sampling and Estimation Procedures ..7
 Sampling and Stratification Methodology ...7
 Plot Location ...8
 Plot Design, Condition Delineation, and Types of Data Attributes ...8
 Types of Attributes ..9
 Expansion factors ...10
 Accuracy Standards ...11

Chapter 3 -- Database Structure ..13
 Table Descriptions and Relational links ..13
 PNW Diagrams of relational links ..18

DATABASE TABLE DEFINITIONS:

<table>
<thead>
<tr>
<th>TABLE NAME</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLOT</td>
<td>Plot table ... 27</td>
</tr>
<tr>
<td>PLOT_PNW</td>
<td>Plot table for PNW regional items 39</td>
</tr>
<tr>
<td>COND</td>
<td>Condition table .. 43</td>
</tr>
<tr>
<td>COND_PNW</td>
<td>Condition table for PNW regional items 63</td>
</tr>
<tr>
<td>COUNTY</td>
<td>County table .. 65</td>
</tr>
<tr>
<td>SUBPLOT</td>
<td>Subplot table .. 67</td>
</tr>
<tr>
<td>SUBP_COND</td>
<td>Subplot condition table .. 73</td>
</tr>
<tr>
<td>TREE</td>
<td>Tree table ... 77</td>
</tr>
<tr>
<td>TREE_PACISLANDS_PNWRS</td>
<td>Tree table for Pacific Island regional items 91</td>
</tr>
<tr>
<td>SEEDLING</td>
<td>Seedling table .. 96</td>
</tr>
<tr>
<td>SURVEY</td>
<td>Survey table .. 99</td>
</tr>
<tr>
<td>VEG_P2VEG_SUBPLOT_SPP</td>
<td>Vegetation profile (AS 2012, GU 2013, PW 2014, HI 2011-2014) ... 101</td>
</tr>
<tr>
<td>VEG_P2VEG_PLOT_SPECIES</td>
<td>Vegetation profile (AS 2012, GU 2013, PW 2014, HI 2011-2014).... 110</td>
</tr>
<tr>
<td>VEG_INVASIVE_SUBPLOT_SPP</td>
<td>Vegetation profile, invasive species(AS 2012, GU 2013, PW 2014). 113</td>
</tr>
<tr>
<td>VEG_SP_PNWRS</td>
<td>Vegetation profile (AS 2001, GU 2002).................................. 116</td>
</tr>
<tr>
<td>VEG_PLOT_SPECIES_PNWRS</td>
<td>Vegetation profile (PW 2003, HI 2010).................................. 120</td>
</tr>
</tbody>
</table>

Population level data and descriptions..

<table>
<thead>
<tr>
<th>TABLE NAME</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>POP_EVAL</td>
<td>Population evaluation table .. 125</td>
</tr>
<tr>
<td>POP_EVAL_GRP</td>
<td>Population evaluation group table 128</td>
</tr>
<tr>
<td>POP_EVAL_TYP</td>
<td>Population evaluation type table 129</td>
</tr>
<tr>
<td>POP_ESTN_UNIT</td>
<td>Population estimation unit table 130</td>
</tr>
<tr>
<td>POP_EVAL_ATTRIBUTE</td>
<td>Population evaluation attribute table 131</td>
</tr>
<tr>
<td>POP_PLOT_STRATUM_Assign</td>
<td>Population plot stratum assignment table 133</td>
</tr>
<tr>
<td>POP_STRATUM</td>
<td>Population stratum table .. 135</td>
</tr>
</tbody>
</table>
Reference tables used to crosswalk codes to text

<table>
<thead>
<tr>
<th>Reference Code</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>REF_SPECIES</td>
<td>Reference species table (information for individual species)</td>
<td>137</td>
</tr>
<tr>
<td>REF_SPECIES_GROUP</td>
<td>Reference species group table</td>
<td>139</td>
</tr>
<tr>
<td>REF_INVASIVE_SPECIES</td>
<td>Reference invasive species table</td>
<td>140</td>
</tr>
<tr>
<td>REF_FOREST_TYPE</td>
<td>Reference forest type table</td>
<td>141</td>
</tr>
<tr>
<td>REF_PLANT_DICTIONARY_islands</td>
<td>Reference plant dictionary table</td>
<td>143</td>
</tr>
<tr>
<td>REF_POP_EVAL_TYP_DESCR</td>
<td>Reference population evaluation type description table</td>
<td>146</td>
</tr>
<tr>
<td>REF_POP_ATTRIBUTE</td>
<td>Reference population attribute table</td>
<td>147</td>
</tr>
<tr>
<td>REF_STATE_ELEV</td>
<td>Reference state elevation table</td>
<td>148</td>
</tr>
<tr>
<td>REF_UNIT</td>
<td>Reference survey unit table</td>
<td>148</td>
</tr>
<tr>
<td>BOUNDARY</td>
<td>Boundary table (rarely used)</td>
<td>149</td>
</tr>
</tbody>
</table>

Chapter 4 – Calculating Population Estimates and Their Associated Sampling Errors.. 150
Common Selection Criteria for Queries ... 152
Column names of Common Tree Attributes to Summarize in FIA Queries 153
Basic elements of PNW FIA Queries .. 153
Examples of Common PNW FIA queries ... 154

Acknowledgments.. 155

Literature Cited ... 156

Appendix A. FIA Plot Design .. 159
Appendix B. State, Survey Unit, and County Codes .. 160
Appendix C. Forest Type Codes, Names, and Groups ... 162
Appendix D. Tree Species Group Codes ... 162
Appendix E. Tree Species Codes, Names, And Occurrences 163
Chapter 1 -- Introduction

This manual is a guide to the PNW-Islands version of the national Forest Inventory and Analysis Database (FIADB). The Pacific Northwest FIA work-unit has created a regional version of the database, called PNW-FIADB, along with a regional version of the documentation. Both the database and documentation are based on the national products, but customized to reflect additional data collected specifically for the Pacific Islands. The national database is documented in the publication The Forest Inventory and Analysis Database: Database Description and Users Guide Version 6.0.1 for Phase 2 (http://www.fia.fs.fed.us/library/database-documentation/current/ver6.0/FIADB%20User%20Guide%20P2_6-0-1_final.pdf) which is updated regularly. The majority of text found in the pages that follow was taken from this Guide and from the Pacific Islands field manuals for each island. The PNW-FIADB includes core data required by the national FIA program, along with a variety of data items that have been collected locally by the PNW work-unit. In addition, this database only retains columns within a table that are relevant to the Pacific Island inventory. In contrast, the national FIADB contains a wide variety of columns, some of which pertain only to other FIA work and are null (blank) for all PNW states and Pacific Islands. To improve the utility of the database for users interested only in the Pacific Islands, these non-Island columns have been excluded from the PNW-FIADB database. And, to help users find data quickly, most columns have been sorted by name within a given table.

It is important that users understand not only the data definitions and field methods, but also the context in which the data were collected. Users are encouraged to read the Field Manuals (available on the PNW-FIADB CD) to become familiar with the protocol used to collect FIA data on the field plot.

Most of the User Guide describes the tables that comprise the database, the attributes stored in each table, and the linkages between tables. Descriptions of the attributes, their data format, valid values, and other important details are given, but the appropriate field manuals should be consulted for exact specifications regarding data collection methods. Users with a good understanding of chapter 3 and fundamental database management skills should be able to conduct a wide range of analyses.

There are several conventions used in this manual. The names of attributes (i.e., columns within tables) and table names appear in capital letters (e.g., PLOT table). Some attribute names appear in two or more tables.

The PNW-FIADB contains most of the database tables found in the National FIADB and tables that are unique to PNW and the Islands. These PNW tables contain regionally collected data, regional calculations (i.e. total stem volume), regional expansion factors and adjustment factors, simplified organization of data, and crosswalk tables to translate codes to readable meaningful text.
The FIA Program

The FIA program is mandated by Congress in the Forest and Rangeland Renewable Resources Planning Act of 1974 and the McSweeney-McNary Forest Research Act of 1928. The mission of FIA is to determine the extent, condition, volume, growth, and depletions of timber on the Nation’s forest land. FIA is the only program that collects, publishes, and analyzes data from all ownerships of forest land in the United States (Smith 2002). Throughout the 80-year history of the program, inventories have been conducted by a number of geographically dispersed FIA work units. Currently, the national FIA program is implemented by four regionally distributed units that are coordinated by a National Office in Washington, DC (fig.1). The four FIA work units are named by the Research Station in which they reside. Station abbreviations are used within this document and they are defined as Pacific Northwest Research Station (PNWRS), Northern Research Station (NRS), Rocky Mountain Research Station (RMRS), and Southern Research Station (SRS). The inventory of the Pacific Islands is the responsibility of the PNW FIA work unit.

Starting in 1929, FIA accomplished its mission by conducting periodic forest inventories on a State-by-State basis. Repeat intervals for inventorying individual States have varied widely. By the late 1990s, most States had been inventoried more than once under the periodic inventory system; however not all periodic data are available in electronic form.

With the passage of the 1998 Farm Bill, the FIA program was required to move from a periodic inventory to an annualized system, with a fraction of all plots within a mainland State measured each year (Gillespie 1999).

Background on the National FIA Database

The Forest Inventory and Analysis Database (FIADB) was developed to provide users with data in a consistent format, spanning all States and Islands inventories.. A new national plot design was adopted for inventories initiated after 1998. FIADB table structure is currently derived from the National Information Management System (NIMS), which was designed to process and store annual inventory data.

Annual inventories use a nationally standardized plot design and common data collection procedures. While this resulted in greater consistency among FIA units than earlier inventories, some changes in methodology and attribute definitions have been implemented after the new design was put into practice, as part of a continuing effort to improve the inventory. Beginning in 1998, FIA started using a National Field Guide referenced as Field Guide 1.0. The database contains an attribute labeled MANUAL that stores the version number of the field guide under which the data were collected. When both the plot design is coded as being the national design (PLOT.DESIGNCD = 1) and the field guide is coded with a number greater than or equal to 1, certain attributes are defined as being “core” while others are allowed to be “core optional”. Core attributes must be collected by every FIA work unit, using the same definition and set of codes. In contrast, collection of core optional attributes are decided upon by individual FIA work units, using the same national protocol, predefined definition, and set of codes. Many attributes, regardless of whether or not they are core or core optional, are only populated for forested conditions, and are blank for other conditions (such as nonforest or water). The PNW-FIADB also contains data collected only on the Pacific Islands.

For each attribute in the current version of FIADB, an effort has been made to provide the current definition of the attribute, as well as any variations in definition that may have been used among various FIA work units. In other words, although inventory data have been made available in a common data format, users should be aware of differences that might affect their analyses.
Chapter 2 -- FIA Sampling and Estimation Procedures

To use the FIADB effectively, users should acquire a basic understanding of FIA sampling and estimation procedures. Generally described, FIA uses what may be characterized as a three-phase sampling scheme. Phase 1 (P1) is used for stratification, while phase 2 (P2) consists of plots that are visited or photo-interpreted. A subset of phase 2 plots are designated as phase 3 (P3) plots, where additional health indicator attributes are collected. Phases 1 and 2 are described in this chapter.

Sampling and Post-Stratification Methodology

Remote Sensing (P1)
The basic level of inventory in the FIA program is the State, which begins with the interpretation of a remotely sensed sample, referred to as phase 1 (P1). The intent of P1 is to classify the land into various remote sensing classes for the purpose of developing meaningful strata. A stratum is a group of plots that have the same or similar remote sensing classifications. Stratification is a statistical technique used by FIA to aggregate phase 2 ground samples (see below) into groups to reduce variance when stratified estimation methods are used. The total area of the estimation unit is assumed to be known.

Each phase 2 ground plot is assigned to a stratum and the weight of the stratum is based on the proportion of the stratum within the estimation unit. Estimates of population totals are then based on the sum of the product of the known total area, the stratum weight, and the mean of the plot level attribute of interest for each stratum. The expansion factor for each stratum within the estimation unit is the product of the known total area and the stratum weight divided by the number of phase 2 plots in the stratum.

Selection criteria for remote sensing classes and computation of area expansion factors differ from Island group to Island group. Users interested in the details of how these expansion factors are assigned to ground plots should contact the Islands Analyst at the PNW FIA work unit.

Ground Sampling (P2)
FIA ground plots, or phase 2 plots, are designed to cover a 1-acre sample area; however, not all trees on the acre are measured. Ground plots may be new plots or re-measurement plots that were measured during one or more previous inventories.

Figure 2. The FIA mapped plot design. Subplot 1 is the center of the cluster with subplots 2, 3, and 4 located 120 feet away at azimuths of 360°, 120°, and 240° respectively.
Plot Location

The FIADB includes coordinates for every plot location in the database, whether it is forested or not, but these are not the precise location of the plot centers. In an amendment to the Food Security Act of 1985 (reference 7 USC 2276 § 1770), Congress directed FIA to ensure the privacy of private landowners. Exact plot coordinates could be used in conjunction with other publicly available data to link plot data to specific landowners, in violation of requirements set by Congress. In addition to the issue of private landowner privacy, the FIA program had concerns about plot integrity and vandalism of plot locations on public lands. A revised policy has been implemented for all plots and are collectively known as “fuzzing and swapping” (Lister and others 2005).

In order to maintain the privacy requirements specified in the amendments to the Food Security Act of 1985, up to 20 percent of the private plot coordinates are swapped with another similar private plot within the same county (this is called swapping). This method creates sufficient uncertainty at the scale of the individual landowner such that privacy requirements are met. It also ensures that county summaries and any breakdowns by categories, such as ownership class, will be the same as when using the true plot locations. This is because only the coordinates of the plot are swapped – all the other plot characteristics remain the same. The only difference will occur when users want to subdivide a county using a polygon. Even then, results will be similar because swapped plots are chosen to be similar based on attributes such as forest type, stand-size class, latitude, and longitude (each FIA unit has chosen its own attributes for defining similarity).

Private plots are also swapped using the method described. All plot coordinates are fuzzed, but less than before – within 0.5 miles for most plots and up to 1.0 miles on a small subset of them. This was done to make it difficult to locate the plot on the ground, while maintaining a good correlation between the plot data and map-based characteristics.

For most user applications, fuzzed and swapped coordinates provide a sufficient level of accuracy. However, some FIA customers require more precision of plot locations in order to perform analyses by user-defined polygons and for relating FIA plot data to other map-based information, such as soils maps and satellite imagery. In order to accommodate this need, FIA provides spatial data services that allow most of the desired analyses while meeting privacy requirements. The possibilities and limitations for these types of analyses are case-specific, so interested users should contact their the PNW FIA work unit for more information.

Plot Design, Condition Delineation, and Types of Data Attributes

Plot Designs
The standard plot consists of four 24.0-foot radius subplots (approximately 0.0415 or 1/24 acre), on which trees 5.0 inches and greater in diameter are measured (fig. 2). Within each of these subplots is nested a 6.8-foot radius microplot (approximately 1/300th acre), on which trees smaller than 5.0 inches in diameter are measured.

Conditions
Different conditions are “mapped” on the current plot design (fig. 3). The plot location and orientation remains fixed, but boundaries between conditions are mapped and recorded. Conditions are defined by changes in land use or changes in vegetation that occur along more-or-less distinct boundaries. Reserved status, owner group, forest type, stand-size class, regeneration status, and stand density are used to define forest conditions. For example, the subplots may cover forest and nonforest areas, or it may cover a single forested area that can be partitioned into two or more distinct stands.

Although mapping is used to separate forest and nonforest conditions, different nonforest conditions occurring on a plot are not mapped during initial plot establishment. Each condition occurring on the plot is assigned a condition proportion, and all conditions on a plot add up to 1.0.
Types of Attributes

Measured, Assigned, and Computed Attributes

In addition to attributes that are collected in the field, FIADB includes attributes that are populated in the office. Examples of field attributes include tree diameter and height, and slope and aspect of the plot and subplot. Attributes that are populated in the office include assigned attributes or computed attributes, such as tree and area expansion factors or tree biomass and volume.

For measured attributes, this document provides only basic information on the methodology used in the field. The authoritative source for methodology is the PNW Forest Inventory and Analysis Field Guide for the year of the inventory (see the ‘Field Manual’ folder that accompanies the database on CD for PDF copies of all PNW field manuals). The MANUAL attribute in the PLOT table documents the version number where data collection protocols can be found.

Values of attributes that are assigned in the office are determined in several ways, depending on the attribute. For example, ownership may be determined using geographic data or local government records. Some computed attributes in the database are derived using other attributes in the database.

In most cases computed attributes should be sufficient for users’ needs, because the equations and algorithms used to compute them have been determined by the FIA program to be the best available for the plot location. However, for most computed attributes the relevant tree and plot level attributes used to compute them are included in the database, so users may do their own calculations if desired.

Figure 3. The FIA mapped plot design. Subplot 1 is the center of the cluster with subplots 2, 3, and 4 located 120 feet away at azimuths of 360°, 120°, and 240°, respectively. When a plot straddles two or more conditions, the plot area is divided by condition.
Expansion factors

Tree Expansion Factors

The expansion factor(s) used to scale each tree on a plot to a per-acre basis is dependent on the plot design. All unadjusted trees-per-acre values must be adjusted by the factors found in the POP_STRATUM or PLOT_PNW tables before developing population estimates for trees (i.e. total volume or biomass).

For fixed-plot designs, scaling is straightforward, with the number of trees per acre (TPA) represented by one tree equal to the inverse of the plot area in acres. The general formula is shown by equation [1]:

\[TPA = \frac{1}{N \times A} \]

Where N is the number of subplots, and A is the area of each subplot.

This tree expansion factor is stored in the TPA_UNADJ column in the TREE table (see chapter 3).

The PNW FIA annual inventory has two plots sizes in the Pacific Islands:

<table>
<thead>
<tr>
<th>Plot Size</th>
<th>Radius in feet</th>
<th>Area per plot</th>
<th>Tree sizes (DIA) measured per plot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microplot</td>
<td>6.8</td>
<td>0.003334877</td>
<td>1" to 4.9"</td>
</tr>
<tr>
<td>Subplot</td>
<td>24</td>
<td>0.04154172</td>
<td>>= 5"</td>
</tr>
</tbody>
</table>

1. The TPA for trees measured on the small **Microplot** (DIA < 5.0 inches) is calculated using the equation:

\[TPA_UNADJ = \frac{1}{4 \times 0.003334877} = 74.965282 \]

2. The TPA for trees measured on the **Subplot** (DIA >= 5.0 inches) is calculated using the equation:

\[TPA__UNADJ = \frac{1}{4 \times 0.04154172} = 6.018046 \]

Note that:

the TPA of **every** tally tree >=5.0 inches DIA has a value of 6.018046
the TPA of **every** tally tree <5.0 inches DIA has a value of 74.965282

The COND_PROP_BASIS = “SUBP” in this inventory.
Plot Area Expansion Factors

Area expansion factors (in acres) are used to scale plot-level data to the population-level. These factors are found in the PLOT_PNW table in the PNW-FIADB along with a set of adjustment factors. There is a separate adjustment factor for each fixed plot size; the microplot and subplot. These adjustment factors are used to compensate for denied access, inaccessible, hazardous, and other reasons for not sampling a plot. This set of area expansion factors and adjustment factors on the PLOT_PNW table are used to calculate estimates of land area and a variety of tree attributes such as volume, biomass, or carbon. The addition of this table greatly simplifies the use of the PNW FIADB.

A PNW-only table that contains expansion factors and adjustment factors for the current and previous stratifications of each Island Group in the PNW annual inventory. This table pulls data together from a number of POP tables, to allow users to link just one table instead of the many different POP tables. This is used along with other tables to summarize current annual inventory data with queries and reports. It is meant to simplify the database for ease of use by analysts and clients.

Linkages:

PLOT_PNW.PLT_CN = COND.PLT_CN links the unique plot record to condition class record.

PLOT_PNW.PLT_CN = PLOT_CN links the unique plot record together in both tables.

One area expansion factor (EXPNS) for each stratum is stored in the POP_STRATUM table. These factors are applied to all plots found in a given stratum and may differ each time new data replaces older data. Each time the data are stratified differently, the adjustments and expansion factors will change.

EVALID's

FIA has chosen the term ‘evaluation’ to describe this process of storing different stratifications of data either for an individual set of data or for the changing sets of data through time. Each aggregation of data is given an evaluation id called the EVALID. The user can select population estimates for the most current set of data stratified in a particular way. In addition to being able to calculate population estimates, users can now calculate sampling error information because FIA is storing all of the phase 1 information used for the stratification. That information is stored for each estimation unit, which is usually a geographic subset of the State (see the POP_ESTN_UNIT table). For more information about evaluations and calculation of area expansion factors, see chapter 4.

Accuracy Standards

Forest inventory plans are designed to meet sampling error standards for area, volume, growth, and removals provided in the Forest Service Handbook (USDA 1989). These standards, along with other guidelines, are aimed at obtaining comprehensive and comparable information among Island Groups. FIA inventories are designed to meet the specified sampling errors at the State level at the 67% confidence limit (one standard error). The Handbook says that the sampling error for area cannot exceed 3% error per 1 million acres of timberland. FIA inventories are extensive inventories that provide reliable estimates for large areas. As data are subdivided into smaller and smaller areas, such as a geographic unit, the sampling errors increase and the reliability of the estimates goes down.
Chapter 3 -- Database Structure

This chapter provides information about the database tables, including detailed descriptions of all attributes within the tables. Each column or attribute in a table is listed with its unabbreviated name, followed by a description of the attribute. Attributes that are coded include a list of the codes and their meanings.

Table Descriptions and Relational Links
There are data tables and reference tables in the phase 1 and phase 2 portions of the FIA Database. The section that follows shows the proper linkages among tables. Note that the column name ‘CN’ is a unique number that identifies every record in the table. Please pay attention to the name of this CN when it appears in other tables. For example, the CN in the PLOT table is labeled as PLT_CN in other tables. These two CN’s should be linked together in most cases. Note that most linkages are pre-set in the Access database, so when you include a table in a query it will automatically link with other tables if appropriate.

- **PLOT** table – Provides information relevant to the entire 1-acre field plot. This table links to most other tables, and the linkage is made using PLOT_CN = TABLE_NAME.PLT_CN (TABLE_NAME is the name of any table containing the column name PLT_CN). Below are some examples of linking PLOT to other tables.
 - PLOT_CN = PLOT_PNW.PLT_CN links the plot record together in both tables
 - PLOT_CN = COND.PLT_CN links the unique plot record to the condition class record
 - PLOT_CN = SUBPLOT.PLT_CN links the unique plot record to the subplot records.
 - PLOT_CN = TREE.PLT_CN links the unique plot record to the tree records.
 - PLOT_CN = SEEDLING.PLT_CN links the unique plot record to the seedling records.
 - PLOT_CN = POP_PLOT_STRATUM_ASSGN.PLT_CN links the stratum assigned to the plot record

- **PLOT_PNW** table – A PNW-only table that contains expansion factors and adjustment factors for the current stratification of the PNW annual inventory. This table pulls data together from a number of POP tables, to allow users to link just one table instead of the many different POP tables. This is used along with other tables to summarize current annual inventory data with queries and reports. It is meant to simplify the database, making it easier to use by analysts and clients.
 - PLOT_PNW.PLT_CN= PLOT_CN links the unique plot record together in both tables.
 - PLOT_PNW.PLT_CN= COND.PLT_CN links the unique plot record to the condition class record.

- **COND** table – Provides information on the discrete combination of landscape attributes that define the condition (a condition will have the same land class, reserved status, owner group, forest type, stand-size class, regeneration status, and stand density).
 - COND_CN = COND_PNW.CND_CN links the condition class record to the PNW condition table.
 - COND_PLT_CN = PLOT_CN links the condition class record to the plot table.
 - COND_PLT_CN = PLOT_PNW.PLT_CN links the condition class record to the plot record
 - COND_PLT_CN=TREE.PLT_CN and COND_CONDID=TREE_CONDID links the condition class record to the tree data.

- **COND_PNW** table – Provides regional variables, condition level sums, and grouping variables for each condition on the plot.
 - COND_PNW.CND_CN = COND_CN = links the condition class record to the PNW condition table.
o **SUBPLOT table** – Describes the features of a single subplot. There are multiple subplots per 1-acre field plot and there can be multiple conditions sampled on each subplot.
 o **SUBPLOT.PLT_CN =PLOT.CN** links the unique plot record to the subplot records.
 o **SUBPLOT.PLT_CN = COND.PLT_CN** and **SUBPLOT.SUBP_COND = COND.CONID** links the subplot conditions to the condition class record.
 o **SUBPLOT.PLT_CN = COND.PLT_CN** and **SUBPLOT.MICR_COND = COND.CONID** links the microplot conditions to the condition class record.

o **SUBP_COND table** – Contains information about the proportion of a subplot in a condition.
 o **SUBP_COND.PLT_CN = PLOT.CN** links the subplot condition class record to the plot table.
 o **SUBP_COND.PLT_CN = COND.PLT_CN** and **SUBP_COND.CONID = COND.CONID** links the condition class records found on the four subplots to the subplot description.

o **TREE table** – Provides information for each tree 1 inch in diameter and larger found on a microplot, subplot, or core-optional microplot.
 o **TREE.CN = TREE_PACISLANDS_PNWRS.TRE_CN** = links the tree records to the PNW tree records.
 o **TREE.PLT_CN = PLOT.CN** links the tree records to the unique plot record.
 o **TREE.PLT_CN = COND.PLT_CN** and **TREE.CONID = COND.CONID** links the tree records to the unique condition record.
 o **PLOT_PNW.PLT_CN = COND.PLT_CN** and **PLOT_PNW.PLT_CN = TREE.PLT_CN** and **COND.CONID = TREE.CONID** links the tree records to the unique condition and plot record. This is a common set of linkages for most tree level summaries.

o **SEEDLING table** – Provides a count of the number of live trees of a species found on a microplot that are less than 1 inch in diameter but at least 6 inches in length for conifer species or at least 12 inches in length for hardwood species.
 o **SEEDLING.PLT_CN = COND.PLT_CN** and **SEEDLING.CONID = COND.CONID** links the seedling records to the unique condition record.

o **SURVEY table** – Contains one record for each year an inventory is conducted in a State.
 o **SURVEY.CN = PLOT.SRV_CN** links the unique inventory record for a State and year to plot records.

o **COUNTY table** – Reference table for the county and survey unit codes and names.
 o **COUNTY.CN = PLOT.CTY_CN** links the unique county record to the plot record.

o **P2VEG_SUBPLOT_SPP table** – Provides percent cover data of vegetation species identified on the subplot.
 o **PLOT.CN = P2VEG_SUBPLOT_SPP.PLT_CN** links the vegetation subplot species record(s) to the unique plot record.
 o **SUBP_COND.PLT_CN = P2VEG_SUBPLOT_SPP.PLT_CN** and **SUBP_COND.CONID = P2VEG_SUBPLOT_SPP.CONID** and **SUBP_COND.SUBP = P2VEG_SUBPLOT_SPP.SUBP** links the vegetation subplot species record(s) to the unique subplot condition record.
 o **P2VEG_SUBPLOT_SPP.VEG_SPCD = REF_PLANT_DICTIONARY_islands.SYMBOL** links the P2 vegetation subplot species record(s) to the plant dictionary reference species code.

o **P2VEG_SUBP_STRUCTURE** – Provides percent cover by layer by growth habit
 o **PLOT.CN = P2VEG_SUBP_STRUCTURE.PLT_CN** links the subplot structure record(s) to the unique plot record
 o **SUBP_COND.PLT_CN = P2VEG_SUBP_STRUCTURE.PLT_CN** and **SUBP_COND.CONID = P2VEG_SUBP_STRUCTURE.CONID** and **SUBP_COND.SUBP = P2VEG_SUBP_STRUCTURE.SUBP** links the vegetation subplot structure record(s) to the unique subplot condition record.
INVASIVE_SUBPLOT_SPP table -- Provides percent cover data of invasive species identified on the subplot.
 - PLOT.CN = INVASIVE_SUBPLOT_SPP.PLT_CN links the invasive subplot species record(s) to the unique plot record.
 - SUBP_COND.PLT_CN = INVASIVE_SUBPLOT_SPP.PLT_CN and
 - SUBP_COND.CONID = INVASIVE_SUBPLOT_SPP.CONID and SUBP_COND.SUBP = INVASIVE_SUBPLOT_SPP.SUBP – links the invasive subplot species record(s) to the unique subplot condition record.
 - INVASIVE_SUBPLOT_SPP.VEG_SP_PNWRS = REF_PLAN_DICT.PNRS коды links the invasive vegetation subplot NRCS species code to the plant dictionary reference species code.

VEG_SP_PNWRS table – Understory vegetation profile table. Provides information on the abundance, structure, and species composition of understory plant communities.
 - VEG_SP_PNWRS.SBP_CN = SUBPLOT.CN links vegetation profile record to the subplot record.

POP_ESTN_UNIT table – An estimation unit is a geographic area that can be drawn on a map. It has known area and the sampling intensity must be the same within a stratum within an estimation unit. Generally, estimation units are contiguous areas, but exceptions are made when certain ownerships, usually national forests, are sampled at different intensities. One record in the POP_ESTN_UNIT table corresponds to a single estimation unit.
 - POP_ESTN_UNIT.CN = POP_Stratum.STRATUM_CN links the unique stratified geographical area (ESTN_UNIT) to the strata (STRATUMID) that are assigned to each ESTN_UNIT.

POP_EVAL table – An evaluation is the combination of a set of plots (the sample) and a set of phase 1 data (obtained through remote sensing, called stratification) that can be used to produce population estimates for a State. A record in the POP_EVAL table identifies one evaluation and provides some descriptive information about how the evaluation may be used. In the PNW FIADB there are two evaluations per state (all years): one for sampled plots, and one for all plots (sampled and unsampled).
 - POP_EVAL.CLN = POP_ESTN_UNIT.EVAL_CN links the unique evaluation identifier (EVALID) in the POP_EVAL table to the unique geographical areas (ESTN_UNIT) that are stratified. Within a population evaluation (EVALID) there can be multiple population estimation units, or geographic areas across which there are a number of values being estimated (e.g., estimation of volume across counties for a given State.)

POP_EVAL_ATTRIBUTE table – Provides information as to which population estimates can be provided by an evaluation. If an evaluation can produce 22 of the 79 currently supported population estimates, there will be 22 records in the POP_EVAL_ATTRIBUTE table (one per population estimate) for that evaluation.
 - POP_EVAL_CLN = POP_EVAL_ATTRIBUTE.EVAL_CN links the unique evaluation identifier to the list of population estimates that can be derived for that evaluation.

POP_EVAL_GRP table -- Lists and describes the evaluation groups. One record in the POP_EVAL_GRP table can be linked to all the evaluations that were used in generating estimates for a State inventory report.
 - POP_EVAL_GRP.CLN = POP_EVAL_TYP.EVAL_GRP.CLN = links the evaluation group record to the evaluation type record.
 - POP_EVAL_GRP.CLN = POP_EVAL.EVAL_GRP.CLN = links the evaluation record to the evaluation group record.

POP_EVAL_TYP table – Provides information on the type of evaluations that were used to generate a set of tables for an inventory report.
- POP_EVAL_TYP.EVAL_CN = POP_EVAL.CN links the evaluation type record to the evaluation record.
- POP_EVAL_TYP.EVAL_GRP_CN = POP_EVAL_GRP.CN links the evaluation type record to the evaluation group record.
- POP_EVAL_TYP.EVAL_TYP = REF_POP_EVAL_TYP_DESCR.EVAL_TYP links an evaluation type record to an evaluation type description reference record.

- POP_PLOT_STRATUM_ASSGN table – Stratum information is assigned to a plot by overlaying the plot’s location on the phase 1 imagery. Plots are linked to their appropriate stratum for an evaluation via the POP_PLOT_STRATUM_ASSGN table.
 - POP_PLOT_STRATUM_ASSGN.PLT_CN = PLOT_CN links the stratum assigned to the plot record.
 - POP_PLOT_STRATUM_ASSGN.STRATUM_CN = POP_STRATUM.CN

- POP_STRATUM table – The area within an estimation unit is divided into strata. The area for each stratum can be calculated by determining the proportion of phase 1 pixels/plots in each stratum and multiplying that proportion by the total area in the estimation unit. Information for a single stratum is stored in a single record of the POP_STRATUM table.
 - POP_STRATUM.CN = POP_PLOT_STRATUM_ASSGN.STRATUM_CN

- REF_FOREST_TYPE table – A reference table containing forest type codes, descriptive names, forest type group codes and other information. Data users should link codes as shown below and then obtain the information stored in MEANING to convert the code to a name.
 - REF_FOREST_TYPE.VALUE = COND.FORTYPCD links the forest type reference record to the condition forest code used for reporting and analysis purposes.
 - REF_FOREST_TYPE.VALUE = COND.FLDTYPED links the forest type reference record to the condition forest type code recorded by field crews.
 - REF_FOREST_TYPE.VALUE = COND.FORTYPCDCALC links the forest type reference record to the condition forest type code calculated by an algorithm.

- REF_FOREST_TYPE_GROUP table - A reference table containing forest type grouping codes, and descriptive names. Data users should link codes as shown below and then obtain the information stored in MEANING to convert the code to a name.
 - REF_FOREST_TYPE_GROUP.VALUE = REF_FOREST_TYPE.TYPGRPCD links the forest type group reference record to the forest type reference record. To display the forest type group name for a condition record, in addition to the linkage shown above, link REF_FOREST_TYPE.VALUE to COND.FORTYPCD

- REF_SPECIES table – A reference table containing the species code, descriptive common name, scientific name, and many other attributes for each species. For example, data users who want to convert the species code to the associated common name should link codes as shown below and then obtain the information stored in COMMON_NAME.
 - REF_SPECIES.SPCD = TREE.SPCD links the species reference table record to the tree species code.
 - REF_SPECIES.SPCD = SEEDLING.SPCD links the species reference table record to the seedling species code.

- REF_SPECIES_GROUP table – A reference table containing the species group code, descriptive name and several other attributes for each species group. Data users should link codes as shown below and then obtain the information stored in NAME to convert the code to a descriptive name.
 - REF_SPECIES_GROUP.SGRPCD = TREE.SGRPCD links the species group reference table to the tree species group code.
 - REF_SPECIES_GROUP.SGRPCD = SEEDLING.SGRPCD links the species reference table record to the seedling species group code.
o REF_PLANT_DICTIONARY_islands table – A reference table containing information about plant species as defined in the NRCS PLANTS database. The species symbol, common name, scientific name, growth habit and other identifying information are included in this table. Data users should link codes as shown below and then obtain the information stored in one of the columns such as COMMON_NAME or SCIENTIFIC_NAME to convert the code to a name. Link this table to any VEG_SPCD or VEG_FLDSPCD via the SYMBOL column.
 o REF_PLANT_DICTIONARY_islands.SYMBOL = P2VEG_SUBPLOT_SPP.VEG_SPCD links the plant dictionary reference species code to the P2 vegetation subplot NRCS species code.

o REF_STATE_ELEV – Reference table containing information about minimum and maximum elevation found within a State.
 o REF_STATE_ELEV.STATECD = PLOT.STATECD links the State elevation record to the plot record.

o REF_UNIT table – The description for each survey unit in a State. Not relevant to the Islands.
 o REF_UNIT.STATECD = PLOT.STATECD and REF_UNIT.VALUE = PLOT.UNITCD links the survey unit description (MEANING) to the PLOT record.
 o REF_UNIT table – The description for each survey unit in a State. Not relevant to the Islands.
 o REF_UNIT.STATECD = PLOT.STATECD and REF_UNIT.VALUE = PLOT.UNITCD links the survey unit description (MEANING) to the PLOT record.

o REF_POP_ATTRIBUTE table – Identifies all of the population estimates that are currently supported, and provides information useful to the estimation procedure. There are currently many records in the REF_POP_ATTRIBUTE table providing information ranging from how to calculate forest area to volume and biomass on forestland.
 o REF_POP_ATTRIBUTE.ATTRIBUTE_NBR = POP_EVAL_ATTRIBUTE.ATTRIBUTE_NBR links the description of the population estimate to the evaluations used to make those estimates.

o REF_POP_EVAL_TYP_DESCR table – A reference table containing the description for evaluation types.
 o REF_POP_EVAL_TYP_DESCR.EVAL_TYP = POP_EVAL_TYP.EVAL_TYP links an evaluation type description reference record to an evaluation type record.

o BOUNDARY table – Provides a description of the demarcation line between two conditions that occur on a single subplot.
 o BOUNDARY.PLT_CN = PLOT.CN links the boundary records to the unique plot record.
Figure 4_a. PNW FIADB linkages -- Relationships among tables in the PNW database
Figure 4_a. (cont.) PNW FIADB linkages -- Relationships among tables in the PNW database
Figure 4_a. (cont.) PNW FIADB linkages -- Relationships among tables in the PNW database
Figure 4_a. (cont.) PNW FIADB linkages -- Relationships among tables in the PNW database
Figure 4.b. PNW FIADB linkages -- Relationships among tables in the PNW database

Using the set of ‘POP’ (Population) tables to develop population estimates.
DATABASE TABLE DEFINITIONS

PLOT table (Descriptive data about the inventory plot area)

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Descriptive Name</th>
<th>Data Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 CN</td>
<td>(Primary key) Unique record number for each row in the PLOT table</td>
<td>Text</td>
</tr>
<tr>
<td>2 SRV_CN</td>
<td>Unique record number for each row in the SURVEY table</td>
<td>Text</td>
</tr>
<tr>
<td>3 CTY_CN</td>
<td>Unique record number for each row in the COUNTY table</td>
<td>Text</td>
</tr>
<tr>
<td>4 INVYR</td>
<td>Inventory year</td>
<td>Integer</td>
</tr>
<tr>
<td>5 MEASYEAR</td>
<td>Measurement year</td>
<td>Integer</td>
</tr>
<tr>
<td>6 STATECD</td>
<td>State code (Island Group code)</td>
<td>Integer</td>
</tr>
<tr>
<td>7 COUNTYCD</td>
<td>County code (Island code)</td>
<td>Integer</td>
</tr>
<tr>
<td>8 ISLAND_GROUP_NAME</td>
<td>Island group name (STATE name)</td>
<td>Text</td>
</tr>
<tr>
<td>9 ISLAND_NAME</td>
<td>Island name (COUNTY name)</td>
<td>Text</td>
</tr>
<tr>
<td>10 UNITCD</td>
<td>Survey unit code (not used in the islands)</td>
<td>Integer</td>
</tr>
<tr>
<td>11 PLOT</td>
<td>Public plot number</td>
<td>Integer</td>
</tr>
<tr>
<td>12 PLOT_STATUS_CD</td>
<td>Plot status code</td>
<td>Integer</td>
</tr>
<tr>
<td>13 PLOT_NONSAMPLE_REASN_CD</td>
<td>Reason plot was not sampled</td>
<td>Integer</td>
</tr>
<tr>
<td>14 CONGD</td>
<td>Congressional district code (not used)</td>
<td>Integer</td>
</tr>
<tr>
<td>15 DECLINATION</td>
<td>Declination</td>
<td>Real</td>
</tr>
<tr>
<td>16 DESIGNCD</td>
<td>Plot design code</td>
<td>Integer</td>
</tr>
<tr>
<td>17 ECOSUBCD</td>
<td>Ecological subsection code</td>
<td>Text</td>
</tr>
<tr>
<td>18 ELEV</td>
<td>Elevation</td>
<td>Integer</td>
</tr>
<tr>
<td>19 INTENSITY</td>
<td>Intensity</td>
<td>Text</td>
</tr>
<tr>
<td>20 INVASIVE_SAMPLING_STATUS_CD</td>
<td>Invasive plant sampling status on plot</td>
<td>Integer</td>
</tr>
<tr>
<td>21 INVASIVE_SPECIMEN_RULE_CD</td>
<td>Invasive plant specimen collection rule</td>
<td>Integer</td>
</tr>
<tr>
<td>22 KINDCD</td>
<td>Sample kind code</td>
<td>Integer</td>
</tr>
<tr>
<td>23 LAT</td>
<td>Latitude (not exact)</td>
<td>Real</td>
</tr>
<tr>
<td>24 LON</td>
<td>Longitude (not exact)</td>
<td>Real</td>
</tr>
<tr>
<td>25 MANUAL</td>
<td>Manual (field guide) version number</td>
<td>Real</td>
</tr>
<tr>
<td>26 MEASMON</td>
<td>Measurement month</td>
<td>Integer</td>
</tr>
<tr>
<td>27 MEASDAY</td>
<td>Measurement day</td>
<td>Integer</td>
</tr>
<tr>
<td>28 MICROPLOT_LOC</td>
<td>Microplot location</td>
<td>Text</td>
</tr>
<tr>
<td>29 NF_PLOT_STATUS_CD</td>
<td>Nonforest plot status code</td>
<td>Integer</td>
</tr>
<tr>
<td>30 NF_PLOT_NONSAMPLE_REASN_CD</td>
<td>Reason nonforest plot was not sampled</td>
<td>Integer</td>
</tr>
<tr>
<td>31 NF_SAMPLING_STATUS_CD</td>
<td>Nonforest sampling status code</td>
<td>Integer</td>
</tr>
<tr>
<td>32 P2VEG_SAMPLING_STATUS_CD</td>
<td>P2 vegetation sampling status code</td>
<td>Integer</td>
</tr>
<tr>
<td>33 P2VEG_SAMPLING_LEVEL_DETAIL_CD</td>
<td>P2 vegetation sampling level detail code</td>
<td>Integer</td>
</tr>
<tr>
<td>34 PRECIPITATION</td>
<td>Annual Precipitation on the plot</td>
<td>Integer</td>
</tr>
<tr>
<td>Column Name</td>
<td>Descriptive Name</td>
<td>Data Type</td>
</tr>
<tr>
<td>--------------------</td>
<td>---------------------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>35 PUBUSECD</td>
<td>Public use restriction</td>
<td>Integer</td>
</tr>
<tr>
<td>36 QA_STATUS</td>
<td>Quality assurance status</td>
<td>Integer</td>
</tr>
<tr>
<td>37 RDCD</td>
<td>Trails or roads code</td>
<td>Integer</td>
</tr>
<tr>
<td>38 RDDISTCD</td>
<td>Horizontal distance to improved road</td>
<td>Integer</td>
</tr>
<tr>
<td>39 RDUSECD</td>
<td>Road access code</td>
<td>Integer</td>
</tr>
<tr>
<td>40 REUSECD1</td>
<td>Recreation use on the plot #1</td>
<td>Integer</td>
</tr>
<tr>
<td>41 REUSECD2</td>
<td>Recreation use on the plot #2</td>
<td>Integer</td>
</tr>
<tr>
<td>42 REUSECD3</td>
<td>Recreation use on the plot #3</td>
<td>Integer</td>
</tr>
<tr>
<td>43 SAMP_METHOD_CD</td>
<td>Sample method code</td>
<td>Integer</td>
</tr>
<tr>
<td>44 SUBP_EXAMINE_CD</td>
<td>Subplots examined code</td>
<td>Integer</td>
</tr>
<tr>
<td>45 WATERCD</td>
<td>Water on plot code</td>
<td>Integer</td>
</tr>
<tr>
<td>46 CYCLE</td>
<td>Inventory cycle number</td>
<td>Integer</td>
</tr>
<tr>
<td>47 SUBCYCLE</td>
<td>Inventory subcycle number</td>
<td>Integer</td>
</tr>
<tr>
<td>48 P2PANEL</td>
<td>Phase 2 panel number</td>
<td>Integer</td>
</tr>
<tr>
<td>49 SUBPANEL</td>
<td>Subpanel</td>
<td>Integer</td>
</tr>
<tr>
<td>50 PREV_PLT_CN</td>
<td>Unique record number for the previous measurement of the plot</td>
<td>Text</td>
</tr>
</tbody>
</table>

1. **CN** Unique record number for each row in the PLOT table. A unique number that identifies every record in the PLOT table. This column appears as PLT_CN in other tables and is a key column used to link to most other database tables. For example, to link the plot record in the PLOT table to condition records in the COND table: link PLOT.CN to COND.PLT_CN.

When a plot is remeasured (usually after 10 years), the 2nd measurement will be assigned a new CN on a new record in the PLOT table. The column called PREV_PLT_CN on the plot record for the 2nd measurement contains the CN of the previous (1st) measurement. This is a way to identify and link the two measurements together for a trend or change analysis.

2. **SRV_CN** Unique record number for each row in the SURVEY table. Foreign key linking the plot record to the SURVEY table.

3. **CTY_CN** Unique record number for each row in the COUNTY table. Foreign key linking the plot record to the COUNTY table.

4. **INVYR** Inventory year. The year when the inventory data were scheduled to be collected. INVYR is often (but not necessarily) the same as MEASYEAR (see below). Note that MEASYEAR is the year when the plot was actually visited and measured on the ground. See the SURVEY table for more info.

5. **MEASYEAR** Measurement year. The year in which the plot was actually visited, measured, and completed. MEASYEAR may differ from INVYR, because plots that are associated with one inventory panel may be measured on the ground over a period of years.
6. **STATECD**

State code for FIA. This is referred to as the Island Group code for the Pacific Islands inventories. It identifies the larger Island Group, which consists of a number of smaller Islands. These smaller islands are called Counties by FIA (COUNTYCD).

<table>
<thead>
<tr>
<th>Island group code (STATECD)</th>
<th>Island group name (STATENM)</th>
<th>Island group abbrev. (STATEAB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Hawaii</td>
<td>HI</td>
</tr>
<tr>
<td>60</td>
<td>American Samoa</td>
<td>AS</td>
</tr>
<tr>
<td>66</td>
<td>Guam</td>
<td>GU</td>
</tr>
<tr>
<td>70</td>
<td>Palau</td>
<td>PW</td>
</tr>
</tbody>
</table>

7. **COUNTYCD**

County code for FIA. This is referred to as the Island code for the Pacific Islands inventories. It identifies one of the smaller islands within the larger Island Group.

<table>
<thead>
<tr>
<th>ISLAND CODE (COUNTYCD)</th>
<th>ISLAND NAME (COUNTYNM)</th>
<th>ISLAND CODE (COUNTYCD)</th>
<th>ISLAND NAME (COUNTYNM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAWAII:</td>
<td></td>
<td>PALAU:</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Hawaii</td>
<td>2</td>
<td>Aimeliik</td>
</tr>
<tr>
<td>3</td>
<td>Honolulu</td>
<td>4</td>
<td>Airai</td>
</tr>
<tr>
<td>9</td>
<td>Maui</td>
<td>10</td>
<td>Angaur</td>
</tr>
<tr>
<td></td>
<td></td>
<td>150</td>
<td>Koror</td>
</tr>
<tr>
<td>AMERICAN SAMOA:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Tutuila East</td>
<td>212</td>
<td>Melekeok</td>
</tr>
<tr>
<td>20</td>
<td>Manu’a</td>
<td>218</td>
<td>Ngaraard</td>
</tr>
<tr>
<td>40</td>
<td>Swains</td>
<td>222</td>
<td>Ngardmau</td>
</tr>
<tr>
<td>50</td>
<td>Tutuila West</td>
<td>224</td>
<td>Ngatpang</td>
</tr>
<tr>
<td></td>
<td></td>
<td>226</td>
<td>Ngchesar</td>
</tr>
<tr>
<td>GUAM:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Guam</td>
<td>228</td>
<td>Ngiwal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>350</td>
<td>Peleliu</td>
</tr>
</tbody>
</table>

8. **ISLAND_GROUP_NAME**

Island group name. The name of the larger Island Group. (Also called STATENM.)

<table>
<thead>
<tr>
<th>Island group name (STATENM)</th>
<th>Island group code (STATECD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hawaii</td>
<td>15</td>
</tr>
<tr>
<td>American Samoa</td>
<td>60</td>
</tr>
<tr>
<td>Guam</td>
<td>66</td>
</tr>
<tr>
<td>Palau</td>
<td>70</td>
</tr>
</tbody>
</table>
9. **ISLAND_NAME**
 Island name. The name of the individual smaller Island within the Island Group.
 (Also called COUNTYNM.)

<table>
<thead>
<tr>
<th>ISLAND NAME (COUNTYNM)</th>
<th>ISLAND CODE (COUNTYCD)</th>
<th>ISLAND NAME (COUNTYNM)</th>
<th>ISLAND CODE (COUNTYCD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAWAII:</td>
<td></td>
<td>PALAU:</td>
<td></td>
</tr>
<tr>
<td>Hawaii</td>
<td>1</td>
<td>Aimeliik</td>
<td>2</td>
</tr>
<tr>
<td>Honolulu</td>
<td>3</td>
<td>Airai</td>
<td>4</td>
</tr>
<tr>
<td>Maui</td>
<td>9</td>
<td>Angaur</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Koror</td>
<td>150</td>
</tr>
<tr>
<td>AMERICAN SAMOA:</td>
<td></td>
<td>Melekeok</td>
<td>212</td>
</tr>
<tr>
<td>Tutuila East</td>
<td>10</td>
<td>Ngaraard</td>
<td>214</td>
</tr>
<tr>
<td>Manu'a</td>
<td>20</td>
<td>Ngarchelung</td>
<td>218</td>
</tr>
<tr>
<td>Swains</td>
<td>40</td>
<td>Ngardmau</td>
<td>222</td>
</tr>
<tr>
<td>Tutuila West</td>
<td>50</td>
<td>Ngatpang</td>
<td>224</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ngchesar</td>
<td>226</td>
</tr>
<tr>
<td>GUAM:</td>
<td></td>
<td>Ngernmlengui</td>
<td>227</td>
</tr>
<tr>
<td>Guam</td>
<td>10</td>
<td>Ngiwal</td>
<td>228</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Peleliu</td>
<td>350</td>
</tr>
</tbody>
</table>

10. **UNITCD**
 Survey unit code. This is not used in the Pacific Islands – all codes are ‘1’.

11. **PLOT**
 Public Plot number. A numeric identifier for a plot. The combination of INVYR,
 STATECD and PLOT will uniquely identify a plot record in the database. It is usually
 more convenient to use CN (see description above) to identify unique plots in the
 inventory (called PLT_CN in other tables).

12. **PLOT_STATUS_CD**
 Plot status code. A code that describes the sampling status of the plot.

Code	Description
1	Sampled – at least one accessible forest land condition present on plot
2	Sampled – no accessible forest land condition present on plot
3	Nonsampled

13. **PLOT_NONSAMPLE_REASN_CD**
 Plot nonsampled reason code. For entire plots that cannot be sampled, one of the
 following reasons is recorded. This is coded when PLOT_STATUS_CD=3.

Code	Description
02	**Denied access** area – Access to the entire plot is denied by the legal owner, or by the owner of the only reasonable route to the plot.
03	**Hazardous** – Entire plot cannot be accessed because of a hazard or danger, for example cliffs, quarries, strip mines, illegal substance plantations, high water, etc.

14. **CONGCD**
 Congressional district code. Not relevant for all Island Groups.
15. DECLINATION Declination. The azimuth correction used to adjust magnetic north to true north. The PNW FIA unit has corrected all compass readings for true north. This field carries a decimal place because the USGS corrections are to the nearest ½ degree. DECLINATION is defined as: (TRUE NORTH - MAGNETIC NORTH)

16. DESIGNCD Plot design code. A code indicating the type of plot design used to collect the data. Islands inventories followed the national design layout. DESIGNCD is always ‘1’. National plot design consists of four, 24 foot fixed-radius subplots for trees ≥ 5 inches DBH, and four, 6.8 foot fixed-radius microplots for seedlings and trees ≥ 1 and < 5 inches DBH. Subplot 1 is the center plot, and subplots 2, 3, and 4 are located 120.0 feet, horizontal, at azimuths of 360, 120, and 240, respectively. The microplot center is 12 feet east of the subplot center. A plot may sample more than one condition. When multiple conditions are encountered, condition boundaries are delineated (mapped).

17. ECOSUBCD Ecological subsection code (Hawaii only). An area of similar surficial geology, lithology, geomorphic process, soil groups, subregional climate, and potential natural communities. Subsection boundaries usually correspond with discrete changes in geomorphology. The ECOSUBCD is based on fuzzed and swapped plot coordinates.

18. ELEV Elevation. The distance the plot is located above sea level, recorded in feet (NAD 83 datum). Negative values indicate distance below sea level. Elevation is stored to the nearest 100 feet.

19. INTENSITY Intensity. A count of the number of plots in any given P2HEX.

20. INVASIVE_SAMPLING_STATUS_CD Invasive sampling status code. A code indicating whether Invasive plant data were recorded on the plot and the land class(es) on which the data were recorded. For most of the Pacific Islands, (with the exception of Experimental Forest Land in Hawaii), this data item will be downloaded with code “1”. Invasive sampling status code.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Not collecting invasive plant data</td>
</tr>
<tr>
<td>1</td>
<td>Invasive plant data collected only on accessible forest land conditions</td>
</tr>
<tr>
<td>2</td>
<td>Invasive plant data collected on all accessible land conditions which includes COND_STATUS_CD = 1 or NF_COND_STATUS_CD = 2.</td>
</tr>
</tbody>
</table>

21. INVASIVE_SPECIMEN_RULE_CD Invasive specimen rule code. A code indicating if specimen collection was required.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Does not require specimen collection for invasive plants</td>
</tr>
<tr>
<td>1</td>
<td>Does require specimen collection for invasive plants</td>
</tr>
</tbody>
</table>

22. KINDCD Sample kind code. A code indicating the type of plot installation.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Initial installation of an annual inventory plot (4-subplot plot)</td>
</tr>
<tr>
<td>2</td>
<td>Remeasurement of previously installed National design plot</td>
</tr>
<tr>
<td>3</td>
<td>Replacement of previously installed National design plot</td>
</tr>
</tbody>
</table>
23. LAT

Latitude. The approximate latitude of the plot in decimal degrees using NAD 83 datum. Actual plot coordinates cannot be released because of a Privacy provision enacted by Congress in the Food Security Act of 1985. Therefore, this attribute is approximately +/- 1 mile and, for annual inventory data, most plots are within +/- ½ mile. Annual data have additional uncertainty for private plots caused by swapping plot coordinates for up to 20% of the plots. In some cases, the county centroid is used when the actual coordinate is not available.

24. LON

Longitude. The approximate longitude of the plot in decimal degrees using NAD 83 datum. Actual plot coordinates cannot be released because of a Privacy provision enacted by Congress in the Food Security Act of 1985. Therefore, this attribute is approximately +/- 1 mile and, for annual inventory data, most plots are within +/- ½ mile. Annual data have additional uncertainty for private plots caused by swapping plot coordinates for up to 20% of the plots. In some cases, the county centroid is used when the actual coordinate is not available.

25. MANUAL

Manual (field guide) version number. Version number of the Field Guide used to describe procedures for collecting data on the plot. The FIA National Field Guide began with Version 1.0.

26. MEASMON

Measurement month. The month in which the plot was completed.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>January</td>
<td>07</td>
<td>July</td>
</tr>
<tr>
<td>02</td>
<td>February</td>
<td>08</td>
<td>August</td>
</tr>
<tr>
<td>03</td>
<td>March</td>
<td>09</td>
<td>September</td>
</tr>
<tr>
<td>04</td>
<td>April</td>
<td>10</td>
<td>October</td>
</tr>
<tr>
<td>05</td>
<td>May</td>
<td>11</td>
<td>November</td>
</tr>
<tr>
<td>06</td>
<td>June</td>
<td>12</td>
<td>December</td>
</tr>
</tbody>
</table>

27. MEASDAY

Measurement day. The day of the month in which the plot was completed.

28. MICROPLOT_LOC

Microplot location. Values is 'OFFSET' – the microplot center is located 12 feet due east (90 degrees) of subplot center.

29. NF_PLOT_STATUS_CD

Nonforest plot status code. Describes the sampling status of the nonforest plot.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sampled - at least one accessible nonforest land condition present on the plot</td>
</tr>
<tr>
<td>2</td>
<td>Sampled - no nonforest land condition present on plot (i.e., plot is either census and/or noncensus water).</td>
</tr>
<tr>
<td>3</td>
<td>Nonsampled nonforest.</td>
</tr>
</tbody>
</table>
30. **NF_PLOT_NONSAMPLE_REASN_CD**

Nonforest plot nonsampled reason code. A code indicating the reason the nonforest plot was not sampled.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>02</td>
<td>Denied access - Access to the entire plot is denied by the legal owner, or by the owner of the only reasonable route to the plot. Because a denied-access plot can become accessible in the future, it remains in the sample and is re-examined at the next occasion to determine if access is available.</td>
</tr>
<tr>
<td>03</td>
<td>Hazardous - Entire plot cannot be accessed because of a hazard or danger, for example cliffs, quarries, strip mines, illegal substance plantations, high water, etc. Although most hazards will not change over time, a hazardous plot remains in the sample and is re-examined at the next occasion to determine if the hazard is still present.</td>
</tr>
</tbody>
</table>

31. **NF_SAMPLING_STATUS_CD**

Nonforest sampling status code. A code indicating whether or not the plot is part of a nonforest inventory. If NF_SAMPLING_STATUS_CD = 1, then the entire suite of attributes that are measured on the forested lands should be measured.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Nonforest plots / conditions are not inventoried.</td>
</tr>
<tr>
<td>1</td>
<td>Nonforest plots / conditions are inventoried.</td>
</tr>
</tbody>
</table>

32. **P2VEG_SAMPLING_STATUS_CD**

P2 vegetation sampling status code. A code indicating whether vegetation data were recorded on the plot and the land class(es) on which the data were recorded.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Not sampling vegetation</td>
</tr>
<tr>
<td>1</td>
<td>Vegetation data collected only on accessible forest land conditions (COND_STATUS_CD = 1 and NF_SAMPLING_STATUS_CD = 0).</td>
</tr>
<tr>
<td>2</td>
<td>Vegetation data collected on all accessible land conditions (COND_STATUS_CD = 1 or NF_SAMPLING_STATUS_CD = 2).</td>
</tr>
</tbody>
</table>
33. **P2VEG_SAMPLING_LEVEL_DETAIL_CD**
P2 vegetation sampling level detail code. Level of detail (LOD). A code indicating whether data were collected for vegetation structure growth habits only, or for individual species (that qualify as most abundant) as well. If LOD = 3, then a tree species could be recorded twice, but it would have 2 different species growth habits.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Data collected for vegetation structure only; total aerial cover and cover by layer for tally tree species (all sizes), non-tally tree species (all sizes), shrubs, forbs, and graminoids.</td>
</tr>
<tr>
<td>2</td>
<td>Vegetation structure data (LOD = 1) plus understory species composition data collected including up to four species of: seedlings and saplings of any tree species (tally or non-tally) <5 inches DBH (DRC for woodland species), shrubs (including woody vines), forbs, and grasses.</td>
</tr>
<tr>
<td>3</td>
<td>Vegetation structure data, understory species composition data (LOD = 2), plus up to four trees species (tally or non-tally) ≥5 inches DBH (DRC for woodland species) collected.</td>
</tr>
</tbody>
</table>

34. **PRECIPITATION**
Annual precipitation on the plot. Recorded in inches.

35. **PUBUSECD**
Public use restrictions code. The restriction posted near or on the plot area that limits public use of the plot area. If more than one restriction occurs for the plot area, record the lowest number restriction present. Collected on all plots with either one accessible forest land condition class (PLOT STATUS = 1) or one accessible nonforest land condition class when nonforest is being sampled (PLOT STATUS = 2 and NONFOREST SAMPLING STATUS = 1 and NONFOREST PLOT STATUS =1).

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>None – no public use restrictions</td>
</tr>
<tr>
<td>1</td>
<td>Keep out / no trespassing</td>
</tr>
<tr>
<td>2</td>
<td>No hunting or fishing</td>
</tr>
<tr>
<td>3</td>
<td>No dumping</td>
</tr>
<tr>
<td>9</td>
<td>Other</td>
</tr>
</tbody>
</table>

36. **QA_STATUS**
Quality assurance status. A code indicating the type of plot data collected. Populated for all forested subplots.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Standard production plot</td>
</tr>
<tr>
<td>2</td>
<td>Cold check</td>
</tr>
<tr>
<td>3</td>
<td>Reference plot (off grid)</td>
</tr>
<tr>
<td>4</td>
<td>Training/practice plot (off grid)</td>
</tr>
<tr>
<td>5</td>
<td>Botched plot file (disregard during data processing)</td>
</tr>
<tr>
<td>6</td>
<td>Blind check</td>
</tr>
<tr>
<td>7</td>
<td>Production plot (hot check)</td>
</tr>
</tbody>
</table>
37. RDCD

Trails or roads code. The type of trail or road nearest to the plot. Photos, maps, or reasonable observations made while traveling to the plot are used to determine the nearest trail or road within 1 mile straight-line distance of the plot center. The type is coded here, including paved, gravel, dirt, etc.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>None within 1 mile</td>
</tr>
<tr>
<td>1</td>
<td>Paved road or highway</td>
</tr>
<tr>
<td>2</td>
<td>Improved gravel road (has gravel, ditching, and/or other improvements)</td>
</tr>
<tr>
<td>3</td>
<td>Improved dirt road (has ditching, culverts, signs, reflectors, or other improvements)</td>
</tr>
<tr>
<td>4</td>
<td>Unimproved dirt road/four-wheel drive road/atv trail (has no signs of any recent improvements)</td>
</tr>
<tr>
<td>5</td>
<td>Human access trail- clearly noticeable and primarily for recreational use</td>
</tr>
</tbody>
</table>

38. RDDISTCD

Horizontal distance to improved road code. The straight-line distance from plot center to the nearest improved road, which is a road of any width that is maintained as evidenced by pavement, gravel, grading, ditching, and/or other improvements. Populated for all forested plots.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100 ft or less</td>
<td>6</td>
<td>1/2 to 1 mile</td>
</tr>
<tr>
<td>2</td>
<td>101 ft to 300 ft</td>
<td>7</td>
<td>1 to 3 miles</td>
</tr>
<tr>
<td>3</td>
<td>301 ft to 500 ft</td>
<td>8</td>
<td>3 to 5 miles</td>
</tr>
<tr>
<td>4</td>
<td>501 ft to 1000 ft</td>
<td>9</td>
<td>Greater than 5 miles</td>
</tr>
<tr>
<td>5</td>
<td>1001 ft to 1/2 mile</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

39. RDUSECD

Road access code. Road access restrictions encountered while traveling to the plot. These restrictions limit car and truck access to the starting point for the walk to the plot, and may occur on ownerships encountered before reaching the plot area.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>None – no road access restrictions</td>
</tr>
<tr>
<td>1</td>
<td>Road blocked by locked gate or cable across road</td>
</tr>
<tr>
<td>2</td>
<td>Road blocked by a human-made obstruction across road (ditch, mound, etc.)</td>
</tr>
<tr>
<td>3</td>
<td>Road blocked by natural occurrences (trees blown over onto road, road or bridge washed out)</td>
</tr>
<tr>
<td>4</td>
<td>Posted no motorized vehicle signs; road present, but restricted area such as Wilderness or National Park where vehicles are not allowed</td>
</tr>
<tr>
<td>5</td>
<td>Other</td>
</tr>
</tbody>
</table>
40. **REUSECD1**
Recreation use on the plot #1. Most significant recreation use observed within the accessible forest land portion (and accessible nonforest land portion(s) when nonforest is being sampled) of any of the four subplots, based on evidence such as campfire rings, compacted areas (from tents), hiking trails, bullet or shotgun casings (if you are not on a military firing range), tree stands, etc.

The recreation use that has had the most significant impact on the plot area is recorded first (#1), then the second (#2) and third (#3) use. For example, in general numerous four-wheel drive or ATV trails would be coded before camping, and camping before hiking, and hiking before fishing. Physical recreation evidence must be present to code 1-9. Dumping is ignored where no evidence of recreation is present. The plot area is examined for clues before spending an exorbitant amount of time trying to find evidence that normally would not be found in the area.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No evidence of recreation use</td>
</tr>
<tr>
<td>1</td>
<td>Motor vehicle (four wheel drive, ATV, motorcycle)</td>
</tr>
<tr>
<td>2</td>
<td>Horse riding</td>
</tr>
<tr>
<td>3</td>
<td>Camping</td>
</tr>
<tr>
<td>4</td>
<td>Hiking</td>
</tr>
<tr>
<td>5</td>
<td>Hunting/shooting</td>
</tr>
<tr>
<td>6</td>
<td>Fishing</td>
</tr>
<tr>
<td>7</td>
<td>Boating – physical evidence such as launch sites or docks</td>
</tr>
<tr>
<td>9</td>
<td>Other – recreation use where evidence is present, such as human litter, but purpose is not clear or does not fit into above categories</td>
</tr>
</tbody>
</table>

41. **REUSECD2**
Recreation use on the plot #2. Second significant recreation use observed within the accessible forest land portion (and accessible nonforest land portion(s) when nonforest is being sampled) of any of the four subplots, based on evidence such as campfire rings, compacted areas (from tents), hiking trails, bullet or shotgun casings (if you are not on a military firing range), tree stands, etc.

42. **REUSECD3**
Recreation use on the plot #3. Third significant recreation use observed within the accessible forest land portion (and accessible nonforest land portion(s) when nonforest is being sampled) of any of the four subplots, based on evidence such as campfire rings, compacted areas (from tents), hiking trails, bullet or shotgun casings (if you are not on a military firing range), tree stands, etc.

43. **SAMP_METHOD_CD**
Sample method code. A code indicating if the plot was measured in the field or remotely sensed in the office.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Field visited, meaning a field crew physically examined the plot and recorded information at least about subplot 1 center condition (see SUBP_EXAMINE_CD below)</td>
</tr>
<tr>
<td>2</td>
<td>Remotely sensed, meaning a determination was made using some type of imagery that a field visit was not necessary. When the plot is sampled remotely, the number of subplots examined (SUBP_EXAMINE_CD) usually equals 1.</td>
</tr>
</tbody>
</table>
44. **SUBP_EXAMINE_CD**

Subplots examined code. A code indicating the number of subplots examined. By default, PLOT_STATUS_CD = 1 plots have all 4 subplots examined.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Only subplot 1 center condition examined and all other subplots assumed (inferred) to be the same</td>
</tr>
<tr>
<td>4</td>
<td>All four subplots fully described (no assumptions/inferences)</td>
</tr>
</tbody>
</table>

45. **WATERCD**

Water on plot code. Water body less than 1 acre in size or a stream less than 30 feet wide that has the greatest impact on the area within the forest land portion of the four subplots. The coding hierarchy is listed in order from large permanent water to temporary water. Populated for all forested plots.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>None - no water sources within the accessible forest land condition class</td>
</tr>
<tr>
<td>1</td>
<td>Permanent streams or ponds too small to qualify as noncensus water</td>
</tr>
<tr>
<td>2</td>
<td>Permanent water in the form of deep swamps, bogs, marshes without standing trees present and less than 1.0 ac in size, or with standing trees</td>
</tr>
<tr>
<td>3</td>
<td>Ditch/canal – human made channels used as a means of moving water, (for irrigation or drainage), which are too small to be noncensus water</td>
</tr>
<tr>
<td>4</td>
<td>Temporary streams</td>
</tr>
<tr>
<td>5</td>
<td>Flood zones – evidence of flooding when bodies of water exceed their natural banks</td>
</tr>
<tr>
<td>8</td>
<td>Census or noncensus water</td>
</tr>
<tr>
<td>9</td>
<td>Other temporary water – specified in plot-level notes.</td>
</tr>
</tbody>
</table>

46. **CYCLE**

Inventory cycle number. A number assigned to a set of plots, measured over a particular period of time from which estimates are made. In the islands, the initial measurement is Cycle 2 (from 2001 to 2011) and the 2nd remeasurement is Cycle 3 (2012 and beyond).

47. **SUBCYCLE**

Inventory subcycle number. For an annual inventory that takes N years to measure all plots, subcycle shows in which of the N years the data were measured.

48. **P2PANEL**

Phase 2 panel number. Forest Inventory and Analysis panel number. The value for P2PANEL is 1 in the Pacific Islands.

49. **SUBPANEL**

Subpanel. Subpanel assignment for FIA – Panels are divided into subpanels.

50. **PREV_PLT_CN**

Unique record number for the previous measurement of the plot. When a plot is remeasured (usually after 10 years), the 2nd measurement will be assigned a new CN on a new record in the PLOT table. The PREV_PLT_CN column on the plot record of the 2nd measurement contains the CN of the previous (1st) measurement. This is a way to identify and link the two measurements together for a trend or change analysis. Link this PREV_PLT_CN to PLOT.CN to work with data from the first measurement. Only populated on remeasurement plots.
PLOT_PNW table (PNW regional plot table, contains expansion factors and adjustment factors for current estimates of area, volume, biomass)

Contains columns that help simplify creating and running queries from the database. Includes expansion factors and adjustment factors from the POPulation tables that are needed to summarize FIA data. The table is only available in the PNW-FIADB created by the PNW FIA work unit.

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Descriptive Name</th>
<th>Data Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 PLT_CN</td>
<td>Unique record number for each row in the PLOT table</td>
<td>Text</td>
</tr>
<tr>
<td>2 INVYR</td>
<td>Inventory year</td>
<td>Integer</td>
</tr>
<tr>
<td>3 MEASYEAR</td>
<td>Measurement year</td>
<td>Integer</td>
</tr>
<tr>
<td>4 STATECD</td>
<td>State code</td>
<td>Integer</td>
</tr>
<tr>
<td>5 COUNTYCD</td>
<td>County code</td>
<td>Integer</td>
</tr>
<tr>
<td>6 STATEAB</td>
<td>State abbreviation</td>
<td>Text</td>
</tr>
<tr>
<td>7 STATENM</td>
<td>State name</td>
<td>Text</td>
</tr>
<tr>
<td>8 COUNTYNM</td>
<td>County name</td>
<td>Integer</td>
</tr>
<tr>
<td>9 PLOT</td>
<td>Public plot number</td>
<td>Integer</td>
</tr>
<tr>
<td>10 PLOT_STATUS_CD</td>
<td>Plot status code</td>
<td>Integer</td>
</tr>
<tr>
<td>11 EXPCURR</td>
<td>Plot expansion factor (acres) for AREA estimates of sampled land</td>
<td>Real</td>
</tr>
<tr>
<td>12 EXPVOL</td>
<td>Plot expansion factor (acres) for TREE estimates on sampled forest land</td>
<td>Real</td>
</tr>
<tr>
<td>13 EXPALL</td>
<td>Plot expansion factor for AREA estimates on ALL land (sampled and unsampled) (rarely used)</td>
<td>Real</td>
</tr>
<tr>
<td>14 ADJ_FACTOR_EXPCURR</td>
<td>Adjustment factor to estimate sampled land area</td>
<td>Real</td>
</tr>
<tr>
<td>15 ADJ_FACTOR_SUB</td>
<td>Adjustment factor for the subplot (tree estimates)</td>
<td>Real</td>
</tr>
<tr>
<td>16 ADJ_FACTOR_MICR</td>
<td>Adjustment factor for the microplot (tree estimates)</td>
<td>Real</td>
</tr>
<tr>
<td>17 ADJ_FACTOR_MACR</td>
<td>Adjustment factor for the macroplot (not used in the Islands)</td>
<td>Real</td>
</tr>
<tr>
<td>18 PROP_BASIS</td>
<td>Proportion basis</td>
<td>Text</td>
</tr>
<tr>
<td>19 ISLAND_GROUP_NAME</td>
<td>Island group name</td>
<td>Text</td>
</tr>
<tr>
<td>20 ISLAND_NAME</td>
<td>Island name within island group</td>
<td>Text</td>
</tr>
</tbody>
</table>

1. **PLT_CN**
 Unique record number for each row in the PLOT table. A unique number that identifies every record in the PLOT table. This column is a key column used to link to most other database tables. For example, to link the plot record in the PLOT_PNW table to the PLOT table: link **PLOT.CN** to **PLOT_PNW.PLT_CN**.

When a plot is remeasured (usually after 10 years), the 2nd measurement will be assigned a new CN on a new record in the PLOT table. The column called **PREV_PLT_CN** on the plot record for the 2nd measurement contains the CN of the previous (1st) measurement. This is a way to identify and link the two measurements together for a trend or change analysis.
2. INVYR

Inventory year. The year when the inventory data were scheduled to be collected. INVYR is often (but not necessarily) the same as MEASYEAR (see below). Note that MEASYEAR is the year when the plot was actually visited and measured on the ground. See the SURVEY table for more info.

3. MEASYEAR

Measurement year. The year in which the plot was actually visited, measured, and completed. MEASYEAR may differ from INVYR, because plots that are associated with one inventory panel may be measured on the ground over a period of years.

4. STATECD

State code for FIA. This is referred to as the Island Group code for the Pacific Islands inventories. It identifies the larger Island Group, which consists of a number of smaller islands. These smaller islands are called Counties by FIA (COUNTYCD).

<table>
<thead>
<tr>
<th>Island group code (STATECD)</th>
<th>Island group name (STATENM)</th>
<th>Island group abbrev. (STATEAB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Hawaii</td>
<td>HI</td>
</tr>
<tr>
<td>60</td>
<td>American Samoa</td>
<td>AS</td>
</tr>
<tr>
<td>66</td>
<td>Guam</td>
<td>GU</td>
</tr>
<tr>
<td>70</td>
<td>Palau</td>
<td>PW</td>
</tr>
</tbody>
</table>

5. COUNTYCD

County code for FIA. This is referred to as the Island code for the Pacific Islands inventories. It identifies one of the smaller islands within the larger Island Group.

<table>
<thead>
<tr>
<th>ISLAND CODE (COUNTYCD)</th>
<th>ISLAND NAME (COUNTYNM)</th>
<th>ISLAND CODE (COUNTYCD)</th>
<th>ISLAND NAME (COUNTYNM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAWAII:</td>
<td></td>
<td>PALAU:</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Hawaii</td>
<td>2</td>
<td>Aimeliik</td>
</tr>
<tr>
<td>3</td>
<td>Honolulu</td>
<td>4</td>
<td>Airai</td>
</tr>
<tr>
<td>9</td>
<td>Maui</td>
<td>10</td>
<td>Angaur</td>
</tr>
<tr>
<td></td>
<td></td>
<td>150</td>
<td>Koror</td>
</tr>
<tr>
<td>AMERICAN SAMOA:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Tutuila East</td>
<td>214</td>
<td>Ngaraard</td>
</tr>
<tr>
<td>20</td>
<td>Manu’a</td>
<td>218</td>
<td>Ngarchelong</td>
</tr>
<tr>
<td>40</td>
<td>Swains</td>
<td>222</td>
<td>Ngardmau</td>
</tr>
<tr>
<td>50</td>
<td>Tutuila West</td>
<td>224</td>
<td>Ngatpang</td>
</tr>
<tr>
<td></td>
<td></td>
<td>226</td>
<td>Ngchesar</td>
</tr>
<tr>
<td>GUAM:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Guam</td>
<td>228</td>
<td>Ngiwal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>350</td>
<td>Peleliu</td>
</tr>
</tbody>
</table>

6. STATEAB

Island group abbreviation. The two-character abbreviation for the larger island group. See STATECD definition for codes.
7. **STATENM** Island group name. The full name of the island group. See STATECD definition.

8. **COUNTYNM** Island name. The name of the smaller individual Island within the Island Group. See COUNTYCD definition for codes and names.

9. **PLOT** Public plot number. A numeric identifier for a plot. The combination of INVYR, STATECD and PLOT will uniquely identify a plot record in the database. It is usually more convenient to use **PLT_CN** (see description above) to uniquely identify plots in the inventory.

10. **PLOT_STATUS_CD** Plot status code. A code that describes the sampling status of the plot.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sampled – at least one accessible forest land condition present on plot</td>
</tr>
<tr>
<td>2</td>
<td>Sampled – no accessible forest land condition present on plot</td>
</tr>
<tr>
<td>3</td>
<td>Nonsampled</td>
</tr>
</tbody>
</table>

11. **EXPCURR** Plot expansion factor (acres) for current AREA estimates on sampled land. The number of acres the sample plot represents for estimating current forest land and nonforest land area. In this table, EXPCURR is based on the Evalid that includes only the sampled plots (i.e. excludes outside-of-the-population, denied-access, and hazardous plots). Use this column to summarize land area.

 When EVALID’s are for sampled plots then EXPCURR= POP_STRATUM.EXPNS
 To calculate area, use the formula: EXPCURR*CONDPROP_UNADJ*ADJ_FACTOR_EXPCURR

12. **EXPVOL** Volume expansion factor (acres) for current TREE attribute estimates (Volume, Biomass, Number of Trees, etc) on sampled forest land. The number of acres the sample plot represents for estimating current volume, biomass, number of trees, or any tree per-acre value.

 EXPVOL is based on the Evalid that includes only the sampled plots.
 When EVALID’s are for sampled plots then EXPVOL= POP_STRATUM.EXPNS
 For example, to calculate net volume, use the formula: VOLCFNET*EXPVOL*TPA_UNADJ*(ADJ_FACTOR_SUB or ADJ_FACTOR_MICR)
 See the definitions of ADJ_FACTOR_SUB or ADJ_FACTOR_MICR for more information on these factors.

13. **EXPALL** Plot expansion factor for AREA estimates that include ALL land (sampled and unsampled). The number of acres the plot represents for estimating current land area that includes denied-access and hazardous plots, but excludes outside-of-the-population plots. Using this expansion factor will give you estimates of forest and nonforest land area as well as an estimate of land area that was not sampled. This expansion factor is rarely used.

 When EVALID’s are for ALL plots then EXPALL= POP_STRATUM.EXPNS
14. **ADJ_FACTOR_EXPCURR**
 Adjustment factor needed to estimate and summarize sampled land area. This adjustment factor should be applied to the CONDPROP_UNADJ on the condition record when generating population estimates of area.

 To calculate area, use the formula:

 \[
 \text{EXPCURR} \times \text{CONDPROP_UNADJ} \times \text{ADJ_FACTOR_EXPCURR}
 \]

15. **ADJ_FACTOR_SUBP**
 Adjustment factor for the subplot. A value that adjusts the population estimates to account for partially nonsampled plots (access denied and hazardous portions) in the stratum where the plot is located. This adjustment factor should be applied to the tree record when generating population estimates for tree attributes for all trees with a DIA \(\geq 5 \) inches (i.e., to estimate volume, biomass, carbon).

 Multiply TPA_UNADJ by ADJ_FACTOR_SUBP and the attribute when the DIA \(\geq 5 \).

 Another way to check which adjustment factor to use (instead of checking the diameter) is as follows:

 If \([\text{TREE}].[\text{TPA_UNADJ}] = 6.018046\) use [ADJ_FACTOR_SUBP]

 For example: net cubic volume of a 16” DIA tree on a plot is calculated as follows:

 \[
 \text{VOLCFNET} \times \text{TPA_UNADJ} \times \text{ADJ_FACTOR_SUBP} \times \text{EXPVOL}
 \]

16. **ADJ_FACTOR_MICR**
 Adjustment factor for the microplot. A value that adjusts population estimates to account for partially nonsampled plots (access denied and hazardous portions). This adjustment factor is applied to the seedling or sapling tree record when generating population estimates for tree attributes for all trees with a DIA \(\geq 1 \) and \(< 5 \) inches.

 For example, ADJ_FACTOR_MICR should be applied to the TPA_UNADJ on any tree with a DIA \(\geq 1" \) and \(< 5" \).

 Another way to check which adjustment factor to use (instead of checking the diameter) is as follows:

 If \([\text{TREE}].[\text{TPA_UNADJ}] = 74.965282\) use [ADJ_FACTOR_MICR]

 For example: total stem biomass of a 3" DIA tree on a plot is calculated as follows:

 \[
 \text{REGIONAL_DRYBIOT} \times \text{TPA_UNADJ} \times \text{ADJ_FACTOR_MICR} \times \text{EXPVOL}
 \]

17. **ADJ_FACTOR_MACR** Not used in the islands.

18. **PROP_BASIS** Proportion basis. A value indicating what type of fixed-size subplots were installed when this plot was sampled. This information is needed in order to use the proper adjustment factor for the stratum in which the plot occurs. In the Islands, 24-foot radius subplots were installed and in this case, the value for PROP_BASIS is “SUBP”. When summarizing land area use POP_STRATUM.ADJ_FACTOR_SUBP because PROP_BASIS is always “SUBP”.

 Alternatively, use PLOT_PNW.ADJ_FACTOR_EXPCURR for every condition, regardless of the PROP_BASIS value. The correct adjustment factor has already been stored in this column.

19. **ISLAND_GROUP_NAME** Island group name. The name of the larger Island Group. (Also called STATENM.)

20. **ISLAND_NAME** Island name. The name of the individual smaller Island within the Island Group. (Also called COUNTYNM.)
COND table
(Condition Table: A table of condition attributes)

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Descriptive Name</th>
<th>Data type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 CN</td>
<td>Unique record number for each row in the COND table</td>
<td>Text</td>
</tr>
<tr>
<td>2 PLT_CN</td>
<td>Unique record number for each row in the PLOT table</td>
<td>Text</td>
</tr>
<tr>
<td>3 CONDID</td>
<td>Condition class number</td>
<td>Integer</td>
</tr>
<tr>
<td>4 INVYR</td>
<td>Inventory year</td>
<td>Integer</td>
</tr>
<tr>
<td>5 STATECD</td>
<td>State code (Island Group code)</td>
<td>Integer</td>
</tr>
<tr>
<td>6 COUNTYCD</td>
<td>County code (Island code)</td>
<td>Integer</td>
</tr>
<tr>
<td>7 PLOT</td>
<td>Public plot number</td>
<td>Integer</td>
</tr>
<tr>
<td>8 COND_STATUS_CD</td>
<td>Condition status code</td>
<td>Integer</td>
</tr>
<tr>
<td>9 COND_NONSAMPLE_REASN_CD</td>
<td>Condition nonsampled reason code</td>
<td>Integer</td>
</tr>
<tr>
<td>10 RESERVCD</td>
<td>Reserved status code</td>
<td>Integer</td>
</tr>
<tr>
<td>11 RESERV_AREA_NAME</td>
<td>Name of the reserved area</td>
<td>Text</td>
</tr>
<tr>
<td>12 SITECLCD</td>
<td>Site productivity class code</td>
<td>Integer</td>
</tr>
<tr>
<td>13 CONDPROP_UNADJ</td>
<td>Condition proportion unadjusted</td>
<td>Real</td>
</tr>
<tr>
<td>14 SUBPPROP_UNADJ</td>
<td>Subplot proportion unadjusted</td>
<td>Real</td>
</tr>
<tr>
<td>15 MICRPROP_UNADJ</td>
<td>Microplot proportion unadjusted</td>
<td>Real</td>
</tr>
<tr>
<td>16 ASPECT</td>
<td>Aspect</td>
<td>Integer</td>
</tr>
<tr>
<td>17 EST_NON_SAMP_LCT_PNWRS</td>
<td>Estimated land cover type</td>
<td>Integer</td>
</tr>
<tr>
<td>18 LAND_COVER_CLASS_CD</td>
<td>Land cover class code</td>
<td>Integer</td>
</tr>
<tr>
<td>19 CANOPY_CVR_SAMPLE_METHOD_CD</td>
<td>Canopy cover sample method code</td>
<td>Integer</td>
</tr>
<tr>
<td>20 DOMINANT_SPECIES1_PNWRS</td>
<td>Dominant tree species code 1</td>
<td>Integer</td>
</tr>
<tr>
<td>21 DOMINANT_SPECIES2_PNWRS</td>
<td>Dominant tree species code 2</td>
<td>Integer</td>
</tr>
<tr>
<td>22 DOMINANT_SPECIES3_PNWRS</td>
<td>Dominant tree species code 3</td>
<td>Integer</td>
</tr>
<tr>
<td>23 FOREST_COMMUNITY_PNWRS</td>
<td>Field recorded forest type</td>
<td>Integer</td>
</tr>
<tr>
<td>24 DSTRBCD1</td>
<td>Disturbance 1 code</td>
<td>Integer</td>
</tr>
<tr>
<td>25 DSTRBCD2</td>
<td>Disturbance 2 code</td>
<td>Integer</td>
</tr>
<tr>
<td>26 DSTRBCD3</td>
<td>Disturbance 3 code</td>
<td>Integer</td>
</tr>
<tr>
<td>27 DSTRBYR1</td>
<td>Disturbance year 1</td>
<td>Integer</td>
</tr>
<tr>
<td>28 DSTRBYR2</td>
<td>Disturbance year 2</td>
<td>Integer</td>
</tr>
<tr>
<td>29 DSTRBYR3</td>
<td>Disturbance year 3</td>
<td>Integer</td>
</tr>
<tr>
<td>30 FLDA GE</td>
<td>Field-call, stand age</td>
<td>Integer</td>
</tr>
<tr>
<td>31 FLDA GE_PNWRS</td>
<td>Field-call, stand age, regional methods</td>
<td>Integer</td>
</tr>
<tr>
<td>32 FLDSZCD</td>
<td>Field-call, stand-size class code</td>
<td>Integer</td>
</tr>
<tr>
<td>33 FLDTYPCD</td>
<td>Field-call, forest type code</td>
<td>Integer</td>
</tr>
<tr>
<td>34 FLDTYPCD_NON_SAMP_PNWRS</td>
<td>Nonsampled forest type</td>
<td>Integer</td>
</tr>
<tr>
<td>35 FORTYP CD</td>
<td>Forest type code, calculated</td>
<td>Integer</td>
</tr>
<tr>
<td>Column Name</td>
<td>Descriptive Name</td>
<td>Data type</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--</td>
<td>-----------</td>
</tr>
<tr>
<td>36 FORTYPCDCALC</td>
<td>Forest type code, algorithm result</td>
<td>Integer</td>
</tr>
<tr>
<td>37 LIVE_CANOPY_CVR_PCT</td>
<td>Live canopy cover percent</td>
<td>Real</td>
</tr>
<tr>
<td>38 LIVE_MISSING_CANOPY_CVR_PCT</td>
<td>Live plus missing canopy cover percent</td>
<td>Real</td>
</tr>
<tr>
<td>39 MAPDEN</td>
<td>Mapping density</td>
<td>Integer</td>
</tr>
<tr>
<td>40 NBR_LIVE_STEMS</td>
<td>Number of live stems</td>
<td>Real</td>
</tr>
<tr>
<td>41 NF_COND_STATUS_CD</td>
<td>Nonforest condition status code</td>
<td>Integer</td>
</tr>
<tr>
<td>42 NF_COND_SAMPLE_STATUS_PNWRS</td>
<td>Nonforest condition sampled status code</td>
<td>Integer</td>
</tr>
<tr>
<td>43 NF_COND_NONSAMPLE_REASN_CD</td>
<td>Nonforest condition nonsampled reason code</td>
<td>Integer</td>
</tr>
<tr>
<td>44 OWNCD</td>
<td>Owner class code</td>
<td>Integer</td>
</tr>
<tr>
<td>45 OWNGRPCD</td>
<td>Owner group code</td>
<td>Integer</td>
</tr>
<tr>
<td>46 PHYSCLCD</td>
<td>Physiographic class code</td>
<td>Integer</td>
</tr>
<tr>
<td>47 PRESNFCD</td>
<td>Present nonforest code</td>
<td>Integer</td>
</tr>
<tr>
<td>48 PRESNFCD_PNWRS</td>
<td>Present nonforest code, regional codes</td>
<td>Integer</td>
</tr>
<tr>
<td>49 PROP_BASIS</td>
<td>Proportion basis</td>
<td>Text</td>
</tr>
<tr>
<td>50 SITECLCDEST</td>
<td>Site productivity class code estimated</td>
<td>Integer</td>
</tr>
<tr>
<td>51 SITECL_METHOD</td>
<td>Site class method</td>
<td>Integer</td>
</tr>
<tr>
<td>52 SLOPE</td>
<td>Slope</td>
<td>Integer</td>
</tr>
<tr>
<td>53 SLOPE_POSITION_PNWRS</td>
<td>Average Slope position</td>
<td>Integer</td>
</tr>
<tr>
<td>54 SLOPE_SHAPE_PNWRS</td>
<td>Average Slope shape</td>
<td>Integer</td>
</tr>
<tr>
<td>55 STDAGE</td>
<td>Stand age</td>
<td>Integer</td>
</tr>
<tr>
<td>56 STDSZCD</td>
<td>Stand-size class code</td>
<td>Integer</td>
</tr>
<tr>
<td>57 STDORGCD</td>
<td>Stand origin code</td>
<td>Integer</td>
</tr>
<tr>
<td>58 STDORGSP</td>
<td>Stand origin species code</td>
<td>Integer</td>
</tr>
<tr>
<td>59 TRTCD1</td>
<td>Stand treatment 1 code</td>
<td>Integer</td>
</tr>
<tr>
<td>60 TRTCD2</td>
<td>Stand treatment 2 code</td>
<td>Integer</td>
</tr>
<tr>
<td>61 TRTCD3</td>
<td>Stand treatment 3 code</td>
<td>Integer</td>
</tr>
<tr>
<td>62 TRTRYR1</td>
<td>Treatment year 1</td>
<td>Integer</td>
</tr>
<tr>
<td>63 TRTRYR2</td>
<td>Treatment year 2</td>
<td>Integer</td>
</tr>
<tr>
<td>64 TRTRYR3</td>
<td>Treatment year 3</td>
<td>Integer</td>
</tr>
<tr>
<td>65 VOL_LOC_GRP</td>
<td>Volume location group for equations</td>
<td>Text</td>
</tr>
<tr>
<td>66 CYCLE</td>
<td>Inventory cycle number</td>
<td>Integer</td>
</tr>
<tr>
<td>67 SUBCYCLE</td>
<td>Inventory subcycle number</td>
<td>Integer</td>
</tr>
<tr>
<td>68 UNITCD</td>
<td>Survey unit code</td>
<td>Integer</td>
</tr>
</tbody>
</table>
1. CN
Unique record number for each row in the COND table. A unique number used to identify a condition record. This will appear as CND_CN in other tables, and is used to link to other tables in this database.

2. PLT_CN
Unique record number for each row in the PLOT table. A unique number that identifies every record in the PLOT table. This column is a key column used to link to most other database tables. For example, to link the plot record in the COND table to the PLOT table: link COND.PLT_CN to PLOT.CN.

When a plot is remeasured (usually after 10 years), the 2nd measurement will be assigned a new CN on a new record in the PLOT table. The column called PREV_PLT_CN on the plot record for the 2nd measurement contains the CN of the previous (1st) measurement. This is a way to identify and link the two measurements together for a trend or change analysis.

3. CONDID
Condition class number. Unique identifying number assigned to each condition on a plot. A condition is initially defined by condition class status. Differences in reserved status, owner group, forest type, stand-size class, regeneration status, and stand density further define condition for forest land. Mapped nonforest conditions are also assigned numbers. At the time of the plot establishment, the condition class at plot center (the center of subplot 1) is usually designated as condition class 1. Other condition classes are assigned numbers sequentially at the time each condition class is delineated. On a plot, each sampled condition class must have a unique number that can change at remeasurement to reflect new conditions on the plot. Use the combination of PLT_CN and CONDID to link to other tables (i.e. TREE table).

4. INVYR
Inventory year. The year when the inventory data were scheduled to be collected. INVYR is often (but not necessarily) the same as MEASYEAR (see below). Note that MEASYEAR is the year when the plot was actually visited and measured on the ground. See the SURVEY table for more info.

5. STATECD
State code for FIA. This is referred to as the Island Group code for the Pacific Islands inventories. It identifies the larger Island Group, which consists of a number of smaller Islands. These smaller islands are called Counties by FIA (COUNTYCD).

<table>
<thead>
<tr>
<th>Island group code (STATECD)</th>
<th>Island group name (STATENM)</th>
<th>Island group abbrev. (STATEAB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Hawaii</td>
<td>HI</td>
</tr>
<tr>
<td>60</td>
<td>American Samoa</td>
<td>AS</td>
</tr>
<tr>
<td>66</td>
<td>Guam</td>
<td>GU</td>
</tr>
<tr>
<td>70</td>
<td>Palau</td>
<td>PW</td>
</tr>
</tbody>
</table>
6. **COUNTYCD** County code for FIA. This is referred to as the *Island* code for the Pacific Islands inventories. It identifies one of the smaller islands within the larger Island Group.

<table>
<thead>
<tr>
<th>ISLAND CODE (COUNTYCD)</th>
<th>ISLAND NAME (COUNTYNM)</th>
<th>ISLAND CODE (COUNTYCD)</th>
<th>ISLAND NAME (COUNTYNM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAWAII:</td>
<td>PALAU:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Hawaii</td>
<td>2</td>
<td>Aimeliik</td>
</tr>
<tr>
<td>3</td>
<td>Honolulu</td>
<td>4</td>
<td>Airai</td>
</tr>
<tr>
<td>9</td>
<td>Maui</td>
<td>10</td>
<td>Angaur</td>
</tr>
<tr>
<td></td>
<td></td>
<td>150</td>
<td>Koror</td>
</tr>
<tr>
<td>AMERICAN SAMOA:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Tutuila East</td>
<td>214</td>
<td>Ngaraard</td>
</tr>
<tr>
<td>20</td>
<td>Manu‘a</td>
<td>218</td>
<td>Ngarchelong</td>
</tr>
<tr>
<td>40</td>
<td>Swains</td>
<td>222</td>
<td>Ngardmau</td>
</tr>
<tr>
<td>50</td>
<td>Tutuila West</td>
<td>224</td>
<td>Ngatpang</td>
</tr>
<tr>
<td></td>
<td></td>
<td>226</td>
<td>Ngchesar</td>
</tr>
<tr>
<td>GUAM:</td>
<td></td>
<td>227</td>
<td>Ngernmlengui</td>
</tr>
<tr>
<td>10</td>
<td>Guam</td>
<td>228</td>
<td>Ngiwal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>350</td>
<td>Peleliu</td>
</tr>
</tbody>
</table>

7. **PLOT** Public Plot number. A numeric identifier for a plot. The combination of INVYR, STATECD and PLOT will uniquely identify a plot record in the database. It is usually more convenient to use **PLT_CN** (see description above) to identify unique plots in the inventory.
Condition status code

A code indicating the basic land cover.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Forest land: Accessible land with at least 10 percent cover (or equivalent stocking) by live trees of any size, including land that formerly had such tree cover and that will be naturally or artificially regenerated. To qualify, the area must be at least 1.0 acre in size and 120.0 feet wide. Forest land includes transition zones, such as areas between forest and nonforest lands that have at least 10% cover (or equivalent stocking) with live trees and forest areas adjacent to urban and built-up lands. Roadside, streamside, and shelterbelt strips of trees must have a width of at least 120 feet and continuous length of at least 363 feet to qualify as forest land. Unimproved roads and trails, streams, and clearings in forest areas are classified as forest if they are < 120 feet wide or an acre in size. Tree-covered areas in agricultural production settings, such as fruit orchards, or tree-covered areas in urban settings, such as city parks, are not considered forest land.</td>
</tr>
<tr>
<td>2</td>
<td>Nonforest land: Any land within the sample that does not meet the definition of accessible forest land or any of the other types of basic land classifications. To qualify, the area must be at least 1.0 acre in size and 120.0 feet wide, with some exceptions. Evidence of "possible" or future development or conversion is not considered. Land that has sufficient canopy cover or stems might be classified as nonforest land use because of other uses (see PRESNFCD). Nonforest includes areas that have sufficient cover or live stems to meet the forest land definition, but do not meet the dimensional requirements. A nonforest land condition will remain in the sample and will be examined at the next occasion to see if it has become forest.</td>
</tr>
<tr>
<td>3</td>
<td>Noncensus water: Lakes, reservoirs, ponds, and similar bodies of water 1.0 acre to 4.5 acre in size. Rivers, streams, canals, etc., 30 ft to 200 ft wide.</td>
</tr>
<tr>
<td>4</td>
<td>Census water: Lakes, reservoirs, ponds, and similar bodies of water 4.5 acre in size and larger; and rivers, streams, canals, etc., more than 200 feet wide.</td>
</tr>
<tr>
<td>5</td>
<td>Nonsampled, with possibility of forest land present: Any portion of a plot within accessible forest land that cannot be sampled is delineated as a separate condition. There is no minimum size requirement. The reason the condition was not sampled is found in COND_NONSAMPLE_REASN_CD.</td>
</tr>
</tbody>
</table>
9. **COND_NONSAMPLE_REASN_CD**

 Condition nonsampled reason code. For condition classes (COND_STATUS_CD=5) that cannot be sampled, one of the following reasons is recorded.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Outside U.S. boundary – Condition class is outside the U.S. border.</td>
</tr>
<tr>
<td>02</td>
<td>Denied access area – Access to the condition class is denied by the legal owner, or by the owner of the only reasonable route to the plot.</td>
</tr>
<tr>
<td>03</td>
<td>Hazardous situation – Condition class cannot be accessed because of a hazard or danger, for example cliffs, quarries, strip mines, illegal substance plantations, temporary high water, etc.</td>
</tr>
<tr>
<td>05</td>
<td>Lost data – The data file was discovered to be corrupt after a panel was completed and submitted for processing. This code is assigned to condition classes on subplots (or macroplots) that could not be processed.</td>
</tr>
<tr>
<td>06</td>
<td>Lost plot – Entire plot cannot be found. Used for the single condition that is required for this plot.</td>
</tr>
<tr>
<td>08</td>
<td>Skipped visit – Entire plot skipped. Used for plots that are not completed prior to the time a panel is finished and submitted for processing. Used for the single condition that is required for this plot. This code is for office use only.</td>
</tr>
<tr>
<td>09</td>
<td>Dropped intensified plot - Intensified plot dropped due to a change in grid density. Used only by units engaged in intensification.</td>
</tr>
<tr>
<td>10</td>
<td>Other – Not sampled for other reasons.</td>
</tr>
<tr>
<td>11</td>
<td>Ocean – Condition falls in ocean water below mean high tide line.</td>
</tr>
</tbody>
</table>

10. **RESERVCD**

 Reserved status code. A code indicating the reserved status of the condition on publically-owned land. Reserved land is permanently prohibited from being managed for the production of wood products through statute or agency mandate; the prohibition cannot be changed through decision of the land manager. Logging may occur to meet protected area objectives. Examples include designated federal Wilderness areas, National Parks and Monuments, and most State Parks. Private land cannot be reserved.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Not reserved</td>
</tr>
<tr>
<td>1</td>
<td>Reserved</td>
</tr>
</tbody>
</table>

11. **RESERVED_AREA_NAME**

 If the reserved status of a condition is reserved (COND.RESERVCD=1) then the name associated with this land area is recorded here. Add this column to queries or reports when summarizing attributes about reserved forest land.
12. SITECLCD Site productivity class code. A classification of forest land in terms of inherent capacity to grow crops of industrial wood.
This code is set to '6' (20 - 49 cubic feet/acre/year) in the islands as a general estimate of productivity, because no equations exist to calculate an actual value.

13. CONDPROP_UNADJ Condition proportion unadjusted. The unadjusted proportion of the plot that is in the condition, which is equal to SUBPPROP_UNADJ. This variable is retained for ease of area calculations. The sum of all condition proportions for a plot = 1. When generating population area estimates, this proportion is adjusted by the POP_STRATUM.ADJ_FACTOR_SUBP to account for partially nonsampled plots (meaning: access denied or hazardous portions of plots).

14. SUBPPROP_UNADJ Subplot proportion unadjusted. The unadjusted proportion of the subplots that are in the condition. The sum of all subplot condition proportions for a plot = 1. This is the sum of SUBPCOND_PROP from the SUB_P_COND table divided by 4.

15. MICRPROP_UNADJ Microplot proportion unadjusted. The unadjusted proportion of the microplots that are in the condition. The sum of all microplot condition proportions for a plot = 1.

16. ASPECT Aspect. The direction of slope, to the nearest degree, for most of the condition. North is recorded as 360. When slope is less than 5 percent, there is no aspect and this item is set to zero.

17. EST_NON_SAMP_LCT_PNWRS Land cover type on nonsampled lands, estimated. The land cover type that best represents the condition class, as determined from the air, ground, or some form of remote sensing. A crews best judgment is used when estimating which cover type is present. Based on the plurality of the cover type present for the entire condition class. Recorded when CONDITION_NONSAMPLED_REASON = 2, 3, or 10.

<table>
<thead>
<tr>
<th>Code</th>
<th>Cover type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Forest land</td>
</tr>
<tr>
<td>2</td>
<td>Nonforest land</td>
</tr>
<tr>
<td>3</td>
<td>Noncensus water</td>
</tr>
<tr>
<td>4</td>
<td>Census water</td>
</tr>
</tbody>
</table>

18. LAND_COVER_CLASS_CD A code indicating the type of land cover for a condition that meets the minimum area and width requirements (except those cases where the condition has been solely defined due to developed land uses, such as roads and rights-of-way.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Treeland</td>
</tr>
<tr>
<td>02</td>
<td>Shrubland</td>
</tr>
<tr>
<td>03</td>
<td>Grassland</td>
</tr>
<tr>
<td>04</td>
<td>Non-vascular Vegetation</td>
</tr>
<tr>
<td>05</td>
<td>Mixed Vegetation</td>
</tr>
<tr>
<td>06</td>
<td>Agricultural Vegetation</td>
</tr>
<tr>
<td>07</td>
<td>Developed, Vegetated</td>
</tr>
<tr>
<td>08</td>
<td>Barren</td>
</tr>
<tr>
<td>09</td>
<td>Developed</td>
</tr>
<tr>
<td>10</td>
<td>Water</td>
</tr>
</tbody>
</table>
19. CANOPY_CVR_SAMPLE_METHOD_CD
Canopy cover sample method code. A code indicating the canopy cover sample method used to determine LIVE_CANOPY_CVR_PCT, LIVE_MISSING_CANOPY_CVR_PCT, and NBR_LIVE_STEMS. Codes 1-4 are used for field-measured canopy cover, and codes 11-14 are generated from imagery.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ocular method</td>
</tr>
<tr>
<td>2</td>
<td>Subplot method</td>
</tr>
<tr>
<td>3</td>
<td>Acre method</td>
</tr>
<tr>
<td>4</td>
<td>Sub-acre method</td>
</tr>
<tr>
<td>11</td>
<td>Dot grid method.</td>
</tr>
<tr>
<td>12</td>
<td>Ocular image-based assessment.</td>
</tr>
<tr>
<td>13</td>
<td>Other image-based assessment.</td>
</tr>
<tr>
<td>14</td>
<td>No canopy cover estimate possible.</td>
</tr>
</tbody>
</table>

20. DOMINANT_SPECIES1_PNWRS
The tree species with the plurality of stocking for all live trees in the condition class that are not overtopped. For example, if a forested condition class contains 30% species A, 30% species B, and 40% species C, then the DOMINANT TREE SPECIES will be the code for species C. Collected on all accessible forest land condition classes (CONDITION CLASS STATUS = 1). Refer to the REF_SPECIES table for codes or appendix E.

21. DOMINANT_SPECIES2_PNWRS
The second most abundant tree species in each condition class, for all live trees in the condition class that are not overtopped. If a second species does not exist, record 0000. Collected on all accessible forest land condition classes (CONDITION CLASS STATUS = 1). Refer to the REF_SPECIES table for codes or appendix E.

22. DOMINANT_SPECIES3_PNWRS
The third most abundant tree species in each condition class, for all live trees in the condition class that are not overtopped. If a second species does not exist, record 0000. Collected on all accessible forest land condition classes (CONDITION CLASS STATUS = 1). Refer to the REF_SPECIES table for codes or appendix E.

23. FOREST_COMMUNITY_PNWRS
The field recorded Pacific Island forest type. The codes and methods are taken from Mueller-Dombois and Fosberg, 1998. The forest type is determined by evaluating the species that has the plurality of stocking/cover for all live trees in the condition class that are not overtopped.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Strand or halophytic vegetation</td>
</tr>
<tr>
<td>2</td>
<td>Mangrove swamps</td>
</tr>
<tr>
<td>3</td>
<td>Lowland tropical rainforest</td>
</tr>
<tr>
<td>4</td>
<td>Montane rainforest</td>
</tr>
<tr>
<td>5</td>
<td>Cloud forest</td>
</tr>
<tr>
<td>6</td>
<td>Mesophytic or moist forest</td>
</tr>
<tr>
<td>7</td>
<td>Xerophytic</td>
</tr>
<tr>
<td>8</td>
<td>Agroforestry</td>
</tr>
<tr>
<td>9</td>
<td>Plantations</td>
</tr>
</tbody>
</table>
24. **DSTRBCD1**

Disturbance 1 code. A code indicating the kind of disturbance occurring since the last measurement or within the last 5 years for new plots. The area affected by the disturbance must be at least 1 acre in size. A significant level of disturbance (mortality or damage to 25 percent of the trees in the condition) is required. Populated for all forested conditions.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No visible disturbance</td>
</tr>
<tr>
<td>10</td>
<td>Insect damage</td>
</tr>
<tr>
<td>11</td>
<td>Insect damage to understory vegetation</td>
</tr>
<tr>
<td>12</td>
<td>Insect damage to trees, including seedlings and saplings</td>
</tr>
<tr>
<td>20</td>
<td>Disease damage</td>
</tr>
<tr>
<td>21</td>
<td>Disease damage to understory vegetation</td>
</tr>
<tr>
<td>22</td>
<td>Disease damage to trees, including seedlings and saplings</td>
</tr>
<tr>
<td>30</td>
<td>Fire damage (from crown and ground fire, either prescribed or natural)</td>
</tr>
<tr>
<td>31</td>
<td>Ground fire damage</td>
</tr>
<tr>
<td>32</td>
<td>Crown fire damage</td>
</tr>
<tr>
<td>40</td>
<td>Animal damage</td>
</tr>
<tr>
<td>41</td>
<td>Beaver (includes flooding caused by beaver)</td>
</tr>
<tr>
<td>42</td>
<td>Porcupine</td>
</tr>
<tr>
<td>43</td>
<td>Deer/ungulate</td>
</tr>
<tr>
<td>44</td>
<td>Bear</td>
</tr>
<tr>
<td>45</td>
<td>Rabbit</td>
</tr>
<tr>
<td>46</td>
<td>Domestic animal/livestock (includes grazing)</td>
</tr>
<tr>
<td>47</td>
<td>Wild pigs and boars</td>
</tr>
<tr>
<td>50</td>
<td>Weather damage</td>
</tr>
<tr>
<td>51</td>
<td>Ice</td>
</tr>
<tr>
<td>52</td>
<td>Wind (includes hurricane, tornado)</td>
</tr>
<tr>
<td>53</td>
<td>Flooding (weather induced)</td>
</tr>
<tr>
<td>54</td>
<td>Drought</td>
</tr>
<tr>
<td>55</td>
<td>Earth movement/avalanches</td>
</tr>
<tr>
<td>56</td>
<td>Erosion</td>
</tr>
<tr>
<td>60</td>
<td>Vegetation (suppression, competition, vines)</td>
</tr>
<tr>
<td>70</td>
<td>Unknown / not sure / other (include in NOTES)</td>
</tr>
<tr>
<td>80</td>
<td>Human-caused damage – any significant threshold of human-caused damage not described in the DISTURBANCE codes or in the TREATMENT codes.</td>
</tr>
<tr>
<td>90</td>
<td>Geologic disturbances</td>
</tr>
<tr>
<td>91</td>
<td>Landslide</td>
</tr>
<tr>
<td>92</td>
<td>Avalanche track</td>
</tr>
<tr>
<td>93</td>
<td>Volcanic blast zone</td>
</tr>
</tbody>
</table>
25. **DSTRBCD2** Disturbance 2 code. The second disturbance code, if the stand has experienced more than one disturbance. See DSTRBCD1 for more information.

26. **DSTRBCD3** Disturbance 3 code. The third disturbance code, if the stand has experienced more than two disturbances. See DSTRBCD1 for more information.

27. **DSTRBYR1** Disturbance year 1. Year in which Disturbance 1 is estimated to have occurred. If the disturbance occurs continuously over a period of time, the value 9999 is used. Populated for all forested conditions that have some disturbance using the Field Guide protocols. If DSTRBCD1 = 0 then DSTRBYR1 = blank (null) or 0.

28. **DSTRBYR2** Disturbance year 2. The year in which Disturbance 2 occurred. See DSTRBYR1 for more information.

29. **DSTRBYR3** Disturbance year 3. The year in which Disturbance 3 occurred. See DSTRBYR1 for more information.

30. **FLDAGE** Field-recorded stand age. The stand age as assigned by the field crew. Based on the average total age, to the nearest year, of the trees in the field-recorded stand size class of the condition, determined using local procedures. For non-stocked stands, 000 is stored. If all of the trees in a condition class are of a species that by regional standards cannot be bored for age, 998 is recorded.

31. **FLDAGE_PNWRS** Field-recorded stand age. The stand age as assigned by the field crew. This is the average total age, to the nearest year, of the overstory trees (plurality of all live trees not overtopped) in the predominant STAND SIZE CLASS of the condition, determined using local procedures.

The crew botanist should be able to provide an estimate of stand age given that the trees in the stand originated at approximately the same time. In tropical forests, the continuous process of gap phase dynamics often prevails, where individuals die, form a gap, and are replaced by lower-canopy individuals. Often you cannot determine stand age in stands that are not characterized by stand replacing disturbance. The trees on typhoon-prone islands would be expected to re-initiate growth following disturbance at approximately the same time.

An estimate of stand age is required for every forest land condition class defined on a plot. Stand age is usually highly correlated with stand size and should reflect the average age of all trees that are not overtopped. Stand age estimates should estimate the time of tree establishment (i.e., not age at the point of diameter measurement). Note: For planted stands, age is estimated based on the year the stand was planted (i.e., do not add in the age of the planting stock).

Developmental stage and known dates of disturbance are likely to be the only guides to estimating stand age. If continuous tree replacement by gap phase dynamics appears to characterize a stand, a code of 996 is recorded. If a reasonable estimate of stand age is not possible and it is not a continuous tree replacement stand, a code of 997 recorded. Record 000 for nonstocked stands.
32. FLDSZCD

Field stand-size class code. Field-assigned classification of the predominant size class of all live trees in the condition. Crews look at tree crown cover of all live trees that are not overtopped to differentiate between stand-size classes.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Nonstocked: Meeting the definition of accessible forest land, and one of the following applies: (a) less than 10 percent crown cover by trees of any size, and not classified as chaparral, or (b) for forest types where crown cover standards are not available, less than 5 percent crown cover of trees of any size.</td>
</tr>
<tr>
<td>1</td>
<td>Seedlings / saplings stands: Trees < 4.9 inches. At least 10 percent crown cover (or 5 percent crown cover if stocking tables are not available) in trees of any size; and at least 1/3 of the crown cover is in trees less than 5.0 inches DIA.</td>
</tr>
<tr>
<td>2</td>
<td>Pole sized stands: 5.0 – 8.9 inches (softwoods)/ 5.0 – 10.9 inches (hardwoods). At least 10 percent crown cover (or 5 percent crown cover if stocking tables are not available) in trees of any size; and at least 1/3 of the crown cover is in trees greater than 5.0 inches DIA and the plurality of the crown cover is in softwoods between 5.0 - 8.9 inches DIA and/or hardwoods between 5.0 - 10.9 inches DIA.</td>
</tr>
<tr>
<td>3</td>
<td>Large sized stands: 9.0 – 19.9 inches (softwoods)/ 11.0 – 19.9 inches (hardwoods). At least 10 percent crown cover (or 5 percent crown cover if stocking tables are not available) in trees of any size; and at least 1/3 of the crown cover is in trees greater than 5.0 inches DIA and the plurality of the crown cover is in softwoods between 9.0 - 19.9 inches DIA. and/or hardwoods between 11.0 - 19.9 inches DIA.</td>
</tr>
</tbody>
</table>

33. FLDTYPFD

Field forest type code. Forest type, assigned by the field crew. The field recorded Pacific Island forest type (FOREST_COMMUNITY_PNWR) translated to standard FIA codes. The forest type is determined by evaluating the species that has the plurality of stocking/cover for all live trees in the condition class that are not overtopped.

<table>
<thead>
<tr>
<th>FLDTYPFD</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>980</td>
<td>Tropical hardwoods group</td>
</tr>
<tr>
<td>982</td>
<td>Mangrove</td>
</tr>
<tr>
<td>983</td>
<td>Palms</td>
</tr>
<tr>
<td>984</td>
<td>Dry forest</td>
</tr>
<tr>
<td>985</td>
<td>Moist forest</td>
</tr>
<tr>
<td>986</td>
<td>Wet and rain forest</td>
</tr>
<tr>
<td>987</td>
<td>Lower montane wet and rain forest</td>
</tr>
<tr>
<td>988</td>
<td>Cloud forest</td>
</tr>
<tr>
<td>989</td>
<td>Other tropical hardwoods</td>
</tr>
<tr>
<td>999</td>
<td>Nonstocked</td>
</tr>
</tbody>
</table>
34. **FLDTYPCD_NON_SAMP_PNWRS**

Forest type on non sampled land. When nonsampled land appears to be forest land, the forest type is estimated for the condition. See FLDTYPCD for codes and definitions. Collected when EST_NON_SAMP_LCT_PNWRS = 1.

35. **FORTYPCD**

Forest type code. Forest type, assigned by the field crew. The field recorded Pacific Island forest type (FOREST_COMMUNITY_PNWRS) translated to standard FIA codes. The forest type is determined by evaluating the species that has the plurality of stocking/cover for all live trees in the condition class that are not overtopped.

<table>
<thead>
<tr>
<th>FLDTYPCD</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>980</td>
<td>Tropical hardwoods group</td>
</tr>
<tr>
<td>982</td>
<td>Mangrove</td>
</tr>
<tr>
<td>983</td>
<td>Palms</td>
</tr>
<tr>
<td>984</td>
<td>Dry forest</td>
</tr>
<tr>
<td>985</td>
<td>Moist forest</td>
</tr>
<tr>
<td>986</td>
<td>Wet and rain forest</td>
</tr>
<tr>
<td>987</td>
<td>Lower montane wet and rain forest</td>
</tr>
<tr>
<td>988</td>
<td>Cloud forest</td>
</tr>
<tr>
<td>989</td>
<td>Other tropical hardwoods</td>
</tr>
<tr>
<td>999</td>
<td>Nonstocked</td>
</tr>
</tbody>
</table>

36. **FORTYPCDCALC**

Forest type. This will be the same as FORTYPCD.

37. **LIVE_CANOPY_CVR_PCT**

Live canopy cover percent. The percentage of live canopy cover for the condition. Included are live tally trees, saplings, and seedlings that cover the sample area. Please see the field manual for further explanation.

38. **LIVE_MISSING_CANOPY_CVR_PCT**

Live plus missing canopy cover percent. This percentage for the condition is determined in the field by adding LIVE_CANOPY_CVR_PCT plus the estimated missing canopy cover that existed prior to disturbance (harvesting, fire, chaining, etc.) Included are live and dead and removed tally trees, saplings, and seedlings. Dead trees and dead portions of live trees are not considered as missing unless it is part of the condition disturbance. The estimate is based on field observations, aerial photos, historical aerial imagery, and similar evidence of undisturbed conditions. The total of LIVE_MISSING_CANOPY_CVR_PCT cannot exceed 100 percent.
39. MAPDEN Tree density. A code indicating the relative tree density of the condition. Crews base the classification on the number of stems/unit area, basal area, or tree cover of all live trees in the condition that are not overtopped, compared to any other condition class tree density recorded on the plot. Codes other than 1 are used as an indication that a significant difference in tree density is the only factor causing another condition to be recognized and mapped on the plot.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Initial tree density class</td>
</tr>
<tr>
<td>2</td>
<td>Density class 2 – density different than the density of the condition assigned a tree density class of 1</td>
</tr>
<tr>
<td>3</td>
<td>Density class 3 – density different than the densities of the conditions assigned tree density classes of 1 and 2</td>
</tr>
</tbody>
</table>

40. NBR_LIVE_STEMS Number of live stems. The estimated number of live stems per acre of the condition. The estimate in the field is based on actual stem count of tally tree species within the sample area.

41. NF_COND_STATUS_CD Nonforest condition status code. A code indicating the sampling status of the measurable nonforest condition class. (Experimental forest only)

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Accessible nonforest land.</td>
</tr>
<tr>
<td>5</td>
<td>Nonsampled nonforest land</td>
</tr>
</tbody>
</table>

42. NF_COND_SAMPLE_STATUS_CD_PNWRS Nonforest condition sampling status code. A code indicating whether the nonforest condition is part of a nonforest inventory. (Experimental forest only)

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Nonforest conditions are not inventoried.</td>
</tr>
<tr>
<td>1</td>
<td>Nonforest conditions are inventoried (only when condition falls on Experimental Forest land and vascular vegetation cover is greater than or equal to 10 percent).</td>
</tr>
</tbody>
</table>

43. NF_COND_NONSAMPLE_REASN_CD Nonforest condition nonsampled reason code. For portions of plots that are nonforest and cannot be sampled (NF_COND_STATUS_CD=5), one of the following reasons is recorded. (Experimental forest only)

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Denied access - Any area within the sampled area of a plot to which access is denied by the legal owner, or to which an owner of the only reasonable route to the plot denies access. There are no minimum area or width requirements for a condition class delineated by denied access. Because a denied-access condition can become accessible in the future, it remains in the sample and is re-examined at the next occasion to determine if access is available.</td>
</tr>
</tbody>
</table>
3 Hazardous situation - Any area within the sampled area on plot that cannot be accessed because of a hazard or danger, for example cliffs, quarries, strip mines, illegal substance plantations, temporary high water, etc. Although the hazard is not likely to change over time, a hazardous condition remains in the sample and is re-examined at the next occasion to determine if the hazard is still present. There are no minimum size or width requirements for a condition class delineated by a hazardous condition.

10 Other - This code is used whenever a condition class is not sampled due to a reason other than one of the specific reasons listed. A field note is required to describe the situation.

44. OWNCD Owner class code. (Optional for nonforest land.) A code indicating the class in which the landowner (at the time of the inventory) belongs.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>National Forest System (NFS)</td>
</tr>
<tr>
<td>12</td>
<td>National Grassland</td>
</tr>
<tr>
<td>13</td>
<td>Other Forest Service land</td>
</tr>
<tr>
<td>21</td>
<td>National Park Service</td>
</tr>
<tr>
<td>22</td>
<td>Bureau of Land Management</td>
</tr>
<tr>
<td>23</td>
<td>Fish and Wildlife Service</td>
</tr>
<tr>
<td>24</td>
<td>Department of Defense/Energy</td>
</tr>
<tr>
<td>25</td>
<td>Other federal land</td>
</tr>
<tr>
<td>31</td>
<td>State</td>
</tr>
<tr>
<td>32</td>
<td>Local (County, Municipal, etc)</td>
</tr>
<tr>
<td>33</td>
<td>Other non-federal public</td>
</tr>
<tr>
<td>34</td>
<td>Village or communal property</td>
</tr>
<tr>
<td>46</td>
<td>All private landowners</td>
</tr>
</tbody>
</table>

45. OWNGRPCD Owner group code. (Optional for nonforest) A broader group of landowner classes.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Forest Service</td>
</tr>
<tr>
<td>20</td>
<td>Other federal</td>
</tr>
<tr>
<td>30</td>
<td>State and local government</td>
</tr>
<tr>
<td>40</td>
<td>Private</td>
</tr>
</tbody>
</table>

(Optional for nonforest)
46. **PHYSCLCD**

Physiographic class code. The general effect of land form, topographical position, and soil on moisture available to trees. These codes are new in annual inventory; older inventories have been updated to these codes when possible.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xeric sites (normally low or deficient in available moisture)</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Dry Tops - Ridge tops with thin rock outcrops and considerable exposure to sun and wind.</td>
</tr>
<tr>
<td>12</td>
<td>Dry Slopes - Slopes with thin rock outcrops and considerable exposure to sun and wind. Includes most mountain/steep slopes with a southern or western exposure.</td>
</tr>
<tr>
<td>13</td>
<td>Deep Sands - Sites with a deep, sandy surface subject to rapid loss of moisture following precipitation. Typical examples include sand hills, ridges, and flats in the South, sites along the beach and shores of lakes, streams.</td>
</tr>
<tr>
<td>19</td>
<td>Other Xeric - All dry physiographic sites not described above.</td>
</tr>
</tbody>
</table>

| **Mesic** sites (normally moderate but adequate available moisture) |
21	Flatwoods - Flat or fairly level sites outside of flood plains. Excludes deep sands and wet, swampy sites.
22	Rolling Uplands - Hills and gently rolling, undulating terrain and associated small streams. Excludes deep sands, all hydric sites, and streams with associated flood plains.
23	Moist Slopes and Coves - Moist slopes and coves with relatively deep, fertile soils. Often these sites have a northern or eastern exposure and are partially shielded from wind and sun. Includes moist mountain tops and saddles.
24	Narrow flood plains/Bottomlands – Flood plains and bottomlands less than 1/4-mile in width along rivers and streams. These sites are normally well drained but are subjected to occasional flooding during periods of heavy or extended precipitation. Includes associated levees, benches, and terraces within a 1/4 mile limit. Excludes swamps, sloughs, and bogs.
25	Broad Floodplains/Bottomlands - Floodplains and bottomlands ¼ mile or wider along rivers and streams. These sites are normally well drained but are subjected to occasional flooding during periods of heavy or extended precipitation. Includes associated levees, benches, and terraces. Excludes swamps, sloughs, and bogs with year-round water problems.
29	Other Mesic - All moderately moist physiographic sites not described above.

| **Hydric** sites (normally abundant or overabundant moisture all year) |
31	Swamps/Bogs - Low, wet, flat, forested areas usually quite extensive that are flooded for long periods except during periods of extreme drought. Excludes cypress ponds and small drains.
32	Small Drains - Narrow, stream-like, wet strands of forest land often without a well-defined stream channel. These areas are poorly drained or flooded throughout most of the year and drain the adjacent higher ground.
33	Bays and wet pocosins - Low, wet, boggy sites characterized by peaty or organic soils. May be somewhat dry during periods of extended drought. Examples include sites in the Carolina bays in the Southeast United States.
34	Beaver ponds.
35	Cypress ponds.
39	Other hydric - All other hydric physiographic sites.
47. **PRESNFCD** Present nonforest code. A code indicating the current nonforest land use.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Agricultural land</td>
</tr>
<tr>
<td>11</td>
<td>Cropland</td>
</tr>
<tr>
<td>12</td>
<td>Pasture (improved through cultural practices)</td>
</tr>
<tr>
<td>13</td>
<td>Idle farmland</td>
</tr>
<tr>
<td>14</td>
<td>Orchard</td>
</tr>
<tr>
<td>15</td>
<td>Christmas tree plantation</td>
</tr>
<tr>
<td>16</td>
<td>Maintained wildlife opening</td>
</tr>
<tr>
<td>17</td>
<td>Windbreak/Shelterbelt</td>
</tr>
<tr>
<td>20</td>
<td>Rangeland</td>
</tr>
<tr>
<td>30</td>
<td>Developed</td>
</tr>
<tr>
<td>31</td>
<td>Cultural (business, residential, other intense human activity)</td>
</tr>
<tr>
<td>32</td>
<td>Rights-of-way (improved road, railway, power line)</td>
</tr>
<tr>
<td>33</td>
<td>Recreation (park, golf course, ski run)</td>
</tr>
<tr>
<td>34</td>
<td>Mining</td>
</tr>
<tr>
<td>40</td>
<td>Other (undeveloped beach, marsh, bog, snow, ice)</td>
</tr>
<tr>
<td>41</td>
<td>Nonvegetated</td>
</tr>
<tr>
<td>42</td>
<td>Wetland</td>
</tr>
<tr>
<td>43</td>
<td>Beach</td>
</tr>
</tbody>
</table>

48. **PRESNFCD_PNWRS** Present nonforest use code. A code indicating the current nonforest land use.

Includes additional codes beyond the national set of codes. This column has more detail and should be used when analyzing the nonforest use data.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Agricultural land</td>
</tr>
<tr>
<td>11</td>
<td>Cropland</td>
</tr>
<tr>
<td>12</td>
<td>Pasture (improved through cultural practices)</td>
</tr>
<tr>
<td>13</td>
<td>Idle farmland</td>
</tr>
<tr>
<td>14</td>
<td>Orchard</td>
</tr>
<tr>
<td>15</td>
<td>Christmas tree plantation</td>
</tr>
<tr>
<td>16</td>
<td>Maintained wildlife opening</td>
</tr>
<tr>
<td>17</td>
<td>Windbreak/Shelterbelt</td>
</tr>
<tr>
<td>18</td>
<td>Low density agro-forest</td>
</tr>
<tr>
<td>20</td>
<td>Rangeland</td>
</tr>
<tr>
<td>21</td>
<td>Grass lands</td>
</tr>
<tr>
<td>22</td>
<td>Montane grassland/savannah</td>
</tr>
<tr>
<td>23</td>
<td>Montane bogs</td>
</tr>
<tr>
<td>24</td>
<td>Alpine vegetation</td>
</tr>
<tr>
<td>25</td>
<td>Fernland</td>
</tr>
<tr>
<td>26</td>
<td>Subxerophytic/sclerophyllous scrub</td>
</tr>
<tr>
<td>30</td>
<td>Developed</td>
</tr>
<tr>
<td>31</td>
<td>Cultural (business, residential, other intense human activity)</td>
</tr>
<tr>
<td>32</td>
<td>Rights-of-way (improved road, railway, power line)</td>
</tr>
<tr>
<td>33</td>
<td>Recreation (park, golf course, ski run)</td>
</tr>
<tr>
<td>34</td>
<td>Mining</td>
</tr>
<tr>
<td>40</td>
<td>Other (undeveloped beach, marsh, bog, snow, ice)</td>
</tr>
<tr>
<td>41</td>
<td>Nonvegetated</td>
</tr>
<tr>
<td>42</td>
<td>Wetland</td>
</tr>
<tr>
<td>43</td>
<td>Beach</td>
</tr>
</tbody>
</table>
49. PROP_BASIS Proportion basis. A value indicating what type of fixed-size subplots were installed when this plot was sampled. This information is needed in order to use the proper adjustment factor for the stratum in which the plot occurs.

50. SITECLCDEST Site productivity class code estimated. This is a field-recorded code that is an estimated or predicted indicator of site productivity.

51. SITECL_METHOD Site class method. A code of 6 is assigned to all islands plots, meaning that the site index or site productivity class was estimated or assigned in the office.

52. SLOPE Slope. The angle of slope, in percent, of the condition. Valid values are 000 through 155. Slope is collected on subplots and then assigned to a condition. The slope from the subplot with the greatest percentage of the current condition is assigned to that condition. Populated for all forest annual plots.

53. SLOPE_POSITION_PNWRS Average slope position. Average of all slope positions recorded on the subplots in the same condition.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>No Slope</td>
</tr>
<tr>
<td>10</td>
<td>Uppershoulder</td>
</tr>
<tr>
<td>20</td>
<td>Midslope</td>
</tr>
<tr>
<td>30</td>
<td>Footslope</td>
</tr>
<tr>
<td>40</td>
<td>Valleybottom</td>
</tr>
<tr>
<td>50</td>
<td>Ridgetop</td>
</tr>
</tbody>
</table>

54. SLOPE_SHAPE_PNWRS Average slope shape. Average of all slope shapes recorded on the subplots in the same condition.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>Flat</td>
</tr>
<tr>
<td>10</td>
<td>Concave</td>
</tr>
<tr>
<td>20</td>
<td>Convex</td>
</tr>
</tbody>
</table>

55. STDAGE Stand age. Stand age is equal to the field-recorded stand age (FLDAGE) with some exceptions. This is the average total age, to the nearest year, of the overstory trees (plurality of all live trees not overtopped) in the predominant STAND SIZE CLASS of the condition, determined using local procedures.

The crew botanist should be able to provide an estimate of stand age given that the trees in the stand originated at approximately the same time. In tropical forests, the continuous process of gap phase dynamics often prevails, where individuals die, form a gap, and are replaced by lower-canopy individuals. Often you cannot determine stand age in stands that are not characterized by stand replacing disturbance. The trees on typhoon-prone islands would be expected to re-initiate growth following disturbance at approximately the same time.

An estimate of stand age is required for every forest land condition class defined on a plot. Stand age is usually highly correlated with stand size and should reflect the average age of all trees that are not overtopped. Stand age estimates should
estimate the time of tree establishment (not age at the point of DIA measurement).
Note: For planted stands, age is estimated based on the year the stand was planted.

Developmental stage and known dates of disturbance are likely to be the only
guides to estimating stand age. If continuous tree replacement by gap phase
dynamics appears to characterize a stand, a code of 996 is recorded. If a reasonable
estimate of stand age is not possible and it is not a continuous tree replacement
stand, a code of 997 recorded. Record 000 for nonstocked stands.

56. STDSZCD Stand-size class code. A classification of the predominant (based on stocking)
diameter class of live trees within the condition. See FLDSZCD for more information.

57. STDORGCD Stand origin code. Method of stand regeneration for the trees in the condition. An
artificially regenerated stand is established by planting seedlings or artificial seeding.
Populated for all forested conditions.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Natural stands</td>
</tr>
<tr>
<td>1</td>
<td>Clear evidence of artificial regeneration</td>
</tr>
</tbody>
</table>

58. STDORGSP Stand origin species code. The species code for the predominant artificially
regenerated species (only when STDORGCD = 1). See appendix E.

59. TRTCD1 Treatment code 1. Treatment observed on the condition that occurred in the last 5
years. If the plot is a remeasurement, the treatment that occurred since the
previous inventory is recorded, regardless of the number of years.
Forestry treatments are a form of disturbance. These human caused disturbances
are recorded separately here for ease of coding and analysis. The term treatment
further implies that a silvicultural application has been prescribed. This does not
include occasional stumps of unknown origin or sparse removals for firewood or
other miscellaneous purposes. The area affected by any treatment must be at least
1.0 acre in size. Record up to three different treatments per condition class from
most important to least. Populated for all forested conditions.

<table>
<thead>
<tr>
<th>TRTCD</th>
<th>Brief description</th>
<th>Detailed description</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>None</td>
<td>No observable treatment.</td>
</tr>
<tr>
<td>10</td>
<td>Cutting</td>
<td>The removal of one or more trees from a stand.</td>
</tr>
<tr>
<td>20</td>
<td>Site preparation</td>
<td>Clearing, slash burning, chopping, diskng, bedding, or other practices clearly intended to prepare a site for either natural or artificial regeneration.</td>
</tr>
<tr>
<td>30</td>
<td>Artificial regeneration</td>
<td>Following a disturbance or treatment (usually cutting), a new stand where at least 50% of the live trees present resulted from planting or direct seeding.</td>
</tr>
<tr>
<td>40</td>
<td>Natural regeneration</td>
<td>Following a disturbance or treatment (usually cutting), a new stand where at least 50% of the live trees present (of any size) were established through the growth of existing trees and/or natural seeding or sprouting</td>
</tr>
<tr>
<td>50</td>
<td>Other silvicultural treatment</td>
<td>The use of fertilizers, herbicides, girdling, pruning, or other activities (not covered by codes 10-40) designed to improve the commercial value of the residual stand, or chaining, which is a practice used on woodlands to encourage wildlife forage</td>
</tr>
</tbody>
</table>
60. TRTCD2 Treatment code 2. A code indicating the type of stand treatment that has occurred since the last measurement or within the last 5 years for new plots. Up to three different treatments can be recorded per condition class, from most important to least important as best as can be determined.

61. TRTCD3 Treatment code 3. A code indicating the type of stand treatment that has occurred since the last measurement or within the last 5 years for new plots. Up to three different treatments can be recorded per condition class, from most important to least important as best as can be determined.

62. TRTYR1 Treatment year 1. Year in which Stand Treatment 1 is estimated to have occurred. Populated for all forested conditions that have some treatment recorded. If TRTCD1 = 00 then TRTYR1 = blank (null) or 0.

63. TRTYR2 Treatment year 2. Year in which Stand Treatment 2 is estimated to have occurred. Populated for all forested conditions that have some TRTCD2 recorded. If TRTCD2 = 00 then TRTYR2 = blank (null) or 0.

64. TRTYR3 Treatment year 3. Year in which Stand Treatment 3 is estimated to have occurred. Populated for all forested conditions that have some TRTCD3 recorded. If TRTCD3 = 00 then TRTYR3 = blank (null) or 0.

65. VOL_LOC_GRP Volume location group. An identifier indicating what equations are used for volume, biomass, site index, etc. A volume group is usually designated for a geographic area, such as a State, multiple States, a group of counties, or an ecoregion.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S26LPI</td>
<td>Volume for the Pacific Islands</td>
</tr>
</tbody>
</table>

66. CYCLE Inventory cycle number. A number assigned to a set of plots, measured over a particular period of time from which estimates are made. In the islands, the initial measurement is Cycle 2 (from 2001 to 2011) and the 2nd remeasurement is Cycle 3 (2012 and beyond).

67. SUBCYCLE Inventory subcycle number. For an annual inventory that takes N years to measure all plots, subcycle shows in which of the N years the data were measured.

68. UNITCD Survey unit code. This is not used in the Pacific Islands – all codes are ‘1’.
COND_PNW table (Condition Table with regional attributes)

Contains data that were collected only by the PNW FIA work unit. Includes columns that help simplify creating and running queries from the database.

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Descriptive Name</th>
<th>Data Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 CND_CN</td>
<td>Unique record number for each row in the COND table</td>
<td>Text</td>
</tr>
<tr>
<td>2 PLT_CN</td>
<td>Unique record number for each row in the PLOT table</td>
<td>Text</td>
</tr>
<tr>
<td>3 INVYR</td>
<td>Inventory year</td>
<td>Integer</td>
</tr>
<tr>
<td>4 STATECD</td>
<td>State code</td>
<td>Integer</td>
</tr>
<tr>
<td>5 PLOT</td>
<td>Public plot number</td>
<td>Integer</td>
</tr>
<tr>
<td>6 CONID</td>
<td>Condition identifier</td>
<td>Integer</td>
</tr>
<tr>
<td>7 CONDPROP_ADJ</td>
<td>Adjusted condition proportion</td>
<td>Real</td>
</tr>
<tr>
<td>8 FORESTLAND_YN</td>
<td>Forest land condition</td>
<td>Text</td>
</tr>
<tr>
<td>9 LAND_STATUS_CD</td>
<td>Land, water, and reserve status</td>
<td>Integer</td>
</tr>
<tr>
<td>10 LAND_STATUS_TEXT</td>
<td>Definition of each land status code</td>
<td>Text</td>
</tr>
</tbody>
</table>

1. **CND_CN**: Unique record number for a row in the COND table. A unique number used to identify a condition record. Here, it is a foreign key linking the records in this table to the records in the COND table or any other table that contains CND_CN. The CND_CN column is found in many FIADB tables, and is a key column you can use to link to other tables. In the COND table, the column name is simply CN. Note that CND_CN is not the condition class number.

2. **PLT_CN**: Unique record number for each row in the PLOT table. A unique number that identifies every record in the PLOT table. This column is a key column used to link to most other database tables. For example, to link the plot record in the COND_PNW table to the PLOT table: link COND_PNW.PLT_CN to PLOT.CN.

When a plot is remeasured (usually after 10 years), the 2nd measurement will be assigned a new CN on a new record in the PLOT table. The column called PREV_PLT_CN on the plot record for the 2nd measurement contains the CN of the previous (1st) measurement. This is a way to identify and link the two measurements together for a trend or change analysis.

3. **INVYR**: Inventory year. The year when the inventory data were scheduled to be collected. INVYR is often (but not necessarily) the same as MEASYEAR (see below). Note that MEASYEAR is the year when the plot was actually visited and measured on the ground. See the SURVEY table for more info.
4. **STATECD**
State code for FIA. This is referred to as the Island Group code for the Pacific Islands inventories. It identifies the larger Island Group, which consists of a number of smaller Islands. These smaller islands are called Counties by FIA (COUNTYCD).

<table>
<thead>
<tr>
<th>Island group code (STATECD)</th>
<th>Island group name (STATENM)</th>
<th>Island group abbrev. (STATEAB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Hawaii</td>
<td>HI</td>
</tr>
<tr>
<td>60</td>
<td>American Samoa</td>
<td>AS</td>
</tr>
<tr>
<td>66</td>
<td>Guam</td>
<td>GU</td>
</tr>
<tr>
<td>70</td>
<td>Palau</td>
<td>PW</td>
</tr>
</tbody>
</table>

5. **PLOT**
Public Plot number. A numeric identifier for a plot. The combination of INVYR, STATECD and PLOT will uniquely identify a plot record in the database. It is usually more convenient to use PLT_CN (see description above) to identify unique plots in the inventory.

6. **CONDID**
Condition class number. See COND table for more information.

7. **CONDPROP_ADJ**
Adjusted condition proportion. The adjusted proportion of the plot that is in the condition. When generating population area estimates, this proportion is multiplied by PLOT_PNW.EXPCURR to produce summaries in acres, for current estimates. This column is calculated from CONDPROP_UNADJ*ADJ_FACTOR_EXPCURR.

8. **FORESTLAND_YN**
Identifies conditions that are forest land for easy selection of these records. Forest land is identified by: COND_STATUS_CD =1.

<table>
<thead>
<tr>
<th>Y</th>
<th>The condition is forest land</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>The condition class is not forest land</td>
</tr>
</tbody>
</table>

9. **LAND_STATUS_CD**
A code that identifies the land status and reserved status of a condition. This column is very useful for grouping in queries and reports. It identifies whether the land is timberland, unreserved 'other forest' land, reserved productive, reserved 'other forest', nonforest land, water, nonsampled-access denied, or nonsampled-hazardous. This column along with LAND_STATUS_TEXT should be used to group and label summary queries and reports.

<table>
<thead>
<tr>
<th>CODE</th>
<th>LAND_STATUS_TEXT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1_Unreserved_Forest_Land</td>
</tr>
<tr>
<td>2</td>
<td>2Reserved_Forest_Land</td>
</tr>
<tr>
<td>3</td>
<td>3_Nonforest_land</td>
</tr>
<tr>
<td>4</td>
<td>4_Water_Non-Census</td>
</tr>
<tr>
<td>5</td>
<td>5_Water_Census</td>
</tr>
<tr>
<td>6</td>
<td>6_Nonsampled_Denied_access</td>
</tr>
<tr>
<td>7</td>
<td>7_Nonsampled_Hazardous</td>
</tr>
<tr>
<td>8</td>
<td>8_Nonsampled_skipped_visit</td>
</tr>
<tr>
<td>9</td>
<td>9_Nonsampled_lost_plot</td>
</tr>
<tr>
<td>10</td>
<td>10_Nonsampled_Other_reason</td>
</tr>
</tbody>
</table>

10. **LAND_STATUS_TEXT**
The description of each land status code, see LAND_STATUS_CD above.
COUNTY table (A crosswalk table of FIA County codes to county names)

In the islands, a ‘County’ really identifies an Island within a larger Island Group

<table>
<thead>
<tr>
<th>Column name</th>
<th>Descriptive name</th>
<th>data type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 CN</td>
<td>Unique record number</td>
<td>Text</td>
</tr>
<tr>
<td>2 STATECD</td>
<td>State code (Island Group code)</td>
<td>Integer</td>
</tr>
<tr>
<td>3 STATENM</td>
<td>State name (Island group name)</td>
<td>Integer</td>
</tr>
<tr>
<td>4 COUNTYCD</td>
<td>County code (Island code)</td>
<td>Integer</td>
</tr>
<tr>
<td>5 COUNTYNM</td>
<td>County name (Island name)</td>
<td>Text</td>
</tr>
<tr>
<td>6 UNITCD</td>
<td>Survey unit code (rarely used)</td>
<td>Integer</td>
</tr>
</tbody>
</table>

1. CN
Sequence number. A unique number used to identify a county record.

2. STATECD
State code for FIA. This is referred to as the Island Group code for the Pacific Islands inventories. It identifies the larger Island Group, which consists of a number of smaller Islands. These smaller islands are called Counties by FIA (COUNTYCD).

<table>
<thead>
<tr>
<th>Island group code (STATECD)</th>
<th>Island group name (STATENM)</th>
<th>Island group abbrev. (STATEAB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Hawaii</td>
<td>HI</td>
</tr>
<tr>
<td>60</td>
<td>American Samoa</td>
<td>AS</td>
</tr>
<tr>
<td>66</td>
<td>Guam</td>
<td>GU</td>
</tr>
<tr>
<td>70</td>
<td>Palau</td>
<td>PW</td>
</tr>
</tbody>
</table>

3. STATENM (ISLAND_GROUP_NAME)
Island group name. The name of the larger Island Group.

<table>
<thead>
<tr>
<th>Island group name (STATENM)</th>
<th>Island group code (STATECD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hawaii</td>
<td>15</td>
</tr>
<tr>
<td>American Samoa</td>
<td>60</td>
</tr>
<tr>
<td>Guam</td>
<td>66</td>
</tr>
<tr>
<td>Palau</td>
<td>70</td>
</tr>
</tbody>
</table>
4. **COUNTYCD**

 County code for FIA. This is referred to as the Island code for the Pacific Islands inventories. It identifies one of the smaller islands within the larger Island Group.

<table>
<thead>
<tr>
<th>ISLAND CODE (COUNTYCD)</th>
<th>ISLAND NAME (COUNTYNM)</th>
<th>ISLAND CODE (COUNTYCD)</th>
<th>ISLAND NAME (COUNTYNM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAWAII:</td>
<td>PALAU:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Hawaii</td>
<td>2</td>
<td>Aimeliik</td>
</tr>
<tr>
<td>3</td>
<td>Honolulu</td>
<td>4</td>
<td>Airai</td>
</tr>
<tr>
<td>9</td>
<td>Maui</td>
<td>10</td>
<td>Angaur</td>
</tr>
<tr>
<td></td>
<td></td>
<td>150</td>
<td>Koror</td>
</tr>
<tr>
<td>AMERICAN SAMOA:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Tutuila East</td>
<td>214</td>
<td>Ngaraard</td>
</tr>
<tr>
<td>20</td>
<td>Manu’a</td>
<td>218</td>
<td>Ngarchelong</td>
</tr>
<tr>
<td>40</td>
<td>Swains</td>
<td>222</td>
<td>Ngardmau</td>
</tr>
<tr>
<td>50</td>
<td>Tutuila West</td>
<td>224</td>
<td>Ngatpang</td>
</tr>
<tr>
<td></td>
<td></td>
<td>226</td>
<td>Ngchesar</td>
</tr>
<tr>
<td>GUAM:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>227</td>
<td>Ngernmlengui</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Guam</td>
<td>228</td>
<td>Ngiwal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>350</td>
<td>Peleliu</td>
</tr>
</tbody>
</table>

9. **COUNTYNM (ISLAND_NAME)**

 Island name. The name of the individual smaller Island within the Island Group.

<table>
<thead>
<tr>
<th>ISLAND NAME (COUNTYNM)</th>
<th>ISLAND CODE (COUNTYCD)</th>
<th>ISLAND NAME (COUNTYNM)</th>
<th>ISLAND CODE (COUNTYCD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAWAII:</td>
<td>PALAU:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hawaii</td>
<td>1</td>
<td>Aimeliik</td>
<td>2</td>
</tr>
<tr>
<td>Honolulu</td>
<td>3</td>
<td>Airai</td>
<td>4</td>
</tr>
<tr>
<td>Maui</td>
<td>9</td>
<td>Angaur</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Koror</td>
<td>150</td>
</tr>
<tr>
<td>AMERICAN SAMOA:</td>
<td>Melekeok</td>
<td>212</td>
<td></td>
</tr>
<tr>
<td>Tutuila East</td>
<td>10</td>
<td>Ngaraard</td>
<td>214</td>
</tr>
<tr>
<td>Manu’a</td>
<td>20</td>
<td>Ngarchelong</td>
<td>218</td>
</tr>
<tr>
<td>Swains</td>
<td>40</td>
<td>Ngardmau</td>
<td>222</td>
</tr>
<tr>
<td>Tutuila West</td>
<td>50</td>
<td>Ngatpang</td>
<td>224</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ngchesar</td>
<td>226</td>
</tr>
<tr>
<td>GUAM:</td>
<td>Ngernmlengui</td>
<td>227</td>
<td></td>
</tr>
<tr>
<td>Guam</td>
<td>10</td>
<td>Ngiwal</td>
<td>228</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Peleliu</td>
<td>350</td>
</tr>
</tbody>
</table>

3. **UNITCD**

 Survey unit code. This is not used in the Pacific Islands – all codes are ‘1’.
SUBPLOT table (Data from each of 4 subplots on the plot)

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Descriptive Name</th>
<th>Data Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 CN (Primary key)</td>
<td>Unique record number for a row in the SUBPLOT table</td>
<td>Text</td>
</tr>
<tr>
<td>2 PLT_CN</td>
<td>Unique record number for a plot in the PLOT table</td>
<td>Text</td>
</tr>
<tr>
<td>3 INVYR</td>
<td>Inventory year</td>
<td>Integer</td>
</tr>
<tr>
<td>4 STATECD</td>
<td>State code</td>
<td>Integer</td>
</tr>
<tr>
<td>5 UNITCD</td>
<td>Survey unit code</td>
<td>Integer</td>
</tr>
<tr>
<td>6 COUNTYCD</td>
<td>County code</td>
<td>Integer</td>
</tr>
<tr>
<td>7 PLOT</td>
<td>Public plot number</td>
<td>Integer</td>
</tr>
<tr>
<td>8 SUBP</td>
<td>Subplot number</td>
<td>Integer</td>
</tr>
<tr>
<td>9 SUBP_STATUS_CD</td>
<td>Subplot status code</td>
<td>Integer</td>
</tr>
<tr>
<td>10 POINT_NONSAMPLE_REASN_CD</td>
<td>Reason the point was not sampled</td>
<td>Integer</td>
</tr>
<tr>
<td>11 CONDLIST</td>
<td>Subplot condition list</td>
<td>Integer</td>
</tr>
<tr>
<td>12 SUBPCOND</td>
<td>Subplot center condition</td>
<td>Integer</td>
</tr>
<tr>
<td>13 MICRCOND</td>
<td>Microplot center condition</td>
<td>Integer</td>
</tr>
<tr>
<td>14 ASPECT</td>
<td>Subplot aspect</td>
<td>Integer</td>
</tr>
<tr>
<td>15 INVASIVE_SUBP_STATUS_CD</td>
<td>Invasive plant subplot status code</td>
<td>Integer</td>
</tr>
<tr>
<td>16 INVASIVE_NONSAMPLE_REASN_CD</td>
<td>Invasive plant nonsampled reason code</td>
<td>Integer</td>
</tr>
<tr>
<td>17 NF_SUBP_STATUS_CD</td>
<td>Nonforest subplot status code</td>
<td>Integer</td>
</tr>
<tr>
<td>18 NF_SUBP_NONSAMPLE_REASN_CD</td>
<td>Nonforest subplot nonsampled reason code</td>
<td>Integer</td>
</tr>
<tr>
<td>19 P2VEG_SUBP_STATUS_CD</td>
<td>Sampling status for vegetation</td>
<td>Integer</td>
</tr>
<tr>
<td>20 P2VEG_SUBP_NONSAMPLE_REASN_CD</td>
<td>Reason for not sampling vegetation</td>
<td>Integer</td>
</tr>
<tr>
<td>21 PCT_FORB_CVR_PNWRS</td>
<td>Percent Forb Cover</td>
<td>Integer</td>
</tr>
<tr>
<td>22 PCT_GRASS_CVR_PNWRS</td>
<td>Percent Graminoid Cover</td>
<td>Integer</td>
</tr>
<tr>
<td>23 PCT_SHRUB_CVR_PNWRS</td>
<td>Percent Shrub Cover</td>
<td>Integer</td>
</tr>
<tr>
<td>24 PCT_TREE_CVR_PNWRS</td>
<td>Percent Tree Cover</td>
<td>Integer</td>
</tr>
<tr>
<td>25 PCT_SEED_CVR_PNWRS</td>
<td>Percent Tree Seedling Cover</td>
<td>Integer</td>
</tr>
<tr>
<td>26 TOT_PCT_VEG_CVR_PNWRS</td>
<td>Percent Total Vegetation Cover</td>
<td>Integer</td>
</tr>
<tr>
<td>27 SLOPE</td>
<td>Subplot slope</td>
<td>Integer</td>
</tr>
<tr>
<td>28 SLOPE_SHAPE_PNWRS</td>
<td>Slope shape on the subplot</td>
<td>Integer</td>
</tr>
<tr>
<td>29 SLOPE_POSITION_PNWRS</td>
<td>Slope position on the subplot</td>
<td>Integer</td>
</tr>
<tr>
<td>30 WATERDEP</td>
<td>Snow/water depth</td>
<td>Integer</td>
</tr>
<tr>
<td>31 CYCLE</td>
<td>Inventory cycle number</td>
<td>Integer</td>
</tr>
<tr>
<td>32 SUBCYCLE</td>
<td>Inventory subcycle number</td>
<td>Integer</td>
</tr>
<tr>
<td>33 PREV_SBP_CN</td>
<td>Previous subplot sequence number</td>
<td>Text</td>
</tr>
</tbody>
</table>
1. **CN**
 A unique number used to identify a subplot record in this table. This appears as SBP_CN in other tables.

2. **PLT_CN**
 Unique record number for each row in the PLOT table. A unique number that identifies every record in the PLOT table. This is a key column used to link to most other database tables. For example, to link the plot record in the SUBPLOT table to the PLOT table: link **SBP_CN** to **PLOT_CN**.

 When a plot is remeasured (usually after 10 years), the 2nd measurement will be assigned a new CN on a new record in the PLOT table. The column called PREV_PLT_CN on the plot record for the 2nd measurement contains the CN of the previous (1st) measurement. This is a way to identify and link the two measurements together for a trend or change analysis.

3. **INVYR**
 Inventory year. The year when the inventory data were scheduled to be collected. INVYR is often (but not necessarily) the same as MEASYEAR, which is the year when the plot was actually visited and measured. See the SURVEY table for more info.

4. **STATECD**
 State code for FIA. This is referred to as the Island Group code for the Pacific Islands inventories. It identifies the larger Island Group, which consists of a number of smaller islands. These smaller islands are called Counties by FIA (COUNTYCD).

<table>
<thead>
<tr>
<th>Island group code</th>
<th>Island group name</th>
<th>Island group abbrev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Hawaii</td>
<td>HI</td>
</tr>
<tr>
<td>60</td>
<td>American Samoa</td>
<td>AS</td>
</tr>
<tr>
<td>66</td>
<td>Guam</td>
<td>GU</td>
</tr>
<tr>
<td>70</td>
<td>Palau</td>
<td>PW</td>
</tr>
</tbody>
</table>

5. **UNITCD**
 Survey unit code. This is not used in the Pacific Islands – all codes are ‘1’.

6. **COUNTYCD**
 County code for FIA. This is referred to as the Island code for the Pacific Islands inventories. It identifies one of the smaller islands within the larger Island Group. Please refer to the COUNTY table for codes and definitions.

7. **PLOT**
 Public Plot number. A numeric identifier for a plot. The combination of INVYR, STATECD and PLOT will uniquely identify a plot record in the database. It is usually more convenient to use **PLT_CN** (see description above) to identify unique plots in the inventory. PLT_CN numbers do not change over time. Every record in the PLOT table has a unique ‘CN’, this is labeled as PLT_CN in all other tables.

8. **SUBP**
 Subplot number. The number assigned to the subplot. (1 through 4). Subplots are circular with a 24 foot radius. Please refer to the field manual for an illustration of the plot layout.
9. **SUBP_STATUS_CD**

Subplot status code. A code indicating whether forest land was sampled on the subplot or not. Indicates if the subplot was sampled because at least one accessible forest land condition was present on the subplot or if it was sampled but NO accessible forest land condition was recorded on the subplot or macroplot. Also indicates if the subplot was not sampled at all.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sampled – at least one accessible forest land condition present on subplot</td>
</tr>
<tr>
<td>2</td>
<td>Sampled – no accessible forest land condition present on subplot</td>
</tr>
<tr>
<td>3</td>
<td>Nonsampled</td>
</tr>
</tbody>
</table>

10. **POINT_NONSAMPLE_REASN_CD**

Point nonsampled reason code. For entire subplots that cannot be sampled, one of the following reasons is recorded.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Outside U.S. boundary – Entire subplot (or macroplot) is outside of the U.S. border.</td>
</tr>
<tr>
<td>02</td>
<td>Denied access area – Access to the entire subplot (or macroplot) is denied by the legal owner, or by the owner of the only reasonable route to the subplot (or macroplot).</td>
</tr>
<tr>
<td>03</td>
<td>Hazardous situation – Entire subplot (or macroplot) cannot be accessed because of a hazard or danger, for example cliffs, quarries, strip mines, illegal substance plantations, high water, etc.</td>
</tr>
<tr>
<td>04</td>
<td>Time limitation – Entire subplot (or macroplot) cannot be sampled due to a time restriction. This code is reserved for areas with limited access, and in situations where it is imperative for the crew to leave before the plot can be completed (e.g., scheduled helicopter rendezvous).</td>
</tr>
<tr>
<td>10</td>
<td>Other – Entire subplot (or macroplot) not sampled due to a reason other than one of the specific reasons already listed.</td>
</tr>
<tr>
<td>11</td>
<td>Ocean – Subplot falls in ocean water below mean high tide line.</td>
</tr>
</tbody>
</table>

11. **CONDLIST**

Subplot condition list. *(Core optional.)* This is a listing of all condition classes located within the 24.0 ft radius around the subplot center. A maximum of four conditions is permitted on any individual subplot. For example: 2300 means these conditions (conditions 2 and 3) are on the subplot.

12. **SUBPCOND**

Subplot center condition. Number for the condition at the center of the subplot.

13. **MICRCOND**

Microplot center condition. Number for the condition at the center of the microplot.

14. **ASPECT**

Subplot aspect. The direction of slope, to the nearest degree, of the subplot, determined along the direction of slope. If the aspect changes gradually, an average aspect is recorded. If the aspect changes across the subplot but is predominately of one direction, the predominant aspect is recorded. North is recorded as 360. When slope is less than 5 percent, there is no aspect and it is recorded as 000.
15. **INVASIVE_SUBP_STATUS_CD**

Invasive plant subplot status code. Indicates whether the subplot was sampled for invasive plants. A subplot may be sampled but not have any invasive plants present. If there is any part of an accessible portion of the subplot where other plot measurements are made but invasive plants can’t be assessed (e.g., because of snow, water, hazardous weather, time limitation), a code of 3 is entered and no invasive plant measurements are taken.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Subplot sampled, invasive plants present</td>
</tr>
<tr>
<td>2</td>
<td>Subplot sampled, no invasive plants present</td>
</tr>
<tr>
<td>3</td>
<td>Subplot not sampled for invasive plants</td>
</tr>
</tbody>
</table>

16. **INVASIVE_NONSAMPLE_REASN_CD**

Invasive plant nonsampled reason code. Indicates the reason why a subplot cannot be sampled for invasive plants.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Time limitation</td>
</tr>
<tr>
<td>5</td>
<td>Lost data (office use only)</td>
</tr>
<tr>
<td>10</td>
<td>Other (for example, water is covering vegetation that is supposed to be sampled)</td>
</tr>
</tbody>
</table>

17. **NF_SUBP_STATUS_CD**

Nonforest subplot status code. A code describing the sampling status of the other-than-forest (nonforest) subplot.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sampled – at least one nonforest land condition present on subplot</td>
</tr>
<tr>
<td>2</td>
<td>Sampled – no nonforest land condition present on subplot</td>
</tr>
<tr>
<td>3</td>
<td>Nonsampled</td>
</tr>
</tbody>
</table>

18. **NF_SUBP_NONSAMPLE_REASN_CD**

Nonforest subplot nonsampled reason code. For subplots that are entirely nonforest and cannot be sampled, one of the following codes is recorded: denied access, hazardous, or other.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Denied access – A subplot to which access is denied by the legal owner, or to which an owner of the only reasonable route to the plot denies access. Because a denied-access subplot can become accessible in the future, it remains in the sample.</td>
</tr>
<tr>
<td>3</td>
<td>Hazardous situation – A subplot that cannot be accessed because of a hazard or danger, for example cliffs, quarries, strip mines, illegal substance plantations, temporary high water, etc.</td>
</tr>
<tr>
<td>4</td>
<td>Time limitation – This code applies to a full subplot that cannot be sampled due to a time restriction.</td>
</tr>
<tr>
<td>10</td>
<td>Other – This code is used whenever a subplot is not sampled due to a reason other than one of the specific reasons already listed</td>
</tr>
</tbody>
</table>
19. **P2VEG_SUBP_STATUS_CD**

 Phase2 vegetation subplot status code. Indicates if the subplot was sampled for vegetation using the phase 2 protocol. Note that a condition may be sampled but have no vascular plants present. If all the vegetation measurements cannot be completed on the subplot (for example, water, hazardous weather, time limitation), the code=2 and no vegetation measurements are recorded.

**	Code	Description
 1 | Subplot sampled for P2 vegetation |
 2 | Subplot not sampled for P2 vegetation |

20. **P2VEG_SUBP_NONSAMPLE_REASN_CD**

 Phase2 vegetation subplot nonsampled reason code. A code indicating why vegetation on a subplot could not be sampled.

**	Code	Description
 4 | Time limitation |
 5 | Lost data (office use only) |
 10 | Other (for example, water is covering vegetation that is supposed to be sampled) |

21. **PCT_FORB_CVR_PNWRS**

 Percent Forb Cover. Cover of forbs as a percent of the 24’ radius subplot area. Cover is estimated to the nearest 1%, as the proportion of the fixed-radius plot, regardless of condition class boundaries, that would be obscured by all plants in the lifeform if viewed from directly above. Total percent cover forbs cannot exceed 100 percent.

22. **PCT_GRASS_CVR_PNWRS**

 Percent Graminoid Cover. Cover of graminoids (grasses, sedges, and rushes) as a percent of the 24’ radius subplot area. Cover is estimated to the nearest 1%, as the proportion of the fixed-radius plot, regardless of condition class boundaries, that would be obscured by all plants in the lifeform if viewed from directly above. Total percent cover graminoids cannot exceed 100 percent.

23. **PCT_SHRUB_CVR_PNWRS**

 Percent Shrub Cover. Cover of shrubs as a percent of the 24’ radius subplot area. Cover is estimated to the nearest 1%, as the proportion of the fixed-radius plot, regardless of condition class boundaries, that would be obscured by all plants in the lifeform if viewed from directly above. Total percent cover shrubs cannot exceed 100 percent.

24. **PCT_TREE_CVR_PNWRS**

 Percent Tree Cover. Cover of tree seedlings as a percent of the 24’ radius subplot area. Cover is estimated to the nearest 1%, as the proportion of the fixed-radius plot, regardless of condition class boundaries, that would be obscured by all plants in the lifeform if viewed from directly above. Total percent cover tree seedlings cannot exceed 100 percent.

25. **PCT_SEED_CVR_PNWRS**

 Percent Tree Seedling Cover. Cover of tree seedlings as a percent of the 24’ radius subplot area. Cover is estimated to the nearest 1%, as the proportion of the fixed-radius plot, regardless of condition class boundaries, that would be obscured by all
plants in the lifeform if viewed from directly above. Total percent cover tree seedlings cannot exceed 100 percent.

26. **TOT_PCT_VEG_CVR_PNWRS**
 Percent Total Vegetation Cover. Cover of all understory vegetation (tree seedlings, shrubs, forbs, and graminoids) as a percent of the 24' radius subplot area (regardless of condition class boundaries). Crown overlap is ignored.

27. **SLOPE**
 Subplot slope. The angle of slope, in percent, of the subplot, determined by sighting along the average incline or decline of the subplot. If the slope changes gradually, an average slope is recorded. If the slope changes across the subplot but is predominately of one direction, the predominant slope is recorded. Valid values are 0 through 155.

28. **SLOPE_SHAPE_PNWRS**
 Slope shape on the subplot. The shape of the slope across the subplot. Collected on all subplots with at least one accessible forest land condition present on subplot (SUBPLOT STATUS = 1) or subplots with an accessible nonforest condition class present when nonforest is being sampled.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>Flat</td>
</tr>
<tr>
<td>10</td>
<td>Concave</td>
</tr>
<tr>
<td>20</td>
<td>Convex</td>
</tr>
</tbody>
</table>

29. **SLOPE_POSITION_PNWRS**
 Slope position on the subplot. The position of the slope across the subplot. Collected on all subplots with at least one accessible forest land condition present on subplot (SUBPLOT STATUS = 1) or subplots with an accessible nonforest condition class present when nonforest is being sampled.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>No Slope</td>
</tr>
<tr>
<td>10</td>
<td>Uppershoulder</td>
</tr>
<tr>
<td>20</td>
<td>Midslope</td>
</tr>
<tr>
<td>30</td>
<td>Footslope</td>
</tr>
<tr>
<td>40</td>
<td>Valleybottom</td>
</tr>
<tr>
<td>50</td>
<td>Ridgetop</td>
</tr>
</tbody>
</table>

30. **WATERDEP**
 Snow/water depth. The approximate depth in feet of water or snow covering the subplot. Populated for all forested subplots.

31. **CYCLE**
 Inventory cycle number. A number assigned to a set of plots, measured over a particular period of time from which estimates are made. In the islands, the initial measurement is Cycle 2 (from 2001 to 2011) and the 2nd remeasurement is Cycle 3 (2012 and beyond).

32. **SUBCYCLE**
 Inventory subcycle number. For an annual inventory that takes N years to measure all plots, subcycle shows in which of the N years the data were measured.

33. **PREV_SBP_CN**
 Previous subplot sequence number. The unique sequence number for the subplot from the previous inventory.
SUBP_COND table (Subplot Condition Table – contains data collected within each condition on the subplot)

<table>
<thead>
<tr>
<th>Column name</th>
<th>Descriptive name</th>
<th>Data type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 CN</td>
<td>A unique number used to identify a subplot condition record</td>
<td>Text</td>
</tr>
<tr>
<td>2 PLT_CN</td>
<td>Unique record number for each row in the PLOT table</td>
<td>Text</td>
</tr>
<tr>
<td>3 CONDID</td>
<td>Condition class number</td>
<td>Integer</td>
</tr>
<tr>
<td>4 INVYR</td>
<td>Inventory year</td>
<td>Integer</td>
</tr>
<tr>
<td>5 STATECD</td>
<td>State code</td>
<td>Integer</td>
</tr>
<tr>
<td>6 UNITCD</td>
<td>Survey unit code</td>
<td>Integer</td>
</tr>
<tr>
<td>7 COUNTYCD</td>
<td>County code</td>
<td>Integer</td>
</tr>
<tr>
<td>8 PLOT</td>
<td>Public plot number</td>
<td>Integer</td>
</tr>
<tr>
<td>9 SUBP</td>
<td>Subplot number</td>
<td>Integer</td>
</tr>
<tr>
<td>10 SUBPCOND_PROP</td>
<td>Subplot-condition proportion</td>
<td>Real</td>
</tr>
<tr>
<td>11 MICRCOND_PROP</td>
<td>Microplot-condition proportion</td>
<td>Real</td>
</tr>
<tr>
<td>12 ROOT_DIS_CD_PNWRS</td>
<td>Actually a code for pig damage</td>
<td>Text</td>
</tr>
<tr>
<td>13 PIG_DAMAGE_PCT_PNWRS</td>
<td>Percent of pig damage mapped on subplot</td>
<td>Integer</td>
</tr>
<tr>
<td>14 CYCLE</td>
<td>Inventory cycle number</td>
<td>Integer</td>
</tr>
<tr>
<td>15 SUBCYCLE</td>
<td>Inventory subcycle number</td>
<td>Integer</td>
</tr>
</tbody>
</table>

1. **CN**
 A unique number used to identify a subplot condition record in this table.

2. **PLT_CN**
 Unique record number for each row in the PLOT table. A unique number that identifies every record in the PLOT table. This column is a key column used to link to most other database tables.

 When a plot is remeasured (usually after 10 years), the 2nd measurement will be assigned a new CN on a new record in the PLOT table. The column called PREV_PLT_CN on the plot record for the 2nd measurement contains the CN of the previous (1st) measurement. This is a way to identify and link the two measurements together for a trend or change analysis.

3. **CONDID**
 Condition class number. Unique identifying number assigned to each condition on a plot. A condition is initially defined by condition class status. Differences in reserved status, owner group, forest type, stand-size class, regeneration status, and stand density further define condition for forest land. Mapped nonforest conditions are also assigned numbers. At the time of the plot establishment, the condition class at plot center (the center of subplot 1) is usually designated as condition class 1. Other condition classes are assigned numbers sequentially at the time each condition class is delineated. On a plot, each sampled condition class must have a unique number that can change at remeasurement to reflect new conditions on the plot.
4. **INVYR** Inventory year. The year when the inventory data were scheduled to be collected. INVYR is often (but not necessarily) the same as MEASYEAR, which is the year when the plot was actually visited and measured. See the SURVEY table for more info.

5. **STATECD** State code for FIA. This is referred to as the Island Group code for the Pacific Islands inventories. It identifies the larger Island Group, which consists of a number of smaller Islands. These smaller islands are called Counties by FIA (COUNTYCD).

<table>
<thead>
<tr>
<th>Island group code (STATECD)</th>
<th>Island group name (STATENM)</th>
<th>Island group abbrev. (STATEAB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Hawaii</td>
<td>HI</td>
</tr>
<tr>
<td>60</td>
<td>American Samoa</td>
<td>AS</td>
</tr>
<tr>
<td>66</td>
<td>Guam</td>
<td>GU</td>
</tr>
<tr>
<td>70</td>
<td>Palau</td>
<td>PW</td>
</tr>
</tbody>
</table>

6. **UNITCD** Survey unit code. This is not used in the Pacific Islands – all codes are ‘1’.

7. **COUNTYCD** County code for FIA. This is referred to as the Island code for the Pacific Islands inventories. It identifies one of the smaller islands within the larger Island Group. Please refer to the COUNTY table for codes and definitions.

8. **PLOT** Public Plot number. A numeric identifier for a plot. The combination of INVYR, STATECD and PLOT will uniquely identify a plot record in the database. It is usually more convenient to use PLT_CN (see description above) to identify unique plots in the inventory. PLT_CN numbers do not change over time. Every record in the PLOT table has a unique 'CN', this is labeled as PLT_CN in all other tables.

9. **SUBP** Subplot number. The number assigned to the subplot. (1 through 4). Subplots are circular with a 24 foot radius. Please refer to the field manual for an illustration of the plot layout.

10. **SUBP_COND_PROP** Subplot-condition proportion. Proportion of this subplot in this condition.

11. **MICR_COND_PROP** Microplot-condition proportion. Proportion of this microplot in this condition.

12. **ROOT_DIS_CD_PNWRS** Actually a code for pig damage. This column is always coded ‘PG’ for pig damage present, or null if no damage was observed.

Wild pigs were introduced to the Pacific Islands by humans centuries ago. They were farmed loosely and became wild on the islands. These animals have no non-human predators and have subsequently expanded their populations. These populations have caused a lot of destruction to forests and other vegetated habitats. Wild pig damage that may be encountered include: rooting (sometimes called grubbing) where pigs dig up the soil and vegetation, compacted trails, wallows in wet soils, and rubbing on trees and shrubs.

Because of this problem crews assessed pig damage for each sampled condition on all subplots. The percentage of the entire subplot (as viewed from above) is recorded that has noticeable pig damage to the ground and ground vegetation for each sampled condition. This value is always estimated as a percent of an entire subplot.
13. **PIG_DAMAGE_PCT_PNWRS**
 Percent of pig damage mapped on subplot. The percent (by condition) of the subplot area that contains pig damage.

14. **CYCLE**
 Inventory cycle number. A number assigned to a set of plots, measured over a particular period of time from which a State estimate using all possible plots is obtained. A cycle number greater than 1 does not necessarily mean that information for previous cycles resides in the database.

15. **SUBCYCLE**
 Inventory subcycle number. For an annual inventory that takes N years to measure all plots, subcycle shows in which of the N years of the cycle the data were measured. Subcycle 99 may be used for plots that are not included in the estimation process, or they may represent a special intensification of an area and included in the stratification.
TREE table (Contains measured and calculated data for sampled live and dead trees)

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Descriptive Name</th>
<th>Data Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 CN</td>
<td>Unique record number for a tree in the TREE table</td>
<td>Text</td>
</tr>
<tr>
<td>2 PLT_CN</td>
<td>Unique record number for a plot in the PLOT table</td>
<td>Text</td>
</tr>
<tr>
<td>3 CONDID</td>
<td>Condition class number</td>
<td>Integer</td>
</tr>
<tr>
<td>4 INVR</td>
<td>Inventory year</td>
<td>Integer</td>
</tr>
<tr>
<td>5 STATECD</td>
<td>State code</td>
<td>Integer</td>
</tr>
<tr>
<td>6 UNITCD</td>
<td>Survey unit code</td>
<td>Integer</td>
</tr>
<tr>
<td>7 COUNTYCD</td>
<td>County code</td>
<td>Integer</td>
</tr>
<tr>
<td>8 PLOT</td>
<td>Public plot number</td>
<td>Integer</td>
</tr>
<tr>
<td>9 SUBP</td>
<td>Subplot number</td>
<td>Integer</td>
</tr>
<tr>
<td>10 TREE</td>
<td>Tree record number</td>
<td>Integer</td>
</tr>
<tr>
<td>11 SPCD</td>
<td>Species code</td>
<td>Integer</td>
</tr>
<tr>
<td>12 SPGRPCD</td>
<td>Species group code</td>
<td>Integer</td>
</tr>
<tr>
<td>13 STATSCD</td>
<td>Status code</td>
<td>Integer</td>
</tr>
<tr>
<td>14 STANDING_DEAD_CD</td>
<td>Standing dead code</td>
<td>Integer</td>
</tr>
<tr>
<td>15 TREECLASSD</td>
<td>Tree class code</td>
<td>Integer</td>
</tr>
<tr>
<td>16 TPA_UNADJ</td>
<td>Trees per acre unadjusted</td>
<td>Real</td>
</tr>
<tr>
<td>17 DIA</td>
<td>Current diameter</td>
<td>Real</td>
</tr>
<tr>
<td>18 CENTROID_DIA</td>
<td>Centroid diameter</td>
<td>Real</td>
</tr>
<tr>
<td>19 CENTROID_DIA_HT</td>
<td>Calculated centroid diameter height</td>
<td>Real</td>
</tr>
<tr>
<td>20 CENTROID_DIA_HT_ACTUAL</td>
<td>Actual stem centroid diameter height</td>
<td>Real</td>
</tr>
<tr>
<td>21 UPPER_DIA</td>
<td>Upper stem diameter</td>
<td>Real</td>
</tr>
<tr>
<td>22 UPPER_DIA_HT</td>
<td>Upper stem diameter height</td>
<td>Real</td>
</tr>
<tr>
<td>23 DIACHECK</td>
<td>Diameter check code</td>
<td>Integer</td>
</tr>
<tr>
<td>24 DIACHECK_PNWRS</td>
<td>Diameter check, PNWRS</td>
<td>Integer</td>
</tr>
<tr>
<td>25 DIALHTCD</td>
<td>Diameter height code</td>
<td>Integer</td>
</tr>
<tr>
<td>26 ACTUALHT</td>
<td>Actual height</td>
<td>Integer</td>
</tr>
<tr>
<td>27 HT</td>
<td>Total height</td>
<td>Integer</td>
</tr>
<tr>
<td>28 HTDMP</td>
<td>Height to diameter measurement point</td>
<td>Integer</td>
</tr>
<tr>
<td>29 HTCALC</td>
<td>Current height calculated</td>
<td>Integer</td>
</tr>
<tr>
<td>30 AZIMUTH</td>
<td>Azimuth</td>
<td>Integer</td>
</tr>
<tr>
<td>31 DIST</td>
<td>Horizontal distance</td>
<td>Real</td>
</tr>
<tr>
<td>32 CCLCD</td>
<td>Crown class code</td>
<td>Integer</td>
</tr>
<tr>
<td>33 CR</td>
<td>Compacted crown ratio</td>
<td>Integer</td>
</tr>
<tr>
<td>Column Name</td>
<td>Descriptive Name</td>
<td>Data Type</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--</td>
<td>---------------</td>
</tr>
<tr>
<td>35 UNCRCD</td>
<td>Uncompacted live crown ratio</td>
<td>Integer</td>
</tr>
<tr>
<td>36 CULL</td>
<td>Rotten and missing cull</td>
<td>Integer</td>
</tr>
<tr>
<td>37 CULL_FLD</td>
<td>Rotten/missing cull</td>
<td>Integer</td>
</tr>
<tr>
<td>38 DECAYCD</td>
<td>Decay code for dead trees</td>
<td>Integer</td>
</tr>
<tr>
<td>39 AGENTCD</td>
<td>Cause of death (agent) code (dead trees)</td>
<td>Integer</td>
</tr>
<tr>
<td>40 DAMLOC1</td>
<td>Damage location 1</td>
<td>Integer</td>
</tr>
<tr>
<td>41 DAMLOC2</td>
<td>Damage location 2</td>
<td>Integer</td>
</tr>
<tr>
<td>42 DAMSEV1</td>
<td>Damage severity 1</td>
<td>Integer</td>
</tr>
<tr>
<td>43 DAMSEV2</td>
<td>Damage Severity 2</td>
<td>Integer</td>
</tr>
<tr>
<td>44 DAMTYP1</td>
<td>Damage type 1</td>
<td>Integer</td>
</tr>
<tr>
<td>45 DAMTYP2</td>
<td>Damage type 2</td>
<td>Integer</td>
</tr>
<tr>
<td>46 DMG_AGENT1_CD_PNWRS</td>
<td>Damage agent 1, PNW</td>
<td>Integer</td>
</tr>
<tr>
<td>47 DMG_AGENT2_CD_PNWRS</td>
<td>Damage agent 2, PNW</td>
<td>Integer</td>
</tr>
<tr>
<td>48 HRDWD_CLUMP_CD</td>
<td>Hardwood clump code</td>
<td>Integer</td>
</tr>
<tr>
<td>49 REGIONAL_DRYBIOM</td>
<td>Regional merchantable stem biomass, oven dry weight</td>
<td>Real</td>
</tr>
<tr>
<td>50 REGIONAL_DRYBIOT</td>
<td>Regional total tree biomass, oven dry weight</td>
<td>Real</td>
</tr>
<tr>
<td>51 VOLCFGRS</td>
<td>Gross cubic-foot volume</td>
<td>Real</td>
</tr>
<tr>
<td>52 VOLCFNET</td>
<td>Net cubic-foot volume</td>
<td>Real</td>
</tr>
<tr>
<td>53 VOLCFSNF</td>
<td>Sound cubic-foot volume</td>
<td>Real</td>
</tr>
<tr>
<td>54 VOLCFGRS_TOTAL_STEM_WOOD</td>
<td>Cubic volume of wood in the stem, ground to tip</td>
<td>Real</td>
</tr>
<tr>
<td>55 PREV_TRE_CN</td>
<td>Previous tree sequence number</td>
<td>Text</td>
</tr>
<tr>
<td>56 PREV_SPCD_PNWRS</td>
<td>Previous species code</td>
<td>Integer</td>
</tr>
<tr>
<td>57 PREVCOND</td>
<td>Previous condition number</td>
<td>Integer</td>
</tr>
<tr>
<td>58 PREVSUBC</td>
<td>Previous subplot condition</td>
<td>Integer</td>
</tr>
<tr>
<td>59 PREVDIA</td>
<td>Previous diameter</td>
<td>Real</td>
</tr>
<tr>
<td>60 PREV_ACTUALHT_PNWRS</td>
<td>Previous actual height</td>
<td>Integer</td>
</tr>
<tr>
<td>61 PREV_HT_PNWRS</td>
<td>Previous height</td>
<td>Integer</td>
</tr>
<tr>
<td>62 PREV_HTCD_PNWRS</td>
<td>Previous length method</td>
<td>Integer</td>
</tr>
<tr>
<td>63 PREV_AZM_PNWRS</td>
<td>Previous azimuth</td>
<td>Integer</td>
</tr>
<tr>
<td>64 PREV_HORIZ_DIST_PNWRS</td>
<td>Previous horizontal distance</td>
<td>Real</td>
</tr>
<tr>
<td>65 RECONCILECD</td>
<td>Reconcile code</td>
<td>Integer</td>
</tr>
<tr>
<td>66 CYCLE</td>
<td>Inventory cycle number</td>
<td>Integer</td>
</tr>
<tr>
<td>67 SUBCYCLE</td>
<td>Inventory subcycle number</td>
<td>Integer</td>
</tr>
</tbody>
</table>
1. **CN**
 A unique number used to identify each tree record. This column is named TRE_CN in other tables.

2. **PLT_CN**
 Unique record number for each row in the PLOT table. This is a key column used to link to most other database tables. Link to the PLOT table as follows: PLOT.CN = TREE.PLT_CN . Most common linkage is: COND.PLT_CN = TREE.PLT_CN and COND.CONDID = TREE.CONDID .
 When a plot is remeasured (usually after 10 years), the 2nd measurement will be assigned a new CN on a new record in the PLOT table. The column called PREV_PLT_CN on the plot record for the 2nd measurement contains the CN of the previous (1st) measurement. This is a way to identify and link the two measurements together for a trend or change analysis.

3. **CONDID**
 Condition class number. Unique identifying number assigned to each condition on a plot. A condition is initially defined by condition class status. Differences in reserved status, owner group, forest type, stand-size class, regeneration status, and stand density further define condition for forest land. Mapped nonforest conditions are also assigned numbers. At the time of the plot establishment, the condition class at plot center (the center of subplot 1) is usually designated as condition class 1. Other condition classes are assigned numbers sequentially at the time each condition class is delineated. On a plot, each sampled condition class must have a unique number that can change at remeasurement to reflect new conditions on the plot.

4. **INVYR**
 Inventory year. The year when the inventory data were scheduled to be collected. INVYR is often (but not necessarily) the same as MEASYEAR, which is the year when the plot was actually visited and measured. See the SURVEY table for more info.

5. **STATECD**
 State code for FIA. This is referred to as the Island Group code for the Pacific Islands inventories. It identifies the larger Island Group, which consists of a number of smaller Islands. These smaller islands are called Counties by FIA (COUNTYCD).
<table>
<thead>
<tr>
<th>Island group code (STATECD)</th>
<th>Island group name (STATENM)</th>
<th>Island group abbrev. (STATEAB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Hawaii</td>
<td>HI</td>
</tr>
<tr>
<td>60</td>
<td>American Samoa</td>
<td>AS</td>
</tr>
<tr>
<td>66</td>
<td>Guam</td>
<td>GU</td>
</tr>
<tr>
<td>70</td>
<td>Palau</td>
<td>PW</td>
</tr>
</tbody>
</table>

6. **UNITCD**
 Survey unit code. This is not used in the Pacific Islands — all codes are ‘1’.

7. **COUNTYCD**
 County code for FIA. This is referred to as the Island code for the Pacific Islands inventories. It identifies one of the smaller islands within the larger Island Group. Please refer to the COUNTY table for codes and definitions.

8. **PLOT**
 Public Plot number. A numeric identifier for a plot. The combination of INVYR, STATECD and PLOT will uniquely identify a plot record in the database. It is usually more convenient to use PLT_CN (see description above) to identify unique plots in the inventory. PLT_CN numbers do not change over time. Every record in the PLOT table has a unique 'CN', this is labeled as PLT_CN in all other tables.
9. **SUBP**

Subplot number. The number assigned to the subplot. (1 through 4). Subplots are circular with a 24 foot radius. Please refer to the field manual for an illustration of the plot layout.

10. **TREE**

Tree record number. A number used to uniquely identify a tree on a subplot. Tree numbers can be used to track trees when PLOT.DESIGNCD is the same between inventories.

11. **SPCD**

Species code. A numeric FIA tree species code. Refer to appendix E or the REF_SPECIES table for codes. Link to the FIADB Reference table to crosswalk codes into text: TREE.SPCD=REF_SPECIES.SPCD and output or display the COMMON_NAME or scientific name in a query or report.

12. **SPGRPCD**

Species group code. A code assigned to each tree species in order to group them for reporting purposes on presentation tables. Codes and their associated names (see REF_SPECIES_GROUP.NAME) are shown in appendix D. Individual tree species and corresponding species group codes are shown in appendix E. Link to the FIADB Reference table to crosswalk codes into text: Link TREE.SPGRPCD=REF_SPECIES_GROUP.SPCGRPCD. In the Pacific Islands, it often is more useful to display the actual species list instead of the species group—but that is up to the user of the data.

<table>
<thead>
<tr>
<th>Code</th>
<th>Group name</th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
<td>Tropical and subtropical pines</td>
</tr>
<tr>
<td>52</td>
<td>Other tropical and subtropical softwoods</td>
</tr>
<tr>
<td>53</td>
<td>Tropical and subtropical palms</td>
</tr>
<tr>
<td>54</td>
<td>Tropical and subtropical hardwoods</td>
</tr>
</tbody>
</table>

13. **STATUSCD**

Status code. A code indicating whether the sample tree is live or dead at the time of measurement.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Live tree</td>
</tr>
<tr>
<td>2</td>
<td>Dead tree</td>
</tr>
</tbody>
</table>

14. **STANDING_DEAD_CD**

Standing dead code. A code indicating if a tree qualifies as standing dead. To qualify as a standing dead tally tree, the dead tree must be at least 5.0 inches in diameter, have a bole that has an unbroken actual length of at least 4.5 feet, and lean less than 45 degrees from vertical as measured from the base of the tree to 4.5 feet.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No – tree does not qualify as standing dead</td>
</tr>
<tr>
<td>1</td>
<td>Yes – tree does qualify as standing dead (snag)</td>
</tr>
</tbody>
</table>
15. **TREECLCD**

Tree class code. A code indicating the general quality of the tree. This is the tree class for both live and dead trees at the time of current measurement.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Growing stock: All live trees of commercial species that meet minimum merchantability standards. In general, these trees have at least one solid 8-foot section, are reasonably free of form defect on the merchantable bole, and at least 34% or more of the volume is merchantable. Excludes rough or rotten cull trees.</td>
</tr>
<tr>
<td>3</td>
<td>Rough cull: All live trees that do not now, or prospectively, have at least one solid 8-foot section, reasonably free of form defect on the merchantable bole, or have 67% or more of the merchantable volume cull; and more than half of this cull is due to sound dead wood cubic-foot loss or severe form defect volume loss. This class also contains all trees of noncommercial species. For dead trees, this code indicates that the tree is salvable (sound).</td>
</tr>
<tr>
<td>4</td>
<td>Rotten cull: All live trees with 67% or more of the merchantable volume cull, and more than half of this cull is due to rotten or missing cubic-foot volume loss. For dead trees, this code indicates the tree is nonsalvable.</td>
</tr>
</tbody>
</table>

16. **TPA_UNADJ**

Trees per acre, unadjusted. The number of trees per acre that the sample tree theoretically represents based on the sample design. For fixed radius plots taken with the mapped plot design, TPA_UNADJ is set to a constant derived from the plot size and equals one of 2 values. This attribute can be adjusted using factors stored on the POP_STRATUM or PLOT_PNW table to derive population estimates. For more information see the section on expansion factors in the Introduction of this documents.

<table>
<thead>
<tr>
<th>TPA Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.018046</td>
<td>For trees sampled on subplots</td>
</tr>
<tr>
<td>74.965282</td>
<td>For trees sampled on microplots</td>
</tr>
</tbody>
</table>

17. **DIA**

Current diameter. The current diameter (in inches) of the sample tree at the point of diameter measurement. For additional information about where the tree diameter is measured, see DIAHTCD or HTDMP. DIA for live trees contains the measured value. DIA for dead trees presents problems associated with uncertainty of when the tree died as well as structural deterioration of dead trees.

18. **CENTROID_DIA**

Centroid diameter. The outside bark diameter (in inches) measured at CENTROID_DIA_HT_ACTUAL. For tree ferns, diameter is measured where the fronds emerge from the trunk. Only collected for the Pacific Islands. This diameter is part of a new upper stem diameter protocol that began with remeasurement, except for Hawaii where the protocol was implemented in the first measurement.

19. **CENTROID_DIA_HT**

Calculated centroid diameter height. The height (in feet) to stem centroid. The stem centroid is located at 30 percent of the TOTAL LENGTH of the stem. Only collected for the Pacific Islands. This height is part of a new upper stem diameter protocol that began with the first remeasurement, except for Hawaii where the protocol was implemented in the first measurement.
20. CENTROID_DIA_HT_ACTUAL
 Actual centroid diameter height. The height (in feet) to where stem centroid
diameter was actually measured. It may differ from CENTROID_DIA_HT if
abnormalities in the stem prevented a normal diameter measurement. Only
collected for the Pacific Islands. This height is part of a new upper stem diameter
protocol that began with the first remeasurement, except for Hawaii where the
protocol was implemented in the first measurement.

21. UPPER_DIA
 Upper stem diameter. The outside bark upper stem diameter (in inches), measured
at least 3 feet above the point where the DIA was taken. For larger trees,
UPPER_DIA was recorded at the point where the main stem was at least 4 inches in
diameter. This diameter is used in the calculation of stem taper, needed to improve
the estimation of stem volume. Only collected for the Pacific Islands. This is the
legacy upper stem diameter protocol and will not be collected after the first
remeasurement.

22. UPPER_DIA_HT
 Upper stem diameter height. The height (in feet) to where upper stem diameter
(UPPER_DIA) was measured. Only collected for the Pacific Islands. This is the legacy
upper stem diameter protocol and will not be collected after the first
remeasurement.

23. DIACHECK
 Diameter check code. A code indicating the reliability of the diameter measurement.
 Note: If both codes 1 and 2 apply, code 2 is used.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Diameter accurately measured</td>
</tr>
<tr>
<td>1</td>
<td>Diameter estimated</td>
</tr>
<tr>
<td>2</td>
<td>Diameter measured at different location than previous measurement</td>
</tr>
</tbody>
</table>

24. DIACHECK_PNWRS
 Diameter check PNW Research Station. A separate estimate of the diameter
 without the obstruction if the diameter was estimated because of an obstruction by
 moss/vines, etc.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Diameter estimated because of moss.</td>
</tr>
<tr>
<td>6</td>
<td>Diameter estimated because of vines.</td>
</tr>
<tr>
<td>7</td>
<td>Diameter estimated (double nail diameter)</td>
</tr>
</tbody>
</table>

25. DIAHTCD
 Diameter height code. A code indicating the location at which DIA was measured.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Breast height (DBH) – All timber tree species are measured here</td>
</tr>
<tr>
<td>2</td>
<td>Root collar (DRC) – All woodland tree species are measured here</td>
</tr>
</tbody>
</table>

26. ACTUALHT
 Actual height. The length (height) of the tree to the nearest foot from ground level
to the highest remaining portion of the tree still present and attached to the bole. If
ACTUALHT = HT, then the tree does not have a broken top. If ACTUALHT < HT, then
the tree does have a broken or missing top. The minimum height for timber species
is 5 feet and for woodland species is 1 foot.
27. **HT**

Total height. \textit{(Collected on trees that are >= 1.0 inch DIA for live trees and >= 5.0 inch DIA for dead trees)} The total length (height) of a sample tree (in feet) from the ground to the tip of the apical meristem. The total length of a tree is not always its actual length. If the main stem is broken, the actual length is measured or estimated and the missing piece is added to the actual length to estimate total length. The amount added is determined by measuring the broken piece if it can be located on the ground; otherwise it is estimated.

28. **HTDMP**

Height to diameter measurement point. For trees measured directly at 4.5 feet above ground, this item is blank (null). If the diameter is not measured at 4.5 feet, the actual length from the ground, to the nearest 0.1 foot, at which the diameter was measured for each tally tree, 1.0-inch DBH and larger.

29. **HTCD**

Height method code. A code indicating how length (height) was determined.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Field measured (total and actual length)</td>
</tr>
<tr>
<td>2</td>
<td>Total length visually estimated in the field, actual length measured.</td>
</tr>
<tr>
<td>3</td>
<td>Total and actual lengths are visually estimated</td>
</tr>
<tr>
<td>4</td>
<td>Estimated with a model</td>
</tr>
</tbody>
</table>

30. **HTCALC**

Current height calculated. If the height is unmeasurable (e.g., the tree is cut or dead), the height is calculated (in feet) and stored in this variable.

31. **AZIMUTH**

Azimuth. The direction, to the nearest degree, from subplot center (microplot center for saplings) to the center of the base of the tree (geographic center for multi-stemmed woodland species). Due north is represented by 360 degrees. This attribute is populated for live and standing dead trees in a forest condition that were measured on any of the 4 subplots.

32. **DIST**

Horizontal distance. The horizontal distance in feet from subplot center (microplot center for saplings) to the center of the base of the tree (geographic center for multi-stemmed woodland species). This attribute is populated for live and standing dead trees in a forest condition that were measured on any of the four subplots.

33. **CCLCD**

Crown class code. A code indicating the amount of sunlight received and the crown position within the canopy.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Open grown: Trees with crowns that have received full light from above and from all sides throughout all or most of their life, particularly during early development.</td>
</tr>
<tr>
<td>2</td>
<td>Dominant: Trees with crowns extending above the general level of the canopy and receiving full light from above and partly from the sides; larger than the average trees in the stand, and with crowns well developed, but possibly somewhat crowded on the sides.</td>
</tr>
<tr>
<td>3</td>
<td>Codominant: Trees with crowns forming part of the general level of the crown cover and receiving full light from above, but comparatively little from the side. Usually with medium crowns more or less crowded on the sides.</td>
</tr>
<tr>
<td>4</td>
<td>Intermediate: Trees shorter than those in the preceding two classes, with crowns either below or extending into the canopy formed by the dominant and codominant trees, receiving little direct light from above, and none from the sides; usually with small crowns very crowded on the sides.</td>
</tr>
</tbody>
</table>
| 5 | Overtopped: Trees with crowns entirely below the general canopy level and
34. **CR**

Compacted crown ratio. The percent of the tree bole supporting live, healthy foliage (the crown is ocularly compacted to fill in gaps) when compared to actual length (ACTUALHT).

35. **UNCRCRD**

Uncompacted live crown ratio. Percentage determined by dividing the live crown length by the actual tree length.

36. **CULL**

Rotten and missing cull. The percent of the cubic-foot volume in a live or dead tally tree that is rotten or missing. This is a calculated value that includes field-recorded cull (CULL_FLD) and any additional cull due to broken top.

37. **CULL_FLD**

Rotten/missing cull, field call. The percentage rotten or missing cubic-foot cull volume, estimated to the nearest 1 percent. This estimate does not include any cull estimate above actual length; therefore volume lost from a broken top is not included (see CULL for percent cull including cull from broken top). When field crews estimate volume loss (tree cull), they only consider the cull on the merchantable bole/portion of the tree, from a 1-foot stump to a 4-inch top diameter outside bark.

38. **DECAYCD**

Decay class code. A code indicating the stage of decay in a standing dead tree.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>All limbs and branches are present; the top of the crown is still present; all bark remains; sapwood is intact, with minimal decay; heartwood is sound and hard</td>
</tr>
<tr>
<td>2</td>
<td>There are few limbs and no fine branches; the top may be broken; a variable amount of bark remains; sapwood is sloughing with advanced decay; heartwood is sound at base but beginning to decay in the outer part of the upper bole</td>
</tr>
<tr>
<td>3</td>
<td>Only limb stubs exist; the top is broken; a variable amount of bark remains; sapwood is sloughing; heartwood has advanced decay in upper bole and is beginning at the base</td>
</tr>
<tr>
<td>4</td>
<td>Few or no limb stubs remain; the top is broken; a variable amount of bark remains; sapwood is sloughing; heartwood has advanced decay at the base and is sloughing in the upper bole</td>
</tr>
<tr>
<td>5</td>
<td>No evidence of branches remains; the top is broken; less than 20% of the bark remains; sapwood is gone; heartwood is sloughing, cubical, soft, dark brown, OR fibrous, very soft, dark reddish brown, encased in hardened shell</td>
</tr>
</tbody>
</table>
DAMAGES

Up to two different damages can be recorded per tree, on trees that are saplings and trees at least 1.0 in DIA. Damage is characterized according to four attributes: location of damage, type of damage, severity of damage, and damaging agent. Damages must meet severity thresholds in order to be recorded.

The tree is observed from all sides starting at the roots. Damage signs and symptoms are prioritized and recorded based on location in the following order: roots, roots and lower bole, lower bole, lower and upper bole, upper bole, crownstem, and branches recorded as DAMAGE LOCATION 1-9, or record location code 0 (for no damage).

Within any given location, the hierarchy of damage follows the numeric order of DAMAGE TYPE possible for that location. The numeric order denotes decreasing significance as the code number goes up, i.e., DAMAGE TYPE 01 is more significant than DAMAGE TYPE 25. A maximum of two damages are recorded for each tree. If a tree has more than two damages that meet the threshold levels, the first two that are observed starting at the roots are recorded.

When multiple damages occur in the same place, the most damaging is recorded. For example, if a canker, DAMAGE TYPE 02, meets the threshold and has a conk growing in it, record only the canker. Another example: if an open wound meets threshold and also has resinosis, record only the open wound.

Please note: the Priority Damages and Severity codes are on the TREE_PACISLANDS_PNWRS table.

39. AGENTCD

Cause of death (agent) code. When MANUAL \(\geq 1.0 \), this variable is collected on only some dead trees. Damage recorded for dead trees was the cause of death. When the cause of death could not be determined for a tree, 99 was recorded.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>No agent recorded</td>
</tr>
<tr>
<td>10</td>
<td>Insect</td>
</tr>
<tr>
<td>20</td>
<td>Disease</td>
</tr>
<tr>
<td>30</td>
<td>Fire</td>
</tr>
<tr>
<td>40</td>
<td>Animal</td>
</tr>
<tr>
<td>47</td>
<td>Wild pigs</td>
</tr>
<tr>
<td>50</td>
<td>Weather</td>
</tr>
<tr>
<td>60</td>
<td>Vegetation (e.g., suppression, competition, vines/kudzu)</td>
</tr>
<tr>
<td>70</td>
<td>Unknown/not sure/other – includes death from human activity not related to silvicultural or land clearing activity (accidental, random, etc). TREE NOTES required.</td>
</tr>
<tr>
<td>80</td>
<td>Silvicultural or land clearing activity (death caused by harvesting or other silvicultural activity, including girdling, chaining, etc., or to land clearing activity.</td>
</tr>
<tr>
<td>90</td>
<td>Physical (hit by falling tree, rockslides)</td>
</tr>
</tbody>
</table>

40. DAMLOC1

Damage location 1. A code indicating where is present on the tree.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No damage</td>
</tr>
<tr>
<td>1</td>
<td>Roots (exposed) and stump (up to 12 inches from ground level)</td>
</tr>
<tr>
<td>2</td>
<td>Roots, stump, and lower bole</td>
</tr>
<tr>
<td>3</td>
<td>Lower bole (lower half of bole between stump and base of live crown)</td>
</tr>
<tr>
<td>4</td>
<td>Lower and upper bole</td>
</tr>
<tr>
<td>5</td>
<td>Upper bole (upper half of bole between stump and base of live crown)</td>
</tr>
<tr>
<td>6</td>
<td>Crownstem (main stem within the live crown)</td>
</tr>
<tr>
<td>7</td>
<td>Branches (> 1 inch diameter at junction with main stem and in the live crown)</td>
</tr>
<tr>
<td>8</td>
<td>Buds and shoots of current year</td>
</tr>
<tr>
<td>9</td>
<td>Foliage</td>
</tr>
</tbody>
</table>
41. **DAMLOC2**

Damage location 2. A code indicating where secondary damage (meeting or exceeding a severity threshold, as defined in the field guide) is present. Use same codes as DAMLOC1. If DAMLOC1 = 0, then DAMLOC2 = blank or 0.

42. **DAMSEV1**

Damage severity 1. A code indicating how much of the tree is affected. Valid severity codes vary by damage type and damage location and must exceed a threshold value, as defined in the field guide. If DAMLOC1 = 0, then DAMSEV1 = blank (null).

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>01 to 09 % of location affected</td>
</tr>
<tr>
<td>1</td>
<td>10 to 19 % of location affected</td>
</tr>
<tr>
<td>2</td>
<td>20 to 29 % of location affected</td>
</tr>
<tr>
<td>3</td>
<td>30 to 39 % of location affected</td>
</tr>
<tr>
<td>4</td>
<td>40 to 49 % of location affected</td>
</tr>
<tr>
<td>5</td>
<td>50 to 59 % of location affected</td>
</tr>
<tr>
<td>6</td>
<td>60 to 69 % of location affected</td>
</tr>
<tr>
<td>7</td>
<td>70 to 79 % of location affected</td>
</tr>
<tr>
<td>8</td>
<td>80 to 89 % of location affected</td>
</tr>
<tr>
<td>9</td>
<td>90 to 99 % of location affected</td>
</tr>
</tbody>
</table>

43. **DAMSEV2**

Damage severity 2. A code indicating how much of the tree is affected by the secondary damage. Valid severity codes vary by damage type and damage location and must exceed a threshold value, as defined in the field guide. Use same codes as DAMSEV1. If DAMLOC1 = 0, then DAMSEV2 = blank (null).

44. **DAMTYP1**

Damage type 1. (*Core where PLOT.MANUAL=1.0 through 1.6; Core optional beginning with PLOT.MANUAL=1.7*) A code indicating the kind of damage (meeting or exceeding a severity threshold, as defined in the field guide) present. If DAMLOC1 = 0, then DAMTYP1 = blank (null).

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Canker, gall</td>
</tr>
<tr>
<td>02</td>
<td>Conk, fruiting body, or sign of advanced decay</td>
</tr>
<tr>
<td>03</td>
<td>Open wound</td>
</tr>
<tr>
<td>04</td>
<td>Resinosis or gumosis</td>
</tr>
<tr>
<td>05</td>
<td>Crack or seam</td>
</tr>
<tr>
<td>11</td>
<td>Broken bole or broken root within 3 feet of bole</td>
</tr>
<tr>
<td>12</td>
<td>Broom on root or bole</td>
</tr>
<tr>
<td>13</td>
<td>Broken or dead root further than 3 feet from bole</td>
</tr>
<tr>
<td>20</td>
<td>Vines in the crown</td>
</tr>
<tr>
<td>21</td>
<td>Loss of apical dominance, dead terminal</td>
</tr>
<tr>
<td>22</td>
<td>Broken or dead branches</td>
</tr>
<tr>
<td>23</td>
<td>Excessive branching or brooms within the live crown</td>
</tr>
<tr>
<td>24</td>
<td>Damaged shoots, buds, or foliage</td>
</tr>
<tr>
<td>25</td>
<td>Discoloration of foliage</td>
</tr>
<tr>
<td>31</td>
<td>Other</td>
</tr>
</tbody>
</table>

45. **DAMTYP2**

Damage type 2. A code indicating the kind of secondary damage (meeting or exceeding a severity threshold, as defined in the field guide) present. Use same codes as DAMTYP1. If DAMLOC1 = 0, then DAMTYP2 = blank (null).
46. **DMG_AGENT1_CD_PNWRS**

Damage agent 1-- Primary damage agent code. Up to two damaging agents can be coded in PNW as DMG_AGENT1_CD_PNWRS, DMG_AGENT2_CD_PNWRS. A code indicating the tree damaging agent that is considered to be of greatest importance to predict tree growth, survival, and forest composition and structure. Additionally, there are two classes of damaging agents. Class one damage agents are considered more important than class two agents and are thus coded as a primary agent before the class 2 agents.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>No agent recorded</td>
</tr>
<tr>
<td>10</td>
<td>Insect</td>
</tr>
<tr>
<td>20</td>
<td>Disease</td>
</tr>
<tr>
<td>30</td>
<td>Fire</td>
</tr>
<tr>
<td>40</td>
<td>Animal</td>
</tr>
<tr>
<td>47</td>
<td>Wild pigs</td>
</tr>
<tr>
<td>50</td>
<td>Weather</td>
</tr>
<tr>
<td>60</td>
<td>Vegetation (e.g., suppression, competition, vines/kudzu)</td>
</tr>
<tr>
<td>70</td>
<td>Unknown/not sure/other -- includes death from human activity not related to silvicultural or land clearing activity (accidental, random, etc). TREE NOTES required.</td>
</tr>
<tr>
<td>80</td>
<td>Silvicultural or land clearing activity (death caused by harvesting or other silvicultural activity, including girdling, chaining, etc., or to land clearing activity.</td>
</tr>
<tr>
<td>90</td>
<td>Physical (hit by falling tree, rockslides)</td>
</tr>
</tbody>
</table>

47. **DMG_AGENT2_CD_PNWRS**

DAMAGE AGENT 2. See DMG_AGENT1_CD_PNWRS.

48. **HRDWD_CLUMP_CD**

Clump code. A 1 digit code indicating if a live tree, sapling, or seedling is part of a clump. A clump is defined as 3 or more live stems originating from a root system. Seedling-sized suckers that have sprouted from the base of a live, unsuppressed stem that is >= 5.0 in DIA are not tallied. The clump of trees is assigned a clump number, and the number is recorded for each tree tallied that is part of the clump. If a tree is not part of a clump, “0” is recorded for that tree. Clumps with tallied trees are numbered in consecutive order on a subplot starting with “1”.

49. **REGIONAL_DRYBIOM**

Regional dry merchantable stem biomass (pounds). The total gross biomass (excluding bark) of a tree 5.0 inches DBH or larger from a 1-foot stump to a minimum 4-inch top DOB of the central stem. This is a per tree value and must be multiplied by TPA_UNADJ to obtain per acre information. This field should have an entry if DIA is 5.0 inches or larger, regardless of STATUSCD or TREECLCD; zero otherwise. For dead or cut trees, this number represents the biomass at the time of death or last measurement. The column VOLCFGRS was used as the volume from which biomass was estimated.

50. **REGIONAL_DRYBIOT**

Regional dry total aboveground biomass (pounds). The total aboveground biomass of a sample tree, including all tops and limbs and bark (but excluding foliage). This is a per tree value and must be multiplied by TPA_UNADJ to obtain per acre estimates. This field should have an entry for live trees >= 1.0 inch DIA or dead trees >= 5
inches DIA, regardless of TREECLCD; zero otherwise. For dead trees, this number represents the biomass at the time of death or last measurement.

51. VOLCFGRS Gross cubic-foot volume. For timber species (trees where the diameter is measured at breast height [DBH]), this is the total volume of wood in the central stem of sample trees ≥5.0 inches in diameter, from a 1-foot stump to a minimum 4-inch top diameter, or to where the central stem breaks into limbs all of which are <4.0 inches in diameter. This is a per tree value and must be multiplied by TPA_UNADJ to obtain per acre information. This attribute is blank (null) for trees with DIA <5.0 inches. Includes rotten, missing and form cull (volume loss due to rotten, missing, and form cull defect has not been deducted).

52. VOLCFNET Net cubic-foot volume. For timber species (trees where the diameter is measured at breast height [DBH]), this is the net volume of wood in the central stem of a sample tree ≥5.0 inches in diameter, from a 1-foot stump to a minimum 4-inch top diameter, or to where the central stem breaks into limbs all of which are <4.0 inches in diameter. This is a per tree value and must be multiplied by TPA_UNADJ to obtain per acre information. This attribute is blank (null) for trees with DIA <5.0 inches. All trees with DIA ≥5.0 inches (including dead and cut trees) will have entries in this field. Does not include rotten, missing, and form cull (volume loss due to rotten, missing, and form cull defect has been deducted).

53. VOLCFSND Sound cubic-foot volume. For timber species (trees where the diameter is measured at breast height [DBH]), the volume of sound wood in the central stem of a sample tree ≥5.0 inches in diameter from a 1-foot stump to a minimum 4-inch top diameter or to where the central stem breaks into limbs all of which are <4.0 inches in diameter. This is a per tree value and must be multiplied by TPA_UNADJ to obtain per acre information. This attribute is blank (null) for trees with DIA <5.0 inches. All trees with DIA ≥5.0 inches (including dead trees) have entries in this field. Does not include rotten and missing cull (volume loss due to rotten and missing cull defect has been deducted).

54. VOLCFGRS_TOTAL_STEM_WOOD Cubic volume of wood in the total stem, ground to tip, in cubic feet. Includes wood volume (inside bark) of the entire tree, and does not exclude rot, rough, or other types of cull volume. Calculated on live trees ≥1 inch DIA and dead trees ≥5 inches DIA. This is a per tree value and must be multiplied by TPA_UNADJ to obtain per acre information.

55 PREV_TRE_CN Unique record number for the tree measured in the previous inventory. This CN can be linked to the CN in the TREE table to link it to the initial tree measurement.

56 PREV_SPCD_PNWRS Previous species code. Species code for the tree measured in the previous inventory.

57 PREVCOND Previous condition class code of the tree. Condition class code for the tree measured in the previous inventory.

58 PREVSUBC Previous subplot condition. Subplot condition class code for the tree measured in the previous inventory.
59 PREVDIA
Previous diameter of the tree. Diameter of the tree measured in the previous inventory

60 PREV_ACTUALHT_PNWRS
Previous actual height of the tree. Actual height of the tree measured in the previous inventory

61 PREV_HT_PNWRS
Previous total height of the tree. Height of the tree measured in the previous inventory

62 PREV_HTCD_PNWRS
Previous height code of the tree. Previous length method of the tree measured in the previous inventory

63 PREV_AZM_PNWRS
Previous azimuth of the tree. Azimuth of the tree from subplot center to the base of the tree, measured in the previous inventory

64 PREV_HORIZ_DIST_PNWRS
Previous distance of the tree. Horizontal distance of the tree from subplot center to the base of the tree, measured in the previous inventory

65 RECONCILECD
Reconcile code. Recorded for remeasurement locations only. A code indicating the reason a tree either enters or is no longer a part of the inventory.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ingrowth - either a new tally tree not qualifying as through growth or a new tree on land that was formerly nonforest and now qualifies as forest land (includes reversion or encroachments).</td>
</tr>
<tr>
<td>2</td>
<td>Through growth - new tally tree 5 inches DBH/DRC and larger, within the microplot, which was not missed at the previous inventory.</td>
</tr>
<tr>
<td>3</td>
<td>Missed live - a live tree missed at previous inventory and that is live, dead, or removed now.</td>
</tr>
<tr>
<td>4</td>
<td>Missed dead - a dead tree missed at previous inventory and that is dead or removed now.</td>
</tr>
<tr>
<td>5</td>
<td>Shrank - live tree that shrank below threshold diameter on microplot/subplot/macroplot plot.</td>
</tr>
<tr>
<td>6</td>
<td>Missing (moved) - tree was correctly tallied in previous inventory, but has now moved beyond the radius of the plot due to natural causes (e.g., small earth movement, hurricane). Tree must be either live before and still alive now or dead before and dead now. If tree was live before and now dead, this is a mortality tree and should have STATUSCD = 2 (not 0).</td>
</tr>
<tr>
<td>7</td>
<td>Cruiser error - erroneously tallied at previous inventory</td>
</tr>
<tr>
<td>8</td>
<td>Procedural change - tree was tallied at the previous inventory, but is no longer tallied due to a definition or procedural change.</td>
</tr>
<tr>
<td>9</td>
<td>Tree was sampled before, but now the area where the tree was located is nonsampled. All trees on the nonsampled area have RECONCILECD = 9</td>
</tr>
</tbody>
</table>

66. CYCLE
Inventory cycle number. A number assigned to a set of plots, measured over a particular period of time from which estimates are made. In the islands, the initial measurement is Cycle 2 (from 2001 to 2011) and the 2nd remeasurement is Cycle 3 (2012 and beyond).
67. **SUBCYCLE**

Inventory subcycle number. For an annual inventory that takes N years to measure all plots, subcycle shows in which of the N years the data were measured.
TREE_PACISLANDS_PNWRS – table

(Contains measured or calculated data for trees on Pacific Islands plots)

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Descriptive Name</th>
<th>Data Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 CN</td>
<td>Unique record number for trees in this table</td>
<td>Text</td>
</tr>
<tr>
<td>2 TRE_CN</td>
<td>Unique record number for trees in the TREE table</td>
<td>Text</td>
</tr>
<tr>
<td>3 PLT_CN</td>
<td>Plot sequence number</td>
<td>Text</td>
</tr>
<tr>
<td>4 INVYR</td>
<td>Inventory year</td>
<td>Integer</td>
</tr>
<tr>
<td>5 STATECD</td>
<td>State code</td>
<td>Integer</td>
</tr>
<tr>
<td>6 COUNTYCD</td>
<td>County code</td>
<td>Integer</td>
</tr>
<tr>
<td>7 PLOT</td>
<td>Public plot number</td>
<td>Integer</td>
</tr>
<tr>
<td>8 SUBP</td>
<td>Subplot number</td>
<td>Integer</td>
</tr>
<tr>
<td>9 TREE</td>
<td>Tree number</td>
<td>Integer</td>
</tr>
<tr>
<td>10 BRANCH_FORM_PNWRS</td>
<td>Branching characteristics</td>
<td>Real</td>
</tr>
<tr>
<td>11 ROOT_SYSTEM_PNWRS</td>
<td>Type of rooting system</td>
<td>Real</td>
</tr>
<tr>
<td>12 ROOT_HT_PNWRS</td>
<td>Rooting height</td>
<td>Real</td>
</tr>
<tr>
<td>13 STILT_ROOT_DIA1_PNWRS</td>
<td>Root diameter 1</td>
<td>Real</td>
</tr>
<tr>
<td>14 STILT_ROOT_DIA2_PNWRS</td>
<td>Root diameter 2</td>
<td>Real</td>
</tr>
<tr>
<td>15 STILT_DENSITY_PNWRS</td>
<td>Prop root density</td>
<td>Real</td>
</tr>
<tr>
<td>16 NO_BUTTRESSES_PNWRS</td>
<td>Number of buttresses</td>
<td>Real</td>
</tr>
<tr>
<td>17 NBR_TREES_ROOT_SYSTEM_PNWRS</td>
<td>Number of trees in shared root system</td>
<td>Integer</td>
</tr>
<tr>
<td>18 AERIAL_ROOTS_PNWRS</td>
<td>Aerial root density</td>
<td>Integer</td>
</tr>
<tr>
<td>19 EPIPHYTE_PNWRS</td>
<td>Epiphyte loading</td>
<td>Integer</td>
</tr>
<tr>
<td>20 PRIDAM_PNWRS</td>
<td>Priority damage</td>
<td>Integer</td>
</tr>
<tr>
<td>21 PRIDAMSEV_PNWRS</td>
<td>Priority damage severity rating or code</td>
<td>Integer</td>
</tr>
<tr>
<td>22 CYCLE</td>
<td>Inventory cycle number</td>
<td>Integer</td>
</tr>
<tr>
<td>23 SUBCYCLE</td>
<td>Inventory subcycle number</td>
<td>Integer</td>
</tr>
</tbody>
</table>

1. **CN**
 - A unique number used to identify each tree record in this table.

2. **TRE_CN**
 - Unique record number for trees in the TREE table. Link to the TREE table as follows: TREE.CN = TREE_PACISLANDS_PNWRS.TRE_CN. It is best to always link to the TREE table and then link the TREE table to the COND table when using data in the TREE_PACISLANDS_PNWRS table.

3. **PLT_CN**
 - Unique record number for each row in the PLOT table. This is a key column used to link to most other database tables. Link to the PLOT table as follows: PLOT.CN = TREE_PACISLANDS_PNWRS.PLT_CN.
4. **INVYR**

Inventory year. The year when the inventory data were scheduled to be collected. INVYR is often (but not necessarily) the same as MEASYEAR, which is the year when the plot was actually visited and measured. See the SURVEY table for more info.

5. **STATECD**

State code for FIA. This is referred to as the Island Group code for the Pacific Islands inventories. It identifies the larger Island Group, which consists of a number of smaller Islands. These smaller islands are called Counties by FIA (COUNTYCD).

<table>
<thead>
<tr>
<th>Island group code (STATECD)</th>
<th>Island group name (STATENM)</th>
<th>Island group abbrev. (STATEAB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Hawaii</td>
<td>HI</td>
</tr>
<tr>
<td>60</td>
<td>American Samoa</td>
<td>AS</td>
</tr>
<tr>
<td>66</td>
<td>Guam</td>
<td>GU</td>
</tr>
<tr>
<td>70</td>
<td>Palau</td>
<td>PW</td>
</tr>
</tbody>
</table>

6. **COUNTYCD**

County code for FIA. This is referred to as the Island code for the Pacific Islands inventories. It identifies one of the smaller islands within the larger Island Group. Please refer to the COUNTY table for codes and definitions.

7. **PLOT**

Public Plot number. A numeric identifier for a plot. The combination of INVYR, STATECD and PLOT will uniquely identify a plot record in the database. It is usually more convenient to use PLT_CN (see description above) to identify unique plots in the inventory. PLT_CN numbers do not change over time. Every record in the PLOT table has a unique 'CN', this is labeled as PLT_CN in all other tables.

8. **SUBP**

Subplot number. The number assigned to the subplot. (1 through 4). Subplots are circular with a 24 foot radius. Please refer to the field manual for an illustration of the plot layout.

9. **TREE**

Tree record number. A number used to uniquely identify a tree on a subplot. Tree numbers can be used to track trees when PLOT.DESIGNCD is the same between inventories.

10. **BRANCH_FORM_PNWRS**

Branching characteristics. A code to identify the branching form that best represents the density and structure of the branching system.

<table>
<thead>
<tr>
<th>CODE</th>
<th>DEFINITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No branches present, dead tree</td>
</tr>
<tr>
<td>1</td>
<td>Describes a Branching System on the tree, refer to the field manual for illustrations for each code.</td>
</tr>
<tr>
<td>2</td>
<td>Describes a Branching System on the tree, refer to the field manual for illustrations for each code.</td>
</tr>
<tr>
<td>3</td>
<td>Describes a Branching System on the tree, refer to the field manual for illustrations for each code.</td>
</tr>
<tr>
<td>4</td>
<td>Describes a Branching System on the tree, refer to the field manual for illustrations for each code.</td>
</tr>
<tr>
<td>5</td>
<td>Describes a Branching System on the tree, refer to the field manual for illustrations for each code.</td>
</tr>
<tr>
<td>6</td>
<td>Describes a Branching System on the tree, refer to the field manual for illustrations for each code.</td>
</tr>
</tbody>
</table>
11. **ROOT_SYSTEM_PNWRS**
 Type of rooting system. The type of rooting system of tally trees and snags. Identifies whether the roost are stilted (prop), or buttressed roots.

<table>
<thead>
<tr>
<th>CODE</th>
<th>DEFINITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Normal roots</td>
</tr>
<tr>
<td>1</td>
<td>Prop (Stilted) roots</td>
</tr>
<tr>
<td>2</td>
<td>Buttressed roots</td>
</tr>
</tbody>
</table>

12. **ROOT_HT_PNWRS**
 Rooting height. The height of the stilted or buttressed root system to the nearest foot, from ground level to the highest point where the stilts or buttresses protrude from the bole of the tree. Collected on all live and standing dead tally trees ≥ 5.0 in DIA with a ROOT_SYSTEM_PNWRS = 1 or 2.

13. **STILT_ROOT_DIA1_PNWRS**
 Stilt root diameter number 1. The largest diameter (to the nearest foot) of the entire prop root system at ground level.

14. **STILT_ROOT_DIA2_PNWRS**
 Stilt root diameter number 2. The diameter of the prop root system perpendicular to the largest diameter recorded in STILT_ROOT_DIA1_PNWRS, also at ground level and to the nearest foot.

15. **STILT_DENSITY_PNWRS**
 Prop root density. For prop roots, a code is recorded that illustrates the shape of the stilted roots. The shape represents the density and structure of the stilted root system. Collected on all live and standing dead tally trees ≥ 5.0 in d.b.h with ROOT_SYSTEM_PNWRS = 1.

<table>
<thead>
<tr>
<th>CODE</th>
<th>DEFINITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Stilted roots are present, refer to the field manual for illustrations for each code.</td>
</tr>
<tr>
<td>2</td>
<td>Stilted roots are present, refer to the field manual for illustrations for each code.</td>
</tr>
<tr>
<td>3</td>
<td>Stilted roots are present, refer to the field manual for illustrations for each code.</td>
</tr>
</tbody>
</table>

16. **NO_BUTTRESSES_PNWRS**
 Number of buttresses. The number of buttresses observed on the tree. Collected on all live and standing dead tally trees ≥ 5.0 in DIA with ROOT_SYSTEM_PNWRS = 2.

17. **NBR_TREES_ROOT_SYSTEM_PNWRS**
 Number of trees in shared root system. The number of live and dead trees sharing the prop root system. If there is more than 1 tree in the same system and the root systems cannot be differentiated then each tree will get the same value for the root diameter, prop root density and rooting height. Tree volume will be divided by the number of trees in the shared system. Code 1 will be default for all trees. Collected on all live and standing dead tally trees ≥ 5.0 in d.b.h. with ROOT_SYSTEM_PNWRS=1.
18. **AERIAL_ROOTS_PNWRS**

Aerial root density. If aerial roots are present, a code is recorded that best describes the density and branching structure of the aerial root system. If there are no aerial roots, record 0 for this column. Collected on all live and dead tally trees ≥ 5.0 in DIA.

<table>
<thead>
<tr>
<th>CODE</th>
<th>DEFINITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No aerial roots</td>
</tr>
<tr>
<td>1</td>
<td>Aerial roots are present, refer to the field manual for illustrations for each code.</td>
</tr>
<tr>
<td>2</td>
<td>Aerial roots are present, refer to the field manual for illustrations for each code.</td>
</tr>
<tr>
<td>3</td>
<td>Aerial roots are present, refer to the field manual for illustrations for each code.</td>
</tr>
</tbody>
</table>

19. **EPHYTE_PNWRS**

Epiphyte loading. A code that indicates the extent of epiphyte loading for all live trees > 1.0 in. d.b.h. “Epiphyte” is defined as a plant that uses a tree for support, but does not draw nourishment from it. For our purposes, vines and lianas are considered epiphytes. The Hawksworth six-class rating system is used to divide the tree into thirds, and rate each third using a scale of 0, 1, or 2.

<table>
<thead>
<tr>
<th>CODE</th>
<th>DEFINITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No visible epiphytes</td>
</tr>
<tr>
<td>1</td>
<td>Light epiphytes</td>
</tr>
<tr>
<td>2</td>
<td>Heavy epiphytes</td>
</tr>
</tbody>
</table>

20. **PRIDAM_PNWRS**

Priority damage. A code to describe a damage that does not meet the national minimum thresholds for recording damage, but is of special interest to the islands inventory. For example, any evidence of rhinoceros beetle damage on coconut trees is coded. Collected on all live tally trees >= 1.0 in DIA.

<table>
<thead>
<tr>
<th>CODE</th>
<th>DEFINITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No damage present</td>
</tr>
<tr>
<td>1</td>
<td>Rhinoceros beetle</td>
</tr>
<tr>
<td>2</td>
<td>Brown root rot</td>
</tr>
<tr>
<td>3</td>
<td>Tinangaha</td>
</tr>
<tr>
<td>4</td>
<td>Banana nematodes</td>
</tr>
<tr>
<td>5</td>
<td>Puccinia psidii</td>
</tr>
<tr>
<td>6</td>
<td>Pig, wild boar</td>
</tr>
<tr>
<td>7</td>
<td>Cycad Scale</td>
</tr>
</tbody>
</table>
21. PRIDAMSEV_PNWRS Priority damage severity rating. The amount of area affected by the PRIORITY DAMAGE for Rhinoceros beetle or Puccinia psidii. These damages have no minimum threshold. Please refer to the field manual for a description of how this is recorded. Severity is from 1-99. (see the 2014 manual).

To code DAMAGE SEVERITY for Rhinoceros beetle crews used the following directions:
1. Draw an imaginary horizontal line just above the coconuts (or where they should be)
2. Count the number of fronds that grow above that line
3. Count the number of fronds in #2 that have been damaged by rhinoceros beetles
4. Divide the number of damaged fronds by the number of fronds counted in #2.
5. Multiply by 100

Record this number as the severity of rhinoceros beetle damage. If the resulting number is 100, record 99. Collected when PRIORITY DAMAGE = 1 (Rhinoceros beetle) or 5 (Puccinia psidii)
When PRIORITY DAMAGE = 1 (Rhinoceros beetle), values = 01 – 99
When PRIORITY DAMAGE = 5 (Puccinia psidii), record the highest level of severity found on the tree (highest numbered code):
 1 Symptomatic found, but no rust spores confirmed
 2 1 to 5 spots, yellow or white urediniospores confirmed
 3 3 to 7 large or about 10 to 15 small spots, with a moderate level of disease; yellow/white urediniospores confirmed
 4 Severe disease levels; stems with pustules and/or no leaves
 5 Dead apical tips and numerous defoliated tips

22. CYCLE Inventory cycle number. A number assigned to a set of plots, measured over a particular period of time from which estimates are made. In the islands, the initial measurement is Cycle 2 (from 2001 to 2011) and the 2nd remeasurement is Cycle 3 (2012 and beyond).

23. SUBCYCLE Inventory subcycle number. For an annual inventory that takes N years to measure all plots, subcycle shows in which of the N years the data were measured.
SEEDLING (Tree Seedling Table)

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Descriptive Name</th>
<th>Data Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CN</td>
<td>Text</td>
</tr>
<tr>
<td>2</td>
<td>PLT_CN</td>
<td>Text</td>
</tr>
<tr>
<td>3</td>
<td>CONDID</td>
<td>Text</td>
</tr>
<tr>
<td>4</td>
<td>INVYR</td>
<td>Text</td>
</tr>
<tr>
<td>5</td>
<td>STATECD</td>
<td>Text</td>
</tr>
<tr>
<td>6</td>
<td>UNITCD</td>
<td>Text</td>
</tr>
<tr>
<td>7</td>
<td>COUNTYCD</td>
<td>Text</td>
</tr>
<tr>
<td>8</td>
<td>PLOT</td>
<td>Text</td>
</tr>
<tr>
<td>9</td>
<td>SUBP</td>
<td>Text</td>
</tr>
<tr>
<td>10</td>
<td>SPCD</td>
<td>Text</td>
</tr>
<tr>
<td>11</td>
<td>SPGRPCD</td>
<td>Text</td>
</tr>
<tr>
<td>12</td>
<td>TPA_UNADJ</td>
<td>Text</td>
</tr>
<tr>
<td>13</td>
<td>TREECOUNT_CALC</td>
<td>Text</td>
</tr>
<tr>
<td>14</td>
<td>TREECOUNT_FLAG</td>
<td>Text</td>
</tr>
<tr>
<td>15</td>
<td>CYCLE</td>
<td>Text</td>
</tr>
<tr>
<td>16</td>
<td>SUBCYCLE</td>
<td>Text</td>
</tr>
</tbody>
</table>

Seedling data collection overview - When PLOT.MANUAL < 2.0, the procedure was to record the actual seedling count up to six seedlings and then record 6+ if more than six seedlings were present. If PLOT.MANUAL < 2.0, then TREECOUNT_FLAG=’6plus’ indicating that a value of 6 in TREECOUNT_CALC actually represents 6 or more seedlings. If PLOT.MANUAL >=2.0, TREECOUNT_CALC will contain an actual count of seedlings beyond 6.

1. CN
 Sequence number. A unique number used to identify a seedling record.

2. PLT_CN
 Plot sequence number. Foreign key linking a record in this table to a record in the PLOT table and other tables. PLT_CN is a unique number that identifies every record in the PLOT table, and is one of the key columns used to link to most other tables. For example, to link to the plot record in the PLOT table: link SEEDLING.PLT_CN to PLOT.CN. Another common linkage is to link to the COND table: SEEDLING.PLT_CN to COND.PLT_CN and SEEDLING.CONDID to COND.CONDID.

3. CONDID
 Condition class number. Unique identifying number assigned to each condition on a plot. A condition is initially defined by condition class status. Differences in reserved status, owner group, forest type, stand-size class, regeneration status, and stand density further define condition for forest land. Mapped nonforest conditions are also assigned numbers. At the time of the plot establishment, the condition class at plot center (the center of subplot 1) is usually designated as condition class 1. Other condition classes are assigned numbers sequentially at the time each condition class is delineated. On a plot, each sampled condition class must have a unique number that can change at remeasurement to reflect new conditions on the plot.
4. **INVYR**

Inventory year. The year when the inventory data were scheduled to be collected. INVYR is often (but not necessarily) the same as MEASYEAR, which is the year when the plot was actually visited and measured. See the SURVEY table for more info.

5. **STATECD**

State code for FIA. This is referred to as the Island Group code for the Pacific Islands inventories. It identifies the larger Island Group, which consists of a number of smaller Islands. These smaller islands are called Counties by FIA (COUNTYCD).

<table>
<thead>
<tr>
<th>Island group code (STATECD)</th>
<th>Island group name (STATENM)</th>
<th>Island group abbrev. (STATEAB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Hawaii</td>
<td>HI</td>
</tr>
<tr>
<td>60</td>
<td>American Samoa</td>
<td>AS</td>
</tr>
<tr>
<td>66</td>
<td>Guam</td>
<td>GU</td>
</tr>
<tr>
<td>70</td>
<td>Palau</td>
<td>PW</td>
</tr>
</tbody>
</table>

6. **UNITCD**

Survey unit code. This is not used in the Pacific Islands – all codes are ‘1’.

7. **COUNTYCD**

County code for FIA. This is referred to as the Island code for the Pacific Islands inventories. It identifies one of the smaller islands within the larger Island Group. Please refer to the COUNTY table for codes and definitions.

8. **PLOT**

Public Plot number. A numeric identifier for a plot. The combination of INVYR, STATECD and PLOT will uniquely identify a plot record in the database. It is usually more convenient to use PLT_CN (see description above) to identify unique plots in the inventory. PLT_CN numbers do not change over time. Every record in the PLOT table has a unique ‘CN’, this is labeled as PLT_CN in all other tables.

9. **SUBP**

Subplot number. The number assigned to the subplot. (1 through 4). Subplots are circular with a 24 foot radius. Please refer to the field manual for an illustration of the plot layout.

10. **SPCD**

Species code. A numeric FIA tree species code. Refer to appendix E or the REF_SPECIES table for codes. Link to the FIADB Reference table to crosswalk codes into text: TREE.SPCD=REF_SPECIES.SPCD and output or display the COMMON_NAME.

11. **SPGRPCD**

Species group code. A code assigned to each tree species in order to group them for reporting purposes on presentation tables. Codes and their associated names (see REF_SPECIES_GROUP.NAME) are shown in appendix D. Individual tree species and corresponding species group codes are shown in appendix E. Link to the FIADB Reference table to crosswalk codes into text: REF_SPECIES_GROUP. In the Pacific Islands, it often is more useful to display the actual species instead of the species group—but that is up to the user of the data.

<table>
<thead>
<tr>
<th>Code</th>
<th>Group name</th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
<td>Tropical and subtropical pines</td>
</tr>
<tr>
<td>52</td>
<td>Other tropical and subtropical softwoods</td>
</tr>
<tr>
<td>53</td>
<td>Tropical and subtropical palms</td>
</tr>
<tr>
<td>54</td>
<td>Tropical and subtropical hardwoods</td>
</tr>
</tbody>
</table>
13. TPA_UNADJ Trees per acre unadjusted. The number of seedlings per acre that the seedling count theoretically represents based on the sample design. For fixed radius, TPA_UNADJ equals 74.965282 times the number of seedlings counted.

14. TREECOUNT_CALC A count of the number of seedlings tallied on the microplot. The method of recording seedling counts has changed over the years. The original method (2001-2003) was to record the actual seedling count up to six seedlings and then record 6+ if six or more seedlings were present. Later, the true count of seedlings was recorded. In the past, seedlings were often tallied in FIA inventories only to the extent necessary to determine if some minimum number were present, which means that seedlings were often under-reported. A column was created to identify when a value of 6 in TREECOUNT_CALC really represents 6 or more seedlings, rather than an exact count of 6 seedlings. When the column TREECOUNT_FLAG is equal to '6plus', this means that the value of 6 in TREECOUNT_CALC is really >= 6 seedlings.

15. TREECOUNT_FLAG Indicates that the value of '6' in the TREECOUNT_CALC column actually represents 6+ seedlings. In 2001,2002,2003 the procedure was to record the actual seedling count up to six seedlings and then record 6+ if at least six seedlings were really present. The TREECOUNT_FLAG was set to '6plus’ to indicate that a value of 6 in TREECOUNT_CALC actually represents 6 or more seedlings. Otherwise (beyond 2003), a value of 6 means exactly 6 seedlings were recorded.

22. CYCLE Inventory cycle number. A number assigned to a set of plots, measured over a particular period of time from which estimates are made. In the islands, the initial measurement is Cycle 2 (from 2001 to 2011) and the 2nd remeasurement is Cycle 3 (2012 and beyond).

23. SUBCYCLE Inventory subcycle number. For an annual inventory that takes N years to measure all plots, subcycle shows in which of the N years the data were measured.
SURVEY (Survey Table)

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Descriptive Name</th>
<th>Data type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 CN</td>
<td>Sequence number</td>
<td>Text</td>
</tr>
<tr>
<td>2 INVYR</td>
<td>Inventory year</td>
<td>Integer</td>
</tr>
<tr>
<td>3 RSCD</td>
<td>Region or station code</td>
<td>Integer</td>
</tr>
<tr>
<td>4 STATECD</td>
<td>State code</td>
<td>Integer</td>
</tr>
<tr>
<td>5 STATEAB</td>
<td>State abbreviation</td>
<td>Text</td>
</tr>
<tr>
<td>6 STATENM</td>
<td>State name</td>
<td>Text</td>
</tr>
<tr>
<td>7 CYCLE</td>
<td>Inventory cycle number</td>
<td>Integer</td>
</tr>
<tr>
<td>8 SUBCYCLE</td>
<td>Inventory subcycle number</td>
<td>Integer</td>
</tr>
<tr>
<td>9 ANN_INVENTORY</td>
<td>Annual inventory</td>
<td>Text</td>
</tr>
<tr>
<td>10 NOTES</td>
<td>Notes</td>
<td>Text</td>
</tr>
</tbody>
</table>

1. **CN**
 Sequence number. A unique number used to identify a survey record. Link to the PLOT table as follows: SURVEY.CN=PLOT.SRV_CN.

2. **INVYR**
 Inventory year. The year when the inventory data were scheduled to be collected. Under the annual inventory system, a group of plots is selected each year for sampling. The selection is based on a panel system. INVYR is the year in which the majority of plots in that group were collected (plots in the group have the same panel and, if applicable, subpanel number). INVYR is not necessarily the same as MEASYEAR, which is the year when the plot was actually visited and measured.

3. **RSCD**
 Region or Station Code. Identification number of the Forest Service Station that provided the inventory data.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>Pacific Northwest Research Station</td>
</tr>
</tbody>
</table>

4. **STATECD**
 State code for FIA. This is referred to as the Island Group code for the Pacific Islands inventories. It identifies the larger Island Group, which consists of a number of smaller Islands. These smaller islands are called Counties by FIA (COUNTYCD).

<table>
<thead>
<tr>
<th>Island group code (STATECD)</th>
<th>Island group name (STATENM)</th>
<th>Island group abbrev. (STATEAB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Hawaii</td>
<td>HI</td>
</tr>
<tr>
<td>60</td>
<td>American Samoa</td>
<td>AS</td>
</tr>
<tr>
<td>66</td>
<td>Guam</td>
<td>GU</td>
</tr>
<tr>
<td>70</td>
<td>Palau</td>
<td>PW</td>
</tr>
</tbody>
</table>

5. **STATEAB**
 State abbreviation. The two-character State abbreviation. See STATECD definition.

6. **STATENM**
 State name. See STATECD definition.
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7.</td>
<td>CYCLE</td>
</tr>
<tr>
<td>8.</td>
<td>SUBCYCLE</td>
</tr>
<tr>
<td>9.</td>
<td>ANN_INVENTORY</td>
</tr>
<tr>
<td>10.</td>
<td>NOTES</td>
</tr>
</tbody>
</table>
VEG_P2VEG_SUBPLOT_SPP table (Understory vegetation data on the subplot)

<table>
<thead>
<tr>
<th>Column name</th>
<th>Descriptive name</th>
<th>Data type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 CN</td>
<td>Unique number used to identify a row in the Vegetation Subplot Species table</td>
<td>Text</td>
</tr>
<tr>
<td>2 PLT_CN</td>
<td>Unique record number for a plot in the PLOT table</td>
<td>Text</td>
</tr>
<tr>
<td>3 INVYR</td>
<td>Inventory year</td>
<td>Integer</td>
</tr>
<tr>
<td>4 MEASYEAR</td>
<td>Measurement year</td>
<td>Integer</td>
</tr>
<tr>
<td>5 STATECD</td>
<td>State code</td>
<td>Integer</td>
</tr>
<tr>
<td>6 UNITCD</td>
<td>Survey unit code</td>
<td>Integer</td>
</tr>
<tr>
<td>7 COUNTYCD</td>
<td>County code</td>
<td>Integer</td>
</tr>
<tr>
<td>8 PLOT</td>
<td>Public plot number</td>
<td>Number</td>
</tr>
<tr>
<td>9 SUBP</td>
<td>Subplot number</td>
<td>Number</td>
</tr>
<tr>
<td>10 CONDID</td>
<td>Condition class number</td>
<td>Integer</td>
</tr>
<tr>
<td>11 VEG_SPCD</td>
<td>Species code (SYMBOL)</td>
<td>Text</td>
</tr>
<tr>
<td>12 VEG_FLDSPCD</td>
<td>Species code recorded in the field</td>
<td>Text</td>
</tr>
<tr>
<td>13 UNIQUE_SP_NBR</td>
<td>Plant unknown species number</td>
<td>Integer</td>
</tr>
<tr>
<td>14 GROWTH_HABIT_CD</td>
<td>Growth habit code</td>
<td>Text</td>
</tr>
<tr>
<td>15 LAYER</td>
<td>Vegetation layer of the species</td>
<td>Integer</td>
</tr>
<tr>
<td>16 COVER_PCT</td>
<td>Canopy cover of each species</td>
<td>Integer</td>
</tr>
<tr>
<td>17 CYCLE</td>
<td>Inventory cycle number</td>
<td>Integer</td>
</tr>
<tr>
<td>18 SUBCYCLE</td>
<td>Inventory subcycle number</td>
<td>Integer</td>
</tr>
</tbody>
</table>

- P2VEG_SUBPLOT_SPP table - Provides percent cover data of vegetation species identified on the subplot.

Vegetation data were collected under different protocol over time and are stored in different tables. Data in this table are from the newest protocol, and was collected on the following islands: American Samoa in 2012, Guam in 2013, and Palau in 2014 (and in Hawaii 2011 and later).

Notes about the VEG_SPCD and VEG_FLDSPCD
Natural Resource Conservation Service (NRCS) PLANTS Database provides standardized information about the vascular plants, mosses, liverworts, hornworts, and lichens of the U.S. and its territories. It includes names, plant symbols, checklists, distributional data, species abstracts, characteristics, images, crop information, automated tools, onward Web links, and references: USDA, NRCS. 2010. The PLANTS Database (http://plants.usda.gov, 1 January 2010). National Plant Data Center, Baton Rouge, LA 70874-4490 USA.

The REF_PLANT_DICTIONARY_islands table uses species codes downloaded in January of 2010. Link the VEG_SPCD or VEG_FLDSPCD columns to the REF_PLANT_DICTIONARY.SYMBOL column.

PLOT.CN = P2VEG_SUBPLOT_SPP.PLT_CN links the vegetation subplot species record(s) to the plot record.

SUBP_COND.PLT_CN = P2VEG_SUBPLOT_SPP.PLT_CN and SUBP_COND.CONDID = P2VEG_SUBPLOT_SPP.CONDID and SUBP_COND.SUBP = P2VEG_SUBPLOT_SPP.SUBP links the vegetation subplot species record(s) to the unique subplot condition record.
1. **CN**
 Unique number used to identify a row in the Vegetation Subplot Species table.

2. **PLT_CN**
 Unique record number for each row in the PLOT table. This is a key column used to connect to most other database tables. Link to the PLOT table as follows: link VEG_P2VEG_SUBPLOT_SP.PLT_CN to PLOT.CN

3. **INVYR**
 Inventory year. The year when the inventory data were scheduled to be collected. INVYR is often (but not necessarily) the same as MEASYEAR, which is the year when the plot was actually visited and measured. See the SURVEY table for more info.

4. **MEASYEAR**
 Measurement year. The year in which the plot was completed. MEASYEAR may differ from INVYR.

5. **STATECD**
 State code for FIA. This is referred to as the Island Group code for the Pacific Islands inventories. It identifies the larger Island Group, which consists of a number of smaller Islands. These smaller islands are called Counties by FIA (COUNTYCD).

<table>
<thead>
<tr>
<th>Island group code (STATECD)</th>
<th>Island group name (STATENM)</th>
<th>Island group abbrev. (STATEAB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Hawaii</td>
<td>HI</td>
</tr>
<tr>
<td>60</td>
<td>American Samoa</td>
<td>AS</td>
</tr>
<tr>
<td>66</td>
<td>Guam</td>
<td>GU</td>
</tr>
<tr>
<td>70</td>
<td>Palau</td>
<td>PW</td>
</tr>
</tbody>
</table>

6. **UNITCD**
 Survey unit code. This is not used in the Pacific Islands – all codes are ‘1’.

7. **COUNTYCD**
 County code for FIA. This is referred to as the Island code for the Pacific Islands inventories. It identifies one of the smaller islands within the larger Island Group. Please refer to the COUNTY table for codes and definitions.

8. **PLOT**
 Public Plot number. A numeric identifier for a plot. The combination of INVYR, STATECD and PLOT will uniquely identify a plot record in the database. It is usually more convenient to use PLT_CN (see description above) to identify unique plots in the inventory. PLT_CN numbers do not change over time. Every record in the PLOT table has a unique 'CN', this is labeled as PLT_CN in all other tables.

9. **SUBP**
 Subplot number. The number assigned to the subplot. (1 through 4). Subplots are circular with a 24 foot radius. Please refer to the field manual for an illustration of the plot layout.

10. **CONDID**
 Condition class number. Unique identifying number assigned to each condition on a plot. A condition is initially defined by condition class status. Differences in reserved status, owner group, forest type, stand-size class, regeneration status, and stand density further define condition for forest land. Mapped nonforest conditions are also assigned numbers. At the time of the plot establishment, the condition class at plot center (the center of subplot 1) is usually designated as condition class 1. Other condition classes are assigned numbers sequentially at the time each condition class is delineated. On a plot, each sampled condition class must have a unique number that can change at remeasurement to reflect new conditions on the plot.
11. VEG_SPCD Vegetation species code. A code indicating each sampled vascular plant species found rooted in or overhanging the sampled condition of the subplot at any height.

12. VEG_FLDSPCD Vegetation field species code. Species code assigned by the field crew.

13. UNIQUE_SP_NBR Plant number for an unknown species or genus-record. A consecutive number that distinguishes unknowns or genus records when 2 or more are identified on the same plot. Note: unknown tree species is not an option (but a genus record using the correct PLANTS code is OK in rare instances).

14. GROWTH_HABIT_CD Growth habit code (species growth habit). A code indicating the growth habit of the species. Tally tree species are always recorded as trees, even when they exhibited a shrub-like growth habit. If a species had more than one growth habit on a condition in a subplot, the most prevalent one was recorded; however, both tree habits (SD and LT) could be coded for the same species if PLOT.LEVEL OF DETAIL=3 and the species was found in both size classes. A species may be recorded with a different growth habit on a different subplot-condition on the same plot. In the code definitions, LEVEL OF DETAIL = LOD. The P2VEG_SUBPLOT_SPP.GROWTH_HABIT_CD is not to be confused with P2VEG_SUBP_STRUCTURE.GROWTH_HABIT_CD. The codes are similar, but not exactly the same.

<table>
<thead>
<tr>
<th>Code</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>FB</td>
<td>Forbs: Herbaceous, broad-leaved plants; includes non-woody-vines, ferns (does not include mosses and cryptobiotic crusts.) Up to four species are recorded if individual species total aerial canopy cover is at least 3% on the subplot and within the GROWTH_HABIT_CD when LOD = 2 or LOD = 3.</td>
</tr>
<tr>
<td>GR</td>
<td>Graminoids: Grasses and grass-like plants (includes rushes and sedges). Up to four species are recorded if individual species total aerial canopy cover is at least 3% on the subplot and within the GROWTH_HABIT_CD when LOD = 2 or LOD = 3.</td>
</tr>
<tr>
<td>SD</td>
<td>Seedlings and Saplings: Small trees less than 5 inches DBH or DRC (refer to field guide sections 5.9.2 and 5.9.4), including tally and non-tally tree species. Seedlings of any length are included (i.e., no minimum.) Up to four species are recorded if individual species total aerial canopy cover is at least 3% on the subplot and within the GROWTH_HABIT_CD when LOD = 2 or LOD = 3.</td>
</tr>
<tr>
<td>SH</td>
<td>Shrubs/Subshrubs/Woody Vines: Woody, multiple-stemmed plants of any size, subshrubs (low-growing shrubs under 1.5 feet tall at maturity), and woody vines. Most cacti are included in this category. Subshrub species are usually included in this category. However, there are many species that can exhibit either subshrub or forb/herb growth habits. Each FIA region will develop a list of common species that can exhibit either growth habits (according to the NRCS PLANTS database) with regional guidance as to which growth habit the species should normally be</td>
</tr>
</tbody>
</table>

103
assigned, while still allowing species assignments to different growth habits when the species is obviously present in a different growth habit. Up to four species are recorded if individual species total aerial canopy cover is at least 3% on the subplot and within the GROWTH_HABIT_CD when LOD = 2 or LOD = 3.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0 to 2.0 feet</td>
</tr>
<tr>
<td>2</td>
<td>2.1 to 6.0 feet</td>
</tr>
<tr>
<td>3</td>
<td>6.1 to 16.0 feet</td>
</tr>
<tr>
<td>4</td>
<td>Greater than 16 feet</td>
</tr>
<tr>
<td>5</td>
<td>Layer associated with pre-5.0 protocol</td>
</tr>
</tbody>
</table>

16. **COVER_PCT**

The cover of each species in its respective height (layer) group. For each species recorded, the canopy cover present on the subplot condition to the nearest 1 percent. Note that cover is always recorded as a percent of the full subplot area, even if the condition that was assessed did not cover the full subplot.

Cover is estimated to the nearest 1% for each species, as the proportion of the fixed-radius plot regardless of condition class boundaries that would be obscured by all plants of the species if viewed from directly above. For each plant, cover is based on a vertically projected polygon described by the outline of the live foliage of each plant (or foliage that was live during the current growing season for senescing plants), and ignoring any normal spaces occurring between the leaves of a plant. This best reflects the plant's above- and below-ground zone of dominance.

The cover estimate is based on the current year's growth present at the time of the plot visit. Includes both living and dead material from the current year. If herbs or shrubs have already dried out, dropped leaves, or senesced -- the cover of foliage that was live during the current growing season is estimated (e.g. on plots done early in the year, do not estimate based on the previous growing season's growth).

Does not include dead branches of shrubs and trees in the cover polygons. The percent is not adjusted for the time of year during which the visit was made (i.e. if the plants are immature and small because the plot is being completed early in the growing season).

Overlap of plants of the same species is ignored. Plants of the same species are visually grouped together into a percent cover. There will often be overlap of plants of different species. Therefore, total cover for a subplot may exceed 100%. Species that are on the Indicator list or the Weed list and that cover less than 1% are recorded as 1%.
17. **CYCLE**
Inventory cycle number. A number assigned to a set of plots, measured over a particular period of time from which estimates are made. In the islands, the initial measurement is Cycle 2 (from 2001 to 2011) and the 2nd remeasurement is Cycle 3 (2012 and beyond).

18. **SUBCYCLE**
Inventory subcycle number. For an annual inventory that takes N years to measure all plots, subcycle shows in which of the N years the data were measured.
VEG_P2VEG_SUBP_STRUCTURE table (Understory vegetation data on the subplot)

<table>
<thead>
<tr>
<th>Column name</th>
<th>Descriptive name</th>
<th>Data type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 CN</td>
<td>Unique record number for a row in the VEG_P2VEG_SUBP_STRUCTURE table</td>
<td>Text</td>
</tr>
<tr>
<td>2 PLT_CN</td>
<td>Unique record number for a plot in the PLOT table</td>
<td>Text</td>
</tr>
<tr>
<td>3 INVYR</td>
<td>Inventory year</td>
<td>Integer</td>
</tr>
<tr>
<td>4 MEASYEAR</td>
<td>Measurement year</td>
<td>Integer</td>
</tr>
<tr>
<td>5 STATECD</td>
<td>State code</td>
<td>Integer</td>
</tr>
<tr>
<td>6 UNITCD</td>
<td>Survey unit code</td>
<td>Integer</td>
</tr>
<tr>
<td>7 COUNTYCD</td>
<td>County code</td>
<td>Integer</td>
</tr>
<tr>
<td>8 PLOT</td>
<td>Public plot number</td>
<td>Number</td>
</tr>
<tr>
<td>9 SUBP</td>
<td>Subplot number</td>
<td>Number</td>
</tr>
<tr>
<td>10 CONDID</td>
<td>Condition class number</td>
<td>Integer</td>
</tr>
<tr>
<td>11 GROWTH_HABIT_CD</td>
<td>Growth habit code</td>
<td>Text</td>
</tr>
<tr>
<td>12 LAYER</td>
<td>Vegetation layer of the species</td>
<td>Integer</td>
</tr>
<tr>
<td>13 COVER_PCT</td>
<td>Canopy cover of each species</td>
<td>Integer</td>
</tr>
<tr>
<td>14 CYCLE</td>
<td>Inventory cycle number</td>
<td>Integer</td>
</tr>
<tr>
<td>15 SUBCYCLE</td>
<td>Inventory subcycle number</td>
<td>Integer</td>
</tr>
</tbody>
</table>

- **P2VEG_SUBP_STRUCTURE** table - Provides percent cover by layer by growth habit.

Vegetation data were collected under different protocol over time and are stored in different tables. Data in this table are from the newest protocol, and were collected on the following islands: American Samoa in 2012, Guam in 2013, and Palau in 2014 (and in Hawaii 2011 and later).

Notes about the VEG_SPCD and VEG_FLDSPCD
Natural Resource Conservation Service (NRCS) PLANTS Database provides standardized information about the vascular plants, mosses, liverworts, hornworts, and lichens of the U.S. and its territories. It includes names, plant symbols, checklists, distributional data, species abstracts, characteristics, images, crop information, automated tools, onward Web links, and references: USDA, NRCS. 2010. The PLANTS Database (http://plants.usda.gov, 1 January 2010). National Plant Data Center, Baton Rouge, LA 70874-4490 USA.

The REF_PLANT_DICTIONARY_islands table uses species codes downloaded in January of 2010.
Link the VEG_SPCD or VEG_FLDSPCD columns to the REF_PLANT_DICTIONARY.SYMBOL column.

PLOT.CN = P2VEG_SUBP_STRUCTURE. PLT_CN links the subplot structure record to the plot record

SUBP_COND.PLT_CN = P2VEG_SUBP_STRUCTURE.PLT_CN and SUBP_COND.CONDID = P2VEG_SUBP_STRUCTURE.CONDID and SUBP_COND.SUBP = P2VEG_SUBP_STRUCTURE.SUBP
links the vegetation subplot structure record to the unique subplot condition record.
1. **CN**

 Unique number used to identify a row in the Vegetation Subplot Structure table.

2. **PLT_CN**

 Unique record number for each row in the PLOT table. This is a key column used to link to most other database tables. Link to the PLOT table as follows: link VEG_P2VEG_SUBP_STRUCTURE.PLT_CN to PLOT.CN.

3. **INVYR**

 Inventory year. The year when the inventory data were scheduled to be collected. INVYR is often (but not necessarily) the same as MEASYEAR, which is the year when the plot was actually visited and measured. See the SURVEY table for more info.

4. **MEASYEAR**

 Measurement year. The year in which the plot was completed. MEASYEAR may differ from INVYR.

5. **STATECD**

 State code for FIA. This is referred to as the Island Group code for the Pacific Islands inventories. It identifies the larger Island Group, which consists of a number of smaller islands. These smaller islands are called Counties by FIA (COUNTYCD).

<table>
<thead>
<tr>
<th>Island group code (STATECD)</th>
<th>Island group name (STATENM)</th>
<th>Island group abbrev. (STATEAB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Hawaii</td>
<td>HI</td>
</tr>
<tr>
<td>60</td>
<td>American Samoa</td>
<td>AS</td>
</tr>
<tr>
<td>66</td>
<td>Guam</td>
<td>GU</td>
</tr>
<tr>
<td>70</td>
<td>Palau</td>
<td>PW</td>
</tr>
</tbody>
</table>

6. **UNITCD**

 Survey unit code. This is not used in the Pacific Islands – all codes are ‘1’.

7. **COUNTYCD**

 County code for FIA. This is referred to as the Island code for the Pacific Islands inventories. It identifies one of the smaller islands within the larger Island Group. Please refer to the COUNTY table for codes and definitions.

8. **PLOT**

 Public Plot number. A numeric identifier for a plot. The combination of INVYR, STATECD and PLOT will uniquely identify a plot record in the database. It is usually more convenient to use PLT_CN (see description above) to identify unique plots in the inventory. PLT_CN numbers do not change over time. Every record in the PLOT table has a unique 'CN', this is labeled as PLT_CN in all other tables.

9. **SUBP**

 Subplot number. The number assigned to the subplot. (1 through 4). Subplots are circular with a 24 foot radius. Please refer to the field manual for an illustration of the plot layout.

10. **CONDID**

 Condition class number. Unique identifying number assigned to each condition on a plot. A condition is initially defined by condition class status. Differences in reserved status, owner group, forest type, stand-size class, regeneration status, and stand density further define condition for forest land. Mapped nonforest conditions are also assigned numbers. At the time of the plot establishment, the condition class at plot center (the center of subplot 1) is usually designated as condition class 1. Other condition classes are assigned numbers sequentially at the time each condition class is delineated. On a plot, each sampled condition class must have a unique number that can change at remeasurement to reflect new conditions on the plot.
11. **GROWTH_HABIT_CD**

Growth habit code (vegetation structure growth habit). Vegetation structure growth habit based on species and appearance of plants on the subplot condition. If a tree species has been selected as a tally tree species by the particular FIA unit, that species is recorded as a tally tree species growth habit (TT), even if it grows as a shrub in some environments. Woody plants not on the unit’s tally tree species list may have a tree growth habit in some environments, and these are recorded as non-tally tree species (NT). If the growth habit is shrub in another environment, that species is recorded as a shrub (SH). In the code definitions, level of detail = LOD.

<table>
<thead>
<tr>
<th>Code</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>FB</td>
<td>Forbs: Herbaceous, broad-leaved plants (does not include mosses and cryptobiotic crusts). Up to four species are recorded if individual species total cover is at least 3% of the subplot area when LOD = 2 or LOD = 3.</td>
</tr>
<tr>
<td>GR</td>
<td>Graminoids: Grasses and grass-like plants (includes rushes and sedges). Up to four species are recorded if individual species total cover is at least 3% of the subplot area when LOD = 2 or LOD = 3.</td>
</tr>
<tr>
<td>SH</td>
<td>Shrubs/Subshrubs/Woody Vines: Woody, multiple-stemmed plants of any size, subshrubs (low-growing shrubs under 1.5 feet tall at maturity), and woody vines. Most cacti are included in this category.</td>
</tr>
<tr>
<td>TT</td>
<td>Tally Tree Species: All core tree species and any core optional tree species selected by a particular FIA unit. Any plant of that species is included, regardless of its shape and regardless of whether it was tallied on the subplot or microplot during tree tally. Seedlings (any length, no minimum), saplings, and mature plants are included.</td>
</tr>
<tr>
<td>NT</td>
<td>Non-tally Tree Species: Tree species not on a particular FIA unit’s tree tally list that are woody plants with a single well-defined, dominant main stem, not supported by other vegetation or structures (not vines), and which are, or are expected to become, greater than 13 feet in height. Seedlings (any length, no minimum), saplings, and mature plants are included.</td>
</tr>
</tbody>
</table>
12. LAYER

Species vegetation layer. A code indicating the vertical layer in which the plant species was found. Each individual species recorded is assigned to one of the vegetation layers. These layers illustrate the vertical diversity of the predominant species found on the subplot. If a plant species in a growth habit is found in more than one layer, the entire plant is assigned to the layer where most of the cover occurs. If a species occupies multiple layers equally, the entire plant is assigned to the highest of the equally occupied layers.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0 to 2.0 feet</td>
</tr>
<tr>
<td>2</td>
<td>2.1 to 6.0 feet</td>
</tr>
<tr>
<td>3</td>
<td>6.1 to 16.0 feet</td>
</tr>
<tr>
<td>4</td>
<td>Greater than 16 feet</td>
</tr>
<tr>
<td>5</td>
<td>Aerial: Canopy cover for all layers</td>
</tr>
</tbody>
</table>

13. COVER_PCT

Canopy cover percent. The cover of each species in its respective height group. For each species recorded, the canopy cover present on the subplot condition to the nearest 1 percent. Note that cover is always recorded as a percent of the full subplot area, even if the condition that was assessed did not cover the full subplot.

Cover is estimated to the nearest 1% for each species, as the proportion of the fixed-radius plot regardless of condition class boundaries that would be obscured by all plants of the species if viewed from directly above. For each plant, cover is based on a vertically projected polygon described by the outline of the live foliage of each plant (or foliage that was live during the current growing season for senesced plants), and ignoring any normal spaces occurring between the leaves of a plant. This best reflects the plant’s above- and below-ground zone of dominance.

The cover estimate is based on the current year’s growth present at the time of the plot visit. Includes both living and dead material from the current year. If herbs or shrubs have already dried out, dropped leaves, or senesced -- the cover of foliage that was live during the current growing season is estimated (e.g. on plots done early in the year, do not estimate based on the previous growing season’s growth).

Does not include dead branches of shrubs and trees in the cover polygons. The percent is not adjusted for the time of year during which the visit was made (i.e. if the plants are immature and small because the plot is being completed early in the growing season).

Overlap of plants of the same species is ignored. Plants of the same species are visually grouped together into a percent cover. There will often be overlap of plants of different species. Therefore, total cover for a subplot may exceed 100%. Species that are on the Indicator list or the Weed list and that cover less than 1% are recorded as 1%.

14. CYCLE

Inventory cycle number. A number assigned to a set of plots, measured over a particular period of time from which estimates are made. In the islands, the initial measurement is Cycle 2 (from 2001 to 2011) and the 2nd remeasurement is Cycle 3 (2012 and beyond).

15. SUBCYCLE

Inventory subcycle number. For an annual inventory that takes N years to measure all plots, subcycle shows in which of the N years the data were measured.
VEG_P2VEG_PLOT_SPECIES table
(Understory vegetation data on each plot)

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Descriptive Name</th>
<th>Data type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 CN</td>
<td>Unique record number for a row in the VEG_P2VEG_PLOT_SPECIES table</td>
<td>Text</td>
</tr>
<tr>
<td>2 PLT_CN</td>
<td>Unique record number for a plot in the PLOT table</td>
<td>Text</td>
</tr>
<tr>
<td>3 INVYR</td>
<td>Inventory year</td>
<td>Integer</td>
</tr>
<tr>
<td>4 MEASYEAR</td>
<td>Measurement year</td>
<td>Integer</td>
</tr>
<tr>
<td>5 STATECD</td>
<td>State code</td>
<td>Integer</td>
</tr>
<tr>
<td>6 UNITCD</td>
<td>Survey unit code</td>
<td>Integer</td>
</tr>
<tr>
<td>7 COUNTYCD</td>
<td>County code</td>
<td>Integer</td>
</tr>
<tr>
<td>8 PLOT</td>
<td>Public plot number</td>
<td>Integer</td>
</tr>
<tr>
<td>9 VEG_SPCD</td>
<td>Vegetation species code</td>
<td>Text</td>
</tr>
<tr>
<td>10 VEG_FLDSPCD</td>
<td>Species code recorded in the field</td>
<td>Text</td>
</tr>
<tr>
<td>11 UNIQUE_SP_NBR</td>
<td>Plant number for unknown species</td>
<td>Integer</td>
</tr>
<tr>
<td>12 SPCD_STATUS</td>
<td>Species code status</td>
<td>Text</td>
</tr>
<tr>
<td>13 SPCD_TYPE</td>
<td>Species code type</td>
<td>Text</td>
</tr>
<tr>
<td>14 CYCLE</td>
<td>Inventory cycle number</td>
<td>Integer</td>
</tr>
<tr>
<td>15 SUBCYCLE</td>
<td>Inventory subcycle number</td>
<td>Integer</td>
</tr>
</tbody>
</table>

Vegetation data were collected under different protocol over time and are stored in different tables. Data in this table are from the newest protocol, and were collected on the following islands: American Samoa in 2012, Guam in 2013, and Palau in 2014 (and in Hawaii 2011 and later).

Notes about the VEG_SPCD and VEG_FLDSPCD

Natural Resource Conservation Service (NRCS) PLANTS Database provides standardized information about the vascular plants, mosses, liverworts, hornworts, and lichens of the U.S. and its territories. It includes names, plant symbols, checklists, distributional data, species abstracts, characteristics, images, crop information, automated tools, onward Web links, and references: USDA, NRCS. 2010. The PLANTS Database (http://plants.usda.gov, 1 January 2010). National Plant Data Center, Baton Rouge, LA 70874-4490 USA.

The REF_PLANT_DICTIONARY_islands table uses species codes downloaded in January of 2010. Link the VEG_SPCD or VEG_FLDSPCD columns to the REF_PLANT_DICTIONARY.SYMBOL column.

VEG_P2VEG_PLOT_SPECIES.PLT_CN = PLOT.CN links the understory vegetation plot data to the plot record.
1. **CN** Unique number used to identify a row in the VEG_P2VEG_PLOT_SPECIES table.

2. **PLT_CN** Unique record number for each row in the PLOT table. This is a key column used to link to most other database tables. Link to the PLOT table as follows: link VEG_P2VEG_PLOT_SPECIES.PLT_CN to PLOT.CN.

3. **INVYR** Inventory year. The year when the inventory data were scheduled to be collected. INVYR is often (but not necessarily) the same as MEASYEAR, which is the year when the plot was actually visited and measured. See the SURVEY table for more info.

4. **MEASYEAR** Measurement year. The year in which the plot was completed. MEASYEAR may differ from INVYR.

5. **STATECD** State code for FIA. This is referred to as the Island Group code for the Pacific Islands inventories. It identifies the larger Island Group, which consists of a number of smaller Islands. These smaller islands are called Counties by FIA (COUNTYCD).

<table>
<thead>
<tr>
<th>Island group code (STATECD)</th>
<th>Island group name (STATENM)</th>
<th>Island group abbrev. (STATEAB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Hawaii</td>
<td>HI</td>
</tr>
<tr>
<td>60</td>
<td>American Samoa</td>
<td>AS</td>
</tr>
<tr>
<td>66</td>
<td>Guam</td>
<td>GU</td>
</tr>
<tr>
<td>70</td>
<td>Palau</td>
<td>PW</td>
</tr>
</tbody>
</table>

6. **UNITCD** Survey unit code. This is not used in the Pacific Islands – all codes are ‘1’.

7. **COUNTYCD** County code for FIA. This is referred to as the Island code for the Pacific Islands inventories. It identifies one of the smaller islands within the larger Island Group. Please refer to the COUNTY table for codes and definitions.

8. **PLOT** Public Plot number. A numeric identifier for a plot. The combination of INVYR, STATECD and PLOT will uniquely identify a plot record in the database. It is usually more convenient to use PLT_CN (see description above) to identify unique plots in the inventory. PLT_CN numbers do not change over time. Every record in the PLOT table has a unique ‘CN’, this is labeled as PLT_CN in all other tables.

9. **VEG_SPCD** Vegetation species code. A code indicating each sampled vascular plant species found rooted in or overhanging the sampled condition of the subplot at any height.

10. **VEG_FLDSPCD** Vegetation field species code. Species code assigned by the field crew.

11. **UNIQUE_SP_NBR** Plant number for an unknown species or genus-record. A consecutive number that distinguishes unknowns or genus records when 2 or more are identified on the same plot. Note: unknown tree species is not an option (but a genus record using the correct PLANTS code is OK in rare instances).

12. **SPCD_STATUS** Species code status. A code that indicates a plant species was entered by field crew, but was not expected to be found in the State where the plot was located. If this happens, a code of ‘#’ is entered in this column, alerting analysts and other users to this situation.
13 SPCD_TYPE Species code type. A code that indicates the type of plant species code entered by the field crew. It describes whether the crew could identify the plant to the species level or to the genus level. If neither of these were possible, a code of 'Unknown' is recorded. Valid codes are S, G, U.

<table>
<thead>
<tr>
<th>CODE</th>
<th>DEFINITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>Genus</td>
</tr>
<tr>
<td>S</td>
<td>Species</td>
</tr>
<tr>
<td>U</td>
<td>Unknown species</td>
</tr>
</tbody>
</table>

14. CYCLE Inventory cycle number. A number assigned to a set of plots, measured over a particular period of time from which estimates are made. In the islands, the initial measurement is Cycle 2 (from 2001 to 2011) and the 2nd remeasurement is Cycle 3 (2012 and beyond).

15. SUBCYCLE Inventory subcycle number. For an annual inventory that takes N years to measure all plots, subcycle shows in which of the N years the data were measured.
VEG_INVASIVE_SUBPLOT_SPP table (Invasive vegetation data on the subplot)

<table>
<thead>
<tr>
<th>Column name</th>
<th>Descriptive name</th>
<th>Data type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 CN</td>
<td>Sequence number</td>
<td>Text</td>
</tr>
<tr>
<td>2 PLT_CN</td>
<td>Plot sequence number</td>
<td>Text</td>
</tr>
<tr>
<td>3 INVYR</td>
<td>Inventory year</td>
<td>Integer</td>
</tr>
<tr>
<td>4 MEASYEAR</td>
<td>Measurement year</td>
<td>Integer</td>
</tr>
<tr>
<td>5 STATECD</td>
<td>State code</td>
<td>Integer</td>
</tr>
<tr>
<td>6 UNITCD</td>
<td>Survey unit code</td>
<td>Integer</td>
</tr>
<tr>
<td>7 COUNTYCD</td>
<td>County code</td>
<td>Integer</td>
</tr>
<tr>
<td>8 PLOT</td>
<td>Public plot number</td>
<td>Number</td>
</tr>
<tr>
<td>9 SUBP</td>
<td>Subplot number</td>
<td>Number</td>
</tr>
<tr>
<td>10 CONDID</td>
<td>Condition class number</td>
<td>Integer</td>
</tr>
<tr>
<td>11 VEG_SPCD</td>
<td>Species</td>
<td>Text</td>
</tr>
<tr>
<td>12 VEG_FLDSPCD</td>
<td>Species recorded in the field</td>
<td>Text</td>
</tr>
<tr>
<td>13 UNIQUE_SP_NBR</td>
<td>Plant unknown species number</td>
<td>Integer</td>
</tr>
<tr>
<td>14 COVER_PCT</td>
<td>Canopy cover of each species</td>
<td>Integer</td>
</tr>
<tr>
<td>15 CYCLE</td>
<td>Inventory cycle number</td>
<td>Integer</td>
</tr>
<tr>
<td>16 SUBCYCLE</td>
<td>Inventory subplot number</td>
<td>Integer</td>
</tr>
</tbody>
</table>

• INVASIVE_SUBPLOT_SPP table - Provides percent cover data of invasive species identified on the subplot.

Data in this table are from the newest protocol, and were collected on the following islands: American Samoa in 2012, Guam in 2013, and Palau in 2014 (and in Hawaii 2011 and later).

Notes about the VEG_SPCD and VEG_FLDSPCD
Natural Resource Conservation Service (NRCS) PLANTS Database provides standardized information about the vascular plants, mosses, liverworts, hornworts, and lichens of the U.S. and its territories. It includes names, plant symbols, checklists, distributional data, species abstracts, characteristics, images, crop information, automated tools, onward Web links, and references: USDA, NRCS. 2010. The PLANTS Database (http://plants.usda.gov, 1 January 2010). National Plant Data Center, Baton Rouge, LA 70874-4490 USA.

The REF_PLANT_DICTIONARY_islands table uses species codes downloaded in January of 2010. Link the VEG_SPCD or VEG_FLDSPCD columns to the REF_PLANT_DICTIONARY.SYMBOL column.

REF_INVASIVE SPECIES.SYMBOL = INVASIVE_SUBPLOT_SPP.VEG_SPCD links the invasive species reference to the invasive species NRCS code

PLOT.CN = INVASIVE_SUBPLOT_SPP.PLT_CN links the invasive subplot species record(s) to the plot record.

SUBP_COND.PLT_CN = INVASIVE_SUBPLOT_SPP.PLT_CN and SUBP_COND.CONDID = INVASIVE_SUBPLOT_SPP.CONDID and SUBP_COND.SUBP = INVASIVE_SUBPLOT_SPP.SUBP links the invasive subplot species record(s) to the unique subplot condition record.
1. **CN**
 Unique number used to identify a row in the Invasive Subplot Species table.

2. **PLT_CN**
 Unique record number for each row in the PLOT table. This is a key column used to link to most other database tables. Link to the PLOT table as follows: link VEG_INVASIVE_SUBPLOT_SP.PLT_CN to PLOT_CN

3. **INVYR**
 Inventory year. The year when the inventory data were scheduled to be collected. INVYR is often (but not necessarily) the same as MEASYEAR, which is the year when the plot was actually visited and measured. See the SURVEY table for more info.

4. **MEASYEAR**
 Measurement year. The year in which the plot was completed. MEASYEAR may differ from INVYR.

5. **STATECD**
 State code for FIA. This is referred to as the Island Group code for the Pacific Islands inventories. It identifies the larger Island Group, which consists of a number of smaller Islands. These smaller islands are called Counties by FIA (COUNTYCD).

<table>
<thead>
<tr>
<th>Island group code (STATECD)</th>
<th>Island group name (STATENM)</th>
<th>Island group abbrev. (STATEAB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Hawaii</td>
<td>HI</td>
</tr>
<tr>
<td>60</td>
<td>American Samoa</td>
<td>AS</td>
</tr>
<tr>
<td>66</td>
<td>Guam</td>
<td>GU</td>
</tr>
<tr>
<td>70</td>
<td>Palau</td>
<td>PW</td>
</tr>
</tbody>
</table>

6. **UNITCD**
 Survey unit code. This is not used in the Pacific Islands – all codes are ‘1’.

7. **COUNTYCD**
 County code for FIA. This is referred to as the Island code for the Pacific Islands inventories. It identifies one of the smaller islands within the larger Island Group. Please refer to the COUNTY table for codes and definitions.

8. **PLOT**
 Public Plot number. A numeric identifier for a plot. The combination of INVYR, STATECD and PLOT will uniquely identify a plot record in the database. It is usually more convenient to use PLT_CN (see description above) to identify unique plots in the inventory. PLT_CN numbers do not change over time. Every record in the PLOT table has a unique ‘CN’, this is labeled as PLT_CN in all other tables.

9. **SUBP**
 Subplot number. The number assigned to the subplot. (1 through 4). Subplots are circular with a 24 foot radius. Please refer to the field manual for an illustration of the plot layout.

10. **CONDID**
 Condition class number. Unique identifying number assigned to each condition on a plot. A condition is initially defined by condition class status. Differences in reserved status, owner group, forest type, stand-size class, regeneration status, and stand density further define condition for forest land. Mapped nonforest conditions are also assigned numbers. At the time of the plot establishment, the condition class at plot center (the center of subplot 1) is usually designated as condition class 1. Other condition classes are assigned numbers sequentially at the time each condition class is delineated. On a plot, each sampled condition class must have a unique number that can change at remeasurement to reflect new conditions on the plot.
11. **VEG_SPCD**
Vegetation species code. A text code indicating each sampled vascular plant species found rooted in or overhanging the sampled condition of the subplot at any height.

12. **VEG_FLDSPCD**
Vegetation field species code. Species text code assigned by the field crew.

13. **UNIQUE_SP_NBR**
Plant number for an unknown species or genus-record. A consecutive number that distinguishes unknowns or genus records when 2 or more are identified on the same plot. Note: unknown tree species is not an option (but a genus record using the correct PLANTS code is OK in rare instances).

14. **COVER_PCT**
The cover of each species in its respective height (layer) group. For each species recorded, the canopy cover present on the subplot condition to the nearest 1 percent. Note that cover is always recorded as a percent of the full subplot area, even if the condition that was assessed did not cover the full subplot.

Cover is estimated to the nearest 1% for each species, as the proportion of the fixed-radius plot regardless of condition class boundaries that would be obscured by all plants of the species if viewed from directly above. For each plant, cover is based on a vertically projected polygon described by the outline of the live foliage of each plant (or foliage that was live during the current growing season for senescing plants), and ignoring any normal spaces occurring between the leaves of a plant. This best reflects the plant’s above- and below-ground zone of dominance.

The cover estimate is based on the current year’s growth present at the time of the plot visit. Includes both living and dead material from the current year. If herbs or shrubs have already dried out, dropped leaves, or senesced -- the cover of foliage that was live during the current growing season is estimated (e.g. on plots done early in the year, do not estimate based on the previous growing season’s growth).

Does not include dead branches of shrubs and trees in the cover polygons. The percent is not adjusted for the time of year during which the visit was made (i.e. if the plants are immature and small because the plot is being completed early in the growing season).

Overlap of plants of the same species is ignored. Plants of the same species are visually grouped together into a percent cover. There will often be overlap of plants of different species. Therefore, total cover for a subplot may exceed 100%. Species that are on the Indicator list or the Weed list and that cover less than 1% are recorded as 1%.

15. **CYCLE**
Inventory cycle number. A number assigned to a set of plots, measured over a particular period of time from which estimates are made. In the islands, the initial measurement is Cycle 2 (from 2001 to 2011) and the 2nd remeasurement is Cycle 3 (2012 and beyond).

16. **SUBCYCLE**
Inventory subcycle number. For an annual inventory that takes N years to measure all plots, subcycle shows in which of the N years the data were measured.
VEG_SP_PNWRS table (Understory vegetation data on each subplot)

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Descriptive Name</th>
<th>Data type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CN</td>
<td>Unique record number for a row in the VEG_SP_PNWRS table</td>
</tr>
<tr>
<td>2</td>
<td>PLT_CN</td>
<td>Unique record number for a plot in the PLOT table</td>
</tr>
<tr>
<td>3</td>
<td>SBP_CN</td>
<td>Unique record number for a row in the SUBPLOT table</td>
</tr>
<tr>
<td>4</td>
<td>INVYR</td>
<td>Inventory year</td>
</tr>
<tr>
<td>5</td>
<td>MEASYEAR</td>
<td>Measurement year</td>
</tr>
<tr>
<td>6</td>
<td>STATECD</td>
<td>State code</td>
</tr>
<tr>
<td>7</td>
<td>UNITCD</td>
<td>Survey unit code</td>
</tr>
<tr>
<td>8</td>
<td>COUNTYCD</td>
<td>County code</td>
</tr>
<tr>
<td>9</td>
<td>PLOT</td>
<td>Public plot number</td>
</tr>
<tr>
<td>10</td>
<td>SUBP</td>
<td>Subplot number</td>
</tr>
<tr>
<td>11</td>
<td>VEG_SPCD</td>
<td>Vegetation species code</td>
</tr>
<tr>
<td>12</td>
<td>PLANT_NBR</td>
<td>Plant number for unknown species</td>
</tr>
<tr>
<td>13</td>
<td>VEG_FLDSPCD</td>
<td>Species code recorded in the field</td>
</tr>
<tr>
<td>14</td>
<td>VEG_TYP_CD</td>
<td>Vegetation type</td>
</tr>
<tr>
<td>15</td>
<td>CVR_PCT</td>
<td>Species Cover</td>
</tr>
<tr>
<td>16</td>
<td>HT</td>
<td>Species Height</td>
</tr>
<tr>
<td>17</td>
<td>GROW_HAB_CD</td>
<td>Species Growth Habit code</td>
</tr>
<tr>
<td>18</td>
<td>CYCLE</td>
<td>Inventory cycle number</td>
</tr>
<tr>
<td>19</td>
<td>SUBCYCLE</td>
<td>Inventory subcycle number</td>
</tr>
</tbody>
</table>

Vegetation data were collected under different protocol over time and are stored in different tables. Data in this table are from the older protocol, and were collected on the following islands: American Samoa in 2001 and in Guam 2002.

Notes about the VEG_SPCD and VEG_FLDSPCD
Natural Resource Conservation Service (NRCS) PLANTS Database provides standardized information about the vascular plants, mosses, liverworts, hornworts, and lichens of the U.S. and its territories. It includes names, plant symbols, checklists, distributional data, species abstracts, characteristics, images, crop information, automated tools, onward Web links, and references: USDA, NRCS. 2010. The PLANTS Database (http://plants.usda.gov, 1 January 2010). National Plant Data Center, Baton Rouge, LA 70874-4490 USA.

The REF_PLANT_DICTIONARY_islands table uses species codes downloaded in January of 2010. Link the VEG_SPCD or VEG_FLDSPCD columns to the REF_PLANT_DICTIONARY.SYMBOL column.

Link: VEG_SP_PNWRS.PLT_CN to PLOT.CN and VEG_SP_PNWRS.SBP_CN to SUBPLOT.CN
1. **CN**
 Unique record number for a row in the VEG_SP_PNWRS table.

2. **PLT_CN**
 Unique record number for each row in the PLOT table. This is a key column used to link to most other database tables. Link to the PLOT table as follows: link VEG_SP_PNWRS.PLT_CN to PLOT_CN

3. **SBP_CN**
 Unique record number for a row in the SUBPLOT table. Link as follows: VEG_SP_PNWRS.PLT_CN to PLOT_CN and VEG_SP_PNWRS.SBP_CN to SUBPLOT_CN

4. **INVYR**
 Inventory year. The year when the inventory data were scheduled to be collected. INVYR is often (but not necessarily) the same as MEASYEAR, which is the year when the plot was actually visited and measured. See the SURVEY table for more info.

5. **MEASYEAR**
 Measurement year. The year in which the plot was completed. MEASYEAR may differ from INVYR.

6. **STATECD**
 State code for FIA. This is referred to as the Island Group code for the Pacific Islands inventories. It identifies the larger Island Group, which consists of a number of smaller Islands. These smaller islands are called Counties by FIA (COUNTYCD).

<table>
<thead>
<tr>
<th>Island group code (STATECD)</th>
<th>Island group name (STATENM)</th>
<th>Island group abbrev. (STATEAB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Hawaii</td>
<td>HI</td>
</tr>
<tr>
<td>60</td>
<td>American Samoa</td>
<td>AS</td>
</tr>
<tr>
<td>66</td>
<td>Guam</td>
<td>GU</td>
</tr>
<tr>
<td>70</td>
<td>Palau</td>
<td>PW</td>
</tr>
</tbody>
</table>

7. **UNITCD**
 Survey unit code. This is not used in the Pacific Islands – all codes are ‘1’.

8. **COUNTYCD**
 County code for FIA. This is referred to as the Island code for the Pacific Islands inventories. It identifies one of the smaller islands within the larger Island Group. Please refer to the COUNTY table for codes and definitions.

9. **PLOT**
 Public Plot number. A numeric identifier for a plot. The combination of INVYR, STATECD and PLOT will uniquely identify a plot record in the database. It is usually more convenient to use PLT_CN (see description above) to identify unique plots in the inventory. PLT_CN numbers do not change over time. Every record in the PLOT table has a unique 'CN', this is labeled as PLT_CN in all other tables.

10. **SUBP**
 Subplot number. The number assigned to the subplot. (1 through 4). Subplots are circular with a 24 foot radius. Please refer to the field manual for an illustration of the plot layout

11. **VEG_SPCD**
 Vegetation species code. A code indicating each sampled vascular plant species found rooted in or overhanging the sampled condition of the subplot at any height. See the REF_PLANT_DICTIONARY table for a crosswalk from code to species names. If the species of the plant cannot be identified, either the genus or an unknown generic code is recorded.
12. **PLANT_NBR**
 Plant number for an unknown species or genus-record. A consecutive number that distinguishes unknowns or genus records when 2 or more are identified on the same plot. Note: unknown tree species is not an option (but a genus record using the correct PLANTS code is OK in rare instances).

13. **VEG_FLDSPCD**
 Vegetation field species code. Species code assigned by the field crew.

14. **VEG_TYP_CD**
 Vegetation type. The life form of the vegetation being measured. Collected on all species that >3% cover and all high priority species.

<table>
<thead>
<tr>
<th>CODE</th>
<th>DEFINITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tree</td>
</tr>
<tr>
<td>2</td>
<td>Non-tree woody shrubs + vines</td>
</tr>
<tr>
<td>3</td>
<td>Forb</td>
</tr>
<tr>
<td>4</td>
<td>Grasses</td>
</tr>
</tbody>
</table>

15. **COVER_PCT**
 Estimate the cover for each lifeform and for all vegetation on the subplot. Cover is estimated to the nearest 1% for each lifeform, as the proportion of the fixed-radius plot, regardless of condition class boundaries, that would be obscured by all plants in the lifeform if viewed from directly above. Total percent cover for a plant lifeform group cannot exceed 100 percent. Total percent cover for a plant lifeform group cannot exceed the sum of percent cover recorded for all individual species records of that plant group. However, total percent cover for a plant group can be, and often is, less than the sum of cover for all individual species within the group. This happens because of overlap between layers. If cover is greater than 0 but less than 1 percent, enter “01”. If no plants of the lifeform are present, enter “0”. Collected on all species >3% cover and all high priority species.

16. **HT**
 Height of the species layer. The average total height above the ground at which a species occurs, to the nearest foot. If a species occurs at substantially different heights in a subplot, plants can be grouped into two different height groups as long as the cover estimates of each are ≥ 3%. A species can be in more than one height by repeating the species code on an additional line.

 Guidelines for recognizing separate heights for a species:
 - Graminoid: Canopy heights must differ by at least 2 feet
 - Forb: Canopy layers must differ by at least 2 feet
 - Shrub: Canopy layers must differ by at least 4 feet
 - Tree: Seedling layers must differ by at least 4 feet
17. **GROW_HAB_CD**

The growth habit code for each individual species record. Only the predominate growth habit on the subplot is recorded for the species. Species grouped into lifeforms do not get a growth habit code. Valid growth habit codes for the FIA inventory are derived from the PLANTS database (USDA, NRCS. 2000. The PLANTS database [http://plants.usda.gov/plants]. Collected on all subplots where accessible forest-land condition classes are >= 50% of the subplot.

<table>
<thead>
<tr>
<th>Growth Habit Code</th>
<th>Description</th>
<th>FIA plant lifeform group</th>
<th>PLANTS Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>FB</td>
<td>Forb/Herb</td>
<td>Forb</td>
<td>Vascular plant without significant woody tissue above or at the ground. Forbs and herbs may be annual, biennial, or perennial but always lack significant thickening by secondary woody growth and have perennating buds borne at or below the ground surface.</td>
</tr>
<tr>
<td>GR</td>
<td>Graminoid</td>
<td>Graminoid</td>
<td>Grass or grass-like plant, including grasses (Poaceae), sedges (Cyperaceae), rushes (Juncaceae), arrow-grasses (Juncaginaceae), and quillworts (Isoetes)</td>
</tr>
<tr>
<td>SH</td>
<td>Shrub</td>
<td>Shrub</td>
<td>Perennial, multi-stemmed woody plant that is usually less than 4 to 5 meters or 13 to 16 feet in height. Shrubs typically have several stems arising from or near the ground, but may be taller than 5 meters or single-stemmed under certain environmental conditions. Includes succulents (e.g. cacti).</td>
</tr>
<tr>
<td>SS</td>
<td>Subshrub</td>
<td>Shrub or Forb</td>
<td>Low-growing shrub usually under 0.5 m or 1.5 feet tall (never exceeding 1 meter or 3 feet tall) at maturity</td>
</tr>
<tr>
<td>VI</td>
<td>Vine Shrub</td>
<td></td>
<td>Twining/climbing plant with relatively long stems, can be woody or herbaceous. GDC classification considers woody vines to be shrubs and herbaceous vines to be herbs.</td>
</tr>
<tr>
<td>TR</td>
<td>Tree</td>
<td>Tree or Shrub</td>
<td>Perennial, woody plant with a single stem (trunk), normally greater than 4 to 5 m or 13 to 16 ft in height; under certain environmental conditions, some tree species may develop a multi-stemmed or short growth form (less than 4 m or 13 ft in height).</td>
</tr>
</tbody>
</table>

18. **CYCLE**

Inventory cycle number. A number assigned to a set of plots, measured over a particular period of time from which estimates are made. In the islands, the initial measurement is Cycle 2 (from 2001 to 2011) and the 2nd remeasurement is Cycle 3 (2012 and beyond).

19. **SUBCYCLE**

Inventory subcycle number. For an annual inventory that takes N years to measure all plots, subcycle shows in which of the N years the data were measured
VEG_PLOT_SPECIES_PNWRS table
(Understory vegetation data on the plot)

<table>
<thead>
<tr>
<th>Column name</th>
<th>Descriptive name</th>
<th>Data type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 CN</td>
<td>Unique record number for a row in the VEG_PLOT_SPECIES_PNWRS table</td>
<td>Text</td>
</tr>
<tr>
<td>2 PLT_CN</td>
<td>Unique record number for a plot in the PLOT table</td>
<td>Text</td>
</tr>
<tr>
<td>3 INVYR</td>
<td>Inventory year</td>
<td>Integer</td>
</tr>
<tr>
<td>4 MEASYEAR</td>
<td>Measurement year</td>
<td>Integer</td>
</tr>
<tr>
<td>5 STATECD</td>
<td>State code</td>
<td>Integer</td>
</tr>
<tr>
<td>6 UNITCD</td>
<td>Survey unit code</td>
<td>Integer</td>
</tr>
<tr>
<td>7 COUNTYCD</td>
<td>County code</td>
<td>Integer</td>
</tr>
<tr>
<td>8 PLOT</td>
<td>Public plot number</td>
<td>Integer</td>
</tr>
<tr>
<td>9 VEG_SPCD</td>
<td>Vegetation species code</td>
<td>Text</td>
</tr>
<tr>
<td>10 PLANT_NBR</td>
<td>Plant number for unknown species</td>
<td>Integer</td>
</tr>
<tr>
<td>11 VEG_TYP_CD</td>
<td>Vegetation type</td>
<td>Integer</td>
</tr>
<tr>
<td>12 VEG_FLDSPCD</td>
<td>Vegetation species code, field recorded</td>
<td>Text</td>
</tr>
<tr>
<td>13 GROW_HAB_CD</td>
<td>Growth habit code</td>
<td>Text</td>
</tr>
<tr>
<td>14 DEV_STAGE_CD</td>
<td>Stage of shrub development</td>
<td>Integer</td>
</tr>
<tr>
<td>15 SUBP_1_CVR_PCT</td>
<td>Percent canopy cover on subplot 1</td>
<td>Integer</td>
</tr>
<tr>
<td>16 SUBP_2_CVR_PCT</td>
<td>Percent canopy cover on subplot 2</td>
<td>Integer</td>
</tr>
<tr>
<td>17 SUBP_3_CVR_PCT</td>
<td>Percent canopy cover on subplot 3</td>
<td>Integer</td>
</tr>
<tr>
<td>18 SUBP_4_CVR_PCT</td>
<td>Percent canopy cover on subplot 4</td>
<td>Integer</td>
</tr>
<tr>
<td>19 SUBP_1_HT</td>
<td>Average total height on subplot 1</td>
<td>Integer</td>
</tr>
<tr>
<td>20 SUBP_2_HT</td>
<td>Average total height on subplot 2</td>
<td>Integer</td>
</tr>
<tr>
<td>21 SUBP_3_HT</td>
<td>Average total height on subplot 3</td>
<td>Integer</td>
</tr>
<tr>
<td>22 SUBP_4_HT</td>
<td>Average total height on subplot 4</td>
<td>Integer</td>
</tr>
<tr>
<td>23 CYCLE</td>
<td>Inventory cycle number</td>
<td>Integer</td>
</tr>
<tr>
<td>24 SUBCYCLE</td>
<td>Inventory subcycle number</td>
<td>Integer</td>
</tr>
</tbody>
</table>

Vegetation data were collected under different protocol over time and are stored in different tables. Data in this table are from the older protocol, and were collected on the following islands: Palau in 2003 and in Hawaii 2010.

Notes about the VEG_SPCD and VEG_FLDSPCD
Natural Resource Conservation Service (NRCS) PLANTS Database provides standardized information about the vascular plants, mosses, liverworts, hornworts, and lichens of the U.S. and its territories. It includes names, plant symbols, checklists, distributional data, species abstracts, characteristics, images, crop information, automated tools, onward Web links, and references: USDA, NRCS. 2010. The PLANTS Database (http://plants.usda.gov, 1 January 2010). National Plant Data Center, Baton Rouge, LA 70874-4490 USA.

The REF_PLANT_DICTIONARY_islands table uses species codes downloaded in January of 2010. Link the VEG_SPCD or VEG_FLDSPCD columns to the REF_PLANT_DICTIONARY_SYMBOL column.
1. **CN**
 Unique number used to identify a row in the VEG_PLOT_SPECIES_PNWRS table.

2. **PLT_CN**
 Unique record number for each row in the PLOT table. This is a key column used to link to most other database tables. Link to the PLOT table as follows:
 VEG_PLOT_SPECIES_PNWRS.PLT_CN = PLOT_CN links the understory vegetation plot data to the unique plot record

3. **INVYR**
 Inventory year. The year when the inventory data were scheduled to be collected. INVYR is often (but not necessarily) the same as MEASYEAR, which is the year when the plot was actually visited and measured. See the SURVEY table for more info.

4. **MEASYEAR**
 Measurement year. The year in which the plot was completed. MEASYEAR may differ from INVYR.

5. **STATECD**
 State code for FIA. This is referred to as the Island Group code for the Pacific Islands inventories. It identifies the larger Island Group, which consists of a number of smaller Islands. These smaller islands are called Counties by FIA (COUNTYCD).

<table>
<thead>
<tr>
<th>Island group code (STATECD)</th>
<th>Island group name (STATENM)</th>
<th>Island group abbrev. (STATEAB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 Hawaii</td>
<td></td>
<td>HI</td>
</tr>
<tr>
<td>60 American Samoa</td>
<td></td>
<td>AS</td>
</tr>
<tr>
<td>66 Guam</td>
<td></td>
<td>GU</td>
</tr>
<tr>
<td>70 Palau</td>
<td></td>
<td>PW</td>
</tr>
</tbody>
</table>

6. **UNITCD**
 Survey unit code. This is not used in the Pacific Islands – all codes are ‘1’.

7. **COUNTYCD**
 County code for FIA. This is referred to as the Island code for the Pacific Islands inventories. It identifies one of the smaller islands within the larger Island Group. Please refer to the COUNTY table for codes and definitions.

8. **PLOT**
 Public Plot number. A numeric identifier for a plot. The combination of INVYR, STATECD and PLOT will uniquely identify a plot record in the database. It is usually more convenient to use PLT_CN (see description above) to identify unique plots in the inventory. PLT_CN numbers do not change over time. Every record in the PLOT table has a unique 'CN', this is labeled as PLT_CN in all other tables.

9. **VEG_SPCD**
 Vegetation species code. A code indicating each sampled vascular plant species found rooted in or overhanging the sampled condition of the subplot at any height.

10. **PLANT_NBR**
 Plant number for an unknown species or genus-record. A consecutive number that distinguishes unknowns or genus records when 2 or more are identified on the same plot. Note: unknown tree species is not an option (but a genus record using the correct PLANTS code is OK in rare instances).
11. **VEG_TYP_CD**
Vegetation type. The life form of the vegetation being measured. Collected on all species that >3% cover and all high priority species.

<table>
<thead>
<tr>
<th>CODE</th>
<th>DEFINITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tree</td>
</tr>
<tr>
<td>2</td>
<td>Non-tree woody shrubs + vines</td>
</tr>
<tr>
<td>3</td>
<td>Forb</td>
</tr>
<tr>
<td>4</td>
<td>Grasses</td>
</tr>
</tbody>
</table>

12. **VEG_FLDSPCD**
Vegetation field species code. Species code assigned by the field crew.

13. **GROW_HAB_CD**
The growth habit code for each individual species record. Only the predominate growth habit on the subplot is recorded for the species. Species grouped into lifeforms do not get a growth habit code. Valid growth habit codes for the FIA inventory are derived from the PLANTS database. Collected on all subplots where accessible forest-land condition classes are >= 50% of the subplot.

<table>
<thead>
<tr>
<th>Growth Habit Code</th>
<th>Description</th>
<th>FIA plant lifeform group</th>
<th>PLANTS Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>FB</td>
<td>Forb/Herb</td>
<td>Forb</td>
<td>Vascular plant without significant woody tissue above or at the ground. Forbs and herbs may be annual, biennial, or perennial but always lack significant thickening by secondary woody growth and have perennating buds borne at or below the ground surfaced.</td>
</tr>
<tr>
<td>GR</td>
<td>Graminoid</td>
<td>Graminoid</td>
<td>Grass or grass-like plant, including grasses (Poaceae), sedges (Cyperaceae), rushes (Juncaceae), arrow-grasses (Juncaginaceae), and quillworts (Isoetes). An herb in the FGDC classification.</td>
</tr>
<tr>
<td>SH</td>
<td>Shrub</td>
<td>Shrub</td>
<td>Perennial, multi-stemmed woody plant that is usually less than 4 to 5 meters or 13 to 16 feet in height. Shrubs typically have several stems arising from or near the ground, but may be taller than 5 meters or single-stemmed under certain environmental conditions. Includes succulents (e.g. cacti).</td>
</tr>
<tr>
<td>SS</td>
<td>Subshrub</td>
<td>Shrub or Forb</td>
<td>Low-growing shrub usually under 0.5 m or 1.5 feet tall (never exceeding 1 meter or 3 feet tall) at maturity. A dwarf-shrub in the FGDC classification. Includes succulents (e.g. cacti).</td>
</tr>
<tr>
<td>VI</td>
<td>Vine Shrub</td>
<td></td>
<td>Twining/climbing plant with relatively long stems, can be woody or herbaceous. GDC classification considers woody vines to be shrubs and herbaceous vines to be herbs.</td>
</tr>
</tbody>
</table>
14. **DEV_STAGE_CD** The stage of development for each species record with a lifeform = shrub. This data was not collected after 2010.

<table>
<thead>
<tr>
<th>Code</th>
<th>Shrub Stage of Development</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Immature, no dead material (stems and branches) associated with the shrub record.</td>
</tr>
<tr>
<td>2</td>
<td>Mature, 1-24 percent dead material associated with the shrub record.</td>
</tr>
<tr>
<td>3</td>
<td>Over-mature, 25-49 percent dead material associated with shrub record.</td>
</tr>
<tr>
<td>4</td>
<td>Decadent, 50 percent or more dead material associated with shrub record.</td>
</tr>
</tbody>
</table>

15. **SUBP_1_CVR_PCT** Percent canopy cover on subplot 1. The cover of each species that occupies at least 3% of the 24 ft. radius subplot in its respective height group. Cover is estimated to the nearest 1% for each species, as the proportion of the fixed-radius plot regardless of condition class boundaries that would be obscured by all plants of the species if viewed from directly above. For each plant, cover is based on a vertically-projected polygon described by the outline of the live foliage of each plant (or foliage that was live during the current growing season for senescing plants), and ignoring any normal spaces occurring between the leaves of a plant (Figure 11; Daubenmire 1959). This best reflects the plant’s above- and below-ground zone of dominance. Base the percent cover estimate on the current years’ growth present at the time of the plot visit. Include both living and dead material from the current year. Do not include dead branches of shrubs and trees in the cover polygons. Do not adjust the percent for the time of year during which the visit was made (i.e. if the plants are immature and small because the plot is being completed early in the growing season). Overlap of plants of the same species is ignored. Visually group plants in a species together into a percent cover. There will often be overlap of plants of different species. Therefore, the total cover for all species summed together on a subplot may exceed 100%. Cover less than 1% is recorded as 1%. (0% cover is only used for remeasurement, to indicate that a species is no longer present.)

16. **SUBP_2_CVR_PCT** Percent canopy cover on subplot 2. See definition for SUBP_1_CVR_PCT.

17. **SUBP_3_CVR_PCT** Percent canopy cover on subplot 3. See definition for SUBP_1_CVR_PCT.

18. **SUBP_4_CVR_PCT** Percent canopy cover on subplot 4. See definition for SUBP_1_CVR_PCT.

19. **SUBP_1_HT** Average total height on subplot 1. The average total height above the ground at which a species occurs on this subplot. If a species occurs at substantially different heights in a subplot, plants can be grouped into two different height groups as long as the cover estimates of each are ≥3% . A species can be in more than one height group by repeating the species code on an additional line. Heights are recorded to the nearest foot. Guidelines for recognizing separate heights for a species are: Graminoid canopy heights must differ by at least 2 ft; Forb canopy layers must differ
by at least 2 ft; Shrub canopy layers must differ by at least 4 ft; and Tree seedling layers must differ by at least 4 ft. Collected on all species with more than 3 percent cover on the subplot and all high priority species.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>
| 20. | **SUBP_2_HT**
Average total height on subplot 2. See definition for **SUBP_1_HT**. |
| 21. | **SUBP_3_HT**
Average total height on subplot 3. See definition for **SUBP_1_HT**. |
| 22. | **SUBP_4_HT**
Average total height on subplot 4. See definition for **SUBP_1_HT**. |
| 23. | **CYCLE**
Inventory cycle number. A number assigned to a set of plots, measured over a particular period of time from which estimates are made. In the islands, the initial measurement is Cycle 2 (from 2001 to 2011) and the 2nd remeasurement is Cycle 3 (2012 and beyond). |
| 24. | **SUBCYCLE**
Inventory subcycle number. For an annual inventory that takes N years to measure all plots, subcycle shows in which of the N years the data were measured |
POP_EVAL (Population Evaluation Table – contains EVALIDs for each island group)

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Descriptive Name</th>
<th>Data Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 CN</td>
<td>A unique number used to identify an evaluation record</td>
<td>Text</td>
</tr>
<tr>
<td>2 EVAL_GRP_CN</td>
<td>Evaluation group sequence number</td>
<td>Text</td>
</tr>
<tr>
<td>3 EVALID</td>
<td>Evaluation identifier</td>
<td>Integer</td>
</tr>
<tr>
<td>4 EVAL_DESCR</td>
<td>Evaluation description</td>
<td>Text</td>
</tr>
<tr>
<td>5 RSCD</td>
<td>Region or Station code</td>
<td>Integer</td>
</tr>
<tr>
<td>6 STATECD</td>
<td>State code</td>
<td>Integer</td>
</tr>
<tr>
<td>7 START_YEAR</td>
<td>Starting year of the inventory</td>
<td>Integer</td>
</tr>
<tr>
<td>8 END_YEAR</td>
<td>Ending year of the inventory</td>
<td>Integer</td>
</tr>
<tr>
<td>9 LOCATION_NM</td>
<td>Location name</td>
<td>Text</td>
</tr>
<tr>
<td>10 REPORT_YEAR_NM</td>
<td>Report year name</td>
<td>Text</td>
</tr>
<tr>
<td>11 LAND_ONLY</td>
<td>Land only</td>
<td>Text</td>
</tr>
<tr>
<td>12 TIMBERLAND_ONLY</td>
<td>Timberland only</td>
<td>Text</td>
</tr>
<tr>
<td>13 ESTN_METHOD</td>
<td>Estimation method</td>
<td>Text</td>
</tr>
<tr>
<td>14 NOTES</td>
<td>Notes about the evaluation</td>
<td>Text</td>
</tr>
</tbody>
</table>

- POP_EVAL table - An evaluation is the combination of a set of plots (the sample) and a set of Phase 1 data (obtained through remote sensing, called a stratification) that can be used to produce population estimates for a State (Island group) or Island. A record in the POP_EVAL table identifies one evaluation and provides some descriptive information about how the evaluation may be used.

POP_ESTN_UNIT.EVAL_CN = POP_EVAL.CN links the unique evaluation identifier (EVALID) in the POP_EVAL table to the unique geographical areas (ESTN_UNIT) that are stratified. Within a population evaluation (EVALID) there can be multiple population estimation units, or geographic areas across which there are a number of values being estimated.
1. **CN**
 Sequence number. A unique number used to identify an evaluation record. This appears as EVAL_CN in other tables.

2. **EVAL_GRP_CN**
 Evaluation group sequence number. Foreign key linking the population evaluation record to the population evaluation group record.

3. **EVALID**
 Evaluation identifier. The EVALID code uniquely identifies a set of field plots and associated phase 1 summary data used to make population estimates. (the grey EVALID’s below are used in most cases, because they include just the sampled plots).

<table>
<thead>
<tr>
<th>STATE</th>
<th>EVAL</th>
<th>EVALUATION_DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>AS</td>
<td>600102 American Samoa 2001: Annual P2, Sampled plots</td>
</tr>
<tr>
<td>60</td>
<td>AS</td>
<td>601202 American Samoa 2012: Annual P2, Sampled plots</td>
</tr>
<tr>
<td>66</td>
<td>GU</td>
<td>660202 Guam 2002: Annual P2, Sampled plots</td>
</tr>
<tr>
<td>66</td>
<td>GU</td>
<td>661302 Guam 2013: Annual P2, Sampled plots</td>
</tr>
<tr>
<td>70</td>
<td>PW</td>
<td>700302 Palau 2003: Annual P2, Sampled plots</td>
</tr>
<tr>
<td>70</td>
<td>PW</td>
<td>701402 Palau 2014: Annual P2, Sampled plots</td>
</tr>
<tr>
<td>60</td>
<td>AS</td>
<td>600101 American Samoa 2001: Annual P2, All plots</td>
</tr>
<tr>
<td>60</td>
<td>AS</td>
<td>601201 American Samoa 2012: Annual P2, All plots</td>
</tr>
<tr>
<td>66</td>
<td>GU</td>
<td>660201 Guam 2002: Annual P2, All plots</td>
</tr>
<tr>
<td>66</td>
<td>GU</td>
<td>661301 Guam 2013: Annual P2, All plots</td>
</tr>
<tr>
<td>70</td>
<td>PW</td>
<td>700301 Palau 2003: Annual P2, All plots</td>
</tr>
<tr>
<td>70</td>
<td>PW</td>
<td>701401 Palau 2014: Annual P2, All plots</td>
</tr>
</tbody>
</table>

4. **EVAL_DESCR**
 Evaluation description. A description of the area being evaluated includes the State and time period of the evaluation. See the EVALID definition above for details.

5. **RSCD**
 Region or Station Code. Identification number of the Forest Service Station that provided the inventory data. This is always 26 for the islands.

6. **STATECD**
 State code for FIA. This is referred to as the Island Group code for the Pacific Islands inventories. It identifies the larger Island Group, which consists of a number of smaller Islands. These smaller islands are called Counties by FIA (COUNTYCD).

7. **START_YEAR**
 Starting year of the inventory.

8. **END_YEAR**
 Ending year of the inventory.

9. **LOCATION_NM**
 Location name. State name as it would appear in the title of a report.

10. **REPORT_YEAR_NM**
 Report year name. The data collection years that might appear in the report title.
11. **LAND_ONLY**

Land only. A code indicating area used in stratifying evaluations. See POP_ESTN.Unit.AREA_SOURCE for more information.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>Only census land was used in the stratification process.</td>
</tr>
<tr>
<td>N</td>
<td>Census land and water were used in the stratification process.</td>
</tr>
</tbody>
</table>

12. **TIMBERLAND_ONLY**

Timberland only. A code indicating if the estimate can be made for timberland or for timberland and forest land. Timberland is not classified in the islands.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>Both timberland and forest land attributes can be estimated for the evaluation.</td>
</tr>
</tbody>
</table>

13. **ESTN_METHOD**

Estimation method. Describes method of estimation. Post-stratification is used in the PNW islands inventory.

14. **NOTES**

Notes. Notes should include information about the stratification method. May include citation for any publications that used the evaluation.
POP_EVAL_GRP (Population Evaluation Group Table)

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Descriptive Name</th>
<th>Data Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 CN</td>
<td>Sequence number</td>
<td>Text</td>
</tr>
<tr>
<td>2 EVAL_GRP</td>
<td>Evaluation group</td>
<td>Integer</td>
</tr>
<tr>
<td>3 EVAL_GRP_DESCR</td>
<td>Evaluation group description</td>
<td>Text</td>
</tr>
<tr>
<td>4 RSCD</td>
<td>Region or Station code</td>
<td>Integer</td>
</tr>
<tr>
<td>5 STATECD</td>
<td>State code</td>
<td>Integer</td>
</tr>
<tr>
<td>6 NOTES</td>
<td>Notes about the evaluation group</td>
<td>Text</td>
</tr>
</tbody>
</table>

POP_EVAL_GRP table - Lists and describes the evaluation groups. One record in the POP_EVAL_GRP table can be linked to all the evaluations that were used in generating estimates for a State (Island group).

POP_EVAL_GRP.CN = POP_EVAL_TYP.EVAL_GRP_CN links the evaluation group record to the evaluation type record

1. CN
 Sequence number. A unique sequence number used to identify an evaluation group record. Link the population evaluation group (POP_EVAL_GRP) record to the POP_EVAL_TYP record.

2. EVAL_GRP
 Evaluation group. An evaluation group identifies the evaluations that were used in producing a core set of tables. In some cases one evaluation will be used for area and volume and another evaluation for growth, removals and mortality.

3. EVAL_GRP_DESCR
 Evaluation group description. Identifies the state and range of years for the inventory.

4. RSCD
 Region or Station Code. Identification number of the Forest Service Station that provided the inventory data. This is always 26 for the islands.

5. STATECD
 State code for FIA. This is referred to as the Island Group code for the Pacific Islands inventories. It identifies the larger Island Group, which consists of a number of smaller Islands. These smaller islands are called Counties by FIA (COUNTYCD).
POP_EVAL_TYP (Population Evaluation Type Table)

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Descriptive Name</th>
<th>Data Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. CN</td>
<td>Sequence number</td>
<td>Text</td>
</tr>
<tr>
<td>2. STATECD</td>
<td>State code</td>
<td>Integer</td>
</tr>
<tr>
<td>3. EVAL_TYP</td>
<td>Evaluation type</td>
<td>Text</td>
</tr>
<tr>
<td>4. EVAL_GRP_CN</td>
<td>Evaluation group sequence number</td>
<td>Text</td>
</tr>
<tr>
<td>5. EVAL_CN</td>
<td>Evaluation sequence number</td>
<td>Text</td>
</tr>
</tbody>
</table>

POP_EVAL_TYP table - Provides information on the type of evaluations that were used to generate a set of tables for an inventory report. In a typical State inventory report, one evaluation is used to generate an estimate of the total land area and a second evaluation is used to generate current estimates of volume, numbers of trees and biomass.

POP_EVAL_TYP.EVAL_CN = POP_EVAL.CN links the evaluation type record to the evaluation record.
POP_EVAL_TYP.EVAL_GRP_CN = POP_EVAL_GRP.CN links the evaluation type record to the evaluation group record.
POP_EVAL_TYP.EVAL_TYP = REF_POP_EVAL_TYP_DESCR.EVAL_TYP links an evaluation type record to an evaluation type description reference record.

1. **CN**
 Sequence number. A unique number used to identify a population evaluation type record.

2. **STATECD**
 State code for FIA. This is referred to as the Island Group code for the Pacific Islands inventories. It identifies the larger Island Group, which consists of a number of smaller Islands. These smaller islands are called Counties by FIA (COUNTYCD).

3. **EVAL_TYP**
 Evaluation type. Describes the type of evaluation. Evaluation type is needed to generate summary reports for an inventory. For example, a specific evaluation is associated with the evaluation for volume (Expvol). Use this column to link to the REF_POP_EVAL_TYP_DESCR table.

 Evaluation Type Values
 - Expall
 - Expcurr
 - Expvol

4. **EVAL_GRP_CN**
 Evaluation group sequence number. Foreign key linking the population evaluation type (POP_EVAL_TYP) record to the population evaluation group (POP_EVAL_GRP) record.

5. **EVAL_CN**
 Evaluation sequence number. Foreign key linking the population evaluation type (POP_EVAL_TYP) record to the population evaluation (POP_EVAL) record.
POP_ESTN_UNIT (Population Estimation Unit Table)

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Descriptive Name</th>
<th>Data Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 CN</td>
<td>Sequence number</td>
<td>Text</td>
</tr>
<tr>
<td>2 EVAL_CN</td>
<td>Evaluation sequence number</td>
<td>Text</td>
</tr>
<tr>
<td>3 RSCD</td>
<td>Region or station code</td>
<td>Integer</td>
</tr>
<tr>
<td>4 STATECD</td>
<td>State code</td>
<td>Integer</td>
</tr>
<tr>
<td>5 EVALID</td>
<td>Evaluation identifier</td>
<td>Integer</td>
</tr>
<tr>
<td>6 ESTN_UNIT</td>
<td>Estimation unit</td>
<td>Integer</td>
</tr>
<tr>
<td>7 ESTN_UNIT_DESCR</td>
<td>Estimation unit description</td>
<td>Text</td>
</tr>
<tr>
<td>8 AREA_USED</td>
<td>Area used to calculate all expansion factors</td>
<td>Real</td>
</tr>
<tr>
<td>9 AREALAND_EU</td>
<td>Land area within the estimation unit</td>
<td>Real</td>
</tr>
<tr>
<td>10 AREATOT_EU</td>
<td>Total area within the estimation unit</td>
<td>Real</td>
</tr>
<tr>
<td>11 AREA_SOURCE</td>
<td>Area source</td>
<td>Text</td>
</tr>
<tr>
<td>12 P1PNTCNT_EU</td>
<td>Phase 1 point count for the estimation unit</td>
<td>Integer</td>
</tr>
<tr>
<td>13 P1SOURCE</td>
<td>Phase 1 source</td>
<td>Text</td>
</tr>
</tbody>
</table>

POP_ESTN_UNIT table - An estimation unit is a geographic area that can be drawn on a map. It has a known area, and the sampling intensity must be the same within a stratum within an estimation unit. Generally, estimation units are contiguous areas. One record in the POP_ESTN_UNIT table corresponds to a single estimation unit.

POP_ESTN_UNIT.CN = POP_STRATUM.ESTN_UNIT_CN links the unique stratified geographical area (ESTN_UNIT) to the strata (STRATUMCD) that are assigned to each ESTN_UNIT.

1. **CN**
 Sequence number. A unique sequence number used to identify an estimation unit stratum record. Link the Estimation unit (POP_ESTN_UNIT) record to the Stratum (POP_STRATUM) record.

2. **EVAL_CN**
 Evaluation sequence number. Foreign key linking the Estimation Unit (POP_ESTN_UNIT) record to the Evaluation (POP_EVAL) record.

3. **RSCD**
 Region or Station Code. Identification number of the Forest Service Station that provided the inventory data.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>Pacific Northwest Research Station</td>
</tr>
</tbody>
</table>

4. **STATECD**
 State code for FIA. This is referred to as the Island Group code for the Pacific Islands inventories. It identifies the larger Island Group, which consists of a number of smaller Islands. These smaller islands are called Counties by FIA (COUNTYCD).
5. EVALID Evaluation identifier. The EVALID code uniquely identifies a set of field plots and associated phase 1 summary data used to make population estimates. See POP_EVAL table definition above, for codes.

6. ESTN_UNIT Estimation unit. The specific geographic area that is stratified. Estimation units are often determined by a combination of geographical boundaries, sampling intensity and ownership.

8. AREA_USED Area used to calculate all expansion factors. Is equivalent to AREATOT_EU if a station estimates all area, including census water; and to AREALAND_EU if a station estimates land area only.

9. AREALAND_EU Land area within the estimation unit. The area of land in acres enclosed by the estimation unit. Census water is excluded.

10. AREATOT_EU Total area within the estimation unit. This includes land and census water enclosed by the estimation unit.

11. AREA_SOURCE Area Source. Identifies the source of the area numbers. Usually the area source is either the U.S. Census Bureau or area estimates based on pixel counts. Example values are “US CENSUS 2000” or “PIXEL COUNT”.

12. P1PNTCNT_EU Phase 1 point count for the estimation unit. For remotely sensed data this will be the total number of pixels in the estimation unit.

13. P1SOURCE Phase 1 source. Identifies the phase 1 data source used for this stratification. Examples are NLCD and AERIAL PHOTOS.

POP_EVAL_ATTRIBUTE (Population Evaluation Attribute Table)

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Descriptive name</th>
<th>Data Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN</td>
<td>Sequence number</td>
<td>Text</td>
</tr>
<tr>
<td>EVAL_CN</td>
<td>Evaluation sequence number</td>
<td>Text</td>
</tr>
<tr>
<td>STATECD</td>
<td>State code</td>
<td>Integer</td>
</tr>
<tr>
<td>ATTRIBUTE_NBR</td>
<td>Attribute number</td>
<td>Integer</td>
</tr>
</tbody>
</table>

1. CN Sequence number. A unique sequence number used to identify a Population Evaluation Attribute record

2. EVAL_CN Evaluation sequence number. Key linking the population evaluation attribute (POP_EVAL_ATTRIBUTE) record to the population evaluation (POP_EVAL) record.

3. STATECD State code for FIA. This is referred to as the Island Group code for the Pacific Islands inventories. It identifies the larger Island Group, which consists of a number of smaller Islands. These smaller islands are called Counties by FIA (COUNTYCD).

4. ATTRIBUTE_NBR Attribute number. Foreign key linking the population evaluation attribute record to the reference population attribute record.
POP_PLOT_STRATUM_ASSGN (Plot Stratum Assignment Table for the population)

This table links each plot to one or more strata within an EVALD.

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Descriptive Name</th>
<th>Data Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 INVYR</td>
<td>Inventory year</td>
<td>Integer</td>
</tr>
<tr>
<td>2 CN</td>
<td>A unique number used to identify a population plot stratum assignment record.</td>
<td>Text</td>
</tr>
<tr>
<td>3 PLT_CN</td>
<td>Plot sequence number</td>
<td>Text</td>
</tr>
<tr>
<td>4 STRATUM_CN</td>
<td>Stratum sequence number</td>
<td>Text</td>
</tr>
<tr>
<td>5 EVALID</td>
<td>Evaluation identifier</td>
<td>Integer</td>
</tr>
<tr>
<td>6 ESTN_UNIT</td>
<td>Estimation unit</td>
<td>Integer</td>
</tr>
<tr>
<td>7 STRATUMCD</td>
<td>Stratum code</td>
<td>Integer</td>
</tr>
<tr>
<td>8 STATECD</td>
<td>State code</td>
<td>Integer</td>
</tr>
<tr>
<td>9 UNITCD</td>
<td>Survey unit code</td>
<td>Integer</td>
</tr>
<tr>
<td>10 COUNTYCD</td>
<td>County code</td>
<td>Integer</td>
</tr>
<tr>
<td>11 PLOT</td>
<td>Public plot number</td>
<td>Integer</td>
</tr>
<tr>
<td>12 RSCD</td>
<td>Region or Station code</td>
<td>Integer</td>
</tr>
</tbody>
</table>

POP_PLOT_STRATUM_ASSGN table - Stratum information is assigned to a plot by overlaying the plot’s location on the Phase 1 imagery. Plots are linked to their appropriate stratum for an evaluation via the POP_PLOT_STRATUM_ASSGN table.

POP_PLOT_STRATUM_ASSGN.PLT_CN = PLOT.CN links the stratum assigned to the plot record

1. **INVYR**
 - Inventory year. The year when the inventory data were scheduled to be collected. INVYR is often (but not necessarily) the same as MEASYEAR, which is the year when the plot was actually visited and measured.

2. **CN**
 - Sequence number. A unique number used to identify a population plot stratum assignment record.

3. **PLT_CN**
 - Plot sequence number. Foreign key linking the population plot stratum assignment record to the plot record. A unique number that identifies every record in the PLOT table. PLT_CN is found in most FIA tables, and is usually one of the key columns you will use to link to most other tables. Link the POP_PLOT_STRATUM_ASSGN to PLOT with PLT_CN, and the POP_PLOT_STRATUM_ASSGN to POP_STRATUM with STRATUM_CN.
4. **STRATUM_CN**
 Stratum sequence number. Foreign key linking the Plot Stratum Assignment record (POP_PLOT_STRATUM_ASSGN) to the stratum record (POP_STRATUM).

 \[\text{POP_PLOT_STRATUM_ASSGN.STRATUM_CN} = \text{POP_STRATUM.CN} \]

5. **EVALID**
 Evaluation identifier. The EVALID code uniquely identifies a set of field plots and
 associated phase 1 summary data used to make population estimates. See the
 POP_EVAL table for codes.

6. **ESTN_UNIT**
 Estimation unit. A geographic area upon which stratification is performed. Sampling
 intensity must be uniform within an estimation unit. There are usually multiple
 estimation units within an Evalid.

7. **STRATUMCD**
 Stratum code. The code used for a particular stratum, which is unique within an
 RSCD, EVALID, ESTN_UNIT.

8. **STATECD**
 State code for FIA. This is referred to as the Island Group code for the Pacific Islands
 inventories. It identifies the larger Island Group, which consists of a number of
 smaller Islands. These smaller islands are called Counties by FIA (COUNTYCD).

9. **UNITCD**
 Survey unit code. This is not used in the Pacific Islands – all codes are ‘1’.

10. **COUNTYCD**
 County code for FIA. This is referred to as the Island code for the Pacific Islands
 inventories. It identifies one of the smaller islands within the larger Island Group.

11. **PLOT**
 Public Plot number. A numeric identifier for a plot. The combination of INVYR,
 STATECD and PLOT will uniquely identify a plot record in the database. It is usually
 more convenient to use PLT_CN (see description above) to identify unique plots in
 the inventory. PLT_CN numbers do not change over time. Every record in the PLOT
 table has a unique ‘CN’, this is labeled as PLT_CN in all other tables.

12. **RSCD**
 Region or Station Code

| 26 | Pacific Northwest Research Station |
POP_STRATUM table (Describes strata in the population)

Note: The expansion factors and adjustment factors have been stored on the PLOT_PNW table for ease of use. See PLOT_PNW for more information.

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Descriptive Name</th>
<th>Data Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 CN</td>
<td>Sequence number</td>
<td>Text</td>
</tr>
<tr>
<td>2 ESTN_UNIT_CN</td>
<td>Estimation unit sequence number</td>
<td>Text</td>
</tr>
<tr>
<td>3 STATECD</td>
<td>State code</td>
<td>Integer</td>
</tr>
<tr>
<td>4 EVALID</td>
<td>Evaluation identifier</td>
<td>Integer</td>
</tr>
<tr>
<td>5 ESTN_UNIT</td>
<td>Estimation unit</td>
<td>Integer</td>
</tr>
<tr>
<td>6 STRATUMCD</td>
<td>Stratum code</td>
<td>Integer</td>
</tr>
<tr>
<td>7 STRATUM_DESCR</td>
<td>Stratum description</td>
<td>Text</td>
</tr>
<tr>
<td>8 EXPNS</td>
<td>Expansion factor</td>
<td>Integer</td>
</tr>
<tr>
<td>9 ADJ_FACTOR_SUBP</td>
<td>Adjustment factor for the subplot</td>
<td>Real</td>
</tr>
<tr>
<td>10 ADJ_FACTOR_MICR</td>
<td>Adjustment factor for the microplot</td>
<td>Real</td>
</tr>
<tr>
<td>11 ADJ_FACTOR_MACR</td>
<td>Not used in the Islands</td>
<td>Real</td>
</tr>
<tr>
<td>12 P1POINTCNT</td>
<td>Phase 1 point count</td>
<td>Integer</td>
</tr>
<tr>
<td>13 P2POINTCNT</td>
<td>Phase 2 point count</td>
<td>Integer</td>
</tr>
<tr>
<td>14 RSCD</td>
<td>Region or Station code</td>
<td>Integer</td>
</tr>
</tbody>
</table>

POP_STRATUM table - The area within an estimation unit is divided into strata. The area for each stratum can be calculated by determining the proportion of Phase 1 pixels/plots in each stratum and multiplying that proportion by the total area in the estimation unit. Information for a single stratum is stored in a single record of the POP_STRATUM table.

POP_STRATUM.CN = POP_PLOT_STRATUM_ASSGN.STRATUM_CN links the defined stratum to each plot.

1. **CN**
 Sequence number. A unique number used to identify a stratum record. Appears as STRATUM_CN in other tables. Link a POP_STRATUM record to a POP_PLOT_STRATUM_ASSGN record with this CN.

2. **ESTN_UNIT_CN**
 Estimation unit sequence number. Foreign key linking the stratum (POP_STRATUM) record to the estimation unit (POP_ESTN_UNIT) record.

3. **STATECD**
 State code for FIA. This is referred to as the Island Group code for the Pacific Islands inventories. It identifies the larger Island Group, which consists of a number of smaller Islands. These smaller islands are called Counties by FIA (COUNTYCD).

4. **EVALID**
 Evaluation identifier. The EVALID code and the RSCD code together uniquely identify a set of field plots and associated phase 1 summary data used to make population estimates. See POP_EVAL table for codes.
5. **ESTN_UNIT** Estimation unit. The particular geographic area for which a particular computation applies. Estimation units are determined by a combination of sampling intensity and geographical boundaries.

6. **STRATUMCD** Stratum code. A number used to uniquely identify a stratum within an estimation unit.

7. **STRATUM_DESCR** Stratum description. Stratum are usually based on land use (e.g., forest or nonforest) but may also be based on other criteria such as ownership (e.g., private/public/ national forest).

8. **EXPNS** Expansion factor. The area, in acres, that a stratum represents divided by the number of sampled plots in that stratum. This attribute can be used to obtain estimates of population area when summed across all the plots in the population of interest. These acres differ by Evalid and stratum. The EXPNS is converted to EXPCURR and EXPVOL in the PLOT_PNW table, to simplify expansion when running queries.

9. **ADJ_FACTOR_SUBP** Adjustment factor for the subplot. A value that adjusts the population estimates to account for partially nonsampled plots (access denied and hazardous portions). It is used with condition proportion (COND.CONDPROP_UNADJ) and area expansion (EXPNS) to provide area estimates. ADJ_FACTOR_SUBP is also used with EXPNS and unadjusted trees per acre (TREE.TPA_UNADJ) to provide tree estimates for sampled land. Refer to chapter 4 for examples. See PLOT_PNW definitions for more information.

10. **ADJ_FACTOR_MICR** Adjustment factor for the microplot. A value that adjusts population estimates to account for partially nonsampled plots (access denied and hazardous portions). It is used with POP_STRATUM.EXPNS and the unadjusted seedlings per acre (SEEDLING.TPA_UNADJ) or unadjusted saplings per acre (TREE.TPA_UNADJ where DIA < 5.0) to provide tree estimates for sampled land. Refer to chapter 4 for examples.

11. **ADJ_FACTOR_MACR** Not used in the Islands.

12. **P1POINTCNT** Phase 1 point count. For remotely sensed data this will be the number of pixels in the stratum.

13. **P2POINTCNT** Phase 2 point count. The number of field plots that are within the stratum.

14. **RSCD** Region or Station Code. Identification number of the Forest Service Station that provided the inventory data.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>Pacific Northwest Research Station</td>
</tr>
</tbody>
</table>
REF_SPECIES table (Species code to common name -- crosswalk table)

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Descriptive Name</th>
<th>Data Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 SPCD</td>
<td>(Primary key) Species code. A numeric FIA tree species code. Link to any table that contains SPCD to crosswalk to the common name for the species.</td>
<td>Integer</td>
</tr>
<tr>
<td>2 COMMON_NAME</td>
<td>Common name of the species.</td>
<td>Text</td>
</tr>
<tr>
<td>3 SPECIES_SYMBOL</td>
<td>Species symbol. The NRCS PLANTS database text code associated with the FIA tree species text code.</td>
<td>Text</td>
</tr>
<tr>
<td>4 SWHW</td>
<td>Softwood/ hardwood group. Indicates whether the species is a softwood or a hardwood. This column is used in queries to group and order tree records and display results. Sort by SWHW and then by SPCD for an organized display.</td>
<td>Text</td>
</tr>
<tr>
<td>5 SFTWD_HRDWD</td>
<td>Softwood or hardwood species.</td>
<td>Text</td>
</tr>
<tr>
<td>6 SPGRPCD</td>
<td>Species group code.</td>
<td>Integer</td>
</tr>
<tr>
<td>7 P_SPGRPCD</td>
<td>Pacific species group code.</td>
<td>Integer</td>
</tr>
<tr>
<td>8 PACIFIC</td>
<td>Pacific species</td>
<td>Text</td>
</tr>
<tr>
<td>9 GENUS</td>
<td>Genus</td>
<td>Text</td>
</tr>
<tr>
<td>10 SPECIES</td>
<td>Species name</td>
<td>Text</td>
</tr>
<tr>
<td>11 VARIETY</td>
<td>Variety</td>
<td>Text</td>
</tr>
<tr>
<td>12 SUBSPECIES</td>
<td>Subspecies name</td>
<td>Text</td>
</tr>
<tr>
<td>13 BARK_SPGR_GREENVOL_DRYWT</td>
<td>Specific gravity for bark (uses green volume to produce oven-dry weight)</td>
<td>Real</td>
</tr>
<tr>
<td>14 WOOD_SPGR_GREENVOL_DRYWT</td>
<td>Specific gravity for wood (uses green volume to produce oven-dry weight)</td>
<td>Real</td>
</tr>
</tbody>
</table>

1. **SPCD** Species code. A numeric FIA tree species code. Link to any table that contains SPCD to crosswalk to the common name for the species.

2. **COMMON_NAME** Common name of the species.

3. **SPECIES_SYMBOL** Species symbol. The NRCS PLANTS database text code associated with the FIA tree species text code.

4. **SWHW** Softwood/ hardwood group. Indicates whether the species is a softwood or a hardwood. This column is used in queries to group and order tree records and display results. Sort by SWHW and then by SPCD for an organized display.

5. **SFTWD_HRDWD** Softwood/ hardwood. Indicates whether the species is a softwood or a hardwood. Softwoods are marked with an S and hardwoods with an H.
6. **SPGRPCD**
Species group code. A code assigned to each tree species in order to group them for reporting purposes on presentation tables. Codes and their associated names (see REF_SPECIES_GROUP.NAME) are shown in appendix D. Individual tree species and corresponding species group codes are shown in appendix E. Link to the FIADB Reference table to crosswalk codes into text: Link TREE.SPGRPCD=REF_SPECIES_GROUP. SPGRPCD
In the Pacific Islands, it often is more useful to display the actual species list instead of the species group—but that is up to the user of the data.

<table>
<thead>
<tr>
<th>Code</th>
<th>Group name</th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
<td>Tropical and subtropical pines</td>
</tr>
<tr>
<td>52</td>
<td>Other tropical and subtropical softwoods</td>
</tr>
<tr>
<td>53</td>
<td>Tropical and subtropical palms</td>
</tr>
<tr>
<td>54</td>
<td>Tropical and subtropical hardwoods</td>
</tr>
</tbody>
</table>

7. **P_SPGRPCD**
Pacific species group code. Same as SPGRPCD

8. **PACIFIC**
Code that identifies the species is found in the Pacific Islands. All codes are ‘P’.

9. **GENUS**
Genus. The genus name associated with the FIA tree species code.

10. **SPECIES**
Species. The species name associated with the FIA tree species code.

11. **VARIETY**
Variety. The variety name associated with the FIA tree species code.

12. **SUBSPECIES**
Subspecies. The subspecies name associated with the FIA tree species code.

13. **BARK_SPGR_GREENVOL_DRYWT**
Green specific gravity of the bark (green volume and oven-dry weight). There is some shrinkage in bark volume when a live tree is cut and dried. In FIADB, this specific gravity is used on live and dead trees to convert green volume to ovendry weight in pounds. Oven-dry biomass for bark can be calculated using the volume of a tree using this equation:
\[B_{\text{odw}} = \text{BARK_VOLUME} \times \text{BARK_SPGR_GREENVOL_DRYWT} \times 62.4 \]
Where: \(B_{\text{odw}} \) = oven-dry biomass of bark on a tree in pounds

\(\text{BARK_VOLUME} \) = volume of the bark on a tree bole, in cubic feet. Note that bark volume is often estimated by subtracting volume of the bole inside bark from volume of the bole outside bark.

14. **WOOD_SPGR_GREENVOL_DRYWT**
Green specific gravity of wood (green volume and oven-dry weight). This variable is used to determine the oven-dry weight (in pounds) of live and dead trees based on volume variables in the TREE table (VOLCFSN, VOLCFGRS, VOLCFNET...). These volumes are assumed to be green wood volumes. Oven-dry biomass for the sound volume in a tree can be calculated using this equation:
\[B_{\text{odw}} = \text{VOLCFSN} \times \text{WOOD_SPGR_GREENVOL_DRYWT} \times 62.4 \]
Where: \(B_{\text{odw}} \) = Sound oven-dry biomass of a tree in pounds , and
\(\text{VOLCFSN} \) = sound volume of a tree in cubic feet
REF_SPECIES_GROUP (Species Group crosswalk table)

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Descriptive Name</th>
<th>Data Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SPGRPCD</td>
<td>Species group code</td>
</tr>
<tr>
<td>2</td>
<td>NAME</td>
<td>Name</td>
</tr>
<tr>
<td>3</td>
<td>CLASS</td>
<td>Class</td>
</tr>
<tr>
<td>4</td>
<td>REGION</td>
<td>Region</td>
</tr>
</tbody>
</table>

1. **SPGRPCD** Species group code. A code assigned to each tree species in order to group them for reporting purposes on presentation tables. The SPGRPCD is on the TREE table, which should be linked to this reference table to output a common name. Codes and their associated names are shown in appendix D. Individual tree species and corresponding species group codes are shown in appendix E.

 Link REF_SPECIES_GROUP.SPGRPCD to TREE.SPGRPCD to translate codes to descriptive text.

2. **NAME** Name. A descriptive name for each species group code (SPGRPCD). The names associated with these codes can be used to label summary tables. See appendix D.

<table>
<thead>
<tr>
<th>Code</th>
<th>Group NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
<td>Tropical and subtropical pines</td>
</tr>
<tr>
<td>52</td>
<td>Other tropical and subtropical softwoods</td>
</tr>
<tr>
<td>53</td>
<td>Tropical and subtropical palms</td>
</tr>
<tr>
<td>54</td>
<td>Tropical and subtropical hardwoods</td>
</tr>
</tbody>
</table>

3. **CLASS** Class. A descriptor for the classification of the species type with the species group. Values are ‘SOFTWOOD’ and ‘HARDWOOD’. This column can be used in summary tables to sort and organize species names.

4. **REGION** Region. A description of the location of the United States in which the species, and therefore species group is commonly found. Values are ‘Tropical’.
REF_INVASIVE_SPECIES table (Reference invasive species crosswalk table)

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Descriptive Name</th>
<th>Data Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. CN</td>
<td>A unique sequence number used to identify a row in the reference invasive species table</td>
<td>Text</td>
</tr>
<tr>
<td>2. SPECIES_NAME</td>
<td>Common name of species</td>
<td>Text</td>
</tr>
<tr>
<td>3. SYMBOL</td>
<td>Species symbol</td>
<td>Text</td>
</tr>
<tr>
<td>4. STATECD</td>
<td>State code</td>
<td>Integer</td>
</tr>
<tr>
<td>5. INV_GROUP_CD</td>
<td>Invasive species group code (not populated at this time for the islands)</td>
<td>Integer</td>
</tr>
<tr>
<td>6. UNITCD_LIST</td>
<td>(not populated for the islands)</td>
<td>Text</td>
</tr>
<tr>
<td>7. START_DATE</td>
<td>Starting date when species was used</td>
<td>Date</td>
</tr>
<tr>
<td>8. END_DATE</td>
<td>Ending date</td>
<td>Date</td>
</tr>
<tr>
<td>9. MANUAL_START</td>
<td>Field Manual number at the start</td>
<td>Integer</td>
</tr>
<tr>
<td>10. MANUAL_END</td>
<td>Field Manual number at the end</td>
<td>Integer</td>
</tr>
<tr>
<td>11. NOTES</td>
<td>Notes</td>
<td>Text</td>
</tr>
</tbody>
</table>

REF_INVASIVE_SPECIES table - A reference table containing the invasive species list by State (Island Group).

REF_INVASIVE_SPECIES.SYMBOL = **INVASIVE_SUBPLOT_SPP.VEG_SPCD** links the invasive species reference to the invasive species NRCS code.

REF_INVASIVE_SPECIES.SYMBOL = **REF_PLANT_DICTIONARY.SYMBOL** links the invasive species reference to the plant dictionary reference NRCS species code.

1. **CN** - A unique sequence number used to identify a reference invasive species record.

2. **STATECD** - State code for FIA. This is referred to as the **Island Group** code for the Pacific Islands inventories. It identifies the larger Island Group, which consists of a number of smaller islands. These smaller islands are called Counties by FIA (COUNTYCD).

3. **SYMBOL** - Species symbol. The NRCS PLANTS database text code associated with the FIA tree species text code.

4. **SPECIES_NAME** - Common name of the species.

5. **UNITCD_LIST** - Unit code list – not relevant for the Islands.

6. **START_DATE** - Starting date.

7. **END_DATE** - Ending date.

8. **MANUAL_START** - The first version of the Field Guide (PLOT.MANUAL) that the invasive species began to be used.

9. **MANUAL_END** - The last version of the Field Guide (PLOT.MANUAL) that the invasive species was valid. When MANUAL_END is blank (null), the code is still valid.
REF_FOREST_TYPE (Reference Forest Type crosswalk table)

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Descriptive Name</th>
<th>Data Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 VALUE</td>
<td>Numeric code for the forest type</td>
<td>Integer</td>
</tr>
<tr>
<td>2 REF_FORTYPCD</td>
<td>Numeric code for the forest type</td>
<td>Integer</td>
</tr>
<tr>
<td>3 MEANING</td>
<td>Written name of the forest type</td>
<td>Text</td>
</tr>
<tr>
<td>4 TYPGRPCD</td>
<td>Forest type group code</td>
<td>Integer</td>
</tr>
<tr>
<td>5 MANUAL_START</td>
<td>Manual version when forest type was initiated</td>
<td>Real</td>
</tr>
<tr>
<td>6 ALLOWED_IN_FIELD</td>
<td>Code is allowed as a field call</td>
<td>Text</td>
</tr>
</tbody>
</table>

1. **VALUE**
 Value. A numeric code used for to identify a forest type numeric code. Link REF_FOREST_TYPE.VALUE to any of the following COND.FORTYPCD or FLDTYPCD, to translate the numeric code to its descriptive name (MEANING.)

<table>
<thead>
<tr>
<th>VALUE (FORTYPCD)</th>
<th>Definition (MEANING)</th>
</tr>
</thead>
<tbody>
<tr>
<td>980</td>
<td>Tropical hardwoods group</td>
</tr>
<tr>
<td>982</td>
<td>Mangrove</td>
</tr>
<tr>
<td>983</td>
<td>Palms</td>
</tr>
<tr>
<td>984</td>
<td>Dry forest</td>
</tr>
<tr>
<td>985</td>
<td>Moist forest</td>
</tr>
<tr>
<td>986</td>
<td>Wet and rain forest</td>
</tr>
<tr>
<td>987</td>
<td>Lower montane wet and rain forest</td>
</tr>
<tr>
<td>988</td>
<td>Cloud forest</td>
</tr>
<tr>
<td>989</td>
<td>Other tropical hardwoods</td>
</tr>
<tr>
<td>999</td>
<td>Nonstocked</td>
</tr>
</tbody>
</table>

2. **REF_FORTYPCD**
 Forest type code. Same as VALUE above.

3. **MEANING**
 Meaning. The descriptive name corresponding with the forest type code (VALUE). The names associated with these codes are used to label rows or columns in queries or presentation tables. See VALUE above.

4. **TYPGRPCD**
 Forest type group code. A code assigned to individual forest types. All forest types are in one group in the islands as shown below. Link REF_FOREST_TYPE.TYPGRPCD to REF_FOREST_TYPE_GROUP. TYPGRPCD to translate numeric codes into descriptive names.

<table>
<thead>
<tr>
<th>TYPGRPCD</th>
<th>MEANING</th>
</tr>
</thead>
<tbody>
<tr>
<td>980</td>
<td>Tropical hardwoods group</td>
</tr>
<tr>
<td>999</td>
<td>Nonstocked</td>
</tr>
</tbody>
</table>

5. **MANUAL_START**
 Manual start. The first version of the Field Guide (PLOT.MANUAL) that the forest type code (VALUE) began to be used.

6. **ALLOWED_IN_FIELD**
 Allowed in field. An indicator to show if a code (VALUE) is allowed to be used by the field crews. This is a Yes/No (Y/N) field. Specifically, forest type group codes are not allowed in the Field Guide nor is the code for a nonstocked forest type (999).
REF_PLANT_DICTIONARY_islands
(Reference plant dictionary table for the Pacific Islands, species code crosswalk table)

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Descriptive Name</th>
<th>Data Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 CN</td>
<td>Unique record number for this table.</td>
<td>Text</td>
</tr>
<tr>
<td>2 SYMBOL</td>
<td>Symbol is the NRCS code for the plant species.</td>
<td>Text</td>
</tr>
<tr>
<td>3 COMMON_NAME</td>
<td>Common name of species</td>
<td>Text</td>
</tr>
<tr>
<td>4 SYMBOL_TYPE</td>
<td>Symbol Type for the species</td>
<td>Text</td>
</tr>
<tr>
<td>5 SCIENTIFIC_NAME</td>
<td>Scientific Name for the plant symbol.</td>
<td>Text</td>
</tr>
<tr>
<td>6 NEW_SYMBOL</td>
<td>New plant symbol.</td>
<td>Text</td>
</tr>
<tr>
<td>7 NEW_SCIENTIFIC_NAME</td>
<td>New Scientific Name for the new symbol</td>
<td>Text</td>
</tr>
<tr>
<td>8 FAMILY</td>
<td>Family</td>
<td>Text</td>
</tr>
<tr>
<td>9 GENUS</td>
<td>Genus</td>
<td>Text</td>
</tr>
<tr>
<td>10 SPECIES</td>
<td>Species name</td>
<td>Text</td>
</tr>
<tr>
<td>11 SUBSPECIES</td>
<td>Subspecies name</td>
<td>Text</td>
</tr>
<tr>
<td>12 VAR</td>
<td>Variety</td>
<td>Text</td>
</tr>
<tr>
<td>13 VARIETY</td>
<td>Variety</td>
<td>Text</td>
</tr>
<tr>
<td>14 SCIENTIFIC_NAME_W_AUTHOR</td>
<td>Scientific Name with authority</td>
<td>Text</td>
</tr>
<tr>
<td>15 CATEGORY</td>
<td>Broad taxonomic category for the symbol</td>
<td>Text</td>
</tr>
<tr>
<td>16 DURATION</td>
<td>Duration of plant over time.</td>
<td>Text</td>
</tr>
<tr>
<td>17 GROWTH_HABIT</td>
<td>Growth Habit of the plant species.</td>
<td>Text</td>
</tr>
<tr>
<td>18 US_NATIVITY</td>
<td>Native to the US</td>
<td>Text</td>
</tr>
<tr>
<td>19 STATE_DISTRIBUTION</td>
<td>Distribution of plant across the U.S.</td>
<td>Text</td>
</tr>
</tbody>
</table>

REF_PLANT_DICTIONARY_islands table - A reference table containing information about plant species as defined in the NRCS PLANTS database. The species symbol, common name, scientific name, growth habit and other identifying information are included in this table.

Notes about the VEG_SPCD and VEG_FLDSPCD
Natural Resource Conservation Service (NRCS) PLANTS Database provides standardized information about the vascular plants, mosses, liverworts, hornworts, and lichens of the U.S. and its territories. It includes names, plant symbols, checklists, distributional data, species abstracts, characteristics, images, crop information, automated tools, onward Web links, and references: USDA, NRCS. 2010. The PLANTS Database (http://plants.usda.gov, 1 January 2010). National Plant Data Center, Baton Rouge, LA 70874-4490 USA.

The REF_PLANT_DICTIONARY_islands table uses species codes downloaded in January of 2010.

Link the VEG_SPCD or VEG_FLDSPCD columns in any table to the REF_PLANT_DICTIONARY.SYMBOL column.

Data users should link codes as shown below and then obtain the information stored in one of the columns such as COMMON_NAME or SCIENTIFIC_NAME_W_AUTHOR to convert the code to a name.

REF_PLANT_DICTIONARY.SYMBOL = INVASIVE_SUBPLOT_SPP.VEG_SPCD links the plant dictionary reference species code to the invasive vegetation subplot NRCS species code.

REF_PLANT_DICTIONARY.SYMBOL = P2VEG_SUBPLOT_SPP.VEG_SPCD links the plant dictionary reference species code to the P2 vegetation subplot NRCS species code.
1. **CN**
 Unique record number. A unique number used to identify each record in this table.

2. **SYMBOL**
 The NRCS PLANTS database code (from the January 1, 2010 download) used to represent a plant species and populate VEG_SPCD.

3. **COMMON_NAME**
 Common Name for the symbol of the plant species.

4. **SYMBOL_TYPE**
 Symbol Type describes the type of NRCS PLANTS symbol (from the January 1, 2010 download of the database). Text values are: Species - accepted symbol identified to species, subspecies or variety; Genus - accepted symbol identified to Genus; Old - synonym symbol for an old scientific name; Unknown - symbol to identify generic categories of unknown plants.

5. **SCIENTIFIC_NAME**
 Scientific Name for the plant symbol.

6. **NEW_SYMBOL**
 Populated only when SYMBOL_TYPE = old. Represents the new NRCS PLANTS database accepted code that has been reclassified from the old synonym symbol.

7. **NEW_SCIENTIFIC_NAME**
 New Scientific Name for the plant species if it has been given a new symbol. It represents the new NRCS accepted scientific name that has been reclassified from the Old synonym scientific name.

8. **FAMILY**
 Plant Family of symbol

9. **GENUS**
 Genus. The genus name associated with the species code.

10. **SPECIES**
 Species. The species name associated with the species code

11. **SUBSPECIES**
 Subspecies. The subspecies name associated with the species code.

12. **VAR**
 Variety indicator the word 'var.'

13. **VARIETY**
 Variety. The variety name associated with the species code.

14. **SCIENTIFIC_NAME_W_AUTHOR**
 Scientific Name for the plant symbol with the authority name.

15. **CATEGORY**
 Category indicates the broad taxonomic category for the symbol: Dicot, Fern, Gymnosperm, Horsetail, Lycopod, Monocot, Psilophyte, Quillwort. (Please note that Unknown symbols do not have a category.)

16. **DURATION**
 Duration of a plant according to NRCS PLANTS database (2010): Text values are Annual, Biennial, Perennial, or Unknown. Some plants have different Durations depending on environment or location, so a plant can have more than one value.

17. **GROWTH_HABIT**
 The growth habit of the symbol according to the NRCS PLANTS database (2010 download). Some plants have different growth habits depending on environment or location, so a plant can have more than one value. Code descriptions are from the NRCS PLANTS documentation. Text Values are Forb/herb, Graminoid, Liana, Shrub, Subshrub, Tree, or Vine. Some plants have different Growth Habits depending on environment or location, so a plant can have more than one value.
18. **US_NATIVITY** Indicates whether the plant is native to the US.

19. **STATE_DISTRIBUTION**
State Distribution of plant according to NRCS download in 09-Nov-2007. This was the only update to NRCS 2000 plant list for this NIMS reference table.
REF_POP_EVAL_TYP_DESCR table (Reference Population Evaluation Type Description)

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Descriptive Name</th>
<th>Data Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 CN</td>
<td>Sequence number</td>
<td>Text</td>
</tr>
<tr>
<td>2 EVAL_TYP</td>
<td>Evaluation type</td>
<td>Text</td>
</tr>
<tr>
<td>3 EVAL_TYP_DESCR</td>
<td>Evaluation type description</td>
<td>Text</td>
</tr>
<tr>
<td>4 EVAL_TYP_LABEL</td>
<td>Evaluation type label</td>
<td>Text</td>
</tr>
</tbody>
</table>

1. **CN**
 Sequence number. A unique sequence number used to identify reference population evaluation type description record.

2. **EVAL_TYP**
 Evaluation type. Evaluation types (EVAL_TYP) and the description of the evaluation types (EVAL_TYP_DESCR) are:

<table>
<thead>
<tr>
<th>EVAL_TYP</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expall</td>
<td>All plots: sampled and nonsampled</td>
</tr>
<tr>
<td>Expcurr</td>
<td>Sampled plots used for current area estimates</td>
</tr>
<tr>
<td>Expvol</td>
<td>Sampled plots used for tree inventory estimates</td>
</tr>
</tbody>
</table>

3. **EVAL_TYP_DESCR**
 Evaluation type description. Evaluation types (EVAL_TYP) and the description of the evaluation types (EVAL_TYP_DESCR) are:

<table>
<thead>
<tr>
<th>Evaluation type</th>
<th>EVAL_TYP_DESCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expall</td>
<td>All plots: sampled and nonsampled</td>
</tr>
<tr>
<td>Expcurr</td>
<td>Sampled plots used for current area estimates</td>
</tr>
<tr>
<td>Expvol</td>
<td>Sampled plots used for tree inventory estimates</td>
</tr>
</tbody>
</table>

4. **EVAL_TYP_LABEL**
 Evaluation type label. The label used for the EVAL_TYP description.
REF_POP_ATTRIBUTE (Reference Population Attribute Table)

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Descriptive Name</th>
<th>Data Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 CN</td>
<td>Sequence number</td>
<td>Text</td>
</tr>
<tr>
<td>2 ATTRIBUTE_NBR</td>
<td>Attribute number</td>
<td>Integer</td>
</tr>
<tr>
<td>3 ATTRIBUTE_DESCR</td>
<td>Attribute description</td>
<td>Text</td>
</tr>
<tr>
<td>4 TIMBERLAND</td>
<td>Timberland</td>
<td>Text</td>
</tr>
<tr>
<td>5 EVAL_TYP</td>
<td>Evaluation type</td>
<td>Text</td>
</tr>
<tr>
<td>6 EXPRESSION</td>
<td>Expression</td>
<td>Text</td>
</tr>
<tr>
<td>7 WHERE_CLAUSE</td>
<td>Where clause</td>
<td>Text</td>
</tr>
<tr>
<td>8 FOOTNOTE</td>
<td>Footnote</td>
<td>Text</td>
</tr>
<tr>
<td>9 ATTRIBUTE_GLOSSARY</td>
<td>Attribute glossary</td>
<td>Text</td>
</tr>
</tbody>
</table>

1. **CN**
 Sequence number. A unique sequence number used to identify a reference population attribute record.

2. **ATTRIBUTE_NBR**
 Attribute number. A numeric code used to identify an attribute record. See codes and descriptions in chapter 4, table 4.1.

3. **ATTRIBUTE_DESCR**
 Attribute description. Examples include “Area of forestland (acres)” or “All live biomass on forestland oven-dry (short tons).” See codes and descriptions in chapter 4, table 4.1.

4. **TIMBERLAND**
 Timberland. A code indicating whether or not the attribute can be computed for a timberland species.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>Yes, the attribute can be computed for a timberland species</td>
</tr>
<tr>
<td>N</td>
<td>No, the attribute cannot be computed for a timberland species</td>
</tr>
</tbody>
</table>

5. **EVAL_TYP**
 Evaluation type. Describes the type of evaluation. Evaluation type is needed to generate summary reports for an inventory. For example, a specific evaluation is associated with the evaluation for volume (Expvol). At the present time, seven types of evaluations can be produced. See also the REF_POP_EVAL_TYP_DESCR table.

6. **EXPRESSION**
 Expression. SQL expression that identifies variables that are used to generate population estimate identified by ATTRIBUTE_DESCR (chapter 4, table 4.2).

7. **WHERE_CLAUSE**
 Where clause. SQL where clause that identifies the appropriate method for joining tables and screening records to generate population estimate identified by REF_POP_ATTRIBUTE.ATTRIBUTE_DESCR (chapter 4, table 4.2).

8. **FOOTNOTE**
 Footnote. Contains the footnote to be used in reports summarizing the attribute

9. **ATTRIBUTE_GLOSSARY**
 Attribute glossary. Description of the attribute.
REF_STATE_ELEV (Reference State Elevation Table)

<table>
<thead>
<tr>
<th></th>
<th>Column Name</th>
<th>Descriptive Name</th>
<th>Data Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>STATECD</td>
<td>State code</td>
<td>Integer</td>
</tr>
<tr>
<td>2</td>
<td>MIN_ELEV</td>
<td>Minimum elevation</td>
<td>Integer</td>
</tr>
<tr>
<td>3</td>
<td>MAX_ELEV</td>
<td>Maximum elevation</td>
<td>Integer</td>
</tr>
<tr>
<td>4</td>
<td>LOWEST_POINT</td>
<td>Lowest point</td>
<td>Text</td>
</tr>
<tr>
<td>5</td>
<td>HIGHEST_POINT</td>
<td>Highest point</td>
<td>Text</td>
</tr>
</tbody>
</table>

1. **STATECD** State code for FIA. This is referred to as the Island Group code for the Pacific Islands inventories. It identifies the larger Island Group, which consists of a number of smaller Islands. These smaller islands are called Counties by FIA (COUNTYCD).

2. **MIN_ELEV** Minimum elevation. The minimum elevation within the state in feet.

3. **MAX_ELEV** Maximum elevation. The maximum elevation within the state in feet.

4. **LOWEST_POINT** Lowest point. The name of the lowest point within the state. ‘SL’ refers to sea level. Negative minimum elevations are listed here.

5. **HIGHEST_POINT** Highest point. The name of the highest point within the state. Alternative names are provided also.

REF_UNIT (Reference Survey Unit Table)

<table>
<thead>
<tr>
<th></th>
<th>Column Name</th>
<th>Descriptive Name</th>
<th>Data Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>STATECD</td>
<td>State code</td>
<td>Integer</td>
</tr>
<tr>
<td>2</td>
<td>VALUE</td>
<td>Numeric code of the survey unit</td>
<td>Integer</td>
</tr>
<tr>
<td>3</td>
<td>MEANING</td>
<td>Descriptive name of the survey unit</td>
<td>Text</td>
</tr>
</tbody>
</table>

1. **STATECD** State code for FIA. This is referred to as the Island Group code for the Pacific Islands inventories. It identifies the larger Island Group, which consists of a number of smaller Islands. These smaller islands are called Counties by FIA (COUNTYCD).

2. **VALUE** Value. Forest Inventory and Analysis survey unit identification number. Survey units are usually groups of counties within each State. Refer to appendix C for codes. Link to numerous tables using both STATECD and VALUE=UNITCD.

3. **MEANING** Meaning. The name corresponding to the survey unit code (VALUE) in the State (STATECD). Refer to appendix C.
BOUNDARY (Boundary Table)

Note: this table is at the end of the list because it is rarely needed by most users.

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Descriptive Name</th>
<th>Data Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 CN</td>
<td>Sequence number</td>
<td>Text</td>
</tr>
<tr>
<td>2 PLT_CN</td>
<td>Unique record number for each row in the PLOT table</td>
<td>Text</td>
</tr>
<tr>
<td>3 INVYR</td>
<td>Inventory year</td>
<td>Integer</td>
</tr>
<tr>
<td>4 STATECD</td>
<td>State code</td>
<td>Integer</td>
</tr>
<tr>
<td>5 UNITCD</td>
<td>Survey unit code</td>
<td>Integer</td>
</tr>
<tr>
<td>6 COUNTYCD</td>
<td>County code</td>
<td>Integer</td>
</tr>
<tr>
<td>7 PLOT</td>
<td>Public plot number</td>
<td>Integer</td>
</tr>
<tr>
<td>8 SUBP</td>
<td>Subplot number</td>
<td>Integer</td>
</tr>
<tr>
<td>9 SUBPTYP</td>
<td>Plot type code</td>
<td>Integer</td>
</tr>
<tr>
<td>10 AZMLEFT</td>
<td>Left azimuth</td>
<td>Integer</td>
</tr>
<tr>
<td>11 AZMRIGHT</td>
<td>Right azimuth</td>
<td>Integer</td>
</tr>
<tr>
<td>12 AZMCORN</td>
<td>Corner azimuth</td>
<td>Integer</td>
</tr>
<tr>
<td>13 CONTRAST</td>
<td>Contrasting condition</td>
<td>Integer</td>
</tr>
<tr>
<td>14 DISTCORN</td>
<td>Corner distance</td>
<td>Integer</td>
</tr>
<tr>
<td>15 CYCLE</td>
<td>Inventory cycle number</td>
<td>Integer</td>
</tr>
<tr>
<td>16 SUBCYCLE</td>
<td>Inventory subcycle number</td>
<td>Integer</td>
</tr>
</tbody>
</table>

1. CN
 Sequence number. A unique number used to identify a boundary record.

2. PLT_CN
 Unique record number for each row in the PLOT table. This is a key column used to link to most other database tables. Link to the PLOT table as follows: link VEG_P2VEG_PLOT_SPECIES.PL滕_CN to PLOT.CN.

3. INVYR
 Inventory year. The year when the inventory data were scheduled to be collected. INVYR is often (but not necessarily) the same as MEASYEAR, which is the year when the plot was actually visited and measured. See the SURVEY table for more info.

4. STATECD
 State code for FIA. This is referred to as the Island Group code for the Pacific Islands inventories. It identifies the larger Island Group, which consists of a number of smaller Islands. These smaller islands are called Counties by FIA (COUNTYCD).

<table>
<thead>
<tr>
<th>Island group code (STATECD)</th>
<th>Island group name (STATENM)</th>
<th>Island group abbrev. (STATEAB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Hawaii</td>
<td>HI</td>
</tr>
<tr>
<td>60</td>
<td>American Samoa</td>
<td>AS</td>
</tr>
<tr>
<td>66</td>
<td>Guam</td>
<td>GU</td>
</tr>
<tr>
<td>70</td>
<td>Palau</td>
<td>PW</td>
</tr>
</tbody>
</table>

5. UNITCD
 Survey unit code. This is not used in the Pacific Islands – all codes are ‘1’.
6. **COUNTYCD**
 County code for FIA. This is referred to as the Island code for the Pacific Islands inventories. It identifies one of the smaller islands within the larger Island Group. Please refer to the COUNTY table for codes and definitions.

7. **PLOT**
 Public Plot number. A numeric identifier for a plot. The combination of INVYR, STATECD and PLOT will uniquely identify a plot record in the database. It is usually more convenient to use PLT_CN (see description above) to identify unique plots in the inventory. PLT_CN numbers do not change over time. Every record in the PLOT table has a unique 'CN', this is labeled as PLT_CN in all other tables.

8. **SUBP**
 Subplot number. The number assigned to the subplot. The plot design has subplot number values of 1 through 4.

9. **SUBPTYP**
 Plot type code. Specifies whether boundary data are for a subplot, microplot, or macroplot.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Subplot boundary</td>
</tr>
<tr>
<td>2</td>
<td>Microplot boundary</td>
</tr>
<tr>
<td>3</td>
<td>Macroplot boundary</td>
</tr>
</tbody>
</table>

10. **AZMLEFT**
 Left azimuth. The azimuth, to the nearest degree, from the subplot, microplot, or macroplot plot center to the farthest left point (facing the contrasting condition class) where the boundary intersects the subplot, microplot, or macroplot plot circumference.

11. **AZMRIGHT**
 Right azimuth. The azimuth, to the nearest degree, from subplot, microplot, or macroplot plot center to the farthest right point (facing the contrasting condition) where the boundary intersects the subplot, microplot, or macroplot plot circumference.

12. **AZMCORN**
 Corner azimuth. The azimuth, to the nearest degree, from the subplot, microplot, or macroplot plot center to a corner or curve in a boundary. If a boundary is best described by a straight line between the two circumference points, then 000 is recorded for AZMCORN.

13. **CONTRAST**
 Contrasting condition. The condition class number of the condition class that contrasts with the condition class located at the subplot center (for boundaries on the subplot or macroplot) or at the microplot center (for boundaries on the microplot), e.g., the condition class present on the other side of the boundary.

14. **DISTCORN**
 Corner distance. The horizontal distance, to the nearest 1 foot, from the subplot, microplot, or macroplot plot center to the boundary corner point. Blank (null) when AZMCORN equals 000; populated when BOUNDARY.AZMCORN is greater than 000.

46. **CYCLE**
 Inventory cycle number. A number assigned to a set of plots, measured over a particular period of time from which estimates are made. In the islands, the initial measurement is Cycle 2 (from 2001 to 2011) and the 2nd remeasurement is Cycle 3 (2012 and beyond).

47. **SUBCYCLE**
 Inventory subcycle number. For an annual inventory that takes N years to measure all plots, subcycle shows in which of the N years the data were measured.
Chapter 4 – Calculating Population Estimates

This chapter presents examples and descriptions of Access queries and procedures that can be used to obtain population estimates for many FIA attributes from the measurement data stored in the PNW-FIADB. These examples show how to construct queries, select data or grouping columns, and expand area and tree estimates to the population level. Population estimates for many attributes can be generated using pre-defined queries found in the PNW-FIADB Microsoft Access database, which users can then modify based on their own needs and save as a new, re-usable query.

Alternatively, estimates can be obtained by using the web-based tools “EVALIDator” or “Forest Inventory Data Online” (FIDO), which provide interactive access to the national FIADB (but not the PNW-FIADB). These tools can be found at http://fia.fs.fed.us/tools-data.

The FIADB can be used to estimate many attributes (e.g., forest area, timberland area, number of trees, net or gross volume, biomass using regional equations, etc.). The number of estimates that can be made from the FIADB is large and knowledge about how to calculate and expand each attribute is essential to develop correct queries from the database. This chapter provides examples of common selection criteria, basic structures and components of common queries, and information about national estimation procedures.

An important difference between the PNW-FIADB and the national FIADB is the addition of the PLOT_PNW table to the Access database. This table pulls together key elements from the many national ‘POP’ tables that are found in the national database structure. These tables are numerous because they split up stratification related information into several tables. At the national level, inventories are at different stages in any given state, and it is up to the state or FIA work unit to choose the number and type of stratifications to include in their database. Stratifications can be by year or group of years. The “POP” tables will contain specific information about the stratification, evaluation, area sampled, and sampling success (access denied, hazardous, or out of inventory plots).

In FIA estimation, the sample is a set of plots that were selected for the attribute of interest that was observed. The stratification consists of an assignment of plots to strata (non-overlapping areas of a known or estimated size) that in aggregate define the population of interest. There is an assignment of plots to every stratum, and all plots are assigned to one, and only one stratum, for each evaluation. FIA uses the term “evaluation” to reference the relationship that links a set of plots to a set of strata for estimation purposes. Thus, an evaluation is a set of plots defined in the FIADB that can be used to make a statistically valid sample-based estimate for a population (area of land) based on a specific stratification. Each evaluation used by FIA is identified, named, and stored as a single entry in the POP_EVAL table.

When we are not able to sample a portion of a plot because it was too hazardous or we were denied access to the property, we need to account for that unsampled area with a stratum adjustment factor. This factor is the inverse of the mean proportion of the sample plot areas that were within the population in each stratum. An adjustment factor is needed in most FIA queries to adjust the estimate for partial plots that were not sampled. Basically all the area associated with unsampled conditions is distributed among the other conditions found on the plot.

Although the national database structure provides flexibility in terms of the number and type of stratifications to include, the result is a database with numerous POP tables that must be carefully linked or joined in a certain way. This is followed by the user selecting a particular set of codes to identify a specific stratification and evaluation. The national database structure has become complex.
The PLOT_PNW table removes much of the complexity surrounding expansion factors and adjustment factors because the table contains all of these factors, currently found in multiple POP tables in the national database. Both sets of factors are needed to develop estimates for the current PNW Phase 2 stratification. The PLOT_PNW table greatly simplifies creating queries that produce population estimates (fewer tables need to be included, along with fewer relational links). This table will be included in most queries that you create, and is used to estimate the total amount of an attribute (e.g. volume in million cubic feet, biomass in tons, forestland acres).

In this chapter, examples and helpful hints are presented that show you how to create queries for many land area, tree, and vegetation summaries. Partial or full queries will be displayed as SQL code, which can be modified and pasted into the Access query window or into existing SQL scripts.

Also, remember that many queries already exist in the database – you can open these in the Access query Window and modify them to suit your needs. The code below shows you some of the components of the queries in SQL form.

Common Selection Criteria for Queries

FIA data are often summarized for forest land or timberland, for reserved or unreserved areas, for live or dead trees, or for growing stock or sawtimber volume. Common selection criteria used when creating queries include various classifications of land and groups of trees as shown below:

Identifying land classes (COND table):

<table>
<thead>
<tr>
<th>Land Class</th>
<th>COND_STATUS_CD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forest land</td>
<td>1</td>
</tr>
<tr>
<td>Nonforest land</td>
<td>2</td>
</tr>
<tr>
<td>Reserved land</td>
<td>RESERVCD=1</td>
</tr>
<tr>
<td>Unreserved land</td>
<td>RESERVCD=0</td>
</tr>
</tbody>
</table>

Identifying tree characteristics:

<table>
<thead>
<tr>
<th>Tree Type</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Live trees</td>
<td>TREE.STATUSCD=1</td>
</tr>
<tr>
<td>Standing dead trees</td>
<td>TREE.STATUSCD=2, TREE.STANDING_DEAD_CD=1</td>
</tr>
<tr>
<td>Growing stock trees</td>
<td>TREE.STATUSCD=1, TREE.TREECLCD=2</td>
</tr>
<tr>
<td>Growing stock volume</td>
<td>TREE.STATUSCD=1, TREE.TREECLCD=2, TREE.DIA>=5.0</td>
</tr>
</tbody>
</table>

It is helpful to study the pre-defined queries that come with the PNW-FIADB to see what columns are used to select various criteria and what columns are used as the summary variable. They also illustrate how to convert units, bring in reference tables to enhance your output, expand tree and area columns to produce population estimates, and how to construct both simple and crosstab queries.
Column names of Common Tree Attributes to Summarize in FIA Queries

The columns listed below are tree attributes that are often used in summaries of FIA data. They range from number of trees, to volume, to biomass and carbon. Please refer to the individual column definitions for more explanation about the attributes. The column names can be used inside queries or SQL statements as the variable to sum or average for an analysis.

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Description</th>
<th>Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPA_UNADJ</td>
<td>Number of trees</td>
<td>TREE</td>
</tr>
<tr>
<td>VOLCFGRS</td>
<td>Gross cubic volume of the merchantable bole, cuft (DIA >= 5”)</td>
<td>TREE</td>
</tr>
<tr>
<td>VOLCFNET</td>
<td>Net cubic volume of the merchantable bole, cuft (DIA >= 5”)</td>
<td>TREE</td>
</tr>
<tr>
<td>VOLCFSND</td>
<td>Sound cubic volume of the merchantable bole, cuft (DIA >= 5”)</td>
<td>TREE</td>
</tr>
<tr>
<td>VOLUME_TOTAL_STEM_WOOD</td>
<td>Gross cubic wood volume of the entire tree, ground to tip, cuft (DIA >= 1”)</td>
<td>TREE</td>
</tr>
<tr>
<td>REGIONAL_DRYBIOM</td>
<td>Biomass of the merchantable bole, excluding bark, regional equations, pounds (DIA >= 5”)</td>
<td>TREE</td>
</tr>
<tr>
<td>REGIONAL_DRYBIOT</td>
<td>Biomass of the total tree, excluding foliage, regional equations, pounds (DIA >= 1”)</td>
<td>TREE</td>
</tr>
</tbody>
</table>

Basic elements of PNW FIA Queries

Note that an adjustment factor is needed in FIA queries to adjust the estimate for partial plots that were not sampled due to being hazardous or because we were denied access to the property. Basically all the area associated with those unsampled conditions is distributed among the other conditions on the plot.

Area estimates in acres:

Include PLOT_PNW and COND tables in the query

Sampled area: (to summarize the number of acres within a category such as forest type)

\[\text{PLOT_PNW.EXPCURR} \times \text{COND.CONDPROP_UNADJ} \times \text{PLOT_PNW!ADJ_FACTOR_EXPCURR} = \text{acres} \]

Tree estimates (in cubic feet-- pounds, etc):

Include PLOT_PNW, COND, TREE, reference tables

\[\text{TABLENAME.TREE_COLUMN_NAME} \times \text{TREE.TPA_UNADJ} \times \text{PLOT_PNW.EXPVOL} \times \text{ADJFAC} \]

Where \(\text{TREE_COLUMN_NAME} \) – the name of any tree attribute such as biomass

\(\text{TPA_UNADJ} = \) tree expander

\(\text{EXPVOL} = \) acres per plot

\(\text{ADJFAC} \) is one of 3 adjustment factors. Here we use the ‘Switch’ function to select the correct factor based on the value of the tree’s TPA_UNADJ

\[\text{(Switch(TREE.TPA_UNADJ=6.018046, PLOT_PNW.ADJ_FACTOR_SUBP, TREE.TPA_UNADJ=74.965282, PLOT_PNW.ADJ_FACTOR_MICR))} \]
The way the Switch function works: If the TPA_UNAD is 6.018046 use the ADJ_FACTOR_SUBP, and if
TPA_UNAD is 74.965282 use the ADJ_FACTOR_MICR.
A complete query expression to calculate total stem biomass would be:
Biomass In tons:
(TREE REGIONAL_DRYBIOT * TREE.TPA_UNADJ * PLOT_PNW.EXPVOL * (Switch(TREE.TPA_UNADJ=6.018046,
PLOT_PNW.ADJ_FACTOR_SUBP, TREE.TPA_UNADJ=74.965282, PLOT_PNW.ADJ_FACTOR_MICR)))/2000

Examples and components of Common PNW FIA queries

Table Alias Names that you could use (for example, refer to the PLOT_PNW table using ‘plp’):
plp= PLOT_PNW
p=PLOT
c=COND
t=TREE

Number of all live trees on forestland (thousand trees):
Basic summary statement: (plp.EXPVOL * t.tpa_UNADJ * ADJFAC)/1000
Where: t.STATUSCD=1, c.COND_STATUS_CD=1, and t.DIA >=1

Number of dead trees on forestland (thousand trees):
Basic summary statement: (plp.EXPVOL * t.tpa_UNADJ * ADJFAC)/1000
Where: t.STATUSCD=2, c.COND_STATUS_CD=1

Gross Cubic volume of all live trees with a DBH>= 5 inches on forestland:
Basic summary statement: t.VOLCFGRS * plp.EXPVOL * t.TPA_UNADJ * ADJFAC
Where: t.STATUSCD=1, c.COND_STATUS_CD=1, and t.DIA >=5

Net Cubic volume of all live trees with a DBH>= 5 inches on forestland:
Basic summary statement: t.VOLCFNET * plp.EXPVOL * t.TPA_UNADJ * ADJFAC
Where: t.STATUSCD=1, c.COND_STATUS_CD=1, and t.DIA >=5

Total above ground biomass of all live trees on forestland, in pounds—using regional equations:
Basic summary statement: t REGIONAL_DRYBIOT * plp.EXPVOL * t.TPA_UNADJ * ADJFAC
Where: t.STATUSCD=1, c.COND_STATUS_CD=1

Total above ground carbon of all live trees on forestland, in tons—using regional equations:
Basic summary statement: t REGIONAL_DRYBIOT * plp.EXPVOL * t.TPA_UNADJ * 0.5 * ADJFAC / 2000
Where: t.STATUSCD=1, c.COND_STATUS_CD=1

From these examples, users can copy pieces of the statements into the appropriate section in the Access query
window. The basic summary statement could be pasted into the ‘Field’ row of the query window, dropping
the table aliases, and choosing the ‘sum’ option in the Total row. The where statement can be used as a
reference, identifying which columns you need to add to the query and then what value to enter into the
Selection Criteria row in the query window.

Using the PNW-FIADB user interface will greatly speed up running queries and moving around in the database.
Many Queries have been built and stored in the database, and should serve as a template from which users
can modify and customize to fit a particular need.
Acknowledgments

This document is based on the national version of the FIADB Database Description and Users Manual, 5.1.

The primary authors on that manual are:
Barbara Conkling (North Carolina State University)
Barbara O’Connell (USDA Forest Service, Northern Research Station)
Elizabeth LaPoint (USDA Forest Service, Northern Research Station)
Jeffery Turner (USDA Forest Service, Southern Research Station)
Ted Ridley (USDA Forest Service, Southern Research Station)
Karen Waddell (USDA Forest Service, Pacific Northwest Research Station)
Andrea M. Wilson (USDA Forest Service, Rocky Mountain Research Station)
Sharon Woudenberg (USDA Forest Service, Rocky Mountain Research Station)

Research support was provided by the USDA Forest Service Research Stations listed above and in part through the Research Joint Venture Agreements and 07-JV-11330146-134, 08-JV-11330146-078, and 09-JV-11330146-087 between the U.S. Department of Agriculture, Forest Service, Southern Research Station and North Carolina State University. In accordance with U.S. Department of Agriculture policy, this institution is prohibited from discriminating on the basis of race, color, national origin, sex, age, or disability. (Not all prohibited bases apply to all programs.)
Literature Cited

Appendix A. FIA Plot Design

The FIA mapped plot design. Subplot 1 is the center of the cluster with subplots 2, 3, and 4 located 120 feet away at azimuths of 360°, 120°, and 240°, respectively.
Appendix B. State and County Codes

American Samoa

<table>
<thead>
<tr>
<th>State Name: American Samoa</th>
<th>State Code: 60</th>
<th>State Abbreviation: AS</th>
<th>Region/Station Code: 26</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>County</th>
<th>Code</th>
<th>County</th>
<th>Code</th>
<th>County</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Tutuila East</td>
<td>30</td>
<td>Rose</td>
<td>50</td>
<td>Tutuila West</td>
</tr>
<tr>
<td>20</td>
<td>Manu'a</td>
<td>40</td>
<td>Swains</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Federated States of Micronesia

<table>
<thead>
<tr>
<th>State Name: Federated States of Micronesia</th>
<th>State Code: 64</th>
<th>State Abbreviation: FM</th>
<th>Region/Station Code: 26</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>County</th>
<th>Code</th>
<th>County</th>
<th>Code</th>
<th>County</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Chuuk</td>
<td>5</td>
<td>Kosrae</td>
<td>40</td>
<td>Pohnpei</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>60</td>
<td>Yap</td>
</tr>
</tbody>
</table>

Guam

<table>
<thead>
<tr>
<th>State Name: Guam</th>
<th>State Code: 66</th>
<th>State Abbreviation: GU</th>
<th>Region/Station Code: 26</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>County</th>
<th>Code</th>
<th>County</th>
<th>Code</th>
<th>County</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Guam</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Marshall Islands

<table>
<thead>
<tr>
<th>State Name: Marshall Islands</th>
<th>State Code: 68</th>
<th>State Abbreviation: MH</th>
<th>Region/Station Code: 26</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>County</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Ailinginae</td>
<td>90</td>
<td>Enewetak</td>
<td>170</td>
<td>Lib</td>
<td>350</td>
<td>Rongelap</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Ailinglaplap</td>
<td>100</td>
<td>Erikub</td>
<td>180</td>
<td>Likiep</td>
<td>360</td>
<td>Rongrik</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Aliluk</td>
<td>110</td>
<td>Jabat</td>
<td>190</td>
<td>Majuro</td>
<td>385</td>
<td>Toke</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Ano</td>
<td>120</td>
<td>Jaluit</td>
<td>300</td>
<td>Maloelap</td>
<td>390</td>
<td>Ujae</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>Aur</td>
<td>130</td>
<td>Jemo</td>
<td>310</td>
<td>Mejit</td>
<td>400</td>
<td>Ujelang</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>Bikar</td>
<td>140</td>
<td>Kili</td>
<td>320</td>
<td>Mili</td>
<td>410</td>
<td>Utrik</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>Bikini</td>
<td>150</td>
<td>Kwajalein</td>
<td>330</td>
<td>Namorik</td>
<td>420</td>
<td>Wotho</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>Bokak</td>
<td>160</td>
<td>Lae</td>
<td>340</td>
<td>Namu</td>
<td>430</td>
<td>Wotje</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>Ebon</td>
<td></td>
</tr>
</tbody>
</table>
Northern Mariana Islands

<table>
<thead>
<tr>
<th>Code</th>
<th>County</th>
<th>Code</th>
<th>County</th>
<th>Code</th>
<th>County</th>
<th>Code</th>
<th>County</th>
</tr>
</thead>
<tbody>
<tr>
<td>85</td>
<td>Northern Islands</td>
<td>100</td>
<td>Rota</td>
<td>110</td>
<td>Saipan</td>
<td>120</td>
<td>Tinian</td>
</tr>
</tbody>
</table>

Palau

<table>
<thead>
<tr>
<th>Code</th>
<th>County</th>
<th>Code</th>
<th>County</th>
<th>Code</th>
<th>County</th>
<th>Code</th>
<th>County</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Aimeliik</td>
<td>100</td>
<td>Kayangel</td>
<td>218</td>
<td>Ngarchelong</td>
<td>227</td>
<td>Ngernmlengui</td>
</tr>
<tr>
<td>4</td>
<td>Airai</td>
<td>150</td>
<td>Koror</td>
<td>222</td>
<td>Ngardmau</td>
<td>228</td>
<td>Ngiwal</td>
</tr>
<tr>
<td>10</td>
<td>Angaur</td>
<td>212</td>
<td>Melekeok</td>
<td>224</td>
<td>Ngatpang</td>
<td>350</td>
<td>Peleliu</td>
</tr>
<tr>
<td>50</td>
<td>Hatoboheit</td>
<td>214</td>
<td>Ngaraard</td>
<td>226</td>
<td>Ngchesar</td>
<td>370</td>
<td>Sonsorol</td>
</tr>
</tbody>
</table>
Appendix C. FOREST TYPE Codes, FOREST TYPE Group Codes, and Names.

<table>
<thead>
<tr>
<th>FORTYPCD Code</th>
<th>Forest type name</th>
</tr>
</thead>
<tbody>
<tr>
<td>980</td>
<td>Tropical hardwoods group</td>
</tr>
<tr>
<td>982</td>
<td>Mangrove</td>
</tr>
<tr>
<td>983</td>
<td>Palms</td>
</tr>
<tr>
<td>984</td>
<td>Dry forest</td>
</tr>
<tr>
<td>985</td>
<td>Moist forest</td>
</tr>
<tr>
<td>986</td>
<td>Wet and rain forest</td>
</tr>
<tr>
<td>987</td>
<td>Lower montane wet and rain forest</td>
</tr>
<tr>
<td>988</td>
<td>Cloud forest</td>
</tr>
<tr>
<td>989</td>
<td>Other tropical hardwoods</td>
</tr>
<tr>
<td>999</td>
<td>Nonstocked</td>
</tr>
<tr>
<td>999</td>
<td>Nonstocked</td>
</tr>
</tbody>
</table>

Appendix D. Tree Species Group Codes

<table>
<thead>
<tr>
<th>Code</th>
<th>Group name</th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
<td>Tropical and subtropical pines</td>
</tr>
<tr>
<td>52</td>
<td>Other tropical and subtropical softwoods</td>
</tr>
<tr>
<td>53</td>
<td>Tropical and subtropical palms</td>
</tr>
<tr>
<td>54</td>
<td>Tropical and subtropical hardwoods</td>
</tr>
</tbody>
</table>
Appendix F: Pacific Tree Species Codes, Names, and Occurrences

These species codes are in the REF_SPECIES database table.

Major groups (MAJGRP) are (1) pines, (2) other softwoods, (3) soft hardwoods, and (4) hard hardwoods.

Pacific Tree Species:

<table>
<thead>
<tr>
<th>SPCD</th>
<th>COMMON_NAME</th>
<th>Scientific Name</th>
<th>SPGRP</th>
<th>MAJGRP</th>
</tr>
</thead>
<tbody>
<tr>
<td>0050</td>
<td>cypress</td>
<td>Cupressus spp.</td>
<td>52</td>
<td>2</td>
</tr>
<tr>
<td>0100</td>
<td>pine spp.</td>
<td>Pinus spp.</td>
<td>52</td>
<td>1</td>
</tr>
<tr>
<td>0299</td>
<td>Unknown dead conifer</td>
<td>Tree evergreen</td>
<td>52</td>
<td>2</td>
</tr>
<tr>
<td>0300</td>
<td>acacia spp.</td>
<td>Acacia spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>0303</td>
<td>sweet acacia</td>
<td>Acacia farnesiana</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>0341</td>
<td>ailanthus</td>
<td>Ailanthus altissima</td>
<td>54</td>
<td>4</td>
</tr>
<tr>
<td>0350</td>
<td>alder spp.</td>
<td>Alnus spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>0460</td>
<td>hackberry spp.</td>
<td>Celtis spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>0510</td>
<td>eucalyptus spp.</td>
<td>Eucalyptus spp.</td>
<td>54</td>
<td>4</td>
</tr>
<tr>
<td>0511</td>
<td>Tasmanian bluegum</td>
<td>Eucalyptus globulus</td>
<td>54</td>
<td>4</td>
</tr>
<tr>
<td>0512</td>
<td>river redgum</td>
<td>Eucalyptus camaldulensis</td>
<td>54</td>
<td>4</td>
</tr>
<tr>
<td>0513</td>
<td>grand eucalyptus</td>
<td>Eucalyptus grandis</td>
<td>54</td>
<td>4</td>
</tr>
<tr>
<td>0514</td>
<td>swampmahogany</td>
<td>Eucalyptus robusta</td>
<td>54</td>
<td>4</td>
</tr>
<tr>
<td>0520</td>
<td>persimmon spp.</td>
<td>Diospyros spp.</td>
<td>54</td>
<td>4</td>
</tr>
<tr>
<td>0541</td>
<td>white ash</td>
<td>Fraxinus americana</td>
<td>54</td>
<td>4</td>
</tr>
<tr>
<td>0681</td>
<td>white mulberry</td>
<td>Morus alba</td>
<td>54</td>
<td>4</td>
</tr>
<tr>
<td>0712</td>
<td>paulownia, empress-tree</td>
<td>Paulownia tomentosa</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>0715</td>
<td>Maytenus palauica</td>
<td>Maytenus palauica</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>0718</td>
<td>kesiamel</td>
<td>Osmoxylon truncatum</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>0720</td>
<td>bay spp.</td>
<td>Persea spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>0755</td>
<td>mesquite spp.</td>
<td>Prosopis spp.</td>
<td>54</td>
<td>4</td>
</tr>
<tr>
<td>0764</td>
<td>peach</td>
<td>Prunus persica</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>0800</td>
<td>oak spp.</td>
<td>Quercus spp.</td>
<td>54</td>
<td>4</td>
</tr>
<tr>
<td>0855</td>
<td>sheoak spp.</td>
<td>Casuarina spp.</td>
<td>52</td>
<td>3</td>
</tr>
<tr>
<td>0856</td>
<td>gray sheoak</td>
<td>Casuarina glauca</td>
<td>52</td>
<td>3</td>
</tr>
<tr>
<td>0858</td>
<td>camphortree</td>
<td>Cinnamomum camphora</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>0860</td>
<td>citrus spp.</td>
<td>Citrus spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>0865</td>
<td>largeleaf geigertree</td>
<td>Cordia sebestena</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>0885</td>
<td>mango</td>
<td>Mangifera indica</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>0887</td>
<td>fishpoison tree</td>
<td>Piscidia piscipula</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>0888</td>
<td>octopus tree, schefflera</td>
<td>Schefflera actinophylla</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>SPCD</td>
<td>COMMON_NAME</td>
<td>Scientific Name</td>
<td>SPGRPCD</td>
<td>MAJGRP</td>
</tr>
<tr>
<td>------</td>
<td>---------------------</td>
<td>--------------------------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>0896</td>
<td>Java plum</td>
<td>Syzygium cumini</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>0897</td>
<td>tamarind</td>
<td>Tamarindus indica</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>0908</td>
<td>coconut palm</td>
<td>Cocos nucifera</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>0940</td>
<td>West Indian mahogany</td>
<td>Swietenia mahagoni</td>
<td>54</td>
<td>4</td>
</tr>
<tr>
<td>0974</td>
<td>Siberian elm</td>
<td>Ulmus pumila</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>0987</td>
<td>buttonwood-mangrove</td>
<td>Conocarpus erectus</td>
<td>54</td>
<td>4</td>
</tr>
<tr>
<td>0989</td>
<td>American mangrove</td>
<td>Rhizophora mangle</td>
<td>54</td>
<td>4</td>
</tr>
<tr>
<td>0992</td>
<td>melaleuca</td>
<td>Melaleuca quinquenervia</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>0993</td>
<td>chinaberry</td>
<td>Melia azedarach</td>
<td>54</td>
<td>4</td>
</tr>
<tr>
<td>0994</td>
<td>Chinese tallowtree</td>
<td>Triadica sebifera</td>
<td>54</td>
<td>4</td>
</tr>
<tr>
<td>0998</td>
<td>unknown dead hardwood</td>
<td>Tree broadleaf</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>0999</td>
<td>other or unknown live tree</td>
<td>Tree unknown</td>
<td>52</td>
<td>3</td>
</tr>
<tr>
<td>6002</td>
<td>mulga</td>
<td>Acacia aneura</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6003</td>
<td>auri</td>
<td>Acacia auriculiformis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6004</td>
<td>small Philippine acacia</td>
<td>Acacia confusa</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6006</td>
<td>koa</td>
<td>Acacia koa</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6007</td>
<td>koaoha</td>
<td>Acacia koaia</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6009</td>
<td>black wattle</td>
<td>Acacia mangium</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6010</td>
<td>black wattle</td>
<td>Acacia mearnsii</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6011</td>
<td>blackwood</td>
<td>Acacia melanoxylon</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6014</td>
<td>South Wales wattle</td>
<td>Acerola parramattensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6028</td>
<td>red beadtree</td>
<td>Adenanthera pavonina</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6029</td>
<td>beadtree</td>
<td>Adenanthera spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6042</td>
<td>Titimel</td>
<td>Aglaia mariannensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6043</td>
<td>mesecheues</td>
<td>Aglaia palauensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6044</td>
<td>karasyu, marasau</td>
<td>Aglaia ponapensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6046</td>
<td>aja ali</td>
<td>Aglaia samoensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6047</td>
<td>Aglaia</td>
<td>Aglaia spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6048</td>
<td>Olomea</td>
<td>Ailanthus chinensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6049</td>
<td>Ailanthus racemosa</td>
<td>Ailanthus racemosa</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6051</td>
<td>ailanthus</td>
<td>Ailanthus spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6057</td>
<td>Chinese albizia</td>
<td>Albizia chinensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6058</td>
<td>ukall ra ngebard</td>
<td>Albizia falcata</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6059</td>
<td>woman's tongue</td>
<td>Albizia lebbeck</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6061</td>
<td>ukall ra ngebard</td>
<td>Albizia retusa</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6062</td>
<td>whiteflower albizia</td>
<td>Albizia saponaria</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6063</td>
<td>albizia</td>
<td>Albizia spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6069</td>
<td>Hawaii alectryon</td>
<td>Alectryon micrococcus</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6073</td>
<td>alectryon</td>
<td>Alectryon spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6075</td>
<td>Indian walnut</td>
<td>Ailanthus moluccana</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6077</td>
<td>aleurites</td>
<td>Ailanthus spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>SPCD</td>
<td>COMMON_NAME</td>
<td>Scientific Name</td>
<td>SPGRPCD</td>
<td>MAJGRP</td>
</tr>
<tr>
<td>-------</td>
<td>-----------------</td>
<td>----------------------------------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>6078</td>
<td>lumbang</td>
<td>Alnus trisperma</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6083</td>
<td>Allophylus</td>
<td>Allophylus spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6084</td>
<td>chebeludes</td>
<td>Allophylus ternatus</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6085</td>
<td>chebeludes</td>
<td>Allophylus timorensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6086</td>
<td>Nepal alder</td>
<td>Alnus nepalensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6088</td>
<td>chelebiob, elebiong</td>
<td>Alphitonia carolinensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6089</td>
<td>Hawaii kauilatree</td>
<td>Alphitonia ponderosa</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6090</td>
<td>Alphitonia</td>
<td>Alphitonia spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6091</td>
<td>toi</td>
<td>Alphitonia zizyphoides</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6095</td>
<td>deviltree</td>
<td>Alstonia macrophylla</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6096</td>
<td>Alstonia pacifica</td>
<td>Alstonia pacifica</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6097</td>
<td>alstonia</td>
<td>Alstonia spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6107</td>
<td>cashew</td>
<td>Anacardium occidentale</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6108</td>
<td>Anacolosa</td>
<td>Anacolosa glossidiiformis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6109</td>
<td>Anacolosa</td>
<td>Anacolosa insularis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6118</td>
<td>dermarl</td>
<td>Angiopteris evecta</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6124</td>
<td>Annona cherimola</td>
<td>Annona cherimola</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6128</td>
<td>soursoo</td>
<td>Annona muricata</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6129</td>
<td>custard apple</td>
<td>Annona reticulata</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6130</td>
<td>Annona</td>
<td>Annona spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6131</td>
<td>sugar apple</td>
<td>Annona squamosa</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6135</td>
<td>Kapua china laurel</td>
<td>Antidesma kapuae</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6137</td>
<td>Antidesma bunius</td>
<td>Antidesma bunius</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6138</td>
<td>Antidesma kusaiense</td>
<td>Antidesma kusaiense</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6139</td>
<td>ha a</td>
<td>Antidesma platyphyllum</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6142</td>
<td>Antidesma ponapense</td>
<td>Antidesma ponapense</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6143</td>
<td>name</td>
<td>Antidesma pulvinatum</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6144</td>
<td>Antidesma sphaerocarpum</td>
<td>Antidesma sphaerocarpum</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6145</td>
<td>chinalaurel</td>
<td>Antidesma spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6148</td>
<td>Antirhea inconspicua</td>
<td>Antirhea inconspicua</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6154</td>
<td>parana pine</td>
<td>Araucaria angustifolia</td>
<td>51</td>
<td>3</td>
</tr>
<tr>
<td>6155</td>
<td>New Caledonia pine</td>
<td>Araucaria columnaris</td>
<td>51</td>
<td>1</td>
</tr>
<tr>
<td>6156</td>
<td>Norfolk Island Pine</td>
<td>Araucaria excelsa</td>
<td>51</td>
<td>1</td>
</tr>
<tr>
<td>6157</td>
<td>Norfolk Island pine</td>
<td>Araucaria heterophylla</td>
<td>51</td>
<td>3</td>
</tr>
<tr>
<td>6158</td>
<td>Araucaria</td>
<td>Araucaria spp.</td>
<td>51</td>
<td>3</td>
</tr>
<tr>
<td>6159</td>
<td>Alexandra palm</td>
<td>Archontophoenix alexandrae</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>6161</td>
<td>shoebutton</td>
<td>Ardisia elliptica</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6166</td>
<td>marberry</td>
<td>Ardisia spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6167</td>
<td>betelnut</td>
<td>Areca catechu</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6169</td>
<td>cabi-negro</td>
<td>Arenga pinnata</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6171</td>
<td>breadfruit</td>
<td>Artocarpus altiis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>SPCD</td>
<td>COMMON_NAME</td>
<td>Scientific Name</td>
<td>SPGRPCD</td>
<td>MAJGRP</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>---------------------------------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>6173</td>
<td>Artocarpus heterophyllus</td>
<td>Artocarpus heterophyllus</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6175</td>
<td>dugdug, Marianas breadfruit</td>
<td>Artocarpus mariannensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6176</td>
<td>Artocarpus nobilis</td>
<td>Artocarpus nobilis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6177</td>
<td>Marang</td>
<td>Artocarpus odoratissimus</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6178</td>
<td>meduu</td>
<td>Artocarpus spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6179</td>
<td>taputoi</td>
<td>Arytera brackenridgei</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6181</td>
<td>ailia</td>
<td>Ascarina diffusa</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6185</td>
<td>Astronium navigatorum</td>
<td>Astronium navigatorum</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6186</td>
<td>meskui</td>
<td>Astronium palauense</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6187</td>
<td>Astronium pickeringii</td>
<td>Astronium pickeringii</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6188</td>
<td>Astronium samoense</td>
<td>Astronium samoense</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6189</td>
<td>Astronium</td>
<td>Astronium spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6190</td>
<td>Astronium subcordata</td>
<td>Astronium subcordata</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6193</td>
<td>fi fi</td>
<td>Atuna racemosa</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6197</td>
<td>Bilimbi</td>
<td>Averrhoa bilimbi</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6198</td>
<td>carambola</td>
<td>Averrhoa carambola</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6199</td>
<td>Averrhoa</td>
<td>Averrhoa spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6200</td>
<td>biut</td>
<td>Avicennia alba</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6203</td>
<td>Avicennia marina</td>
<td>Avicennia marina</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6205</td>
<td>Avicennia</td>
<td>Avicennia spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6208</td>
<td>Saitamu</td>
<td>Baccarnea taitensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6213</td>
<td>ralm</td>
<td>Badusa palauensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6215</td>
<td>bamboo</td>
<td>Bambusa spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6216</td>
<td>common bamboo</td>
<td>Bambusa vulgaris</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6220</td>
<td>sea putat</td>
<td>Barringtonia asiatica</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6221</td>
<td>langasag</td>
<td>Barringtonia racemosa</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6222</td>
<td>falaga</td>
<td>Barringtonia samoensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6223</td>
<td>Barringtonia</td>
<td>Barringtonia spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6225</td>
<td>Bauhinia binata</td>
<td>Bauhinia binata</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6226</td>
<td>Napoleon's plume</td>
<td>Bauhinia monandra</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6230</td>
<td>bauhinia</td>
<td>Bauhinia spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6236</td>
<td>Javanese bishopwood</td>
<td>Bischofia javanica</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6237</td>
<td>bishopwood</td>
<td>Bischofia spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6238</td>
<td>lipsticktree</td>
<td>Bixa orellana</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6239</td>
<td>bixa</td>
<td>Bixa spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6242</td>
<td>akupa</td>
<td>Bobea brevipes</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6243</td>
<td>ahakea lau nui</td>
<td>Bobea elatior</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6244</td>
<td>Hawaii dogweed</td>
<td>Bobea sandwicensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6245</td>
<td>ahakea</td>
<td>Bobea spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6246</td>
<td>ahakea</td>
<td>Bobea timonioides</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6247</td>
<td>parrotweed</td>
<td>Bocconia frutescens</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>SPCD</td>
<td>COMMON_NAME</td>
<td>Scientific Name</td>
<td>SPGRPCD</td>
<td>MAJGRP</td>
</tr>
<tr>
<td>------</td>
<td>---------------------</td>
<td>--------------------------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>6248</td>
<td>bocconia</td>
<td>Bocconia spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6250</td>
<td>virgata</td>
<td>Boehmeria virginata</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6260</td>
<td>kanawao</td>
<td>Broussaisia arguta</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6262</td>
<td>paper mulberry</td>
<td>Broussonetia papyrfera</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6264</td>
<td>angels-trumpet</td>
<td>Brugmansia candida</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6267</td>
<td>smallflower bruguiera</td>
<td>Bruguiera parviflora</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6268</td>
<td>Oriental mangrove</td>
<td>Bruguiera sexangula</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6269</td>
<td>bruguiera</td>
<td>Bruguiera spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6277</td>
<td>omal</td>
<td>Buchanania engleriana</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6278</td>
<td>gasu</td>
<td>Buchanania merrillii</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6279</td>
<td>omal, deuachel</td>
<td>Buchanania palawensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6280</td>
<td>Buchanania</td>
<td>Buchanania spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6286</td>
<td>dogtail</td>
<td>Buddleja asiatica</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6289</td>
<td>Burckella richii</td>
<td>Burckella richii</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6318</td>
<td>uhiuhi</td>
<td>Caesalpinia kavaiensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6320</td>
<td>sappanwood</td>
<td>Caesalpinia sappan</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6341</td>
<td>Alexandrian laurel</td>
<td>Calophyllum inophyllum</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6342</td>
<td>tamanu</td>
<td>Calophyllum neo-ebudicum</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6343</td>
<td>chesemolech</td>
<td>Calophyllum pelewense</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6344</td>
<td>olebtaches, chesemolech</td>
<td>Calophyllum soulattri</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6345</td>
<td>roostertree</td>
<td>Calotropis procera</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6347</td>
<td>calotropis</td>
<td>Calotropis spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6366</td>
<td>kelela charm, kiu</td>
<td>Campnoserma brevipetiolatum</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6370</td>
<td>ilang-ilang</td>
<td>Cananga odorata</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6372</td>
<td>mafa</td>
<td>Canarium mafoa</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6373</td>
<td>mesecheues</td>
<td>Canarium hirsutum</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6374</td>
<td>lukerr</td>
<td>Canarium indicum</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6375</td>
<td>Pili Nut</td>
<td>Canarium ovatum</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6377</td>
<td>Canarium</td>
<td>Canarium spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6378</td>
<td>maali</td>
<td>Canarium vitiense</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6379</td>
<td>Canarium vulgare</td>
<td>Canarium vulgare</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6381</td>
<td>Olasina</td>
<td>Psydrax merrillii</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6395</td>
<td>papaya</td>
<td>Carica papaya</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>6396</td>
<td>papaya</td>
<td>Carica spp.</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>6397</td>
<td>scorpionbush</td>
<td>Carmona retusa</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6398</td>
<td>scorpionbush</td>
<td>Carmona spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6399</td>
<td>fish tail palm</td>
<td>Caryota mitis</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>6400</td>
<td>Caryota</td>
<td>Caryota spp.</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>6401</td>
<td>fishtail palm</td>
<td>Caryota urens</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>6405</td>
<td>keuert</td>
<td>Casearia cauliflora</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>SPCD</td>
<td>COMMON_NAME</td>
<td>Scientific Name</td>
<td>SPGRPCD</td>
<td>MAJGRP</td>
</tr>
<tr>
<td>------</td>
<td>---------------------------</td>
<td>---------------------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>6408</td>
<td>Casearia</td>
<td>Casearia spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6415</td>
<td>golden shower</td>
<td>Cassia fistula</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6417</td>
<td>pink shower</td>
<td>Cassia grandis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6418</td>
<td>apple blossom</td>
<td>Cassia javanica</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6420</td>
<td>kassod tree</td>
<td>Cassia siamea</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6422</td>
<td>Cassia</td>
<td>Cassia spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6430</td>
<td>Panama rubbertree</td>
<td>Castilla elastica</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6433</td>
<td>river sheoak</td>
<td>Casuarina cunninghamiana</td>
<td>52</td>
<td>3</td>
</tr>
<tr>
<td>6434</td>
<td>beach sheoak</td>
<td>Casuarina equisetifolia</td>
<td>52</td>
<td>3</td>
</tr>
<tr>
<td>6437</td>
<td>gagu, australian pine</td>
<td>Casuarina litorea</td>
<td>52</td>
<td>1</td>
</tr>
<tr>
<td>6439</td>
<td>Haitian catalpa</td>
<td>Catalpa longissima</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6441</td>
<td>trumpet tree</td>
<td>Cecropia obtusifolia</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6444</td>
<td>pumpwood</td>
<td>Cecropia spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6449</td>
<td>kapoktree</td>
<td>Ceiba pentandra</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6452</td>
<td>Celtis paniculata</td>
<td>Celtis paniculata</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6459</td>
<td>chuti</td>
<td>Cerbera dilatata</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6460</td>
<td>emeridech</td>
<td>Cerbera floribunda</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6461</td>
<td>leva</td>
<td>Cerbera manghas</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6462</td>
<td>chiute</td>
<td>Cerbera odallam</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6463</td>
<td>Cerbera spp</td>
<td>Cerbera spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6469</td>
<td>Cereus hildmannianus</td>
<td>Cereus hildmannianus</td>
<td>52</td>
<td>3</td>
</tr>
<tr>
<td>6470</td>
<td>sweetpotato cactus</td>
<td>Cereus spp.</td>
<td>52</td>
<td>3</td>
</tr>
<tr>
<td>6472</td>
<td>biut</td>
<td>Ceriops tagal</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6473</td>
<td>orange jessamine</td>
<td>Cestrum aurantiacum</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6474</td>
<td>day jessamine</td>
<td>Cestrum diurnum</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6477</td>
<td>night jessamine</td>
<td>Cestrum nocturnum</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6478</td>
<td>jessamine</td>
<td>Cestrum spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6482</td>
<td>koko</td>
<td>Chamaesyce atrococca</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6483</td>
<td>ekoko</td>
<td>Chamaesyce celastroides</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6492</td>
<td>Herbsts sandmat</td>
<td>Chamaesyce herbstii</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6493</td>
<td>kokomalei</td>
<td>Chamaesyce kuwaleana</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6494</td>
<td>alpine sandmat</td>
<td>Chamaesyce olowaluana</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6495</td>
<td>Koolau Range sandmat</td>
<td>Chamaesyce rockii</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6496</td>
<td>sandmat</td>
<td>Chamaesyce spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6497</td>
<td>Napali coast papala</td>
<td>Charpentiera densiflora</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6498</td>
<td>ellipticleaf papala</td>
<td>Charpentiera elliptica</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6499</td>
<td>broadleaf papala</td>
<td>Charpentiera obovata</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6500</td>
<td>Koolau Range papala</td>
<td>Charpentiera ovata</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6503</td>
<td>papala</td>
<td>Charpentiera spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6504</td>
<td>Waianae Range papala</td>
<td>Charpentiera tomentosa</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6507</td>
<td>Domins club</td>
<td>Cheirodendron dominii</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>SPCD</td>
<td>COMMON_NAME</td>
<td>Scientific Name</td>
<td>SPGRPCD</td>
<td>MAJGRP</td>
</tr>
<tr>
<td>------</td>
<td>----------------------</td>
<td>------------------------------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>6508</td>
<td>Fairies club</td>
<td>Cheirodendron fauriei</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6509</td>
<td>olapa</td>
<td>Cheirodendron forbesii</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6510</td>
<td>olapalapa</td>
<td>Cheirodendron platyphyllum</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6513</td>
<td>Cheirodendron</td>
<td>Cheirodendron spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6514</td>
<td>olapalapa</td>
<td>Cheirodendron trigynum</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6517</td>
<td>alaweao</td>
<td>Chenopodium oahuense</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6518</td>
<td>goosefoot</td>
<td>Chenopodium spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6525</td>
<td>vitiensis</td>
<td>Chionanthus vitiensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6541</td>
<td>star apple</td>
<td>Chrysopogon cainito</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6542</td>
<td>satinleaf</td>
<td>Chrysopogon oliviforme</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6545</td>
<td>Hawaiian tree fern</td>
<td>Cibotium heleniae</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6546</td>
<td>Chamisso manfern</td>
<td>Cibotium chamissoi</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6547</td>
<td>hapuu</td>
<td>Cibotium glaucum</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6548</td>
<td>hapuu li</td>
<td>Cibotium menziesii</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6549</td>
<td>manfern</td>
<td>Cibotium spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6552</td>
<td>quinine</td>
<td>Cinchona pubescens</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6553</td>
<td>cinchona</td>
<td>Cinchona spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6555</td>
<td>Padang cassia</td>
<td>Cinnamomum burmannii</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6557</td>
<td>ochod</td>
<td>Cinnamomum carolinense</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6561</td>
<td>ochod</td>
<td>Cinnamomum pedatinervium</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6562</td>
<td>matieu</td>
<td>Cinnamomum sessilfolium</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6563</td>
<td>cinnamon</td>
<td>Cinnamomum spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6564</td>
<td>cinnamon</td>
<td>Cinnamomum verum</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6565</td>
<td>juniper berry</td>
<td>Citharexylum caudatum</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6567</td>
<td>spiny fiddlewood</td>
<td>Citharexylum spinosum</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6568</td>
<td>fiddlewood</td>
<td>Citharexylum spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6570</td>
<td>samoensis</td>
<td>Citronella samoensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6572</td>
<td>Lime (Tipolo)</td>
<td>Citrus aurantifolia</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6574</td>
<td>sour orange</td>
<td>Citrus xaurantium</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6575</td>
<td>lemon</td>
<td>Citrus xilimon</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6577</td>
<td>sweet orange</td>
<td>Citrus xsinensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6578</td>
<td>grapefruit, kahet magas</td>
<td>Citrus grandis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6579</td>
<td>limon china</td>
<td>Citrus hystrix</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6580</td>
<td>kahet, wild orange</td>
<td>Citrus macroptera</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6581</td>
<td>Citrus maxima</td>
<td>Citrus maxima</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6582</td>
<td>Citrus medica</td>
<td>Citrus medica</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6583</td>
<td>Calamondin, kingkang</td>
<td>Citrus mitis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6584</td>
<td>Citrus reticulata</td>
<td>Citrus reticulata</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6586</td>
<td>keee</td>
<td>Claoxylon carolinanum</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6588</td>
<td>Claoxylon fallax</td>
<td>Claoxylon fallax</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6589</td>
<td>Claoxylon longiracemosum</td>
<td>Claoxylon longiracemosum</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>SPCD</td>
<td>COMMON_NAME</td>
<td>Scientific Name</td>
<td>SPGRPCD</td>
<td>MAJGRP</td>
</tr>
<tr>
<td>------</td>
<td>---------------------</td>
<td>--------------------------------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>6590</td>
<td>kattleknau, katot</td>
<td>Claoxylon marianum</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6591</td>
<td>poola</td>
<td>Claoxylon sandwicense</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6592</td>
<td>claoxylon</td>
<td>Claoxylon spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6593</td>
<td>Cleistanthus carolinanus</td>
<td>Cleistanthus carolinanus</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6594</td>
<td>Cleistanthus insularis</td>
<td>Cleistanthus insularis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6595</td>
<td>Cleistanthus</td>
<td>Cleistanthus spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6596</td>
<td>oha wai nui</td>
<td>Clermontia leptocladia</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6597</td>
<td>oha wai nui</td>
<td>Clermontia arborescens</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6601</td>
<td>Kauai clermontia</td>
<td>Clermontia clermontioides</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6604</td>
<td>Kohala Mountain clermontia</td>
<td>Clermontia drepanomorpha</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6605</td>
<td>haha alakamanu</td>
<td>Clermontia fauriei</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6606</td>
<td>bog clermontia</td>
<td>Clermontia grandiflora</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6607</td>
<td>oha kepau</td>
<td>Clermontia hawaiiensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6611</td>
<td>forest clermontia</td>
<td>Clermontia kakeana</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6612</td>
<td>Waipio Valley clermontia</td>
<td>Clermontia kohalae</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6613</td>
<td>hillside clermontia</td>
<td>Clermontia lindseyana</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6614</td>
<td>Maui clermontia</td>
<td>Clermontia micrantha</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6615</td>
<td>Mauna Loa clermontia</td>
<td>Clermontia montis-loa</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6616</td>
<td>Oahu clermontia</td>
<td>Clermontia oblongifolia</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6620</td>
<td>Wailai Pali clermontia</td>
<td>Clermontia pallida</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6621</td>
<td>smallflower clermontia</td>
<td>Clermontia parvifolia</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6622</td>
<td>pele clermontia</td>
<td>Clermontia peleana</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6625</td>
<td>Waioiani clermontia</td>
<td>Clermontia persicifolia</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6626</td>
<td>Hamakua clermontia</td>
<td>Clermontia pyrularia</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6627</td>
<td>Clermontia sgruliflora</td>
<td>Clermontia sgruliflora</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6628</td>
<td>clermontia</td>
<td>Clermontia spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6631</td>
<td>Haleakala clermontia</td>
<td>Clermontia tuberculata</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6632</td>
<td>swampforest clermontia</td>
<td>Clermontia waiameae</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6633</td>
<td>stickbush</td>
<td>Clerodendrum chinense</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6634</td>
<td>turks turbin</td>
<td>Clerodendrum indicum</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6635</td>
<td>velvetleaf glorybower</td>
<td>Clerodendrum macrostegium</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6636</td>
<td>glorybower</td>
<td>Clerodendrum spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6651</td>
<td>Scotch attorney</td>
<td>Clusia rosea</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6652</td>
<td>attorney</td>
<td>Clusia spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6670</td>
<td>seagrape</td>
<td>Coccoloba uvifera</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6681</td>
<td>coconut palm</td>
<td>Cocos spp.</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>6684</td>
<td>Arabian coffee</td>
<td>Coffea arabica</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6686</td>
<td>Coffea liberica</td>
<td>Coffea liberica</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6687</td>
<td>coffee</td>
<td>Coffea spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6691</td>
<td>uab, chuchab</td>
<td>Colona scabra</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>SPCD</td>
<td>COMMON_NAME</td>
<td>Scientific Name</td>
<td>SPGRPCD</td>
<td>MAJGRP</td>
</tr>
<tr>
<td>------</td>
<td>----------------------</td>
<td>--------------------------------------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>6693</td>
<td>common snakebark</td>
<td>Colubrina arborescens</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6694</td>
<td>Asian nakedwood</td>
<td>Colubrina asiatica</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6697</td>
<td>kaula</td>
<td>Colubrina oppositifolia</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6699</td>
<td>nakedwood</td>
<td>Colubrina spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6702</td>
<td>ochaol</td>
<td>Combretum tetralophum</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6703</td>
<td>Mao</td>
<td>Commersonia bartramia</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6709</td>
<td>mangrove</td>
<td>Conocarpus spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6716</td>
<td>forest mirrorplant</td>
<td>Coprosma foliosa</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6717</td>
<td>koi</td>
<td>Coprosma kauensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6718</td>
<td>Oahu mirrorplant</td>
<td>Coprosma longifolia</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6719</td>
<td>alpine mirrorplant</td>
<td>Coprosma montana</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6720</td>
<td>Maui mirrorplant</td>
<td>Coprosma ochracea</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6721</td>
<td>pubescent mirrorplant</td>
<td>Coprosma pubens</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6722</td>
<td>woodland mirrorplant</td>
<td>Coprosma rhynchocarpa</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6724</td>
<td>mirrorplant</td>
<td>Coprosma spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6726</td>
<td>olena</td>
<td>Coprosma waimeae</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6729</td>
<td>Tou</td>
<td>Cordia aspera</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6731</td>
<td>red manjack</td>
<td>Cordia collococca</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6733</td>
<td>fragrant manjack</td>
<td>Cordia dichotoma</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6736</td>
<td>Cordia micronesica</td>
<td>Cordia micronesica</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6741</td>
<td>cordia</td>
<td>Cordia spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6742</td>
<td>kou</td>
<td>Cordia subcordata</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6744</td>
<td>tiplant</td>
<td>Cordyline fruticosa</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>6745</td>
<td>cordyline</td>
<td>Cordyline spp.</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>6749</td>
<td>redgum</td>
<td>Corymbia calophylla</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6750</td>
<td>Corymbia citriodora</td>
<td>Corymbia citriodora</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6751</td>
<td>redflower gum</td>
<td>Corymbia ficifolia</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6752</td>
<td>red bloodwood</td>
<td>Corymbia gumsifera</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6754</td>
<td>karaka nut</td>
<td>Corynocarpus laevidigatus</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6755</td>
<td>corynocarpus</td>
<td>Corynocarpus spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6756</td>
<td>cannonball tree</td>
<td>Couroupita guianensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6758</td>
<td>sacred garlic pear</td>
<td>Crateva religiosa</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6760</td>
<td>houka, calabash</td>
<td>Crescentia alata</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6769</td>
<td>Saitamu</td>
<td>Crossostylis biflora</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6771</td>
<td>longbeak rattlebox</td>
<td>Crotalaria longirostrata</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6778</td>
<td>Cryptocarya oreophila</td>
<td>Cryptocarya oreophila</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6779</td>
<td>laulii</td>
<td>Cryptocarya elegans</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6781</td>
<td>holio</td>
<td>Cryptocarya mannii</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6783</td>
<td>cryptocarya</td>
<td>Cryptocarya spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6784</td>
<td>laulii</td>
<td>Cryptocarya turbinata</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6786</td>
<td>Japanese cedar</td>
<td>Cryptomeria japonica</td>
<td>51</td>
<td>2</td>
</tr>
<tr>
<td>SPCD</td>
<td>COMMON_NAME</td>
<td>Scientific Name</td>
<td>SPGRPCD</td>
<td>MAJGRP</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
<td>--------------------------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>6787</td>
<td>Japanese cedar</td>
<td>Cryptomeria spp.</td>
<td>51</td>
<td>3</td>
</tr>
<tr>
<td>6795</td>
<td>cedar-of-Goa</td>
<td>Cupressus lusitanica</td>
<td>52</td>
<td>2</td>
</tr>
<tr>
<td>6796</td>
<td>Italian cypress</td>
<td>Cupressus sempervirens</td>
<td>52</td>
<td>2</td>
</tr>
<tr>
<td>6800</td>
<td>Haleakala cyanea</td>
<td>Cyanea aculeatiflora</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>6801</td>
<td>palmtree cyanea</td>
<td>Cyanea arborea</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>6802</td>
<td>Kauai cyanea</td>
<td>Cyanea fissa</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>6805</td>
<td>Degeners cyanea</td>
<td>Cyanea floribunda</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>6806</td>
<td>Kilauea Mauna cyanea</td>
<td>Cyanea giffardii</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>6807</td>
<td>wetforest cyanea</td>
<td>Cyanea hamatiflora</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>6810</td>
<td>Oahu cyanea</td>
<td>Cyanea hardyi</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>6811</td>
<td>prickly cyanea</td>
<td>Cyanea horrida</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>6812</td>
<td>Limahuli Valley cyanea</td>
<td>Cyanea kuhlова</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>6813</td>
<td>Kunths cyanea</td>
<td>Cyanea kunthiana</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>6814</td>
<td>giant kokee cyanea</td>
<td>Cyanea leptostegia</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>6815</td>
<td>purple cyanea</td>
<td>Cyanea macrostegia</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>6818</td>
<td>Marks cyanea</td>
<td>Cyanea marksi</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>6819</td>
<td>hairy cyanea</td>
<td>Cyanea pilosa</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>6822</td>
<td>pohaku cyanea</td>
<td>Cyanea pohaku</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>6823</td>
<td>Molokai cyanea</td>
<td>Cyanea procer</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>6824</td>
<td>manyfruit cyanea</td>
<td>Cyanea pycnocarpa</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>6825</td>
<td>oakleaf cyanea</td>
<td>Cyanea quercifolia</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>6826</td>
<td>plateau delissea</td>
<td>Cyanea rivularis</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>6827</td>
<td>pua kala</td>
<td>Cyanea solenocalyx</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>6828</td>
<td>cyanea</td>
<td>Cyanea spp.</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>6829</td>
<td>Kaiholena cyanea</td>
<td>Cyanea stictophylla</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>6830</td>
<td>Mt. Kaala cyanea</td>
<td>Cyanea superba</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>6833</td>
<td>aku aku</td>
<td>Cyanea tritomantha</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>6837</td>
<td>Coopers cyathea</td>
<td>Cyathea cooperi</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>6838</td>
<td>olioli</td>
<td>Cyathea decurrens</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>6840</td>
<td>olioli</td>
<td>Cyathea lunulata</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>6841</td>
<td>olioli</td>
<td>Cyathea medullaris</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>6842</td>
<td>kattar</td>
<td>Cyathea nigricans</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>6844</td>
<td>kattar</td>
<td>Cyathea ponapeana</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>6847</td>
<td>treefern</td>
<td>Cyathea spp.</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>6849</td>
<td>olioli</td>
<td>Cyathea truncata</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>6852</td>
<td>queen sago</td>
<td>Cycas circinalis</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>6853</td>
<td>remiang</td>
<td>Cycas revoluta</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>6854</td>
<td>Cycas</td>
<td>Cycas spp.</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>6855</td>
<td>ola</td>
<td>Cyclophyllum barbatum</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6858</td>
<td>gulos</td>
<td>Cynometra ramiflora</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6860</td>
<td>tree-tomato</td>
<td>Cyphomandra betacea</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>SPCD</td>
<td>COMMON_NAME</td>
<td>Scientific Name</td>
<td>SPGRPCD</td>
<td>MAJGRP</td>
</tr>
<tr>
<td>------</td>
<td>-----------------</td>
<td>-------------------------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>6863</td>
<td>cyrtanda</td>
<td>Cyrtandra pulchella</td>
<td>54</td>
<td>4</td>
</tr>
<tr>
<td>6864</td>
<td>Cyrtandra</td>
<td>Cyrtandra ramosissima</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6865</td>
<td>forest cyrtanda</td>
<td>Cyrtandra giffardii</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6866</td>
<td>cyrtanda</td>
<td>Cyrtandra spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6875</td>
<td>Hawaii delissea</td>
<td>Delissea fallax</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6876</td>
<td>cutleaf delissea</td>
<td>Delissea laciniata</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6877</td>
<td>Niihau delissea</td>
<td>Delissea niihauensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6880</td>
<td>smallflower delissea</td>
<td>Delissea parviflora</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6881</td>
<td>delissea</td>
<td>Delissea spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6882</td>
<td>leafleaf delissea</td>
<td>Delissea undulata</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6883</td>
<td>royal poinciana</td>
<td>Delonix regia</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6884</td>
<td>delonix</td>
<td>Delonix spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6885</td>
<td>salato</td>
<td>Dendrocnide harveyi</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6886</td>
<td>kahtat</td>
<td>Dendrocnide latifolia</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6887</td>
<td>Dendrocnide</td>
<td>Dendrocnide spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6891</td>
<td>redpalm</td>
<td>Dictyosperma album</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>6898</td>
<td>Shrubby dillenia</td>
<td>Dillenia suffruticosa</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6900</td>
<td>mabolo</td>
<td>Diospyros blancoi</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6902</td>
<td>Mabolo</td>
<td>Diospyros discolor</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6903</td>
<td>Black sapote</td>
<td>Diospyros ebenaster</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6904</td>
<td>anume</td>
<td>Diospyros elliptica</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6905</td>
<td>Diospyros ferrea</td>
<td>Diospyros ferrea</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6906</td>
<td>elama</td>
<td>Diospyros hildebrandii</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6907</td>
<td>persimmon</td>
<td>Diospyros kaki</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6910</td>
<td>auauli</td>
<td>Diospyros samoensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6911</td>
<td>aama</td>
<td>Diospyros sandwicensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6921</td>
<td>otot</td>
<td>Discocalyx ponapensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6927</td>
<td>Florida hopbush</td>
<td>Dodonaea viscosa</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6928</td>
<td>rru</td>
<td>Dolichandrone spathacea</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6930</td>
<td>Ceylon gooseberry</td>
<td>Dovyalis hebecarpa</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6933</td>
<td>Dracaena multiflora</td>
<td>Dracaena multiflora</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>6941</td>
<td>kevert</td>
<td>Drypetes nitida</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6942</td>
<td>Drypetes</td>
<td>Drypetes spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6943</td>
<td>none</td>
<td>Drypetes vitiensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6944</td>
<td>Dubautia</td>
<td>Dubautia demissifolia</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6945</td>
<td>Dubautia</td>
<td>Dubautia fallax</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6946</td>
<td>Dubautia</td>
<td>Dubautia montana</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6947</td>
<td>Mauna Kea dubautia</td>
<td>Dubautia arborea</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6948</td>
<td>forest dubautia</td>
<td>Dubautia knudsenii</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6952</td>
<td>Kauai dubautia</td>
<td>Dubautia microcephala</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6953</td>
<td>plantainleaf dubautia</td>
<td>Dubautia plantaginea</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>SPCD</td>
<td>COMMON_NAME</td>
<td>Scientific Name</td>
<td>SPGRPCD</td>
<td>MAJGRP</td>
</tr>
<tr>
<td>------</td>
<td>---------------------</td>
<td>----------------------------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>6957</td>
<td>netvein dubautia</td>
<td>Dubautia reticulata</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6958</td>
<td>dubautia</td>
<td>Dubautia spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6961</td>
<td>golden dewdrops</td>
<td>Duranta erecta</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6965</td>
<td>Durian</td>
<td>Durio zibethinus</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6966</td>
<td>Dypsis lutescens</td>
<td>Dypsis lutescens</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>6968</td>
<td>maota mea</td>
<td>Dysoxylum huntii</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6969</td>
<td>maota</td>
<td>Dysoxylum maota</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6970</td>
<td>mamala</td>
<td>Dysoxylum samoense</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6971</td>
<td>Dysoxylum</td>
<td>Dysoxylum spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6973</td>
<td>oil nut palm</td>
<td>Elaeis guineensis</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>6975</td>
<td>kalia</td>
<td>Elaeocarpus bifidus</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6976</td>
<td>syatak</td>
<td>Elaeocarpus carolinensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6977</td>
<td>“a’mati’e</td>
<td>Elaeocarpus floridanus</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6978</td>
<td>Elaeocarpus graeffei</td>
<td>Elaeocarpus graeffei</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6979</td>
<td>sapatua</td>
<td>Elaeocarpus grandis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6980</td>
<td>joga</td>
<td>Elaeocarpus joga</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6981</td>
<td>Elaeocarpus kerstingianus</td>
<td>Elaeocarpus kerstingianus</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6982</td>
<td>maratte, opop</td>
<td>Elaeocarpus kusanoi</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6983</td>
<td>Elaeocarpus</td>
<td>Elaeocarpus spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6984</td>
<td>aamatie</td>
<td>Elaeocarpus tonganus</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6985</td>
<td>Elaeocarpus</td>
<td>Elaeocarpus ulianus</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6990</td>
<td>taputoi</td>
<td>Elattostachys falcata</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6992</td>
<td>utuutu</td>
<td>Eleocharis dulcis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6994</td>
<td>elaecarpa</td>
<td>Endiandra elaecarpa</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6996</td>
<td>monkeysoap</td>
<td>Enterolobium cyclocarpum</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6998</td>
<td>loquat</td>
<td>Eriobotrya japonica</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>6999</td>
<td>loquat</td>
<td>Eriobotrya spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7008</td>
<td>bucayo</td>
<td>Erythrina fusca</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7012</td>
<td>will willi</td>
<td>Erythrina sandwicensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7013</td>
<td>erythrina</td>
<td>Erythrina spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7014</td>
<td>gatae palagi</td>
<td>Erythrina subumbrans</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7016</td>
<td>tiger’s claw</td>
<td>Erythrina variegata var. orientalis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7017</td>
<td>acuminatissimum</td>
<td>Erythrophormum acuminatissimum</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7025</td>
<td>southern mahogany</td>
<td>Eucalyptus botryoides</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7026</td>
<td>applebox</td>
<td>Eucalyptus bridgesiana</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7028</td>
<td>argyle apple</td>
<td>Eucalyptus cinerea</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7030</td>
<td>sugargum</td>
<td>Eucalyptus cladocalyx</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7031</td>
<td>yate</td>
<td>Eucalyptus cornuta</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7032</td>
<td>narrowleaf red ironbark</td>
<td>Eucalyptus crebra</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7033</td>
<td>roundleaf gum</td>
<td>Eucalyptus deanei</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7034</td>
<td>Indonesian gum</td>
<td>Eucalyptus deglupta</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>SPCD</td>
<td>COMMON_NAME</td>
<td>Scientific Name</td>
<td>SPGRPCD</td>
<td>MAJGRP</td>
</tr>
<tr>
<td>------</td>
<td>-------------------------</td>
<td>-------------------------------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>7038</td>
<td>tuart</td>
<td>Eucalyptus gomphocephala</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7039</td>
<td>mountain graygum</td>
<td>Eucalyptus goniocalyx</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7041</td>
<td>white box</td>
<td>Eucalyptus hemiphloia</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7044</td>
<td>jarrah</td>
<td>Eucalyptus marginata</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7045</td>
<td>Australian tallowwood</td>
<td>Eucalyptus microcorys</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7046</td>
<td>gray ironbark</td>
<td>Eucalyptus paniculata</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7047</td>
<td>blackbutt</td>
<td>Eucalyptus pilularis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7048</td>
<td>black ironbox</td>
<td>Eucalyptus raveretiana</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7049</td>
<td>redmahogany</td>
<td>Eucalyptus resinifera</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7051</td>
<td>Western Australian floodedgum</td>
<td>Eucalyptus rudis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7052</td>
<td>black peppermint</td>
<td>Eucalyptus salicifolia</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7053</td>
<td>Sydney bluegum</td>
<td>Eucalyptus saligna</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7054</td>
<td>red ironbark</td>
<td>Eucalyptus sideroxylon</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7056</td>
<td>forest redgum</td>
<td>Eucalyptus tereticornis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7057</td>
<td>manna gum</td>
<td>Eucalyptus viminalis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7059</td>
<td>edebsachel, chedebsachel</td>
<td>Eugenia aqua</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7065</td>
<td>cloves</td>
<td>Eugenia caryophyllus</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7078</td>
<td>macupa, wax apple</td>
<td>Eugenia javanica</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7079</td>
<td>nioi</td>
<td>Eugenia koolauensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7082</td>
<td>makupa, malay apple</td>
<td>Eugenia malaccensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7086</td>
<td>Eugenia nitida</td>
<td>Eugenia nitida</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7087</td>
<td>orenged</td>
<td>Eugenia palauensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7088</td>
<td>agatelang</td>
<td>Eugenia palumbis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7091</td>
<td>mountain stopper</td>
<td>Eugenia reinwardtiana</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7096</td>
<td>stopper</td>
<td>Eugenia spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7099</td>
<td>luluhut</td>
<td>Eugenia stelechantha</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7101</td>
<td>rebotel</td>
<td>Eugenia suzukii</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7102</td>
<td>atoto</td>
<td>Eugenia thompsonii</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7104</td>
<td>Surinam cherry</td>
<td>Eugenia uniflora</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7110</td>
<td>Kauai spurge</td>
<td>Euphorbia haeleleana</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7112</td>
<td>Indian spurgetree</td>
<td>Euphorbia neriifolia</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7114</td>
<td>poinsettia</td>
<td>Euphorbia pulcherrima</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7115</td>
<td>spurge</td>
<td>Euphorbia spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7116</td>
<td>Indiantree spurge</td>
<td>Euphorbia tirucalli</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7117</td>
<td>Longan</td>
<td>Euphoria longana</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7119</td>
<td>anini</td>
<td>Eurya sandwicensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7120</td>
<td>eurya</td>
<td>Eurya spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7123</td>
<td>Euodia hortensis</td>
<td>Euodia hortensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7124</td>
<td>kertub</td>
<td>Euodia nitida</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7125</td>
<td>beror</td>
<td>Euodia palawensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7126</td>
<td>Euodia ponapensis</td>
<td>Euodia ponapensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>SPCD</td>
<td>COMMON_NAME</td>
<td>Scientific Name</td>
<td>SPGRPCD</td>
<td>MAJGRP</td>
</tr>
<tr>
<td>------</td>
<td>----------------</td>
<td>-------------------------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>7127</td>
<td>Euodia</td>
<td>Euodia spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7128</td>
<td>Euodia trichantha</td>
<td>Euodia trichantha</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7129</td>
<td>blinding tree</td>
<td>Exocarpos agallocha</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7131</td>
<td>hulumoa</td>
<td>Exocarpos gaudichaudii</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7132</td>
<td>exocarpos</td>
<td>Exocarpos spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7133</td>
<td>kotop</td>
<td>Exorrhiza ponapensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7141</td>
<td>pualulu</td>
<td>Fagraea beteroana</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7142</td>
<td>ksid</td>
<td>Fagraea ksid</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7143</td>
<td>Fagraea</td>
<td>Fagraea spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7144</td>
<td>peacocksplume</td>
<td>Falcataria moluccana</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7145</td>
<td>peacocksplume</td>
<td>Falcataria spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7150</td>
<td>weeping fig</td>
<td>Ficus benjamina</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7151</td>
<td>edible fig</td>
<td>Ficus carica</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7155</td>
<td>Indian rubberplant</td>
<td>Ficus elastica</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7156</td>
<td>mati</td>
<td>Ficus godeffroyi</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7160</td>
<td>Chinese banyan</td>
<td>Ficus microcarpa</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7162</td>
<td>tibig</td>
<td>Ficus nota</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7163</td>
<td>aoa</td>
<td>Ficus obliqua</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7165</td>
<td>aoa</td>
<td>Ficus prolixa</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7167</td>
<td>Port Jackson fig</td>
<td>Ficus rubiginosa</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7168</td>
<td>julk, banyan</td>
<td>Ficus saffordii</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7169</td>
<td>mati vao</td>
<td>Ficus scabra</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7171</td>
<td>fig</td>
<td>Ficus spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7175</td>
<td>Chinese banyan</td>
<td>Ficus thonningii</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7176</td>
<td>mati</td>
<td>Ficus tinctoria</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7178</td>
<td>mati</td>
<td>Ficus uniauriculata</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7179</td>
<td>higo</td>
<td>Ficus virens</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7180</td>
<td>Finschia chloroxantha</td>
<td>Finschia chloroxantha</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7182</td>
<td>burrdaisytree</td>
<td>Fitchia speciosa</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7186</td>
<td>filimoto</td>
<td>Flacourtia rukam</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7188</td>
<td>Queensland maple</td>
<td>Flindersia brayleyana</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7191</td>
<td>poumuli</td>
<td>Flueggea flexuosa</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7192</td>
<td>mehamehame</td>
<td>Flueggea neowawraea</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7193</td>
<td>bushweed</td>
<td>Flueggea spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7200</td>
<td>California buckthorn</td>
<td>Frangula californica</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7206</td>
<td>shamel ash</td>
<td>Fraxinus uhdei</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7207</td>
<td>Bolivian fuchsia</td>
<td>Fuchsia boliviana</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7208</td>
<td>shrubby fuchsia</td>
<td>Fuchsia paniculata</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7209</td>
<td>fuchsia</td>
<td>Fuchsia spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7210</td>
<td>silkrubber</td>
<td>Funtumia elastica</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7211</td>
<td>avocado</td>
<td>Persea americana</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>SPCD</td>
<td>COMMON_NAME</td>
<td>Scientific Name</td>
<td>SPGRPCD</td>
<td>MAJGRP</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>--------------------------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>7214</td>
<td>mangosteen</td>
<td>Garcinia mangostana</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7215</td>
<td>tilol</td>
<td>Garcinia matsu sa</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7216</td>
<td>none</td>
<td>Garcinia myrtifolia</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7217</td>
<td>konpuil</td>
<td>Garcinia ponapensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7219</td>
<td>tilol</td>
<td>Garcinia rumiyo</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7221</td>
<td>Garcinia</td>
<td>Garcinia spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7224</td>
<td>forest gardenia</td>
<td>Gardenia brighamii</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7225</td>
<td>Oahu gardenia</td>
<td>Gardenia mannii</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7226</td>
<td>Remy's gardenia</td>
<td>Gardenia remyi</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7227</td>
<td>gardenia</td>
<td>Gardenia spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7228</td>
<td>Tahitian gardenia</td>
<td>Gardenia taitensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7229</td>
<td>manuai vivao</td>
<td>Garuga floribunda</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7233</td>
<td>taipoipo</td>
<td>Geniostoma rupestrie</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7241</td>
<td>Gironniera celtidifolia</td>
<td>Gironniera celtidifolia</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7245</td>
<td>quickstick</td>
<td>Gliricidia sepium</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7247</td>
<td>masame</td>
<td>Glochidion cuspidatum</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7248</td>
<td>Glochidion marianum</td>
<td>Glochidion marianum</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7249</td>
<td>masame</td>
<td>Glochidion ramiflorum</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7250</td>
<td>Glochidion</td>
<td>Glochidion spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7251</td>
<td>belau</td>
<td>Gmelina elliptica</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7252</td>
<td>blacheos</td>
<td>Gmelina palawensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7253</td>
<td>Gmelina</td>
<td>Gmelina spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7254</td>
<td>Gnetum gnemon</td>
<td>Gnetum gnemon</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7257</td>
<td>Glochidion kanehirae</td>
<td>Glochidion kanehirae</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7260</td>
<td>Goniothalamus carolinensis</td>
<td>Goniothalamus carolinensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7262</td>
<td>Creole cotton</td>
<td>Gossypium barbadense</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7264</td>
<td>Gossypium hirsutum</td>
<td>Gossypium hirsutum</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7272</td>
<td>kahiliflower</td>
<td>Grevillea banksii</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7273</td>
<td>silkoak</td>
<td>Grevillea robusta</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7274</td>
<td>grevillea</td>
<td>Grevillea spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7275</td>
<td>fuui</td>
<td>Grewia crenata</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7279</td>
<td>lignum-vitae</td>
<td>Guajacum officinale</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7282</td>
<td>paipai</td>
<td>Guamia mariannae</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7307</td>
<td>puapua</td>
<td>Guettarda speciosa</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7311</td>
<td>rhoifolia</td>
<td>Guioa rhoifolia</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7312</td>
<td>Guioa</td>
<td>Guioa spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7313</td>
<td>bochela uchererak, uch</td>
<td>Gulubia palauensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7319</td>
<td>vilivili</td>
<td>Gyrocarpus americanus</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7321</td>
<td>bloodwoodtree</td>
<td>Haematoxylum campechianum</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7332</td>
<td>Haplolobus floribundus</td>
<td>Haplolobus floribundus</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7334</td>
<td>fa`aili</td>
<td>Harpullia arborea</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>SPCD</td>
<td>COMMON_NAME</td>
<td>Scientific Name</td>
<td>SPGRPCD</td>
<td>MAJGRP</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
<td>--</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>7338</td>
<td>denticulata</td>
<td>Hedycarya denticulata</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7340</td>
<td>Hedycarya</td>
<td>Hedycarya spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7343</td>
<td>Fosbergs starviolet</td>
<td>Hedyotis fosbergii</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7344</td>
<td>manono</td>
<td>Hedyotis hillebrandii</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7345</td>
<td>starviolet</td>
<td>Hedyotis spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7346</td>
<td>variable starviolet</td>
<td>Hedyotis terminalis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7349</td>
<td>white mohoh</td>
<td>Heliocarpus popayanensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7350</td>
<td>heliocarpus</td>
<td>Heliocarpus spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7359</td>
<td>ufa</td>
<td>Heritiera littoralis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7360</td>
<td>ufa halemtano</td>
<td>Heritiera longipetiolata</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7362</td>
<td>Heritiera</td>
<td>Heritiera spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7363</td>
<td>pipi</td>
<td>Hernandia moerenhoutiana</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7364</td>
<td>pua, Chinese lantern tree</td>
<td>Hernandia nymphaefolia</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7365</td>
<td>Hernandia ovigera</td>
<td>Hernandia ovigera</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7366</td>
<td>mago</td>
<td>Hernandia sonora</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7367</td>
<td>Hernandia</td>
<td>Hernandia spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7368</td>
<td>Hernandia labyrinthica</td>
<td>Hernandia labyrinthica</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7370</td>
<td>Lanai island-aster</td>
<td>Hesperomannia arborescens</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7371</td>
<td>Maui island-aster</td>
<td>Hesperomannia arbuscula</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7372</td>
<td>Kauai island-aster</td>
<td>Hesperomannia lydgatei</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7373</td>
<td>island-aster</td>
<td>Hesperomannia spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7374</td>
<td>toyon</td>
<td>Heteromeles arbutifolia</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7376</td>
<td>toyon</td>
<td>Heteromeles spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7377</td>
<td>palma brava</td>
<td>Heterospathale elata</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>7381</td>
<td>para rubber tree</td>
<td>Hevea brasiliensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7384</td>
<td>hau kuahiwi</td>
<td>Hibiscadelphus bombycinus</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7385</td>
<td>java hau kuahiwi</td>
<td>Hibiscadelphus crucibrateatus</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7386</td>
<td>Kauai hau kuahiwi</td>
<td>Hibiscadelphus distans</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7387</td>
<td>Kilauea hau kuahiwi</td>
<td>Hibiscadelphus giffardianus</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7388</td>
<td>Hualalai hau kuahiwi</td>
<td>Hibiscadelphus hualalaiensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7389</td>
<td>hau kuahiwi</td>
<td>Hibiscadelphus puakuahiwi</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7390</td>
<td>hibiscadelphus</td>
<td>Hibiscadelphus spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7391</td>
<td>Maui hau kuahiwi</td>
<td>Hibiscadelphus wilderianus</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7392</td>
<td>Woods hau kuahiwi</td>
<td>Hibiscadelphus woodii</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7393</td>
<td>white rosemallow</td>
<td>Hibiscus arnottianus</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7397</td>
<td>Brackenridges rosemallow</td>
<td>Hibiscus brackenridge</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7401</td>
<td>lemonyellow rosemallow</td>
<td>Hibiscus calyphyllus</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7402</td>
<td>red Kauai rosemallow</td>
<td>Hibiscus clayi</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7403</td>
<td>mahoae</td>
<td>Hibiscus elatus</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7404</td>
<td>red rosemallow</td>
<td>Hibiscus kokio</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7407</td>
<td>largeleaf rosemallow</td>
<td>Hibiscus macrophyllus</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>SPCD</td>
<td>COMMON_NAME</td>
<td>Scientific Name</td>
<td>SPGRPCD</td>
<td>MAJGRP</td>
</tr>
<tr>
<td>------</td>
<td>---------------------------</td>
<td>--------------------------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>7408</td>
<td>Dixie rosemallow</td>
<td>Hibiscus mutabilis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7411</td>
<td>rosemallow</td>
<td>Hibiscus spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7412</td>
<td>sea hibiscus</td>
<td>Hibiscus tiliaceus</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7413</td>
<td>white Kauai rosemallow</td>
<td>Hibiscus waimeae</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7424</td>
<td>Homalium whitmeeanum</td>
<td>Homalium whitmeeanum</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7427</td>
<td>chemeklachel, eumail</td>
<td>Horsfieldia amklaal</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7428</td>
<td>ersachel</td>
<td>Horsfieldia novoguineensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7429</td>
<td>Horsfieldia nunu</td>
<td>Horsfieldia novoguineensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7430</td>
<td>chersachel</td>
<td>Horsfieldia palauensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7431</td>
<td>Horsfieldia</td>
<td>Horsfieldia spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7440</td>
<td>nightblooming cactus</td>
<td>Hylocereus spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7441</td>
<td>nightblooming cactus</td>
<td>Hylocereus undatus</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7448</td>
<td>Canary Island St. Johnswort</td>
<td>Hypericum canariense</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7453</td>
<td>Hawaii holly</td>
<td>Ilex anomala</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7454</td>
<td>English holly</td>
<td>Ilex aquifolium</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7460</td>
<td>mate</td>
<td>Ilex paraguariensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7464</td>
<td>holly</td>
<td>Ilex spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7475</td>
<td>fi</td>
<td>Inocarpus fagifer</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7477</td>
<td>filele</td>
<td>Intsia bijuga</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7482</td>
<td>black poui</td>
<td>Jacaranda mimosifolia</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7483</td>
<td>jacaranda</td>
<td>Jacaranda spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7491</td>
<td>Barbados nut</td>
<td>Jatropha curcas</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7494</td>
<td>nettlespurge</td>
<td>Jatropha spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7497</td>
<td>ketoguit</td>
<td>Kayea pacifica</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7506</td>
<td>guest tree</td>
<td>Kleinhovia hospita</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7509</td>
<td>Molokai treecotton</td>
<td>Kokia cookei</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7510</td>
<td>Hawaii treecotton</td>
<td>Kokia drynarioides</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7511</td>
<td>Kauai treecotton</td>
<td>Kokia kauaiensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7512</td>
<td>Wailupe Valley treecotton</td>
<td>Kokia lanceolata</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7513</td>
<td>treecotton</td>
<td>Kokia spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7516</td>
<td>burgan</td>
<td>Kunzea ericoides</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7517</td>
<td>Kunzea</td>
<td>Kunzea spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7518</td>
<td>summit labordia</td>
<td>Labordia fagraeoidea</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7519</td>
<td>bog labordia</td>
<td>Labordia hedyosmifolia</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7520</td>
<td>mountain labordia</td>
<td>Labordia hirtella</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7521</td>
<td>Waianae Range labordia</td>
<td>Labordia kaalae</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7522</td>
<td>Wahiawa Mountain labordia</td>
<td>Labordia lydgatei</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7523</td>
<td>labordia</td>
<td>Labordia spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7524</td>
<td>paleflower labordia</td>
<td>Labordia tinifolia</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7528</td>
<td>Lanai labordia</td>
<td>Labordia triflora</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7529</td>
<td>Nevada peavine</td>
<td>Labordia waiolani</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>SPCD</td>
<td>COMMON_NAME</td>
<td>Scientific Name</td>
<td>SPGRPCD</td>
<td>MAJGRP</td>
</tr>
<tr>
<td>------</td>
<td>----------------------</td>
<td>----------------------------------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>7533</td>
<td>pride of India</td>
<td>Lagerstroemia speciosa</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7539</td>
<td>Langsat</td>
<td>Lansium domesticum</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7543</td>
<td>bluelatan</td>
<td>Latania loddigesii</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7558</td>
<td>large-leaf yellow teatree</td>
<td>Leptospermum morrisonii</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7559</td>
<td>common teatree</td>
<td>Leptospermum petersonii</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7560</td>
<td>common teatree</td>
<td>Leptospermum polygalifolim</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7561</td>
<td>broom teatree</td>
<td>Leptospermum scoparium</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7562</td>
<td>teatree</td>
<td>Leptospermum spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7564</td>
<td>Leucaena insularum</td>
<td>Leucaena insularum</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7565</td>
<td>white leadtree</td>
<td>Leucaena leucocephala</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7566</td>
<td>leadtree</td>
<td>Leucaena spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7575</td>
<td>Chinese privet</td>
<td>Ligustrum sinense</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7576</td>
<td>privet</td>
<td>Ligustrum spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7583</td>
<td>Lychee</td>
<td>Litchi chinensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7586</td>
<td>papaono</td>
<td>Litsea samoensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7587</td>
<td>Litsea</td>
<td>Litsea spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7588</td>
<td>fountain palm</td>
<td>Livistona chinensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7595</td>
<td>vinegartree</td>
<td>Lophostemon confertus</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7598</td>
<td>Egg Fruit / Canistel</td>
<td>Lucuma nervosa</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7602</td>
<td>bakauaine, nana</td>
<td>Lumnitzera littorea</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7614</td>
<td>macadamia nut tree, pengua</td>
<td>Macadamia integrifolia</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7616</td>
<td>Macadamia</td>
<td>Macadamia spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7617</td>
<td>Macadamia Nut</td>
<td>Macadamia tetraphylla</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7618</td>
<td>bedel</td>
<td>Macaranga carolinensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7619</td>
<td>Macaranga grayana</td>
<td>Macaranga grayana</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7620</td>
<td>iau pata</td>
<td>Macaranga harveyana</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7621</td>
<td>pengua</td>
<td>Macaranga mappa</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7623</td>
<td>macaranga</td>
<td>Macaranga spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7625</td>
<td>iau fatu</td>
<td>Macaranga stipulosa</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7626</td>
<td>parasol leaf tree</td>
<td>Macaranga tanarius</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7627</td>
<td>Macaranga thompsonii</td>
<td>Macaranga thompsonii</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7638</td>
<td>Mallotus palauensis</td>
<td>Mallotus palauensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7639</td>
<td>kamala tree</td>
<td>Mallotus philippensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7641</td>
<td>mallotus</td>
<td>Mallotus spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7642</td>
<td>Mallotus tiliifolius</td>
<td>Mallotus tiliifolius</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7653</td>
<td>manapau</td>
<td>Mammee glauca</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7654</td>
<td>chopak</td>
<td>Mammee odorata</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7655</td>
<td>Mammee</td>
<td>Mammee spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7657</td>
<td>kanit</td>
<td>Mangifera minor</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7658</td>
<td>saipan mango</td>
<td>Mangifera odorata</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7659</td>
<td>mango</td>
<td>Mangifera spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>SPCD</td>
<td>COMMON_NAME</td>
<td>Scientific Name</td>
<td>SPGRPCD</td>
<td>MAJGRP</td>
</tr>
<tr>
<td>------</td>
<td>---------------------</td>
<td>------------------------------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>7660</td>
<td>ceara rubbertree</td>
<td>Manihot glaziovii</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7661</td>
<td>manihot</td>
<td>Manihot spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7664</td>
<td>pani</td>
<td>Manilkara dissecta</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7666</td>
<td>kohle</td>
<td>Manilkara hoshinoi</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7671</td>
<td>Manilkara</td>
<td>Manilkara spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7672</td>
<td>udoid</td>
<td>Manilkara udoido</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7674</td>
<td>sapodilla</td>
<td>Manilkara zapota</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7679</td>
<td>bkau, apgau</td>
<td>Maranthes corymbosa</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7680</td>
<td>dermarm</td>
<td>Marattia fraxinea</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7700</td>
<td>luluhut</td>
<td>Maytenus thompsonii</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7704</td>
<td>Medusanthera carolinensis</td>
<td>Medusanthera carolinensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7705</td>
<td>matamo</td>
<td>Medusanthera samoensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7706</td>
<td>Medusanthera</td>
<td>Medusanthera spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7709</td>
<td>melaleuca</td>
<td>Melaleuca spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7710</td>
<td>alom</td>
<td>Melanolepis multiglandulosa</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7712</td>
<td>Melastoma candidum</td>
<td>Melastoma candidum</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7713</td>
<td>Melastoma sanguineum</td>
<td>Melastoma sanguineum</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7716</td>
<td>melia</td>
<td>Melia spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7719</td>
<td>mokihana</td>
<td>Melicope anisata</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7720</td>
<td>Ballous melicope</td>
<td>Melicope balloui</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7721</td>
<td>uahiapape</td>
<td>Melicope barbigera</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7722</td>
<td>Waianae Range melicope</td>
<td>Melicope christophersenii</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7723</td>
<td>manena</td>
<td>Melicope cinerea</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7724</td>
<td>kukaemoa</td>
<td>Melicope clusiifolia</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7725</td>
<td>piloula</td>
<td>Melicope cruciata</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7726</td>
<td>keiohiaka</td>
<td>Melicope elliptica</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7727</td>
<td>Haleakala melicope</td>
<td>Melicope haleakalae</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7728</td>
<td>Haupa Mountain melicope</td>
<td>Melicope haupuensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7729</td>
<td>mokihana kukae moa</td>
<td>Melicope hawaiensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7730</td>
<td>Monoa melicope</td>
<td>Melicope hiakae</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7731</td>
<td>Honolulu melicope</td>
<td>Melicope hosakae</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7732</td>
<td>Kaala melicope</td>
<td>Melicope kaalaensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7733</td>
<td>Olokele Valley melicope</td>
<td>Melicope knudsenii</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7734</td>
<td>Kaholumanu melicope</td>
<td>Melicope macropus</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7735</td>
<td>Makaha Valley melicope</td>
<td>Melicope makaha</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7736</td>
<td>Molokai melicope</td>
<td>Melicope molokaiensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7737</td>
<td>alani</td>
<td>Melicope mucronulata</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7738</td>
<td>Dahu melicope</td>
<td>Melicope oahuensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7739</td>
<td>Makawao melicope</td>
<td>Melicope obovata</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7740</td>
<td>Honokahua melicope</td>
<td>Melicope orbicularis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7741</td>
<td>Hana melicope</td>
<td>Melicope ovalis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>SPCD</td>
<td>COMMON_NAME</td>
<td>Scientific Name</td>
<td>SPGRPCD</td>
<td>MAJGRP</td>
</tr>
<tr>
<td>------</td>
<td>------------------------</td>
<td>-------------------------------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>7742</td>
<td>eggshape melicope</td>
<td>Melicope ovata</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7743</td>
<td>pale melicope</td>
<td>Melicope pallida</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7744</td>
<td>Lihue melicope</td>
<td>Melicope paniculata</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7745</td>
<td>boxfruit alani</td>
<td>Melicope peduncularis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7746</td>
<td>Kohala Summit melicope</td>
<td>Melicope pseudoanisata</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7747</td>
<td>hairy melicope</td>
<td>Melicope puberula</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7748</td>
<td>fourangle melicope</td>
<td>Melicope quadrangularis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7749</td>
<td>kapu melicope</td>
<td>Melicope radiata</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7750</td>
<td>soopini</td>
<td>Melicope latifolia</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7751</td>
<td>roundleaf melicope</td>
<td>Melicope rotundifolia</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7752</td>
<td>St. Johns melicope</td>
<td>Melicope saint-Johnii</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7753</td>
<td>Mt. Kaala melicope</td>
<td>Melicope sandwicensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7754</td>
<td>melicope</td>
<td>Melicope spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7755</td>
<td>volcanic melicope</td>
<td>Melicope volcanica</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7756</td>
<td>alani wai</td>
<td>Melicope waialealae</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7757</td>
<td>Monoa melicope</td>
<td>Melicope wawraeana</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7758</td>
<td>kipuka piaula</td>
<td>Melicope zahlbruckneri</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7759</td>
<td>samoensis</td>
<td>Melicytus samoensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7766</td>
<td>mao</td>
<td>Melochia aristata</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7767</td>
<td>melochia</td>
<td>Melochia spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7769</td>
<td>hierba del soldado</td>
<td>Melochia umbellata</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7770</td>
<td>sayafe</td>
<td>Melochia villosissima var compacta</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7774</td>
<td>faniok</td>
<td>Merrilliodendron megacarpum</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7776</td>
<td>fagufagu</td>
<td>Meryta macrophylla</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7777</td>
<td>omechidel</td>
<td>Meryta senfftiana</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7778</td>
<td>Meryta</td>
<td>Meryta spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7781</td>
<td>collina</td>
<td>Metrosideros collina</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7782</td>
<td>ohia</td>
<td>Metrosideros macropus</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7783</td>
<td>ohia lehua</td>
<td>Metrosideros polymorpha</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7792</td>
<td>lehua papa</td>
<td>Metrosideros rugosa</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7793</td>
<td>lehua</td>
<td>Metrosideros spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7794</td>
<td>lehua ahihi</td>
<td>Metrosideros tremuloides</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7795</td>
<td>Kauai bottlebrush</td>
<td>Metrosideros waialealae</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7798</td>
<td>ivory-nut palm</td>
<td>Metroxylon amicarum</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>7799</td>
<td>sago palm</td>
<td>Metroxylon sagu</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>7800</td>
<td>Metroxylon</td>
<td>Metroxylon spp.</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>7801</td>
<td>Orange Champak</td>
<td>Michelia champaca</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7805</td>
<td>velvet tree</td>
<td>Miconia calvescens</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7824</td>
<td>zalafulu</td>
<td>Micromelum minutum</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7831</td>
<td>pinnata</td>
<td>Millettia pinnata</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7835</td>
<td>bulletwood, elengi</td>
<td>Mimusops elengi</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>SPCD</td>
<td>COMMON_NAME</td>
<td>Scientific Name</td>
<td>SPGRPCD</td>
<td>MAJGRP</td>
</tr>
<tr>
<td>------</td>
<td>----------------------</td>
<td>-----------------------------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>7841</td>
<td>treedaisy</td>
<td>Montanoa hibiscifolia</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7842</td>
<td>montanoa</td>
<td>Montanoa spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7845</td>
<td>Morella cerifera</td>
<td>Morella cerifera</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7846</td>
<td>firetree</td>
<td>Morella faya</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7848</td>
<td>bayberry</td>
<td>Morella spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7849</td>
<td>Indian mulberry</td>
<td>Morinda citrifolia</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7850</td>
<td>nel</td>
<td>Morinda latibactea</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7851</td>
<td>Morinda pedunculata</td>
<td>Morinda pedunculata</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7852</td>
<td>morinda</td>
<td>Morinda spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7853</td>
<td>noni kuahiwi</td>
<td>Morinda trimera</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7855</td>
<td>horseradishtree</td>
<td>Moringa oleifera</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7865</td>
<td>falseohe</td>
<td>Munroidendron racemosum</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7867</td>
<td>strawberrytree</td>
<td>Muntingia calabura</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7868</td>
<td>muntingia</td>
<td>Muntingia spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7872</td>
<td>French plantain</td>
<td>Musa paradisiaca</td>
<td>52</td>
<td>3</td>
</tr>
<tr>
<td>7873</td>
<td>bungeltuu</td>
<td>Musa coccinea</td>
<td>52</td>
<td>3</td>
</tr>
<tr>
<td>7874</td>
<td>tama</td>
<td>Musa nana</td>
<td>52</td>
<td>3</td>
</tr>
<tr>
<td>7875</td>
<td>tuu banana</td>
<td>Musa sapientum</td>
<td>52</td>
<td>3</td>
</tr>
<tr>
<td>7876</td>
<td>meia</td>
<td>Musa spp.</td>
<td>52</td>
<td>3</td>
</tr>
<tr>
<td>7877</td>
<td>plantalos</td>
<td>Musa textilis</td>
<td>52</td>
<td>3</td>
</tr>
<tr>
<td>7878</td>
<td>tikap</td>
<td>Musa tikap</td>
<td>52</td>
<td>3</td>
</tr>
<tr>
<td>7879</td>
<td>fei banana</td>
<td>Musa trogodytarum</td>
<td>52</td>
<td>3</td>
</tr>
<tr>
<td>7880</td>
<td>Mussaenda frondosa</td>
<td>Mussaenda frondosa</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7881</td>
<td>aloalo vao</td>
<td>Mussaenda raiateensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7882</td>
<td>Mussaenda</td>
<td>Mussaenda spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7883</td>
<td>naio</td>
<td>Myoporum sandwicense</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7884</td>
<td>myoporum</td>
<td>Myoporum spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7892</td>
<td>rodwood</td>
<td>Myrica spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7899</td>
<td>yamamomo, strawberry tree</td>
<td>Myrica rubra</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7900</td>
<td>sweetgale</td>
<td>Myrica spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7902</td>
<td>atoneulu</td>
<td>Myristica hypargyraea</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7903</td>
<td>adepurot</td>
<td>Myristica insularis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7904</td>
<td>Myristica</td>
<td>Myristica spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7906</td>
<td>Myristica inutilis</td>
<td>Myristica inutilis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7910</td>
<td>forest colicwood</td>
<td>Myrsine alyxifolia</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7913</td>
<td>summit colicwood</td>
<td>Myrsine degeneri</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7914</td>
<td>mountain colicwood</td>
<td>Myrsine emarginata</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7915</td>
<td>streambank colicwood</td>
<td>Myrsine fernseei</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7916</td>
<td>Koolau Range colicwood</td>
<td>Myrsine fosbergii</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7918</td>
<td>Wahiawa Bog colicwood</td>
<td>Myrsine helleri</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7919</td>
<td>Kauai colicwood</td>
<td>Myrsine kauaiensis</td>
<td>54</td>
<td>3</td>
</tr>
</tbody>
</table>
Appendix E -- Pacific Tree Species Codes, Names

<table>
<thead>
<tr>
<th>SPCD</th>
<th>COMMON_NAME</th>
<th>Scientific Name</th>
<th>SPGRPCD</th>
<th>MAJGRP</th>
</tr>
</thead>
<tbody>
<tr>
<td>7920</td>
<td>Kokee colicwood</td>
<td>Myrsine knudsenii</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7921</td>
<td>Lanai colicwood</td>
<td>Myrsine lanaiensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7922</td>
<td>kolea lau nui</td>
<td>Myrsine lessertiana</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7923</td>
<td>Hanapepe River colicwood</td>
<td>Myrsine mezii</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7924</td>
<td>swamp colicwood</td>
<td>Myrsine petiolata</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7925</td>
<td>Molokai colicwood</td>
<td>Myrsine pukooensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7926</td>
<td>kokea lau lii</td>
<td>Myrsine sandwicensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7927</td>
<td>colicwood</td>
<td>Myrsine spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7928</td>
<td>Mt. Kahili colicwood</td>
<td>Myrsine wawraea</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7929</td>
<td>Myrsine palauensis</td>
<td>Myrsine palauensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7942</td>
<td>fao</td>
<td>Neisosperma oppositifolia</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7948</td>
<td>afa</td>
<td>Neonuclea forsteri</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7952</td>
<td>Rambutan</td>
<td>Nephelium lappaceum</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7954</td>
<td>maaloa</td>
<td>Neraudia melastomifolia</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7958</td>
<td>keahi</td>
<td>Nesoluma polynesium</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7960</td>
<td>Hawaii olive</td>
<td>Nestegis sandwicensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7961</td>
<td>nestegis</td>
<td>Nestegis spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7962</td>
<td>kalm, aralm</td>
<td>Neuburgia celebica</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7964</td>
<td>tree tobacco</td>
<td>Nicotiana glauca</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7965</td>
<td>tobacco</td>
<td>Nicotiana spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7966</td>
<td>smallflower aiea</td>
<td>Nothocestrum breviflorum</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7967</td>
<td>broadleaf aiea</td>
<td>Nothocestrum latifolium</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7968</td>
<td>longleaf aiea</td>
<td>Nothocestrum longifolium</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7969</td>
<td>Oahu aiea</td>
<td>Nothocestrum peltatum</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7970</td>
<td>aiea</td>
<td>Nothocestrum spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7971</td>
<td>kaala rockwort</td>
<td>Nototrichium humile</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7972</td>
<td>Hawaii rockwort</td>
<td>Nototrichium sandwicense</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7974</td>
<td>toeche, teuechel</td>
<td>Nypa fruiticans</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7977</td>
<td>ochna</td>
<td>Ochna spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7978</td>
<td>Thomas birds-eye bush</td>
<td>Ochna thomasiana</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7980</td>
<td>Ochroma pyramidale</td>
<td>Ochroma pyramidale</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7982</td>
<td>holei</td>
<td>Ochrosia compta</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7983</td>
<td>island yellowwood</td>
<td>Ochrosia haleakalae</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7984</td>
<td>Kauai yellowwood</td>
<td>Ochrosia kauaiensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7985</td>
<td>Hawaii yellowwood</td>
<td>Ochrosia kilaueaensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7986</td>
<td>yellowwood</td>
<td>Ochrosia spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>7987</td>
<td>langiti</td>
<td>Ochrosia mariannensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8000</td>
<td>oleander fern</td>
<td>Oleandra neriiformis</td>
<td>54</td>
<td>4</td>
</tr>
<tr>
<td>8004</td>
<td>olive</td>
<td>Olea europaea</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8007</td>
<td>olive</td>
<td>Olea spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8008</td>
<td>funuamamala</td>
<td>Homalanthus acuminatus</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>SPCD</td>
<td>COMMON_NAME</td>
<td>Scientific Name</td>
<td>SPGRPCD</td>
<td>MAJGRP</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>--------------------------------------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>8009</td>
<td>fanuamamala</td>
<td>Homalanthus nutans</td>
<td>54 3</td>
<td></td>
</tr>
<tr>
<td>8010</td>
<td>Homalanthus</td>
<td>Homalanthus spp.</td>
<td>54 3</td>
<td></td>
</tr>
<tr>
<td>8013</td>
<td>cochineal nopal cactus</td>
<td>Opuntia cochenillifera</td>
<td>54 3</td>
<td></td>
</tr>
<tr>
<td>8014</td>
<td>tuna cactus</td>
<td>Opuntia ficus-indica</td>
<td>54 3</td>
<td></td>
</tr>
<tr>
<td>8015</td>
<td>common pricklypear</td>
<td>Opuntia monacantha</td>
<td>54 3</td>
<td></td>
</tr>
<tr>
<td>8018</td>
<td>pricklypear</td>
<td>Opuntia spp.</td>
<td>54 3</td>
<td></td>
</tr>
<tr>
<td>8019</td>
<td>amansis, edebsungelked, necklace bead tree</td>
<td>Ormosia calavensis</td>
<td>54 3</td>
<td></td>
</tr>
<tr>
<td>8022</td>
<td>kesiamel</td>
<td>Osmoxylon oliveri</td>
<td>54 3</td>
<td></td>
</tr>
<tr>
<td>8023</td>
<td>kesiamel</td>
<td>Osmoxylon pachyphyllum</td>
<td>54 3</td>
<td></td>
</tr>
<tr>
<td>8024</td>
<td>Osmoxylon</td>
<td>Osmoxylon spp.</td>
<td>54 3</td>
<td></td>
</tr>
<tr>
<td>8036</td>
<td>mich era ngebard, guiana chestnut</td>
<td>Pachira aquatica</td>
<td>54 3</td>
<td></td>
</tr>
<tr>
<td>8044</td>
<td>gasu</td>
<td>Palaquium stehlinii</td>
<td>54 3</td>
<td></td>
</tr>
<tr>
<td>8054</td>
<td>chertochet</td>
<td>Pandanus aimirikensis</td>
<td>53 3</td>
<td></td>
</tr>
<tr>
<td>8055</td>
<td>matal</td>
<td>Pandanus cominsii</td>
<td>53 3</td>
<td></td>
</tr>
<tr>
<td>8056</td>
<td>ongor</td>
<td>Pandanus compressus</td>
<td>53 3</td>
<td></td>
</tr>
<tr>
<td>8057</td>
<td>silaue</td>
<td>Pandanus cylindricus</td>
<td>53 3</td>
<td></td>
</tr>
<tr>
<td>8058</td>
<td>kienpel</td>
<td>Pandanus dilatatus</td>
<td>53 3</td>
<td></td>
</tr>
<tr>
<td>8059</td>
<td>ongor</td>
<td>Pandanus divergens</td>
<td>53 3</td>
<td></td>
</tr>
<tr>
<td>8060</td>
<td>pahong</td>
<td>Pandanus dubius</td>
<td>53 3</td>
<td></td>
</tr>
<tr>
<td>8061</td>
<td>ongor</td>
<td>Pandanus duriocarpus</td>
<td>53 3</td>
<td></td>
</tr>
<tr>
<td>8062</td>
<td>moak</td>
<td>Pandanus enchabiensis</td>
<td>53 3</td>
<td></td>
</tr>
<tr>
<td>8063</td>
<td>nara</td>
<td>Pandanus fischerianus</td>
<td>53 3</td>
<td></td>
</tr>
<tr>
<td>8064</td>
<td>aggag</td>
<td>Pandanus fragrans</td>
<td>53 3</td>
<td></td>
</tr>
<tr>
<td>8065</td>
<td>nenketak</td>
<td>Pandanus hosinoi</td>
<td>53 3</td>
<td></td>
</tr>
<tr>
<td>8066</td>
<td>pacheren</td>
<td>Pandanus jaluitensis</td>
<td>53 3</td>
<td></td>
</tr>
<tr>
<td>8067</td>
<td>buuk</td>
<td>Pandanus kanehirae</td>
<td>53 3</td>
<td></td>
</tr>
<tr>
<td>8068</td>
<td>siu</td>
<td>Pandanus korrens</td>
<td>53 3</td>
<td></td>
</tr>
<tr>
<td>8069</td>
<td>akatwa</td>
<td>Pandanus lakatwa</td>
<td>53 3</td>
<td></td>
</tr>
<tr>
<td>8070</td>
<td>erwan, jonmouia</td>
<td>Pandanus laticanaliculatus</td>
<td>53 3</td>
<td></td>
</tr>
<tr>
<td>8071</td>
<td>intekul, pasyure</td>
<td>Pandanus macrocephalus</td>
<td>53 3</td>
<td></td>
</tr>
<tr>
<td>8072</td>
<td>ongor, ertochet</td>
<td>Pandanus macrojeanneretia</td>
<td>53 3</td>
<td></td>
</tr>
<tr>
<td>8073</td>
<td>menne</td>
<td>Pandanus menne</td>
<td>53 3</td>
<td></td>
</tr>
<tr>
<td>8074</td>
<td>Palaquium karrak</td>
<td>Palaquium karrak</td>
<td>54 3</td>
<td></td>
</tr>
<tr>
<td>8075</td>
<td>Pandanus odontoiodes</td>
<td>Pandanus odontoides</td>
<td>53 3</td>
<td></td>
</tr>
<tr>
<td>8076</td>
<td>ongor, ertochet</td>
<td>Pandanus palawensis</td>
<td>53 3</td>
<td></td>
</tr>
<tr>
<td>8077</td>
<td>peet</td>
<td>Pandanus patina</td>
<td>53 3</td>
<td></td>
</tr>
<tr>
<td>8078</td>
<td>ongor</td>
<td>Pandanus pelliuensis</td>
<td>53 3</td>
<td></td>
</tr>
<tr>
<td>8079</td>
<td>alwan, kipal, taip</td>
<td>Pandanus ponapensis</td>
<td>53 3</td>
<td></td>
</tr>
<tr>
<td>8080</td>
<td>deipw, jomineia</td>
<td>Pandanus pulposus</td>
<td>53 3</td>
<td></td>
</tr>
<tr>
<td>8081</td>
<td>pathaplip</td>
<td>Pandanus rectangulatus</td>
<td>53 3</td>
<td></td>
</tr>
<tr>
<td>8082</td>
<td>fasa</td>
<td>Pandanus reineckei</td>
<td>53 3</td>
<td></td>
</tr>
<tr>
<td>SPCD</td>
<td>COMMON_NAME</td>
<td>Scientific Name</td>
<td>SPGRPCD</td>
<td>MAJGRP</td>
</tr>
<tr>
<td>------</td>
<td>---------------------</td>
<td>---------------------------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>8083</td>
<td>magojokojok</td>
<td>Pandanus rotundatus</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>8084</td>
<td>screwpine</td>
<td>Pandanus spp.</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>8085</td>
<td>Tahitian screwpine</td>
<td>Pandanus tectorius</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>8086</td>
<td>kiparenwel</td>
<td>Pandanus tolotomensis</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>8087</td>
<td>mojel</td>
<td>Pandanus trukensis</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>8088</td>
<td>common screwpine</td>
<td>Pandanus utilis</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>8090</td>
<td>berrakelongor</td>
<td>Pandanus variegatus</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>8091</td>
<td>raul</td>
<td>Pangium edule</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8092</td>
<td>lonlin, lajokorer</td>
<td>Pandanus obliquus</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>8103</td>
<td>sea</td>
<td>Parinari insularum</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8104</td>
<td>ais</td>
<td>Parinari laurina</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8105</td>
<td>Parinari</td>
<td>Parinari spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8107</td>
<td>Parkia korom</td>
<td>Parkia korom</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8108</td>
<td>kmekumer</td>
<td>Parkia parvifoliola</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8111</td>
<td>Jerusalem thorn</td>
<td>Parkinsonia aculeata</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8112</td>
<td>paloverde</td>
<td>Parkinsonia spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8121</td>
<td>Peltophorum pterocarpum</td>
<td>Peltophorum pterocarpum</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8123</td>
<td>ngis</td>
<td>Pemphis acidula</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8129</td>
<td>Pericopsis mooniana</td>
<td>Pericopsis mooniana</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8131</td>
<td>oloame</td>
<td>Perrottetia sandwicensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8146</td>
<td>Phaleria nisadai</td>
<td>Phaleria nisidai</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8151</td>
<td>Canary Island date palm</td>
<td>Phoenix canariensis</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>8152</td>
<td>date palm</td>
<td>Phoenix dactylifera</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>8153</td>
<td>date palm</td>
<td>Phoenix spp.</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>8154</td>
<td>date palm</td>
<td>Phoenix sylvestris</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>8155</td>
<td>Chinese photinia</td>
<td>Photinia davidiana</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>8157</td>
<td>Tahitian gooseberry tree</td>
<td>Phyllanthus acidus</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8159</td>
<td>pamakani mahu</td>
<td>Phyllanthus distichus</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8175</td>
<td>allspice</td>
<td>Pimenta dioica</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8178</td>
<td>bayrtmctree</td>
<td>Pimenta racemosavar.grisea</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8180</td>
<td>Pimenta</td>
<td>Pimenta spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8181</td>
<td>chebouch, demailei</td>
<td>Pinanga insignis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8183</td>
<td>Caribbean pine</td>
<td>Pinus caribaea</td>
<td>51</td>
<td>1</td>
</tr>
<tr>
<td>8187</td>
<td>Mexican weeping pine</td>
<td>Pinus patula</td>
<td>51</td>
<td>1</td>
</tr>
<tr>
<td>8188</td>
<td>maritime pine</td>
<td>Pinus pinaster</td>
<td>51</td>
<td>1</td>
</tr>
<tr>
<td>8205</td>
<td>Waimea pipturus</td>
<td>Pipturus albidus</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8206</td>
<td>soga</td>
<td>Pipturus argenteus</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8207</td>
<td>pipturus</td>
<td>Pipturus spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8210</td>
<td>piscidia</td>
<td>Piscidia spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8212</td>
<td>Australasian catchbirdtree</td>
<td>Pisonia brunoniana</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8213</td>
<td>grand devils-claws</td>
<td>Pisonia grandis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>SPCD</td>
<td>COMMON_NAME</td>
<td>Scientific Name</td>
<td>SPGRPCD</td>
<td>MAJGRP</td>
</tr>
<tr>
<td>------</td>
<td>-----------------------------</td>
<td>------------------------------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>8214</td>
<td>aulu</td>
<td>Pisonia sandwicensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8215</td>
<td>catchbirdtree</td>
<td>Pisonia spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8217</td>
<td>umbrella catchbirdtree</td>
<td>Pisonia umbellifera</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8218</td>
<td>Kauai catchbirdtree</td>
<td>Pisonia wagneriana</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8220</td>
<td>monkeypod</td>
<td>Pithecellobium dulce</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8224</td>
<td>Mona cheesewood, Pittosporum</td>
<td>Pittosporum monae</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8226</td>
<td>Hawaii poisonberry tree</td>
<td>Pittosporum argentifolium</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8227</td>
<td>hoawa</td>
<td>Pittosporum confertiflorum</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8228</td>
<td>Waianae Range cheesewood</td>
<td>Pittosporum flocculosum</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8229</td>
<td>Waaaleale cheesewood</td>
<td>Pittosporum gayanum</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8230</td>
<td>Koolau Range cheesewood</td>
<td>Pittosporum glabrum</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8231</td>
<td>hoawa</td>
<td>Pittosporum halophilum</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8232</td>
<td>Hawaii cheesewood</td>
<td>Pittosporum hawaiense</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8233</td>
<td>Kona cheesewood</td>
<td>Pittosporum hosmeri</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8234</td>
<td>Kauai cheesewood</td>
<td>Pittosporum kauaiense</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8235</td>
<td>royal cheesewood</td>
<td>Pittosporum napaliense</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8236</td>
<td>Taiwanese cheesewood</td>
<td>Pittosporum pentandrum</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8238</td>
<td>cheesewood</td>
<td>Pittosporum spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8239</td>
<td>cream cheesewood</td>
<td>Pittosporum terminalioides</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8240</td>
<td>Australian cheesewood</td>
<td>Pittosporum undulatum</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8241</td>
<td>cape cheesewood</td>
<td>Pittosporum viridiflorum</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8242</td>
<td>alaa</td>
<td>Planchonella garberi</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8243</td>
<td>alaa</td>
<td>Planchonella grayana</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8244</td>
<td>alaa</td>
<td>Planchonella linggensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8246</td>
<td>mamalava</td>
<td>Planchonella samoensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8247</td>
<td>Planchonella</td>
<td>Planchonella spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8248</td>
<td>mamalava</td>
<td>Planchonella torricellensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8250</td>
<td>Hawaii pilo kea</td>
<td>Platysesma remyi</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8251</td>
<td>Maui pilo kea</td>
<td>Platysesma spathulata</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8252</td>
<td>platysesma</td>
<td>Platysesma spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8257</td>
<td>golden hala pepe</td>
<td>Pleomele aurea</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8258</td>
<td>Maui hala pepe</td>
<td>Pleomele auwahiensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8259</td>
<td>Lanai hala pepe</td>
<td>Pleomele fernaldii</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8260</td>
<td>Waianae Range hala pepe</td>
<td>Pleomele forbesii</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8261</td>
<td>royal hala pepe</td>
<td>Pleomele halapepe</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8262</td>
<td>Hawaii hala pepe</td>
<td>Pleomele hawaiensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8263</td>
<td>hala pepe</td>
<td>Pleomele spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8269</td>
<td>Plumeria obtusa</td>
<td>Plumeria obtusa var. obtusa</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8271</td>
<td>templetree</td>
<td>Plumeria rubra</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8272</td>
<td>Plumeria</td>
<td>Plumeria spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8283</td>
<td>bungaruau</td>
<td>Polycias granifolia</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>SPCD</td>
<td>COMMON_NAME</td>
<td>Scientific Name</td>
<td>SPGRPCD</td>
<td>MAJGRP</td>
</tr>
<tr>
<td>------</td>
<td>-------------------</td>
<td>----------------------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>8285</td>
<td>Polyscias macgillivrayi</td>
<td>Polyscias macgillivrayi</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8286</td>
<td>ongei</td>
<td>Polyscias nodosa</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8287</td>
<td>tagitagi</td>
<td>Polyscias samoensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8288</td>
<td>shield aralia</td>
<td>Polyscias scutellaria</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8289</td>
<td>Polyscias</td>
<td>Polyscias spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8290</td>
<td>tava</td>
<td>Pometia pinnata</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8292</td>
<td>kattai</td>
<td>Ponapea hosinoi</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8293</td>
<td>Ponapea ledermanniana</td>
<td>Ponapea ledermanniana</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8294</td>
<td>Ponapea</td>
<td>Ponapea spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8295</td>
<td>kisaks</td>
<td>Pongamia pinnata</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8297</td>
<td>Abiu</td>
<td>Pouteria caimito</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8298</td>
<td>elangel, chelangel</td>
<td>Pouteria calcaria</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8299</td>
<td>eggfruit</td>
<td>Pouteria campechiana</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8303</td>
<td>jalahag</td>
<td>Pouteria obovata</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8304</td>
<td>alaa</td>
<td>Pouteria sandwicensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8305</td>
<td>mammee sapote</td>
<td>Pouteria sapota</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8306</td>
<td>pouteria</td>
<td>Pouteria spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8307</td>
<td>ahgao</td>
<td>Premna obtusifolia</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8308</td>
<td>Prema pubescens</td>
<td>Premna pubescens</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8309</td>
<td>aloalo</td>
<td>Premna serratifolia</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8310</td>
<td>Prema</td>
<td>Premna spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8315</td>
<td>Hawaii pritchardia</td>
<td>Pritchardia affinis</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>8316</td>
<td>Maui pritchardia</td>
<td>Pritchardia arecina</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>8317</td>
<td>Kilauea pritchardia</td>
<td>Pritchardia beccariana</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>8318</td>
<td>Mt. Eke pritchardia</td>
<td>Pritchardia forbesiana</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>8319</td>
<td>Makaleha pritchardia</td>
<td>Pritchardia hardyi</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>8320</td>
<td>Joulu lelo</td>
<td>Pritchardia hillebrandii</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>8321</td>
<td>Waianae Range pritchardia</td>
<td>Pritchardia kaalae</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>8322</td>
<td>Lanai pritchardia</td>
<td>Pritchardia lanaiensis</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>8323</td>
<td>Joulu</td>
<td>Pritchardia lanigera</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>8324</td>
<td>Limahuli Valley pritchardia</td>
<td>Pritchardia limahuliensis</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>8325</td>
<td>Molokai pritchardia</td>
<td>Pritchardia lowreyana</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>8326</td>
<td>Koolau Range pritchardia</td>
<td>Pritchardia martii</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>8327</td>
<td>Alakai Swamp pritchardia</td>
<td>Pritchardia minor</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>8328</td>
<td>Kamalo pritchardia</td>
<td>Pritchardia munroi</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>8329</td>
<td>fan palm</td>
<td>Pritchardia pacifica</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>8330</td>
<td>Waioi Valley pritchardia</td>
<td>Pritchardia perlmanii</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>8331</td>
<td>Nihoa pritchardia</td>
<td>Pritchardia remota</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>8336</td>
<td>lands of papa pritchardia</td>
<td>Pritchardia schattaueri</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>8337</td>
<td>pritchardia</td>
<td>Pritchardia spp.</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>8338</td>
<td>stickybud pritchardia</td>
<td>Pritchardia viscosa</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>SPCD</td>
<td>COMMON_NAME</td>
<td>Scientific Name</td>
<td>SPGRPCD</td>
<td>MAJGRP</td>
</tr>
<tr>
<td>------</td>
<td>-------------------------</td>
<td>-----------------------------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>8339</td>
<td>poleline pritchardia</td>
<td>Pritchardia waialealeana</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>8341</td>
<td>fua lole</td>
<td>Procris pedunculata</td>
<td>54</td>
<td>4</td>
</tr>
<tr>
<td>8343</td>
<td>mesquite</td>
<td>Prospis juliflora</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8344</td>
<td>kiawe</td>
<td>Prospis pallida</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8355</td>
<td>strawberry guava</td>
<td>Psidium cattleyanum</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8356</td>
<td>guava</td>
<td>Psidium guajava</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8365</td>
<td>Koolau Range wild coffee</td>
<td>Psychotria fauriei</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8366</td>
<td>largeflower wild coffee</td>
<td>Psychotria grandiflora</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8369</td>
<td>Kauai wild coffee</td>
<td>Psychotria greenwelliae</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8370</td>
<td>Waianae Range wild coffee</td>
<td>Psychotria hathewayi</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8373</td>
<td>kopikoula</td>
<td>Psychotria hawaiensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8377</td>
<td>woodland wild coffee</td>
<td>Psychotria hexandra</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8382</td>
<td>Oahu wild coffee</td>
<td>Psychotria hexandra spp. oahuensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8386</td>
<td>miloli kopiwai</td>
<td>Psychotria hibdyi</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8387</td>
<td>matalafi</td>
<td>Psychotria insularum</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8388</td>
<td>kopiko kea</td>
<td>Psychotria kaduana</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8390</td>
<td>aplohkateng</td>
<td>Psychotria mariana</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8392</td>
<td>forest wild coffee</td>
<td>Psychotria mariniana</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8393</td>
<td>opiko</td>
<td>Psychotria mawiensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8398</td>
<td>Psychotria rhombocarpa</td>
<td>Psychotria rhombocarpa</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8399</td>
<td>Psychotria rotensis</td>
<td>Psychotria rotensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8400</td>
<td>wild coffee</td>
<td>Psychotria spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8401</td>
<td>featherleaf wild coffee</td>
<td>Psychotria wawrae</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8402</td>
<td>alahee</td>
<td>Psydrax odorata</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8404</td>
<td>Kauai pteralyxia</td>
<td>Pteralyxia kauaiensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8405</td>
<td>ridged pteralyxia</td>
<td>Pteralyxia macarinda</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8406</td>
<td>pteralyxia</td>
<td>Pteralyxia spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8407</td>
<td>pterocarpus</td>
<td>Pterocarpus indicus</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8412</td>
<td>Psychococcus ledermannianus</td>
<td>Psychococcus ledermannianus</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8413</td>
<td>Psychotria cheathamiana</td>
<td>Psychotria cheathamiana</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8415</td>
<td>Macarthur feather palm</td>
<td>Ptychosperma macarthur</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>8416</td>
<td>chesdbuuch</td>
<td>Ptychosperma palauense</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>8418</td>
<td>Ptychosperma</td>
<td>Ptychosperma spp.</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>8424</td>
<td>cork oak</td>
<td>Quercus suber</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8430</td>
<td>togo vao</td>
<td>Rapanea myricifolia</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8431</td>
<td>poison devils-pepper</td>
<td>Rauvolfia vomitoria</td>
<td>54</td>
<td>4</td>
</tr>
<tr>
<td>8432</td>
<td>omechidel</td>
<td>Rauvolfia insularis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8434</td>
<td>devils-pepper</td>
<td>Rauvolfia sandwicensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8435</td>
<td>devils-pepper</td>
<td>Rauvolfia spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8436</td>
<td>traveler's tree</td>
<td>Ravenala madagascariensis</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>8440</td>
<td>vi vao</td>
<td>Reynoldsia lanutoensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>SPCD</td>
<td>COMMON_NAME</td>
<td>Scientific Name</td>
<td>SPGRPCD</td>
<td>MAJGRP</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
<td>-------------------------------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>8442</td>
<td>ohe makai</td>
<td>Reynoldsia sandwicensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8443</td>
<td>reynoldsi</td>
<td>Reynoldsia spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8456</td>
<td>Rheeda</td>
<td>Rhedia edulis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8458</td>
<td>mangle</td>
<td>Rhizophora apiculata</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8459</td>
<td>Rhizophora lamarckii</td>
<td>Rhizophora lamarckii</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8462</td>
<td>mangle hembra</td>
<td>Rhizophora mcrhonata</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8463</td>
<td>mangrove</td>
<td>Rhizophora spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8464</td>
<td>Rhizophora stylosa</td>
<td>Rhizophora stylosa</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8465</td>
<td>rose myrtle</td>
<td>Rhodomyrtus spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8466</td>
<td>Rhodomyrtus tomentosus</td>
<td>Rhodomyrtus tomentosa</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8467</td>
<td>heneleau</td>
<td>Rhus sandwicensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8468</td>
<td>sumac</td>
<td>Rhus spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8469</td>
<td>tavai</td>
<td>Rhus taitensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8472</td>
<td>castorbean</td>
<td>Ricinus communis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8473</td>
<td>rcinus</td>
<td>Ricinus spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8474</td>
<td>Rinorea carolinensis</td>
<td>Rinorea carolinensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8480</td>
<td>Rollinia</td>
<td>Rollinia deliciosa</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8490</td>
<td>Roystonea elata</td>
<td>Roystonea elata</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>8491</td>
<td>royal palm</td>
<td>Roystonea oleracea</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>8503</td>
<td>etkeam, cheskeam</td>
<td>Samadera indica</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8505</td>
<td>raintree</td>
<td>Samanea saman</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8506</td>
<td>raintree</td>
<td>Samanea spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8509</td>
<td>common elderberry</td>
<td>Sambucus nigra</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8510</td>
<td>raintree</td>
<td>Sambucus spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8515</td>
<td>santol, kechapi</td>
<td>Sandoricum koetjape</td>
<td>54</td>
<td>4</td>
</tr>
<tr>
<td>8516</td>
<td>coastal sandalwood</td>
<td>Santalum ellipticum</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8517</td>
<td>forest sandalwood</td>
<td>Santalum freycinetanum</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8521</td>
<td>Haleakala sandalwood</td>
<td>Santalum haleakalea</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8522</td>
<td>mountain sandalwood</td>
<td>Santalum paniculatum</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8525</td>
<td>willowleaf sandalwood</td>
<td>Santalum salicifolium</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8526</td>
<td>sandalwood</td>
<td>Santalum spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8528</td>
<td>lonomea</td>
<td>Sapindus oahuense</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8529</td>
<td>wingleaf soapberry</td>
<td>Sapindus saponaria</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8531</td>
<td>soapberry</td>
<td>Sapindus spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8532</td>
<td>vitiensis</td>
<td>Sapindus vitiensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8534</td>
<td>maskerekur</td>
<td>Sapium indicum</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8544</td>
<td>uunu</td>
<td>Sarcopygme pacifica</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8548</td>
<td>Scaevola, naupaka</td>
<td>Scaevola cerasifolia</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8549</td>
<td>naupaka kuahiwirna</td>
<td>Scaevola chamissoniana</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8550</td>
<td>mountain naupaka</td>
<td>Scaevola gaudichaudiana</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8551</td>
<td>forest naupaka</td>
<td>Scaevola procera</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>SPCD</td>
<td>COMMON_NAME</td>
<td>Scientific Name</td>
<td>SPGRPCD</td>
<td>MAJGRP</td>
</tr>
<tr>
<td>------</td>
<td>----------------------</td>
<td>-------------------------------------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>8552</td>
<td>naupaka</td>
<td>Scaevola spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8555</td>
<td>Schaefferia</td>
<td>Schaefferia spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8559</td>
<td>samoensis</td>
<td>Schefflera samoensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8560</td>
<td>Toitoi</td>
<td>Scaevola taccada</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8561</td>
<td>Peruvian peppertree</td>
<td>Schinus molle</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8563</td>
<td>Brazilian peppertree</td>
<td>Schinus terebinthifolius</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8577</td>
<td>kuat</td>
<td>Scyphiphora hydrophyllacea</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8583</td>
<td>poumuli</td>
<td>Securinega flexuosa</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8586</td>
<td>tonget</td>
<td>Semecarpus venenosa</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8588</td>
<td>emperor's candlesticks</td>
<td>Senna alata</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8590</td>
<td>Gaudichauds senna</td>
<td>Senna gaudichaudii</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8591</td>
<td>false sicklepod</td>
<td>Senna multijuga</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8592</td>
<td>valamuerto</td>
<td>Senna pendula</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8595</td>
<td>senna</td>
<td>Senna septemtrionalis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8596</td>
<td>Siamese cassia</td>
<td>Senna siamea</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8598</td>
<td>senna</td>
<td>Senna spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8599</td>
<td>Senna sulfurea</td>
<td>Senna sulfurea</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8600</td>
<td>glossy shower</td>
<td>Senna surattensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8601</td>
<td>ukall</td>
<td>Serianthes kanehirae</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8603</td>
<td>hayun lago, trongkon guafi</td>
<td>Serianthes nelsonii</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8605</td>
<td>vegetable hummingbird</td>
<td>Sesbania grandiflora</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8606</td>
<td>Egyptian riverhemp</td>
<td>Sesbania sesban</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8607</td>
<td>riverhemp</td>
<td>Sesbania spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8608</td>
<td>Shirakiopsis indica</td>
<td>Shirakiopsis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8609</td>
<td>yellow llima</td>
<td>Sida fallax</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8610</td>
<td>fanpetals</td>
<td>Sida spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8628</td>
<td>American black nightshade</td>
<td>Solanum americanum</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8631</td>
<td>earleaf nightshade</td>
<td>Solanum mauritianum</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8635</td>
<td>nightshade</td>
<td>Solanum spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8636</td>
<td>turkey berry</td>
<td>Solanum torvum</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8639</td>
<td>mangrove</td>
<td>Sonneratia alba</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8641</td>
<td>mamani</td>
<td>Sophora chrysophylla</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8642</td>
<td>necklacepod</td>
<td>Sophora spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8643</td>
<td>silver bush</td>
<td>Sophora tomentosa</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8644</td>
<td>African tuliptree</td>
<td>Spathodea campanulata</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8645</td>
<td>spathodea</td>
<td>Spathodea spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8646</td>
<td>Spiraeanthemum samoense</td>
<td>Spiraeanthemum samoense</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8649</td>
<td>Spondias dulcis</td>
<td>Spondias dulcis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8650</td>
<td>yellow mombin</td>
<td>Spondias mombin</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8653</td>
<td>Spondias</td>
<td>Spondias spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8655</td>
<td>ngmui</td>
<td>Stemonurus ammui</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>SPCD</td>
<td>COMMON_NAME</td>
<td>Scientific Name</td>
<td>SPGRPCD</td>
<td>MAJGRP</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
<td>-------------------------------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>8656</td>
<td>titmel</td>
<td>Spondias pinnata</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8665</td>
<td>fanaio</td>
<td>Sterculia fanaiho</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8667</td>
<td>Sterculia palauensis</td>
<td>Sterculia palauensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8669</td>
<td>anthropophagorum</td>
<td>Streblus anthropophagorum</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8670</td>
<td>Hawaii roughbush</td>
<td>Streblus pendulinus</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8671</td>
<td>streblus</td>
<td>Streblus spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8676</td>
<td>bay cedar</td>
<td>Suriana maritima</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8678</td>
<td>mahogany</td>
<td>Swietenia spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8679</td>
<td>Honduras mahogany</td>
<td>Swietenia macrophylla</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8687</td>
<td>chebttui, ebtui</td>
<td>Symplocos racemosa</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8689</td>
<td>turpentine tree</td>
<td>Syncarpia glomulifera</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8690</td>
<td>turpentine tree</td>
<td>Syncarpia spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8691</td>
<td>Miracle Berry</td>
<td>Synsepalum dulcificum</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8695</td>
<td>asi</td>
<td>Syzygium brevifolium</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8696</td>
<td>poona</td>
<td>Syzygium carolinense</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8697</td>
<td>asi vai</td>
<td>Syzygium clusiifolium</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8699</td>
<td>asi vai</td>
<td>Syzygium dealatum</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8700</td>
<td>asi</td>
<td>Syzygium inophylloides</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8701</td>
<td>Syzygium jambos</td>
<td>Syzygium jambos</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8702</td>
<td>Malaysian apple</td>
<td>Syzygium malaccense</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8703</td>
<td>poona</td>
<td>Syzygium richii</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8704</td>
<td>nonu vao</td>
<td>Syzygium samarangense</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8705</td>
<td>fena vao</td>
<td>Syzygium samoense</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8706</td>
<td>ohia ha</td>
<td>Syzygium sandwicense</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8708</td>
<td>syzygium</td>
<td>Syzygium spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8714</td>
<td>pink tabebuia</td>
<td>Tabebuia pallida</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8716</td>
<td>pink trumpet-tree</td>
<td>Tabebuia rosea</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8718</td>
<td>trumpet-tree</td>
<td>Tabebuia spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8719</td>
<td>Tabernaemontana aurantiaca</td>
<td>Tabernaemontana aurantiaca</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8722</td>
<td>Pulu</td>
<td>Tabernaemontana pandacaqui</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8723</td>
<td>Tabernaemontana rotensis</td>
<td>Tabernaemontana rotensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8737</td>
<td>manunu</td>
<td>Tarenna sambucina</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8741</td>
<td>chestnutleaf trumpetbush</td>
<td>Tecoma castanifolia</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8743</td>
<td>yellow trumpetbush</td>
<td>Tecoma stans</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8744</td>
<td>teak</td>
<td>Tectona grandis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8745</td>
<td>tectona</td>
<td>Tectona spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8748</td>
<td>tropical almond</td>
<td>Terminalia spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8749</td>
<td>kehma</td>
<td>Terminalia carolinensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8750</td>
<td>tropical almond</td>
<td>Terminalia catappa</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8751</td>
<td>esemiich, chesemiich</td>
<td>Terminalia crassipes</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8752</td>
<td>esemiich, chesemiich</td>
<td>Terminalia edulis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>SPCD</td>
<td>COMMON_NAME</td>
<td>Scientific Name</td>
<td>SPGRPCD</td>
<td>MAJGRP</td>
</tr>
<tr>
<td>------</td>
<td>-------------------</td>
<td>-------------------------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>8755</td>
<td>tropical almond</td>
<td>Terminalia kaernbachii</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8756</td>
<td>East Indian almond</td>
<td>Terminalia myriocarpa</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8758</td>
<td>malili</td>
<td>Terminalia richii</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8759</td>
<td>talie</td>
<td>Terminalia samoensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8770</td>
<td>Flynnsohe</td>
<td>Tetraplasandra flynnii</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8771</td>
<td>Koolau Rangeohe</td>
<td>Tetraplasandra gymnocarpa</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8772</td>
<td>Hawaii ohe</td>
<td>Tetraplasandra hawaiensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8773</td>
<td>ohe ohe</td>
<td>Tetraplasandra kavaiensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8774</td>
<td>ohe mauka</td>
<td>Tetraplasandra oahuensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8775</td>
<td>tetraplasandra</td>
<td>Tetraplasandra spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8776</td>
<td>Mt. Waialeale ohe</td>
<td>Tetraplasandra waialealae</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8777</td>
<td>ohe kiko ola</td>
<td>Tetraplasandra waimeae</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8779</td>
<td>Florida clover ash</td>
<td>Tetrazygia bicolor</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8784</td>
<td>cacao</td>
<td>Theobroma cacao</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8787</td>
<td>Portia tree</td>
<td>Thespesia popunea</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8788</td>
<td>thespesia</td>
<td>Thespesia spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8789</td>
<td>luckynut</td>
<td>Thevetia peruviana</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8804</td>
<td>glorytree</td>
<td>Tibouchina spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8805</td>
<td>princess-flower</td>
<td>Tibouchina urvilleana</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8806</td>
<td>Timonius corymbosus</td>
<td>Timonius corymbosus</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8807</td>
<td>Timonius mollis</td>
<td>Timonius mollis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8808</td>
<td>Timonius</td>
<td>Timonius spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8809</td>
<td>Timonius subauritus</td>
<td>Timonius subauritus</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8810</td>
<td>Timonius timon</td>
<td>Timonius timon</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8811</td>
<td>redcedar</td>
<td>Toona spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8812</td>
<td>Australian redcedar</td>
<td>Toona ciliata</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8822</td>
<td>olona</td>
<td>Touchardia latifolia</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8823</td>
<td>touchardia</td>
<td>Touchardia spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8824</td>
<td>velvetleaf soldierbush</td>
<td>Tournefortia argentea</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8826</td>
<td>soldierbush</td>
<td>Tournefortia spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8827</td>
<td>magele</td>
<td>Trema cannabina</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8831</td>
<td>oriental trema</td>
<td>Trema orientalis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8832</td>
<td>trema</td>
<td>Trema spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8837</td>
<td>Trichospermum ikutai</td>
<td>Trichospermum ikutai</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8838</td>
<td>elsau, oleiulakersus</td>
<td>Trichospermum ledermannii</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8839</td>
<td>maouli</td>
<td>Trichospermum richii</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8842</td>
<td>limeberry</td>
<td>Triphasia trifolia</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8846</td>
<td>faia</td>
<td>Tristiropsis obtusangula</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8856</td>
<td>hope</td>
<td>Urera glabra</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8857</td>
<td>opuhe</td>
<td>Urera kaalae</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8858</td>
<td>urera</td>
<td>Urera spp.</td>
<td>54</td>
<td>3</td>
</tr>
</tbody>
</table>
Appendix E -- Pacific Tree Species Codes, Names

<table>
<thead>
<tr>
<th>SPCD</th>
<th>COMMON_NAME</th>
<th>Scientific Name</th>
<th>SPGRPCD</th>
<th>MAJGRP</th>
</tr>
</thead>
<tbody>
<tr>
<td>8866</td>
<td>Manila palm</td>
<td>Veitchia merrillii</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>8869</td>
<td>mu oil tree</td>
<td>Vernicia montana</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8870</td>
<td>Vernicia</td>
<td>Vernicia spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8872</td>
<td>bars, beokel</td>
<td>Vitex cofassus</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8874</td>
<td>smallflower chastetree</td>
<td>Vitex parviflora</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8875</td>
<td>chastetree</td>
<td>Vitex spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8876</td>
<td>simpleleaf chastetree</td>
<td>Vitex trifolia</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8884</td>
<td>ateate</td>
<td>Wedelia biflora</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8886</td>
<td>Weinmannia affinis</td>
<td>Weinmannia affinis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8889</td>
<td>alpine false ohelo</td>
<td>Wikstroemia bicornuta</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8890</td>
<td>forest false ohelo</td>
<td>Wikstroemia furcata</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8891</td>
<td>montane false ohelo</td>
<td>Wikstroemia monticola</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8892</td>
<td>Oahu false ohelo</td>
<td>Wikstroemia oahuensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8895</td>
<td>Hawaii false ohelo</td>
<td>Wikstroemia phillyreifolia</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8896</td>
<td>Kohala false ohelo</td>
<td>Wikstroemia pulcherrima</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8897</td>
<td>variableleaf false ohelo</td>
<td>Wikstroemia sandwicensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8898</td>
<td>Skottsbergs false ohelo</td>
<td>Wikstroemia skottsbergiana</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8899</td>
<td>false ohelo</td>
<td>Wikstroemia spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8900</td>
<td>hairy false ohelo</td>
<td>Wikstroemia villosa</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8901</td>
<td>tallow wood</td>
<td>Ximenia americana</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8903</td>
<td>jalanyog</td>
<td>Xylocarpus granatum</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8904</td>
<td>elele</td>
<td>Xylocarpus moluccensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8905</td>
<td>Xylocarpus</td>
<td>Xylocarpus spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8907</td>
<td>sawtooth logwood</td>
<td>Xylosma crenata</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8908</td>
<td>Hawaii brushholly</td>
<td>Xylosma hawaiiensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8909</td>
<td>Xylosma nelsonii</td>
<td>Xylosma nelsonii</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8911</td>
<td>Xylosma samoensis</td>
<td>Xylosma samoensis</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8915</td>
<td>xylomsa</td>
<td>Xylosma spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8925</td>
<td>kawau</td>
<td>Zanthoxylum dipetalum</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8929</td>
<td>Hawaii pricklyash</td>
<td>Zanthoxylum hawaiensi</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8930</td>
<td>Kauai pricklyash</td>
<td>Zanthoxylum kauaense</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8933</td>
<td>Oahu pricklyash</td>
<td>Zanthoxylum oahuense</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8936</td>
<td>pricklyash</td>
<td>Zanthoxylum spp.</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>8939</td>
<td>Indian jujube</td>
<td>Ziziphus mauritiana</td>
<td>54</td>
<td>3</td>
</tr>
</tbody>
</table>