
A Spatial Econometric Analysis of Land-Use 
Change With Land Cover Trends Data: An 
Application to the Pacific Northwest
David J. Lewis and Ralph J. Alig

DEPAR TMENT  OF AGRICULT UR
E

United States Department of Agriculture

Forest 
Service

Pacific Northwest  
Research Station

Research Paper
PNW-RP-600 

September 
2014



Authors
David J. Lewis is an associate professor, Department of Applied Economics, 
Oregon State University, 200A Ballard Ext. Hall, Corvallis, OR 97331; Ralph 
J. Alig is a research forester emeritus, U.S. Department of Agriculture, Forest 
Service, Pacific Northwest Research Station, 3200 SW Jefferson Way, Corvallis, 
OR 97331.

The U.S. Department of Agriculture (USDA) prohibits discrimination against its 
customers, employees, and applicants for employment on the bases of race, color, 
national origin, age, disability, sex, gender identity, religion, reprisal, and where 
applicable, political beliefs, marital status, familial or parental status, sexual orientation, 
or all or part of an individual’s income is derived from any public assistance program, 
or protected genetic information in employment or in any program or activity conducted 
or funded by the Department. (Not all prohibited bases will apply to all programs and/or 
employment activities.) 

If you wish to file an employment complaint, you must contact your agency’s EEO 
Counselor (PDF) within 45 days of the date of the alleged discriminatory act, event, or 
in the case of a personnel action. Additional information can be found online at http://
www.ascr.usda.gov/complaint_filing_file.html.

If you wish to file a Civil Rights program complaint of discrimination, complete the 
USDA Program Discrimination Complaint Form (PDF), found online at http://www.
ascr.usda.gov/complaint_filing_cust.html, or at any USDA office, or call (866) 632-
9992 to request the form. You may also write a letter containing all of the information 
requested in the form. Send your completed complaint form or letter to us by mail at 
U.S. Department of Agriculture, Director, Office of Adjudication, 1400 Independence 
Avenue, S.W., Washington, D.C. 20250-9410, by fax (202) 690-7442 or email at 
program.intake@usda.gov.

Individuals who are deaf, hard of hearing or have speech disabilities and you wish to 
file either an EEO or program complaint please contact USDA through the Federal 
Relay Service at (800) 877-8339 or (800) 845-6136 (in Spanish).

Persons with disabilities who wish to file a program complaint, please see information 
above on how to contact us by mail directly or by email. If you require alternative 
means of communication for program information (e.g., Braille, large print, audiotape, 
etc.) please contact USDA’s TARGET Center at (202) 720-2600 (voice and TDD).

For any other information dealing with Supplemental Nutrition Assistance Program 
(SNAP) issues, persons should either contact the USDA SNAP Hotline Number at 
(800) 221-5689, which is also in Spanish or call the State Information/Hotline Numbers.

For any other information not pertaining to civil rights, please refer to the listing of the 
USDA Agencies and Offices for specific agency information.



Abstract
Lewis, David J.; Alig, Ralph J. 2014. A spatial econometric analysis of land-use 

change with land cover trends data: an application to the Pacific Northwest. 
Res. Pap. PNW-RP-600 Portland, OR: U.S. Department of Agriculture, Forest 
Service, Pacific Northwest Research Station. 44 p.

This paper develops a plot-level spatial econometric land-use model and estimates 
it with U.S. Geological Survey Land Cover Trends (LCT) geographic information 
system panel data for the western halves of the states of Oregon and Washington. 
The discrete-choice framework we use models plot-scale choices of the three 
dominant land uses in this region: forest, agriculture, and urban development. 
The results provide a technical foundation for developing larger scale models 
from the LCT database. In particular, we develop a random-effects estimation 
method for dealing with the spatially clustered sample design underlying the 
LCT. We also exploit the increased spatial information content available in the 
LCT by exploring the estimation of a fully spatial multinomial discrete-choice 
land-use model by including measures of land-use agglomeration economies as 
independent variables in estimation. Estimation of the spatial econometric model 
includes a novel combination of panel-data random parameters logit estimation 
with instrumental variables implemented within the recently developed control 
function approach. The estimated econometric model is used to project landscape 
change in the presence of alternative assumptions regarding future urban returns. 
Our results indicate that variation in urban returns on the order of what was 
experienced in the housing boom and bust of the 2000s generates a wide range of 
predicted future land-use shares in developed uses. The Puget Lowland ecoregion 
has by far the most sensitive landscape projections in response to wide swings in 
urban returns.

Keywords: Land use, spatial modeling, econometric, resource economics, 
land development.



Summary
Empirical models of land-use change have long been used in environmental and 
resource economics for policy analysis of the effects of land-use change on the 
forest land base, including analyses of urban sprawl and ecosystem services. This 
paper estimates a new regional-level econometric land-use model at the plot scale 
from the U.S. Geological Survey’s Land Cover Trends (LCT) database, a spatially 
detailed panel dataset covering the contiguous 48 states. The model is estimated 
for the western halves of the states of Oregon and Washington from 1980 to 
2000 and focuses on transitions among the three major land uses in the region: 
forest, agriculture, and urban development. The empirical data used to condition 
plot-level probabilities of land-use transition include county-level measures of net 
returns to land and plot-level measures of soil quality, distance to cities and roads, 
and measures of land-use agglomeration economies. The inclusion of detailed 
spatial independent variables provides an advance over prior large-scale models 
estimated from land-use surveys that do not disclose the exact location of sur-
veyed land plots. We provide several novel additions to the empirical economics 
literature on land use, including (1) a method for dealing with the clustered sam-
pling strategy implicit in the LCT design, (2) an approach for estimating spatial 
econometric discrete-choice model in a multinomial setting, and (3) providing 
empirically based land-use projections for the Pacific Northwest under alternative 
assumptions regarding the level of future returns to urban development. The model 
development also provides a technical foundation for developing future national-
scale model econometric models from the LCT data.
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Introduction
Plot-level empirical land-use models are widely used in environmental and resource 
economics for policy analysis of the effects of land-use change on urban sprawl, for-
est land loss, ecosystem services, and biological diversity. Many of these analyses 
can be classified according to the scale with which they are estimated and applied. 
The first category can be labeled small-scale models and are generally estimated at 
the scale of a single county or smaller (e.g., Butsic et al. 2011, Irwin and Bockstael 
2002, Lewis et al. 2009, Newburn et al. 2006, Towe et al. 2008). These studies are 
typically estimated from parcel map data provided by local or regional planning or 
assessor authorities. The strength of these studies is their being extremely detailed 
in their spatial information content; their weakness is that their small scale limits 
any broader applicability. The second category can be labeled large-scale models, 
and includes land-use models that are estimated at regional (e.g., multistate) or 
national levels (e.g., Langpap and Wu 2011, Lewis and Plantinga 2007, Lubowski et 
al. 2006). These studies are typically estimated from land-use surveys such as the 
U.S. Department of Agriculture (USDA) National Resources Inventory (NRI) or 
Forest Inventory and Analysis (FIA) conducted by the USDA Forest Service. Large-
scale models have the strength of being much more broadly applicable with the abil-
ity to analyze larger scale environmental problems and policies. The weakness of 
large-scale models is the lack of detail in their information content, which leads to a 
spatial specificity that is generally far inferior to small-scale models. This weakness 
is particularly important for large-scale analyses of the many environmental goods 
whose provision depends on fine-scale spatial patterns.

The purpose of this paper is to improve on the specification of large-scale 
land-use models by developing a multistate empirical land-use model from a 
publicly available spatial panel dataset that has far more spatial information than 
land-use surveys such as the NRI or FIA. The discrete-choice framework we use 
models plot-scale choices of the three dominant land uses in the western half of the 
Pacific Northwest: forest, agriculture, and urban development. The model is esti-
mated for the western halves of the states of Oregon and Washington using micro 
spatial panel data from the U.S. Geological Survey (USGS) Land Cover Trends 
(LCT) dataset from 1980 to 2000. The LCT dataset includes four snapshots of the 
landscape, corresponding to three separate land-use transition periods. The study 
region includes two states with large urban centers (e.g., Seattle, Portland, etc.) and 
significant amounts of undeveloped agricultural and forest land. The empirical data 
used to construct independent variables include plot-level measures of soil quality, 
distance to cities and roads, and measures of land-use agglomeration economies. 
The data also include temporal variation in county-level measures of the net returns 
of an acre (hectare) of land to urban, agricultural, and forest uses of land.
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The inclusion of spatial independent variables representing the distance of plots 
from cities and roads has been absent in many large-scale plot-level econometric 
analyses of land-use change. This absence has been driven by the fact that the 
national land-use surveys—such as the NRI—do not disclose the exact location 
of sample plots. However, the LCT provides an alternative land-use dataset to the 
NRI that potentially can be used as the basis for a national-scale econometric model 
similar to Lubowski et al.’s (2006) NRI-based model. The LCT is a nationwide 
geographic information system (GIS) panel database derived from manually edited 
satellite images, aerial photography, and topographic maps. A primary advantage of 
the LCT over the NRI is the spatial information content—the exact location of plots 
can be observed and corresponding information can be included as independent 
variables in econometric estimation. Further, while land use/land cover datasets 
derived from automated interpretation of satellite imagery have been found to 
underrepresent low-density development (Irwin and Bockstael 2007, Kline et al. 
2009), we provide a comparison of urban development probabilities generated from 
the LCT and NRI that suggests minimal differences for this region. Similar to many 
land-use analyses, we use the LCT’s Anderson level I land cover classification as a 
good proxy for land use.

Using the LCT for estimation brings up multiple research possibilities and 
challenges that do not arise in models estimated from land-use surveys. First, 
unlike the NRI, the LCT does not provide a random sample of plots within coun-
ties. Rather the LCT provides a time-series of GIS 10- by 10-km maps randomly 
sampled within U.S. ecoregions, and we sample plots within each LCT block for a 
computationally feasible estimation. However, as we show formally, this process 
generates spatial correlation in the model unobservables—plots within a block will 
be affected by a different set of unobservables than plots from a separate block. 
Second, the observation of land use within each block brings up the possibility 
of estimating a fully spatial model that includes variables representing spatial 
externalities induced by neighboring land use. For example, Irwin and Bockstael 
(2002) found evidence of negative spatial externalities resulting from urban land on 
the development probability of neighboring lands, while Lewis et al. (2011) found 
evidence of positive spatial externalities resulting from organic dairy farms on 
the decision of neighboring conventional farmers to convert to organic. These two 
papers are binary models with only two land-use choices. A primary challenge is 
how to estimate similar spatial effects in a multinomial discrete-choice model of 
three land-use choices when the spatial lag is endogenous.

The econometric analysis in this paper features several novel additions to the 
empirical economics literature on land use. First, we develop the first large-scale 
econometric land-use change model estimated from the LCT and explore a method 
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for dealing with the LCT’s clustered sampling properties in estimation. The method 
amounts to including landscape block random effects in a random parameters logit 
(RPL) framework that accounts for spatially correlated unobservables induced by 
the LCT’s sampling strategy. We provide Monte Carlo evidence on the method’s 
ability to yield consistent parameter estimates. Accounting for landscape-block 
unobservables with a random effect is preferred to fixed effects in our nonlinear 
model because fixed effects would generate inconsistent estimates owing to the 
incidental parameters problem.

Second, we develop a novel approach for estimating a full spatial econometric 
discrete-choice land-use model in a multinomial setting that is estimable with 
standard maximum simulated likelihood techniques. In addition to modeling 
spatially correlated unobservables, the spatial properties of the model include a 
type of spatial lag—the inclusion of the share of a plot’s neighboring landscape in 
various land uses—as a way to explicitly model and test for spatial agglomeration 
economies in land-use change. Our approach accounts for the endogeneity of the 
spatial lag with the recently developed control function approach for including 
instruments in multinomial discrete-choice models (see Train 2009: chap. 13). We 
use exogenous land-quality indexes at the landscape-block level for instruments. To 
date, fully spatial multinomial discrete-choice econometric models have been little 
used owing to computational constraints (see LeSage and Pace 2009). However, the 
combination of the LCT’s clustered sample of discrete landscape blocks, along with 
panel data and control-function RPL techniques, provides an alternative framework 
for incorporating both a spatial lag and spatial errors.

Third, we use the estimated land-use econometric model to provide empirically 
based landscape projections for the Pacific Northwest under alternative assump-
tions regarding the level of future urban returns. The landscape projections indicate 
substantial urban growth and loss of forest and farmlands in the Puget Lowland and 
Willamette Valley ecoregions, with minimal changes in the Coast Range, Cascades, 
and North Cascades regions. Our results demonstrate that landscape projections in 
the Puget Lowland ecoregion are extremely sensitive to the assumed level of future 
urban returns that was witnessed in the decade of the 2000s. In particular, the 
share of the Puget Lowland ecoregion projected to be developed is between 12 and 
14 percentage points higher if the level of real urban returns remains at the levels 
observed in 2006 as compared to if real urban returns remain at the more modest 
levels observed in 2012. Variation in the projected development share of the Puget 
Lowland ecoregion between 12 and 14 percentage points presents major challenges 
for managing a landscape for ecosystem service provision, as 12 percent of a 1.8 
million ha region is approximately 0.2 million ha of land.
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Finally, this analysis serves as a pilot study for the potential creation of a 
national-scale econometric land-use model based on LCT data. The Forest Service 
extensively used Lubowski et al.’s (2006) NRI-based national model for Resource 
Planning Assessment (RPA) and climate change analyses. However, changes in the 
NRI sampling scheme after 1997 has created a need for a new data source for future 
national-scale models. This paper develops the technical foundation necessary to 
estimate a large-scale econometric land-use model with LCT data.

Land-Use Modeling by the USDA Forest Service
The Forest Service (e.g., Adams and Haynes 2007) has conducted national and 
regional assessments of the forest and rangeland land base for many decades. A 
land-base assessment (e.g., Alig et al. 2010) is a key part of such natural resource 
assessments, given the importance of land and land-use changes for forest and 
agricultural products, living space, and ecosystem services provided by forest 
ecosystems. With a broad range of economic, ecological, and biophysical phenom-
ena of interest in such assessments, considerable uncertainty exists about future 
projections of outcomes, particularly projections that look forward 50 years with the 
added pressures of climate change. Past land-base assessments by the Forest Service 
have typically focused on one “business-as-usual” future, although there have been 
variations in this approach in analyzing additional scenarios. For example, varying 
assumptions about future population have been used to create high, medium, and 
low trajectories of supply and demand. Now with the growing interest in markets 
for carbon as an ecosystem service, analysts can compare results to those of other 
studies that explicitly include carbon price scenarios (e.g., Alig et al. 2010).

Land-base assessments provide information that can help shape perceptions 
about whether we can sustain both increasing consumption of forest products, forest 
resource conditions, and ecosystem services, and how to best adapt to and mitigate 
climate change. Related data illustrate the dynamics of our Nation’s land base and 
how adjustments are likely to continue in the future. Land-use change projectons 
can also provide inputs into a larger system of models that project forest resource 
conditions and harvests, wildlife habitat, climate change, and other natural resource 
conditions. Current debates about sustainability and concerns about climate change 
involve both physical notions of sustainability and competing socioeconomic goals 
for public and private land management. The fixed land base necessitates viewing 
“sustainability” across the entire land base and across sectors.

Methods and data sources used in land-base assessments have changed materi-
ally over the last several decades. In general, since around 1980, land-use projec-
tions have moved from reliance on expert opinions (e.g., Wall 1981) to systematic 
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models involving systems of land-use equations. Early land-use models relied on 
FIA data (e.g., Alig 1986), with initial models estimated for the Southern United 
States, which has a significant amount of the Nation’s private timberland as well as 
some of the larger forestry datasets. The first cross section of NRI data was used to 
create urban-area models (Alig and Healy 1987) for use in land-base assessments. 
Panels of NRI data were later used to create subsequent land-use models used in 
RPAs (e.g., Alig and Plantinga 2004, Alig et al. 2010). With the availability of spa-
tial or georeferenced data, models were developed at a regional or subregional level 
(e.g., Kline and Alig 2005; Kline et al. 2003) to complement larger scale aspatial 
land-use models, especially to help improve finer scale ecological investigations 
(e.g., Lewis and Plantinga 2007). In addition, other analyses by the Forest Service 
and others used U.S. Census Bureau data on housing densities combined with 
spatial land cover data (e.g., National Land Cover Database) at a watershed level to 
investigate pressures on U.S. private forests from housing developments, referred to 
as “Forests on the Edge” studies (e.g., Stein et al. 2005).

Basic Econometric Framework and  
Database Construction
Conceptual Model
The econometric framework begins with the assumption that landowners allocate a 
plot of homogeneous quality land to the use that maximizes the present discounted 
value of expected net returns less any costs of converting land. Expectations of net 
returns are assumed static and depend on current and historical net returns, thereby 
generating the decision rule that the landowner chooses the use generating the 
greatest annualized net return less conversion cost (Plantinga 1996). Although the 
landowner is assumed to observe the net returns to alternative uses in each decision 
period, this information is not perfectly available to the researcher. As such, the 
annualized net return to land can be specified as a function of both deterministic 
and random components (Lewis and Plantinga 2007, Lubowski et al. 2006). For plot 
i that begins period t in use j and ends in use k, the real annualized net return (Rikt) 
net of annualized conversion costs (rCijkt) are:

	 Rikt – rCijkt = αjk + β0jk RC(i)kt + β1jk LQikRC(i)kt + [ωik + φB(i)k + εijkt]	 (1)

for all uses k = 1,….K and time periods t = 1,….,T, where the unobservable in the 
square bracket of the right hand side of (1) is an unobservable term composed of a 
time-invariant plot/use random effect (ωik), a random effect specific to the landscape 
block B that contains plot i (φB(i)k), and an IID unobservable (εijkt). The variable  
RC(i)kt is the average net return from use k at time t in the county C that contains 
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parcel i, and LQik is the land quality of parcel i in use k. Land quality is represented 
as soil quality when k = agriculture or forest, and land quality is represented as 
distance to cities and roads when k = urban. The interaction of RC(i)kt and LQik 
allows the deterministic parcel return to deviate from the county average owing to 
observable measures of land quality. Finally, the land-use specific constants αjk are 
assumed to account for real annualized costs of converting from use j to use k.

If the IID unobservable εijkt is distributed type i Extreme Value, then equation 
(1) is the latent equation version of an error components random parameters logit 
model (Train 2009: chap. 6). This flexible error components structure allows for 
unobserved correlation that is specific to the spatial-temporal nature of the panel 
data used in estimation. First, because the land-use choice for each parcel i is 
observed repeatedly, ωik captures time-invariant parcel unobservable determinants 
of i’s return to use k. For example, the parcel’s distance to a river does not change 
over time and might affect the return to developing the parcel. Second, because we 
observe parcels in landscape blocks B, then φB(i)k captures block-specific determi-
nants of i’s return to use k. For example, the Pacific Northwest has many microcli-
mates that affect the tree species that can be grown (e.g., the commercially valuable 
Sitka spruce in the far west Coast Range). This flexible error structure allows for 
temporally correlated unobservables with ωik, and spatially correlated unobserv-
ables with φB(i)k.

Land Use Dataset Used for Estimation
This project uses spatial panel data from the LCTs project funded by the USGS. 
The LCT is a national dataset derived from manually edited satellite images, aerial 
photography, and topographic maps that classifies land cover into 11 categories 
for five periods in time: 1973, 1980, 1986, 1992, and 2000. Owing to the lack of 
available data on the net returns to land prior to 1978, we exclude the 1973 to 1980 
transition period in our analysis. Importantly, the LCT is not derived solely from an 
automated algorithm run on satellite data. Rather, accuracy is improved by combin-
ing satellite data with manual editing from aerial photographs and topographic 
maps. This long panel provides both spatial and temporal variation in land use, 
allowing the researcher to observe changes in land use over multiple periods of 
time. Table 1 indicates the classification system used in the LCT.

The LCT data are collected by first stratifying the continental United States 
into Envirnomental Protection Agency (EPA) level III ecoregions, and then ran-
domly selecting a sample of 10- by 10-km blocks from each ecoregion. Satellite 
images of each block are then placed into 60- by 60-m pixels and assigned one of  
the land cover classes from table 1. Figure 1 shows a map of the study region, 
Oregon and Washington west of the Cascade crest, including the privately owned 
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Table 1— Land Cover Classifications in the Land Cover Trends data

Land Cover  
Classification	 Description

Water	 Areas persistently covered with water, such as streams, canals, lakes,  
	   reservoirs, bays, or oceans.
Urban	 Areas of intensive use with much of the land covered with structures or  
	   anthropogenic impervious surfaces (e.g., high-density residential,  
	   commercial, industrial, roads, etc.) or less intensive uses where the  
	   land cover includes both vegetation and structures (e.g., low-density  
	   residential, recreational facilities, cemeteries, parking lots, utility  
	   corridors, etc.), including any land functionally related to urban or  
	   suburban environments (e.g., parks, golf courses, etc.)
Mechanically	 Land in an altered and often unvegetated state that, owing to  
  disturbed	   disturbances by mechanical means, is in transition from one cover  
	   type to another. Mechanical disturbances include forest clear-cutting,  
	   earthmoving, scraping, chaining, reservoir drawdown, and other  
	   similar human-induced changes.
Mining	 Areas with extractive mining activities and directly related land uses.
Barren	 Land comprised of naturally occurring soils, sand, or rocks where less  
	   than 10 percent of the area is vegetated.
Forest	 Tree-covered land where the tree cover density is greater than 10  
	   percent. Note that cleared forest land (i.e., clearcuts) is mapped  
	   according to current cover (e.g., mechanically disturbed).
Grass/shrub	 Land predominately covered with grasses or shrubs. The vegetated  
	   cover must comprise at least 10 percent of the area. 
Agriculture	 Land in either a vegetated or an unvegetated state used for the  
	   production of food and fiber. This includes cultivated and uncultivated  
	   croplands, hay lands, pasture, orchards, vineyards, and confined  
	   livestock operations. Note that forest plantations are considered forests  
	   regardless of the use of the wood products.
Wetland	 Land where water saturation is the determining factor in soil  
	   characteristics, vegetation types, and animal communities. Wetlands  
	   usually contain both water and vegetated cover.
Nonmechanically	 Land in an altered and often unvegetated state that, owing to  
  disturbed	   disturbances by nonmechanical means, is in transition from one  
	   cover type to another. Nonmechanical disturbances are caused by  
	   fire, wind, floods, animals, and other similar phenomena.
Ice/snow	 Land where the accumulation of snow and ice does not completely melt  
	   during the summer period (e.g., alpine glaciers and snowfields).
Source: Land Cover Trends Project, http://landcovertrends.usgs.gov/main/classification.html.

portion of the sampled LCT blocks. Because the econometric model is motivated as 
a model of private decisionmaking, public land pixels are identified and removed. 
The data used for estimation include the five EPA level III ecoregions in western 
Oregon and Washington: Willamette Valley, Cascades, Puget Lowland, Coast 
Range, and North Cascades.
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The region is dominated by the top three land uses of forest, agriculture, and 
urban lands. The distribution of land-use change by transition period is presented in 
table 2. The most common transitions between land covers are forest to mechani-
cally disturbed, and mechanically disturbed to forest. Importantly, the forest to 
mechanically disturbed transition is typically clearcut forestry in this region, while 
mechanically disturbed to forest transitions are regrowth after clearcut (see Sleeter 
et al. 2012). As such, transitions between forest and mechanically disturbed are 
treated as changes in land cover but not as a change in land use. Therefore, the most 

Figure 1—Map of the sample Land Cover Trends blocks used in analysis for western Oregon and Washington.
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common land-use transitions in this region involve the development of forest and 
agricultural lands into an urban use (see Sleeter et al. 2012). As shown in table 2, 
for private lands, the development of forested and agricultural lands is much more 
common than conversions between agriculture and forest.

Sampling of Plots for Estimation
The full LCT dataset in this region consists of over 3 million pixels, a number that 
is far too much for the maximum simulated likelihood techniques that will be used 
in econometric estimation. Therefore, we sample 5,000 unique pixels and observe 
their land-use classifications over all LCT change periods. To ensure that we cap-
ture enough variation in land-use change, we oversample change pixels. Following 
the sampling analysis of LCT data conducted by Chambers (2010), we divide the 
data into two separate strata: “change pixels” and “nonchange pixels.” The “change 
pixels” are pixels that change land use (transitions between forest and mechanically 
disturbed are not considered a change—see above) at some point during the LCT 
time period. The “nonchange pixels” are pixels that do not change land use during 
the LCT time period. The LCT population of private pixels has a probability of 
choosing a change pixel at 27 percent, while our oversample of change pixels has a 
probability of a change pixel equal to 35 percent. Standard Logit estimation off this 
“choice-based” sample generates consistent estimates of all parameters except the 
alternative-specific constants, which can be adjusted in a straightforward manner 
(Train 2009). We discuss the adjustment of the alternative-specific constants in the 
“Landscape Projections and Out-of-Sample Forecast Text” section.

Comparing Development Probabilities Across the LCT and NRI
Land-use datasets derived from automated interpretation of satellite imagery have 
been found to underrepresent low-density development (Irwin and Bockstael 2007, 
Kline et al. 2009). Irwin and Bockstael (2007) compared the widely used National 
Land Cover Dataset (NLCD) to local parcel maps available from local planning 
agencies and found widespread misclassification of exurban development. Likewise, 

Table 2—Distribution of Pacific Northwest land use change by land 
cover trend transition period for private land

	 1980–1986	 1986–1992	 1992–2000

		  Percent
Forest → forest	 98.96	 98.55	 98.16
Forest → agriculture	 0.28	 0.36	 0.15
Forest → urban	 0.76	 1.09	 1.68
Agriculture → agriculture	 98.14	 97.98	 98.07
Agriculture → forest	 0.27	 0.56	 0.39
Agriculture → urban	 1.59	 1.46	 1.54
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Kline et al. (2009) compared auto-interpreted satellite data of land cover for western 
Washington to survey-based FIA plots and also found common misclassification 
of low-density development as nondevelopment. In contrast to the satellite-derived 
datasets considered by Irwin and Bockstael and Kline et al., the LCT does not 
simply use an automated interpretation from satellite imagery. Although Landsat 
satellite imagery is the primary source for the LCT maps, a variety of ancillary 
sources are used to improve classification (see Sleeter et al. 2012: app. 4). In par-
ticular, all classifications were manual and combined the base satellite imagery 
with aerial photographs, topographic maps, and Google Earth1 imagery. Because 
we are aware of no formal tests of the LCT in determining urban development, we 
compare land-use change probabilities generated from the LCT with those same 
probabilities generated by the survey-based NRI in table 3. The LCT probabilities 
are calculated from private land parcels, while the NRI probabilities are calculated 
from nonfederal lands. Both probabilities are annualized to account for the different 
time period lengths in the two datasets and to provide an apples-to-apples com-
parison. Results suggest minimal differences for this region. In particular, results 

1 The use of firm or trade names in this publication is for reader information and does not 
imply endorsement by the U.S. Department of Agriculture of any product or service.

Table 3—Annualized land-use change probabilities for the Land Cover Trends (LCT) and 
Natural Resources Inventory (NRI) for Oregon and Washington west of the Cascades

	 Period 1	 Period 2	 Period 3 
	 NRI—1982 to 1987	 NRI—1987 to 1992	 NRI—1992 to 1997 
	 LCT—1980 to 1986	 LCT—1986 to 1992	 LCT—1992 to 2000

Forest to forest:			 
  NRI	 0.9997	 0.9994	 0.9996
  LCT	 0.9979	 0.9971	 0.9974
Forest to agriculture:			 
  NRI	 0.0002	 0.0005	 0.0003
  LCT	 0.0006	 0.0007	 0.0002
Forest to urban:			 
  NRI	 0.0001	 0.0001	 0.0001
  LCT	 0.0015	 0.0022	 0.0024
Agriculture to forest:			 
  NRI	 0.0052	 0.0050	 0.0020
  LCT	 0.0005	 0.0011	 0.0006
Agriculture to agriculture:			 
  NRI	 0.9937	 0.9935	 0.9941
  LCT	 0.9963	 0.9959	 0.9972
Agriculture to urban:			 
  NRI	 0.0011	 0.0015	 0.0038
  LCT	 0.0032	 0.0029	 0.0022
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in table 3 provide no evidence that the LCT systematically underrepresents urban 
development compared to the NRI. This result is in contrast to Irwin and Bockstael 
(2009) and Kline et al.’s (2009) analyses of land-use datasets solely derived by 
automated interpretation of satellite imagery alone and provides confidence in the 
LCT as a data source for econometric modeling.

Data for Independent Variables Used in Econometric Estimation
County-level net return variables come from Lubowski’s (2002) national-level 
dataset of annual per-acre net returns to crops, pasture, range, and urban land uses 
from 1978 to 1997. Landowners are assumed to form expectations of net returns 
based on average returns from the 3-year period preceding each transition period. 
Because the LCT bundles crop and pasture lands together as agriculture, average 
agricultural net returns are constructed as a weighted average of crop and pasture 
returns, with the weights derived from the NRI. All net returns are adjusted to 1990 
dollars using the consumer price index. The net returns are linked to each sample 
plot by identifying the county in which each parcel resides using a GIS overlay of 
a county layer and the sample LCT plots. Table 4 presents average county-level 
returns for the three time periods used to construct the average returns used in 
estimation. Urban returns have generally climbed over time, agricultural returns 
have fallen, and timber returns were flat over the first two periods and significantly 
higher during the final period. The significantly higher level of forest returns in the 
final period was likely influenced by the large-scale reductions in federal timber 
harvests from public lands resulting from the spotted owl restrictions (Wear and 
Murray 2004).

Data on plot-level soil quality comes from the Soil Survey Geographic Data-
base (SSURGO from the USDA National Resources Conservation Service). The 
SSURGO data categorize soil quality into eight nonirrigated Land Capability 
Classes (LCC) corresponding to land productivity (1 is highest, 8 is lowest). A GIS 
map of LCC is overlaid to the sample of LCT plots to determine the soil quality of 
each plot. Soil quality is a strong determinant of crop and timber yields, and so is 
used as an interaction with agricultural and forest returns in econometric estimation 
to account for observable plot soil characteristics. The LCC is widely used as a soil 
indicator in econometric land-use models.

Table 4—Average county-level real per-acre net 
returns for western Oregon and Washington

Years	 Urban	 Forest	 Agriculture

		  Dollars
1978–1980	 3,965	 15	 134
1984–1986	 4,362	 14	 26
1990–1992	 5,803	 55	 41
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The Euclidian distance of each plot to the nearest city of greater than 10,000 
people and the distance to a major road are included as interactions with urban 
returns in econometric estimation to account for observable location characteristics 
that influence plot-level development probabilities. Data on city populations come 
from GIS datasets provided by the Oregon Geospatial Enterprise Office (OGE) and 
the Washington Office of Financial Management (WA OFM). Data on roads come 
from the U.S. Census Bureau, and we include the distance to the nearest major 
road, where major roads are defined by the Census Bureau as interstate, U.S., state, 
or county routes. Figure 2 presents histograms of the distance of LCT sample plots 
to cities and roads. As expected, forest plots are generally farther from both cities 
and roads than agricultural plots, representing the fact that Northwest forest lands 
tend to be located in the mountains where few live, while agriculture tends to be in 
the valleys closer to cities.

A. Distance of agricultural plots to cities  B. Distance of agricultural plots to roads 

 

C. Distance of forest plots to cities   D.  Distance of forest plots to roads 
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Figure 2—Distribution of the distance of sample Land Cover Trends plots to cities and roads. 
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Accounting for the LCT’s Clustered Landscape Block  
Sampling Strategy 
The LCT data are collected by first stratifying the continental United States into 
EPA level III ecoregions, and then randomly selecting a sample of 10- by 10-km 
blocks from each ecoregion. This brings up the issue of how to account for this 
clustered sampling technique in econometric estimation. We present a simple 
Monte Carlo exercise that illustrates properties of econometric estimation with 
a simple random sample of plots from counties, and compare that to a clustered 
sample similar to the LCT design. Results confirm that the LCT’s sampling design 
creates a block-level unobservable that induces bias in estimation by generating 
spatial correlation in the error component of the econometric model. Results also 
confirm that consistent estimation can be achieved by including a block-level 
random effect in estimation. For simplicity, our results are illustrated with a binary 
plot-level model to develop or not.

A random sample of plots from counties—
This section describes a process for generating data used in the Monte Carlo exer-
cise. The computer-generated data are developed to mimic properties of the LCT 
data. For plot i that begins period t in an undeveloped use u and ends period t in an 
undeveloped use, real annualized net value of the land is:

	 Riuut = αuu + βuuRc(i)ut + εiuut	 (2)

Real annualized net returns less conversion costs for developing parcel i into 
use d during period t are:

	 Riudt – rCiudt = αud + βud Rc(i)dt + εiudt	 (3)

For all uses k = 1,2,…..,K and time periods t = 1,….,T, where αjk and β0jk are 
parameters, RC(i)kt is the county average return to use k, and εijkt is a standard 
normal unobservable. For simplicity, we have no land quality information for plot i, 
though that could be easily introduced. The plot will be developed if the net value 
of conversion (3) – (2) is positive:

	 (Riudt – rCiudt) – Riuut = (αud – αuu) + βud Rc(i)dt – βuu Rc(i)ut + (εiudt–εiuut) > 0	 (4)

For simulation purposes, assume that the scale of (2) and (3) is such that both 
are plot-specific net returns written as deviations from the county average return. 
This is accomplished with αuu = αud = 0, and βuu = βud = 1:

	 (Riudt – rCiudt) – Riuut = Rc(i)dt – Rc(i)ut + (εiudt–εiuut)	 (5)
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So, given a random sample of plots within each county, we can estimate a probit 
model of (5):

	 Prob(yit = 1|Rc(i)dt – Rc(i)ut) = Prob[(εiudt – εiuut) < β(Rc(i)dt – Rc(i)ut)]	 (6)

Consistent estimation should yield a sampling distribution of the estimate of β 
that is centered at one, the population parameter value of β.

Monte Carlo simulation steps for random sampling from counties—
1.	 Draw 100 county average net returns to conversion (Rc(i)dt – Rc(i)ut) from a 

U[0,1] distribution.2

2.	 Draw 30 plots per county, with (εiudt – εiuut) being drawn from a N(0,1). This 
establishes (5) as a probit model.

3.	 Create the dependent variable yit to be equal to one if (5) is positive, and 
zero otherwise.

4.	 Estimate (6) as a probit model with one variable, the net county returns to 
conversion (Rc(i)dt – Rc(i)ut).

5.	 Repeat steps 1 through 4 many times.

Monte Carlo results—
Given the setup of the Monte Carlo simulation, the estimate of β should be equal to 
one when averaged over 1,000 independent simulations, where the 1,000 simula-
tions approximate β̂’s sampling distribution. Results confirm that (1/S)∑S

s=1 β̂
s = 1, 

where S = 1,000, indicating that a random sample of plots from each county can be 
used to provide consistent parameter estimates of this land-conversion model.

A random sample of plots from clustered blocks within counties—
The LCT dataset consists of a sample of 10- by 10-km blocks randomly sampled 
within ecoregions. Many counties have multiple blocks within them, and a block 
can straddle multiple counties. Importantly, sampling plots from LCT blocks no 
longer comprise a random sample from counties, so we explore the implications of 
such a sampling design for econometric estimation.

Begin by rewriting (5) as the plot-specific deviation from the block-specific 
average return to conversion, where b indexes blocks:

	 (Riudt – rCiudt) – Riuut = (Rc(i)dt + ωb(i)dt) – (Rc(i)ut + ωb(i)ut) + (εiudt – εiuut)	 (7)

Where (Rc(i)dt + ωb(i)dt) is the average developed return for block b, which contains plot 
i, and (Rc(i)ut + ωb(i)ut) is the average undeveloped return for block b, which contains 
plot i. Equation (7) can be arranged into the relevant latent form used for estimation:

	 (Riudt – rCiudt) – Riuut = (Rc(i)dt – Rc(i)ut) + (ωw(i)dt – ωw(i)ut) + (εiudt–εiuut)	 (8)

2 A uniform distribution is standard for drawing values of independent variables in Monte 
Carlo analyses, though results are not contingent on this distribution.
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Equation (8) highlights that the additional term (ωb(i)dt – ωb(i)ut) generates an 
unobservable that will be correlated across all plots within block b. All plots within 
block b share this same unobservable. Failure to account for such correlation could 
lead to inconsistent parameter estimates arising from a standard probit model. This 
econometric complication arises entirely from the fact that sampling plots from 
LCT blocks generates a random sample of plots within blocks, but not a random 
sample of plots within counties. Consistent estimation can be achieved by including 
a block-specific random effect to account for (ωb(i)dt – ωb(i)ut). A random effect can 
be used because (ωb(i)dt – ωb(i)ut) can be reasonably assumed to be independent of 
(Rc(i)dt – Rc(i)ut) since the LCT randomly samples blocks within ecoregions. Given a 
random sample of plots within each block, a probit model of the latent equation (8) is:

	 Prob(yit =1|Rc(i)dt – Rc(i)ut)=Prob[(εiudt – εiuut) <β(Rc(i)dt – Rc(i)ut) +ωb(i)dt –ωb(i)ut]	 (9)

Consistent estimation should again yield a sampling distribution of β̂ that is 
centered at one, the population parameter value of β.

Monte Carlo simulation steps for random sampling from landscape blocks—
1.	 Draw 100 county average net returns to conversion (Rc(i)dt – Rc(i)ut) from a 

U[0,1] distribution (see footnote 2).
2.	 Draw 100 block deviations from the county average net returns to conver-

sion (ωb(i)dt – ωb(i)ut) from a U[-a, a] distribution, where parameter a will 
be varied over different scenarios. This step implicitly assumes that each 
county has one block.

3.	 Draw 30 plots per county, with (εiudt – εiuut) being drawn from a N(0,1) dis-
tribution. This establishes (8) as a probit model.

4.	 Create the dependent variable yit to be equal to one if (8) is positive, and 
zero otherwise.

5.	 Estimate (9) as a probit model with one variable, the net county returns to con-
version (Rc(i)dt – Rc(i)ut). This should generate inconsistent parameter estimates.

6.	 Estimate (9) as a probit model with one variable, the net county returns to 
conversion (Rc(i)dt – Rc(i)ut), and a block random effect. This should generate 
consistent parameter estimates by accounting for correlated unobservables 
across all plots within a block.

7.	 Repeat steps 1 through 6 many times.

Given the setup of the Monte Carlo simulation, the estimate of β should be 
equal to one when averaged over 1,000 independent simulations. Again, the 1,000 
independent simulations form an approximation of β̂’s sampling distribution. 
Results confirm that (1/S) ∑S

s=1 β̂
s = 1 for the random effects model, indicating 

that a random sample of plots from each block can be used to provide consistent 
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parameter estimates of this land-conversion model. However, failure to include a 
random effect generates inconsistent estimates, which are worse as the |a| value is 
larger, where 2a is the length of the interval through which the block unobservable 
was uniformly drawn. Intuitively, |a| is larger when block-specific mean returns to 
conversion are further from the county mean. Results from different values of a are 
found in table 5, and probit estimates without a random effect become increasingly 
biased away from the true value of one as the block average return to conversion 
becomes increasingly different from the county average return. Including block 
random effects generates consistent estimates. This Monte Carlo analysis supports 
the inclusion of LCT block random effects in the primary econometric model from 
equation (1). 

Estimation Technique—Maximum Simulated Likelihood
There are three sets of fixed (not random) parameter vectors to be estimated in the 
basic econometric model of equation (1): a set of alternative specific constants for 
the transition from land-use j to k (αjk), a set of parameters on the average returns 
to use k in time t for the county that contains parcel i (β0jk), and a set of parameters 
on the interaction of county returns with observable land quality for parcel i in 
use k (β1jk). One alternative specific constant must be normalized to zero, and so 
we always normalize the alternative specific constant on the starting use (αjj = 0), 
which gives the other constants the interpretation as a conversion cost. A fully 
specified model also must make distributional assumptions regarding the random 
parcel and block effects (ωik and φB(i)k, respectively). We assume both are normally 
distributed with zero mean. The parcel effects have standard deviation σ1jk, and 
the block effects have standard deviation σ2jk. Because we have three separate land 
uses (agriculture, forest, urban), there are three separate parcel effects and three 
separate block effects. Given our use of panel data, there is no need to normalize 
one transition-specific random effect to zero (Walker et al. 2007). Finally, assuming 

Table 5—Monte Carlo simulation results of including block random effects to 
account for the Land Cover Trend’s clustered sampling approach

 			   Average probit  
	 Average	 Average probit	 estimate using  
	 probit estimate	 estimate using	 county mean  
Block deviation	 using block	 county mean	 returns with block  
(-a to a)	 mean returns	 returns	 random effects

-0.25 to 0.25	 1.001	 0.989	 1.002
-0.5 to 0.5	 1.001	 0.963	 0.992
-0.75 to 0.75	 1.001	 0.914	 1.006
-1 to 1	 1.001	 0.862	 1.018
-1.25 to 1.25	 1.001	 0.809	 1.001
-1.5 to 1.5	 1.002	 0.74	 1.035
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that εijkt is an iid type I extreme value unobservable, then the probability that parcel 
i changes from use j to use k in time t is:

	 Pijkt = ∫ ∫ Lijkt (αjk, β0jk β1jk, σ1jk, σ2jk)f(θik)f(μB(i)k)dθik dμB(i)k	 (10)

where

	 Lijkt(αjk, β0jk β1jk, σ1jk, σ2jk ) =
	 eαjk + β0jk RC(i)kt + β1jk LQik RC(i)kt + σ1jk θik + σ2jk μB(i)k

	  ∑keαjk + β0jk RC(i)kt + β1jk LQik RC(i)kt + σ1jk θik + σ2jk μB(i)k 	
(11)

And where θik and μB(i)k are standard normal random variables. The probability in 
(10) is known as a mixed logit, or random parameters logit probability (Train 2009). 
The integrals in (10) do not have a closed form solution, and so parameters must be 
estimated via simulation of the log likelihood function. Such maximum simulated 
likelihood estimation employs the assumption that the parcel (ωik) and block (φB(i)k) 
random effects are independent and normally distributed, which allows us to solve 
(10) by repeatedly drawing from standard normal distributions for θik and μB(i)k, 
calculating (11), and averaging. Following this logic, and denoting DB as the full set 
of observed land-use decisions in block B, the probability of the observed land-use 
decisions on parcel i at time t conditional on draws from θik  
and μB(i)k is simply (11); the probability of the sequence of land-use choices in DB  
is thus:

	 Pr(DB) = ∏i∈B ∏t ∏k	 eαjk + β0jk RC(i)kt + β1jk LQik RC(i)kt + σ1jk θik + σ2jk μB(i)k 	

	 ∑keαjk + β0jk RC(i)kt + β1jk LQik RC(i)kt  + σ1jk θik + σ2jk μB(i)k	

yijkt 

	 (12)

where yijkt equals one if plot i converts from use j to use k during time t, and zero 
otherwise. The likelihood of the observed land-use behavior in block B can be 
simulated by drawing randomly from the independent standard normal distributions 
of θ and μ. Taking R sets of draws, with each set r denoting a single draw for each 
observation generates the approximated likelihood function:

	 PrSim (DB ) =  1–R ∑R
r=1Pr(Dr

B)	 (13)

The full simulated log-likelihood function over all BT blocks in the study region is 
defined as 

	 ∑Bt
b=1log[PrSim(DB)]	 (14)

Maximizing the function in (14) over the parameter set (αjk, β0jk β1jk, σ1jk, σ2jk) 
generates the estimated parameters for the land-use model. Two hundred inde-
pendent Halton draws are used to draw from the random effect distributions. All 
estimation is done with original code written in Matlab.
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Alternative Specifications and Parameter Estimates
Model 1: Base Random Parameters Logit (RPL)
We estimate the model for plots starting in agriculture separately from those 
plots starting in a forested use. Plots starting in urban do not change, so we do 
not estimate a model for those plots beginning in urban. For the agriculture-to-
agriculture transition, the land quality variable is the LCC measure of the plot, 
and LCC categories are grouped as three dummies representing classes 1 and 2, 
classes 3 and 4, and classes 5 and above. The dummy representing classes 1 and 
2 is omitted as the base category. For the agriculture-to-forest transition, LCC 
categories 5 through 8 are the base category, with a dummy for classes 1 through 
4 included. For the forest-to-agriculture transition, the LCC categories 1 through 
4 are the base category, and a dummy for LCC categories 5 through 8 is included. 
For the forest-to-forest transition, LCC categories 5 through 8 are the base category, 
with separate dummies for LCC 1 and 2 and LCC 3 and 4 included. This specifica-
tion with grouped LCC categories reflects the lack of variation in transitions within 
these grouped categories. All LCC dummies are interacted with their respective 
county-average forest or agricultural returns. For both the agriculture-to-urban and 
the forest-to-urban transitions, land quality is included as two variables represent-
ing distance of the plot to the nearest city with 10,000+ people, and distance of the 
plot to the nearest road. Both distances are interacted with county-average urban 
returns and measured in thousands of kilometers.3 One other specification note is 
that all block random effects are interacted with two time-dummies representing 
the 1986–1992 transition period and the 1992–2000 transition period, allowing us to 
test for temporal variation in the standard deviation of the block random effects.

The dataset includes 3,789 transition opportunities for plots that begin in 
agriculture and 7,489 transition opportunities for plots that begin in forest. Plots that 
never leave agriculture between 1980 and 2000 are included three times in the data-
set for each of the three transition periods. Those that transition at some point before 
the final transition period are dropped in subsequent periods. Plots that convert to 
agriculture or forest after 1980 can also have fewer than three observations in the 
data. The same principles hold for plots that begin in forest. Of those observations 
that begin in agriculture, there are 405 observed urban development conversions 
and 102 observed forest conversions. Of those observations that begin in forest, 
there are 716 observed urban conversions and 170 agricultural conversions.

3 Kline et al. (2003) used another approach that weights the distance from cities with popu-
lation, creating a gravity index. Our approach has the advantage of explicitly weighting 
distance by the economic determinant of urban development (net returns), though a fruitful 
future research approach could explore combining our approach with a gravity index.  
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Table 6—Parameter estimates for model 1

	 Starting in agriculture	 Starting in forest

	 B	 SE	 t	 B	 SE	 t

Agriculture choice:	 Agriculture choice:
  Ag returns	 3.59	 2.53	 1.42	 Constant	 -5.15	 0.27	 -19.18
  Ag returns * LCC 3,4	 1.00	 1.40	 0.72	 Ag returns	 2.82	 1.58	 1.79
  Ag returns * LCC 5-8	 5.18	 2.31	 2.24	 Ag returns * LCC 3,4	 -1.02	 2.04	 -0.50

Forest choice:	 Forest choice:
  Constant	 -4.51	 0.32	 -14.31	 Forest returns	 22.87	 3.66	 6.25
  Forest returns	 8.31	 6.25	 1.33	 Forest Ret*LCC 3,4	 -17.01	 3.06	 -5.56
  Forest ret * LCC 1-4	 -15.28	 5.92	 -2.58	 Forest Ret*LCC 1,1	 -20.79	 4.10	 -5.06

Urban choice:	 Urban choice:
  Constant	 -3.01	 0.34	 -8.85	 Constant	 -3.98	 0.20	 -20.40
  Urban returns	 0.15	 0.03	 4.47	 Urban returns	 0.26	 0.02	 12.84
  Urb ret*city dist	 -21.76	 2.72	 -7.99	 Urb Ret*City Dist	 -9.37	 1.24	 -7.55
  Urb ret*road dist	 -0.24	 0.64	 -3.75	 Urb Ret*Road Dist	 -0.06	 0.03	 -2.15

Random effects	 Random effects  
 standard deviations:	  standard deviations:
  Ag parcel	 0.41	 0.10	 4.28	 Ag parcel	 0.33	 0.13	 2.52
  Forest parcel	 0.01	 0.23	 0.03	 Forest parcel	 0.15	 0.09	 1.62
  Urban parcel	 0.44	 0.09	 4.71	 Urban parcel	 0.39	 0.07	 5.39
  Ag block	 2.30	 0.29	 7.94	 Ag block	 2.22	 0.20	 10.97
  For block	 1.57	 0.29	 5.40	 For block	 0.68	 0.12	 5.52
  Urban block	 1.57	 0.23	 6.81	 Urban block	 0.72	 0.12	 5.84
  Ag block * d8692	 1.05	 0.37	 2.88	 Ag block * d8692	 0.48	 0.19	 2.58
  For block * d8692	 1.15	 0.32	 3.62	 For block * d8692	 0.38	 0.13	 2.89
  Urb block * d8692	 0.89	 0.31	 2.86	 Urb block * d8692	 0.60	 0.16	 3.87
  Ag block * d9200	 0.70	 0.31	 2.27	 Ag block * d9200	 0.91	 0.44	 2.07
  For block * d9200	 0.55	 0.50	 1.10	 For block * d9200	 1.05	 0.16	 6.68
  Urb block * d9200	 0.31	 0.34	 0.92	 Urb block * d9200	 0.88	 0.16	 5.44
  Log likelihood	 -1293.38			   Log likelihood	 -2391.4
  N	 3,789			   N	 7,489
Notes: All returns are measured in thousands of dollars. All parameters with t-stats above 1.96 are significantly different from 
zero at the 5 percent level.

All parameter estimates are presented in table 6. The parameters generally 
conform to expectations, with positive signs on most of the parameters on land-use 
returns. Further, the marginal effect on forest returns generally falls for land that is 
of different quality than LCC 5 through 8 while the marginal effect on agricultural 
returns falls for agricultural parcels of lower land quality. We see the effects of 
location on urban development probabilities as urban returns will have smaller 
marginal effects for plots farther from cities and roads. Conclusions about statistical 
significance for individual variables should not be drawn by parameter estimates 
in highly nonlinear models such as this one. A more complete analysis of statisti-
cal significance will be accomplished in the “Marginal Effects” section where we 
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account for the nonlinear structure of the model and evaluate marginal effects at 
each plot. The parameters also reveal substantial unobserved heterogeneity in that 
most of the standard deviations for the various random effects are significantly dif-
ferent from zero at the 5 percent level. There is also evidence that the block random 
effects change over the various transition periods.

The model includes an estimated urban development gradient by interact-
ing distance to nearest city with county urban returns. However, there are two 
major regulatory policy changes during the time period of this study that might be 
expected to influence the urban development gradient. First, Oregon’s well-known 
urban growth boundaries were first instituted by about 1980, with an explicit goal of 
concentrating development in nearby cities. Second, Washington’s Growth Manage-
ment Act of 1990 also specified the use of urban growth boundaries, and was imple-
mented in most cities during the mid-1990s. As such, one might expect the urban 
development gradient to differ across the two states, at least prior to the 1992–2000 
transition period. This possibility is explored by including an interaction between 
the urban development gradient and a dummy representing whether the parcel is in 
Oregon. We then introduce interactions between the urban development gradient 
and two separate dummies representing the 1986–1992 and 1992–2000 transition 
periods. We also introduce three-way interactions between the Oregon dummy, the 
urban development gradient, and the same two separate dummies representing the 
1986–1992 and 1992–2000 transition periods. As such, this flexible specification 
allows the urban development gradient to vary across states and across transition 
periods. Likelihood ratio tests of these five additional parameters fail to reject the 
null hypothesis that they are jointly zero (5 percent level) for both the agriculture 
and forest models. As such, there is no evidence that Oregon and Washington had 
significantly different development gradients over the various transition periods in 
the data.

Model 2: RPL With Agglomeration Economies
The second model we estimate adds variables representing an explicit spatial 
dependency:

	 RC(i)Bkt–rCijkt=αjk+β0jk RC(i)kt+β1jk LQik RC(i)kt+β2jk LUB(i)kt+[ωik+φB(i)k+εijkt]	 (15)

where LUB(i)kt represents the share of landscape block B in use k at time t – a 
measure of neighboring land use. The idea behind adding LUB(i)kt as an explanatory 
variable in equation (15) is to capture potential agglomeration economies induced 
by spatial externalities across land uses. The net revenue of converting to parcel i to 
use k in time t (RC(i)Bkt – rCijkt) is hypothesized to be higher if there are more neigh-
bors also in use k. Conversion of land to an alternative use is similar to the decision 
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to adopt a new technology in that there is likely a fixed cost of learning the new 
technique (Lewis et al. 2011). The fixed costs of converting to agriculture or forest 
will be lower if there are more close neighbors who have demonstrated what crops, 
tree species, or management techniques work in the many microclimates around the 
Pacific Northwest. For example, wine and hop production work best with certain 
microclimates and the prevailing direction of slope, and the presence of neighboring 
wine and hop production provides an avenue for learning how to manage the new 
land use. Inclusion of LUB(i)kt in (15) for k = agriculture or forest can thus be thought 
of as capturing the fixed costs of learning the new use.

Measures of neighboring urban land used as explanatory variables in parcel-
scale econometric models dates back to Irwin and Bockstael (2002). In their 
model of development, Irwin and Bockstael (2002) postulated that urban develop-
ment creates a negative externality that lowers the likelihood of development on 
neighboring parcels, and they found supporting evidence in an exurban region of 
Maryland. However, it is also possible that having more neighboring developed 
parcels induces positive externalities that increase the likelihood of development on 
a particular parcel. For example, some may be reluctant to live “in the woods” with 
no close neighbors. As another example, the presence of more developed neighbors 
likely lowers the cost of extending public utilities such as sewer to a new housing 
development as construction of such utilities tends to be associated with high fixed 
costs. In any event, inclusion of LUB(i)kt in equation (15) allows for an empirical 
test of the type of spatial externalities associated with agglomeration economies. 
Although the correct neighborhood size for specifying agglomeration economies 
is unclear, and not clearly testable, the LCT blocks themselves provide reasonable 
approximations of the neighborhood in which agglomeration economies operate. 
Alternative sizes (e.g., 1000-m radius, 100-m radius, etc.) are not implementable for 
plots near the edge of LCT windows because land use is not observed outside the 
windows. Below, we discuss a random-parameters specification of the parameter 
β2jk to account for the fact that each plot within block B is in a different location.

Identification Strategy With Agglomeration Economies
Building off Manski’s (1993) analysis of general social interactions, Irwin and 
Bockstael (2002) argue that measures of neighboring land use are necessarily 
endogenous in an econometric land-use model. In our case, endogeneity bias would 
arise because the neighboring land-use variable LUB(i)kt is necessarily correlated 
with the unobservable block-level random effect φB(i)k. For example, when k = 
urban, φB(i)k captures unobserved urban amenities and disamenities such as pro-
tected open-space, school quality, scenery, and other local public goods. However, 
when φB(i)k is high, signaling a landscape block with many local public goods, there 
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will likely be more development, and so LUB(i)kt is necessarily correlated with φB(i)k 
when k = urban. Likewise, when k = forest or agriculture, φB(i)k picks up the micro-
climate effects of the Pacific Northwest that influence crop and timber types, and 
crop and timber yields. When φB(i)k is high, signaling an attractive microclimate for 
use k, there will be more neighboring land in that use, and so LUB(i)kt is necessarily 
correlated with φB(i)k when k = agriculture or forest. The urban economics literature 
on identifying agglomeration economies makes essentially this same argument: 
geographic concentration of an industry does not necessarily signal the presence of 
agglomeration economies because certain geographic regions have inherent natural 
advantages for that industry (Ellison and Glaeser 1997).

We adopt the recently developed control function strategy for identifying the 
effects of neighboring land-use (LUB(i)kt) on land-use change. We follow Train 
(2009: chap. 13) in outlining the control function approach for our model. The 
control function works by specifying the endogenous land-use share variable  
LUB(i)kt as a function of observed instruments and unobserved factors, where the 
notation with parcel i is suppressed for simplicity:

	 LUBkt = W(zBk,γ) + ϑBkt	 (16)

where the block random effect φBk and ϑBkt are assumed to be uncorrelated with the 
vector of instruments zBk, while there is assumed to be correlation between φBk and 
ϑBkt. It is this correlation between φBk and ϑBkt that induces the concern that block-
level land-use shares LUBkt are endogenous in (15). The control function approach 
works when the distribution of φBk conditional on ϑBkt takes a convenient form. 
Following Train (2009: chap. 13), we decompose φBk into its mean conditional on 
ϑBkt and deviations around this mean:

	 φBk = E(φBk│ϑBkt ) + φ~Bk = λϑBkt + φ~Bk 	 (17)

Deviations φ~Bk are not correlated with ϑBkt by construction, and so therefore  
not correlated with the block-level land-use share variable LUBkt. The term 
E(φBk│ϑBkt ) is known as the control function, and we follow Train in setting up  
the simplest specification of the control function E(φBk│ϑBkt ) = λϑBkt. Substituting 
(17) into (15) yields:

	 αjk+β0jk RC(i)kt+β1jk LQik RC(i)kt+β2jk LUB(i)kt+[ωik+λϑB(i)kt+φ~B(i)k+εijkt]	 (18)

where the control function is simply an additional independent variable, and  
φ~B(i)k is the new block-level random effect, which is uncorrelated with the block 
level land-use share LUB(i)kt by construction. It is this transformation of the original 
block-level random effect (φBk) into an observable λϑB(i)kt and an unobservable φ~B(i)k 
that corrects for the endogeneity of block-level land-use shares.
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Implementation of this model requires two steps. First, equation (16) is esti-
mated by ordinary least-squares with the following block-level instruments: the 
shares of the block in the various soil quality classes (LCC), the distance of the 
centroid of block B to the nearest city greater than 10,000+ people, and the distance 
of the centroid of block B to the nearest major road. These variables are arguably 
exogenous in that they should only influence land-use decisions on parcel i through 
their effects on block-level land-use shares. Second, residuals from the first stage 
are calculated as estimates of ϑB(i)kt and included as separate regressors into maxi-
mum simulated likelihood estimation of (18). The remaining block-level random 
effect φ~B(i)k is then uncorrelated with LUB(i)kt, and the endogeneity problem is 
solved. As one final specification note, we specify the parameter β2jk on the land-use 
share variables LUB(i)kt as random parameters at the parcel level—formally denoted 
βi2jk—to account for the fact that different plots are at different geographical loca-
tions within each block.

Evaluating the Instruments in the Control Function Approach
Similar to standard instrumental variables estimation in linear models, two features 
make a good instrument in the control function approach to nonlinear models. 
First, the instruments must be correlated with the endogenous variables represent-
ing block-level land-use shares. The first stage of the control function approach is 
to regress observed land-use shares at the block level at four points in time (1973, 
1980, 1986, 1992) on the set of instruments representing exogenous land quality at 
the block level. Table 7 presents ordinary least squares (OLS) parameter estimates 
for three different models, one for each land-use category. Results generally con-
form to expectation, as landscape blocks farther from cities and roads have smaller 
shares in urban. Likewise, soil quality is particularly important for forest and 
agriculture shares, as blocks with higher shares of low-quality soil have more forest 
and less agriculture. The respective R2 statistics indicate that the block-level land 
quality measures explain more variation in block-level forest and agricultural lands 
than they do block-level urban. In total, we would reject the null that all parameters 
are jointly zero in each model (5 percent level), indicating that these instruments are 
correlated with observed block-level land-use shares.

The second characteristic of good instruments in this model is that they must 
be uncorrelated with the main block-level random-effect from the base model in 
equation (15) – φBk. This characteristic is more difficult to evaluate with data as 
the random effect is an unobservable. Therefore, we state clearly what our pri-
mary identifying assumptions are for the control function to generate consistent 
parameter estimates. The maintained identifying assumption is that it is parcel i’s 
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LCC rating that affects the land-use decision on parcel i, and not the LCC ratings 
of other parcels in the landscape block in which i resides. Likewise, it is parcel i’s 
distance from cities and roads that affects the decision to develop parcel i, and not 
the distance from roads and cities of the centroid of the landscape block in which 
parcel i resides. In general, a good (excluded) instrument affects the dependent 
variable indirectly through the endogenous variable, and should not itself be a direct 
independent variable in the primary estimation equation. This description fits our 
particular application, as neighboring land quality should influence a parcel’s land-
use decision (the dependent variable) only indirectly through its effect on neighbor-
ing land-use shares (the endogenous variable).

Table 7—Parameter estimates from 
regressing block-level land-use shares  
on instruments 

	 B	 Se	 t

Dependent variable = block urban share:
  Constant	 0.13	 0.05	 2.66
  LCC 3 or 4 share	 0.08	 0.07	 1.15
  LCC 5 or 6 share	 -0.07	 0.05	 -1.37
  LCC 7 or 8 share	 -0.09	 0.04	 -2.10
  City dist centroid	 -0.74	 0.20	 -3.73
  Road dist centroid	 -4.26	 0.79	 -5.39
  R2	 0.28		

Dependent variable = block forest share:
  Constant	 -0.01	 0.04	 -0.38
  LCC 3 or 4 share	 0.59	 0.05	 11.61
  LCC 5 or 6 share	 0.98	 0.06	 16.75
  LCC 7 or 8 share	 0.95	 0.07	 13.99
  City dist centroid	 -2.17	 0.89	 -2.45
  Road dist centroid	 2.44	 2.06	 1.19
  R2	 0.50		

Dependent variable = block Ag share:
  Constant	 0.81	 0.06	 13.92
  LCC 3 or 4 share	 -0.62	 0.07	 -8.66
  LCC 5 or 6 share	 -0.75	 0.06	 -11.79
  LCC 7 or 8 share	 -0.85	 0.06	 -14.14
  City dist centroid	 -0.85	 0.39	 -2.15
  Road dist centroid	 0.20	 1.29	 0.15
  R2	 0.50		
  N	 508		
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Model 2 Results
All parameter estimates for model 2 with agglomeration economies are presented 
in table 8. Given that we include independent variables that are estimated residu-
als from the first-stage model, standard errors must be adjusted to account for this 
extra source of variation. We use the bootstrap approach developed by Petrin and 
Train (2002) for use with control function estimation. In particular, we repeatedly 
estimate the primary discrete-choice land-use model with bootstrapped samples of 
the first-stage residuals. The variance in parameter estimates over the bootstrapped 
samples is added to the traditional variances, and the total adjusted standard errors 
are presented in table 8. This approach of repeatedly estimating a maximum simu-
lated likelihood model is extremely computationally intensive.

The parameters generally conform to expectations, with positive signs on most 
of the parameters on land-use returns. Further, the probability of converting to 
forest generally falls for land that is of different quality than LCC 5 through 8 while 
the probability of converting to agriculture is slightly higher for agricultural parcels 
of lower land quality. We again see the effects of location on urban development 
probabilities as urban returns will have smaller marginal effects for plots farther 
from cities and roads. A likelihood ratio test rejects the null hypothesis that the 
additional variables added from model 1 to model 2 are jointly zero at the 5 percent 
level, providing some evidence that neighboring land-use shares affect land-use 
transition probabilities. Again, conclusions about statistical significance for indi-
vidual variables should not be drawn by parameter estimates in highly nonlinear 
models such as this one. A more complete analysis of statistical significance will be 
accomplished in the “Marginal Effects” section where we account for the nonlinear 
structure of the model and evaluate marginal effects at each plot. The parameters 
also reveal substantial unobserved heterogeneity in that most of the estimated stan-
dard deviations for the various random effects are significantly different from zero 
at the 5 percent level. There is also evidence that the block random effects change 
over the various transition periods, and that the parameters on the land-use share 
variables are random and not fixed.

Marginal Effects
In this section, we examine the statistical significance of some of the individual 
variables by calculating marginal effects, along with their standard errors. All 
marginal effects are calculated for a discrete change in variable x by calculating the 
probability of a land-use transition with the change, x + c, less the probability of 
the land-use transition without the change, where c is the change. The probability 
of the land-use transition—equation (10)—is calculated by simulation. Standard 
errors for the marginal effects are calculated using the Krinsky and Robb (1986) 
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Table 8–Parameter estimates for model 2 (with agglomeration economies)

	 Starting in agriculture	 Starting in forest

	 B	 Adj SE	 Adj t	 	 B	 Adj SE	 Adj t

Agriculture choice:	 Agriculture choice:
  Ag returns	 4.98	 2.63	 1.89	 Constant	 -6.43	 0.92	 -7.02
  Ag returns * LCC 3,4	 0.97	 1.54	 0.63	 Ag returns	 0.69	 1.71	 0.41
  Ag returns * LCC 5-8	 4.36	 2.40	 1.81	 Ag returns * LCC 3,4	 0.38	 2.21	 0.17

Forest choice:	 Forest choice:
  Constant
  Forest returns
  Forest ret*LCC 1-4	 -6.10	 1.19	 -5.13	 Forest returns	 16.12	 4.58	 3.52
	 6.32	 7.33	 0.86	 Forest ret*LCC 3,4	 -15.81	 3.39	 -4.67
	 -13.08	 6.38	 -2.05	 Forest ret*LCC 1,1	 -18.54	 4.80	 -3.86

  Urban choice	 Urban choice
  Urban returns	 -4.99	 1.01	 -4.94	 Constant	 -5.89	 0.89	 -6.65
  Urb ret*cty dist	 0.12	 0.04	 2.85	 Urban returns	 0.28	 0.03	 10.28
  Urb ret*road dist	 -9.75	 3.41	 -2.86	 Urb ret*city dist	 -9.95	 1.86	 -5.36
  Urban returns	 -0.26	 0.07	 -3.87	 Urb ret*road dist	 -0.07	 0.04	 -1.82

Land use shares:	 Land use shares:
  Ag share	 0.25	 1.08	 0.23	 Ag share	 5.32	 1.55	 3.43
  Forest share	 3.38	 1.87	 1.81	 Forest share	 0.84	 1.17	 0.72
  Urban share	 13.87	 6.36	 2.18	 Urban share	 5.31	 4.33	 1.23
  Ag residuals	 2.11	 1.17	 1.80	 Ag residuals	 1.29	 1.43	 0.91
  Forest residuals	 -5.66	 2.03	 -2.78	 Forest residuals	 0.90	 0.98	 0.92
  Urban residuals	 -13.14	 6.78	 -1.94	 Urban residuals	 -1.43	 5.03	 -0.29

Random effects standard deviations:	 Random effects standard deviations:
  AgP arcel	 0.08	 0.09	 0.83	 Ag parcel	 0.37	 0.13	 2.83
  Forest parcel
  Urban parcel
  Ag block	 0.31	 0.20	 1.58	 Forest parcel	 0.11	 0.07	 1.58
	 0.08	 0.10	 0.78	 Urban parcel	 0.01	 0.08	 0.07
	 2.75	 0.33	 8.42	 Ag block	 1.85	 0.30	 6.24
  For block	 1.45	 0.33	 4.35	 For block	 1.57	 0.16	 9.56
  Urban block	 0.69	 0.29	 2.36	 Urban block	 0.96	 0.27	 3.53
  Ag block * d8692	 0.97	 0.36	 2.69	 Ag block * d8692	 0.85	 0.26	 3.28
  For block * d8692	 0.71	 0.29	 2.41	 For block * d8692	 0.55	 0.19	 2.93
  Urb block * d8692	 1.30	 0.34	 3.86	 Urb block * d8692	 0.55	 0.19	 2.94
  Ag block * d9200	 0.32	 0.33	 0.97	 Ag block * d9200	 0.12	 0.47	 0.26
  For block * d9200	 1.40	 0.54	 2.62	 For block * d9200	 0.58	 0.17	 3.40
  Urb block * d9200	 0.72	 0.43	 1.68	 Urb block * d9200	 1.57	 0.31	 5.08
  Ag share	 1.45	 0.40	 3.65	 Ag share	 1.44	 0.56	 2.60
  Forrest share	 0.06	 0.57	 0.11	 Forrest share	 3.79	 0.19	 19.65
  Urban share	 1.22	 0.54	 2.27	 Urban share	 2.31	 0.56	 4.11
  Log likelihood	 -1253.7			   Log likelihood	 -2034.23	  	
  N	 3,789			   N	 7,489		
Notes: All returns are measured in thousands of dollars. All parameters with t-stats above 1.96 are significantly different 
from zero at the 5 percent level. Standard errors are bootstrapped.
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simulation method. In particular, a parameter vector is drawn from the estimated 
distribution to calculate the estimated land-use transition probabilities in equa-
tion (10). The simulated parameter vector is equal to βs = β

^ + C′xk, where β̂ is the 
estimated parameter vector for all parameters (including random effects), C is the 
k × k Cholesky decomposition of the estimated variance-covariance matrix, and xk 

is a K-dimensional vector of draws from a standard normal distribution. Perform-
ing this simulation 1,000 times allows computation of the standard deviation of the 
1,000 simulated marginal-effect estimates to generate a standard error for marginal 
effects.

Figures 3 through 5 present marginal effects for a $100 increase in each of 
the land-use returns for model 1 (no agglomeration economies), calculated at the 
value of independent variables of each sample point. The figures are scatter 
plots, where each point on the graph indicates an estimated marginal effect (and 
corresponding z-statistic) for a sample point. The effect of the model’s nonlinearity 
comes through when examining the various patterns of these marginal effects. In 
general, higher forest returns increase the probability of remaining in forest while 

Figure 3—Marginal effects of a $100 increase in forest returns for model 1 on choosing forest. Land 
Classification Categories (LCC) are as follows: 1 = LCC 1 or 2; 2 = LCC 3 or 4; and 3 = LCC 5+.
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Figure 4—Marginal effects of a $100 increase in agricultural returns for model 1 on choosing agricul-
ture. Categories (LCC) are as follows: 1 = LCC 1 or 2; 2 = LCC 3 or 4; and 3 = LCC 5+.

Figure 5—Marginal effects of a $100 increase in urban returns for model 1 on choosing urban.
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higher agricultural returns increase the probability of remaining in agriculture in 
statistically significant manners. The magnitude of the marginal effects is generally 
higher for lower quality LCC classes, although there is significant heterogeneity in 
these results. Higher forest returns have no significant effect on converting from 
agriculture to forest, whereas higher agricultural returns generally have no signifi-
cant effect on converting from forest to agriculture. This lack of significance likely 
comes from the fact that very few parcels are observed to transition between forest 
and agriculture in the Pacific Northwest, so there is likely not enough variation to 
estimate these effects with precision. A clear urban development gradient emerges 
from this model as higher urban returns typically have a statistically significant 
positive effect on the probability of urban development for those plots near cities, 
with no significant effect or even negative effects for those plots far from cities.

Figures 6 through 8 present the same marginal effects for a $100 increase in 
each of the land-use returns for model 2 (with agglomeration economies), again cal-
culated at the value of independent variables of each sample point. The pattern 
that emerges is very similar to model 1 without agglomeration economies, suggest-
ing that inclusion of agglomeration economies has minimal implications for the 

Figure 6—Marginal effects of a $100 increase in forest returns for model 2 on choosing forest. 
Categories (LCC) are as follows: 1 = LCC 1 or 2; 2 = LCC 3 or 4; and 3 = LCC5+.
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Figure 7—Marginal effects of a $100 increase in agriculture returns for model 2 on choosing agriculture.

Figure 8—Marginal effects of a $100 increase in urban returns for model 2 on choosing urban.
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marginal effects of the net returns variables. One must be cautious with this inter-
pretation; however, as the generally positive signs on the land-use shares parameters 
implies a degree of path-dependence in land-use change that could cause long-term 
divergence in land-use patterns generated across the two models. We explore this 
in the “Landscape Projections and Out-of-Sample Forecast Test” section with full 
landscape forecasts over a 40-year time horizon.

Figure 9 examines the marginal effects of a 10 percentage point increase in the 
landscape block’s land-use share in specific uses for lands starting in agriculture. 
Figure 9A examines the effects of more agricultural neighbors on the probability of 
agricultural land remaining in agriculture. No statistically significant effect is found 
for any observation. Figure 9C examines the effects of more forest neighbors on 
the probability of agricultural land converting to forest. There is some evidence for 
statistically significant agglomeration economies here, though it is weak. Figure 9E 
examines the effects of more urban neighbors on the probability of agricultural land 
converting to urban. Here there are generally consistent positive and statistically 
significant effects, which tend to increase in magnitude as the initial share of the 
block in urban development increases. Therefore, there appears to be strong evi-
dence of urban agglomeration economies in the development of agricultural land, 
even when controlling for the average level of urban rents.

Figure 10 examines the marginal effects of a 10 percentage point increase in the 
landscape block’s land-use share in specific uses for lands starting in forest. Figure 
10A examines the effects of more agricultural neighbors on the probability of forest 
land converting to agriculture. We see strong evidence of positive agglomeration 
economies when converting forest land to agriculture. Figure 10C examines the 
effects of more forest neighbors on the probability of forest land remaining in 
forest. There is some evidence for statistically significant disagglomeration econo-
mies here, particularly for blocks that have sizable amounts of initial forest. These 
significant effects appear to be driven by the large estimated standard deviation of 
the random parameter on the forest share variable. Figure 10E examines the effects 
of more urban neighbors on the probability of forest land converting to urban. 
Here there are generally positive but statistically insignificant effects, which tend 
to increase in magnitude as the initial share of the block in urban development 
increases. One could use a one-tailed test to interpret some weak positive agglom-
eration economies for urban development on existing forest land.
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Figure 9—Marginal effects of a 10 percentage point increase in landscape block land-use share of the 
own use for model 2, lands starting in agriculture. Note: Figure 9A calculates the effect of an addi-
tional 10 percentage points in the block’s share of agricultural land on the probability of remaining in 
agriculture, plotted against the initial block share of agriculture. Figure 9C calculates the effect of an 
additional 10 percentage points in the block’s share of forest land on the probability of converting to for-
est, plotted against the initial block share of forest land. Figure 9E calculates the effect of an additional 
10 percentage points in the block’s share of urban land on the probability of converting to urban, plotted 
against the initial block share of urban.
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Figure 10—Marginal effects of a 10 percentage point increase in landscape block land-use share for 
model 2, lands starting in forest. Note: Figure 10A calculates the effect of an additional 10 percentage 
points in the block’s share of agricultural land on the probability of converting agriculture, plotted 
against the initial block share of agriculture. Figure 10C calculates the effect of an additional 10 
percentage points in the block’s share of forest land on the probability of remaining in forest, plotted 
against the initial block share of forest land. Figure 10E calculates the effect of an additional 10 percent-
age points in the block’s share of urban land on the probability of converting to urban, plotted against 
the initial block share of urban.
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Landscape Projections and Out-of-Sample  
Forecast Test
With the estimated parameters for both models 1 and 2 in hand, we can project 
landscape-scale land-use change for the western halves of Oregon and Washington. 
Before doing so, we must adjust the estimated alternative-specific constants to cor-
rect for our oversampling of “change” pixels in the estimation sample. For standard 
logit estimation (rather than random parameters logit), each alternative-specific 
constant is adjusted by adding the log of the ratio of Aj to Sj, where Aj is the share 
of observations in the population who choose land-use j, and Sj is the share of the 
sample who choose land-use j (Train 2009: chap. 3). It is unclear if this method 
works for random parameters logit models with simulated probabilities, so we 
instead use the more general recalibration method for adjusting alternative-specific 
constants (see Train 2009: chap. 2.8 for this method). This method is used to adjust 
alternative-specific constants to match a specific forecast area or time period by 
using observed changes to recalibrate the constants.4 This approach captures aver-
age unobserved effects for that time period or area into the alternative-specific con-
stants by iterating the constants until the predicted land-use shares equal the actual 
land-use shares. We calibrate our forecasts to the 1992–2000 transition period in 
the LCT—the final observed period. The process works as follows. First, let Sjk 
denote the share of plots that transition from j to k during this period, and let αj

0
k 

be the original alternative-specific constant. Second, using the estimated discrete-
choice model, predict the share of plots that transition from j to k and label them S

^

j
0
k. 

Third, compare the predicted and actual shares and adjust the alternative-specific 
constant if needed. The adjustment αj

1
k = αj

0
k + ln(Sjk/S

^

j
0
k) guarantees that adjustment 

will always move the actual and predicted shares closer. All adjustment factors and 
corresponding predicted and actual shares are presented in table 9.

To examine model validity in forecasting, we perform an out-of-sample 
forecast test by comparing forecasted transition probabilities to actual transition 
probabilities on a separate sample of 16,000 LCT plots that began the 1992–2000 
period in either agriculture or forest. The econometric model was used to forecast 
transition probabilities between 1992 and 2000. This approach follows Kline et 
al. (2003) in reserving data not used in estimation as a validation dataset. Table 10 
presents average actual and estimated transition probabilities grouped by various 
land quality classes—soil quality and distance to the nearest city. Results show that 
the estimated and actual transition probabilities are reasonably close in values, thus 
providing some confidence as to the general validity of the estimated econometric 
models for projections.

4 Alternatively, one can also adjust for such oversampling by weighting the likelihood 
function (see Lewis and Plantinga 2007).
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Table 9—Adjustments of alternative specific constants to correct for 
oversampling “change” pixels—calibrated to 1992–2000 Land Cover 
Trend transition period

	 	 Actual share	 Predicted share  
	 Adjustment	 (1992–2000)	 (1992–2000)

Model 1:
  Forest to agriculture	 -2.9753	 0.0015	 0.0016
  Forest to urban	 -4.1146	 0.0168	 0.0173
  Agriculture to forest	 -4.4665	 0.0039	 0.0039
  Agriculture to urban	 -5.7132	 0.0154	 0.0154

Model 2:
  Forest to agriculture	 -6.8140	 0.0015	 0.0016
  Forest to urban	 -4.4286	 0.0168	 0.0173
  Agriculture to forest	 -4.2617	 0.0039	 0.0039
  Agriculture to urban	 -5.4088	 0.0154	 0.0154

Table 10—Out-of-sample forecast test for 1992–2000 period

		 Sample transition		 Model 1 transition 		 Model 2 transition  
		  probabilities			   probabilities			   probabilities

	 Ag	 Forest	 Urban	 Ag	 Forest	 Urban	 Ag	 Forest	 Urban

Land starting in agriculture:
  Plots with	 0.9823	 0.0024	 0.0153	 0.9824	 0.0032	 0.0144	 0.9842	 0.0023	 0.0135 
    LCC 1 or 2
  Plots with	 0.9803	 0.0046	 0.0151	 0.9819	 0.0041	 0.0140	 0.9823	 0.0036	 0.0141 
    LCC 3 or 4
  Plots with	 0.9722	 0.0040	 0.0238	 0.9788	 0.0093	 0.0119	 0.9803	 0.0088	 0.0110 
   LCC 5 to 8
  Plots ≤ 5 km	 0.9583	 0.0053	 0.0364	 0.9724	 0.0029	 0.0247	 0.9733	 0.0037	 0.0231 
    from a city
  Plots > 5 km	 0.9931	 0.0028	 0.0041	 0.9872	 0.0052	 0.0076	 0.9884	 0.0037	 0.0079 
    from a city

Land starting in forest:
  Plots with	 0.0000	 0.9708	 0.0292	 0.0023	 0.9804	 0.0172	 0.0030	 0.9775	 0.0194 
    LCC 1 or 2
  Plots with	 0.0043	 0.9622	 0.0335	 0.0030	 0.9756	 0.0215	 0.0019	 0.9761	 0.0220 
    LCC 3 or 4
  Plots with	 0.0002	 0.9955	 0.0044	 0.0013	 0.9932	 0.0055	 0.0010	 0.9927	 0.0063 
    LCC 5 to 8
  Plots ≤ 5 km	 0.0031	 0.9373	 0.0596	 0.0026	 0.9580	 0.0394	 0.0014	 0.9537	 0.0449 
    from a city
  Plots > 5 km	 0.0016	 0.9897	 0.0088	 0.0019	 0.9909	 0.0071	 0.0015	 0.9916	 0.0069 
    from a city
LCC = Land Classification Class.



36

RESEARCH PAPER PNW-RP-600

For future landscape projections, we now draw a random sample of 20,000 pix-
els from the population of private pixels in this region that begin in the year 2000 
in either agriculture or forest to project future land-use change by ecoregion. This 
larger draw is desirable because we do not have the computational restrictions that 
we do under the estimation process, which takes days to run with the bootstrapping 
procedure. The larger draw also ensures we have good coverage of the distribution 
of land quality within each LCT landscape block. For each plot, the transition prob-
abilities between forest, agriculture, and urban development are calculated. Next, 
average block-level transition probabilities are computed and multiplied with the 
relevant land-use shares for each LCT block to generate block-level land-use projec-
tions for an 8-year period. Transition probabilities are then updated to reflect the 
changed landscape and another 8-year period is projected. This process continues 
for a 40-year time horizon up to 2040.

A primary benefit of the econometric modeling framework is the ability to 
simulate changes in the net returns to land, where these changes could be driven 
by policy or other factors. We use the recent housing market boom and bust to 
project three different levels of urban returns. First, we project land use to 2040 and 
keep the real levels of all net returns at 1990s levels—specifically the average of 
1990–1992. The second scenario uses the peak urban returns from the recent hous-
ing market boom, but does not alter agriculture or forest returns from 1990s levels. 
Because the Lubowski dataset does not include any returns estimates past the 
1990s, we consult the widely used Case-Schiller housing market index, which had 
a peak value in 2006 at 184 percent of the 1992 level in real terms. Therefore, we 
multiply all urban returns by 1.84 in the second scenario. The third scenario uses a 
more modest urban return estimate by considering the 2012 Case-Schiller housing 
market index, which is 114 percent of the 1992 level in real terms. Therefore, we 
multiply all urban returns by 1.14 in the third scenario. This exercise allows us to 
explore land-use change scenarios within the full range of observed urban returns 
over the past 20 years.

Ecoregion urban land-use projections are presented in table 11. The ecoregion 
is a convenient reporting scale given that LCT blocks are random samples 
within ecoregions. Our projection is that there are very modest increases under 
all scenarios in urban land expected for the Coast Range, Cascades, and North 
Cascades regions. Little urban development exists in these mountainous regions, 
which are generally far from roads and cities. The Puget Lowland and Willamette 
Valley ecoregions are projected to see much more substantial increases in urban 
development, with much more variation across the scenarios. Projections for the 
Puget Lowland range from a 37 percent increase in urban development up to a  
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122 percent increase under the peak 2006 urban return level. Likewise, projections 
for the Willamette Valley range from a 33 percent increase up to a 79 percent 
increase. Clearly, the real urban return level going forward has major implications 
for urban development in the Puget Lowland and Willamette Valley. Likewise, there 
is some variation across model 1 and model 2, with the path dependence feature 
of agglomeration economies in model 2 inducing slightly higher levels of urban 
development. However, the assumed urban return level has a much larger effect on 
urban projections than does the assumption about agglomeration economies.

Ecoregion forest and agricultural land-use projections are presented in tables 
12 and 13. Similar to urban land use, very modest changes in forest and agricultural 
lands are expected for privately owned portions of the Coast Range, Cascades, and 
North Cascades. The Puget Lowland is expected to lose the most forest, and these 
projections are sensitive to the assumed urban return level. The most extreme loss 
would occur if urban returns jump back to peak 2006 levels. Projected forest losses 

Table 11—Ecoregion urban land-use projections for 2040 under alternative urban returns 
scenarios (private land)

				    Model 2 (with  
	 	 Model 1	 	 agglomeration economies)

	 Urban share 	 Urban share		  Urban share	  
	 (2000)	 (2040)	 Change	 (2040)	 Change

Coast Range:	 4.24		  Percent		  Percent
  1992 urban return level		  4.95	 16.78	 5.25	 23.95
  2012 urban return level		  4.97	 17.44	 5.30	 25.14
  Peak (2006) urban return level		  5.25	 23.98	 5.68	 34.20
Puget Lowland:	 22.27
  1992 urban return level		  30.59	 37.36	 32.88	 47.62
  2012 urban return level		  32.75	 47.06	 35.83	 60.88
  Peak (2006) urban return level		  44.31	 98.97	 49.49	 122.22
Willamette Valley:	 13.18 			 
  1992 urban return level		  17.55	 33.13 	 18.56	 40.80
  2012 urban return level		  17.95	 36.12	 19.23	 45.89
  Peak (2006) urban return level		  21.00	 59.28	 23.67	 79.51
Cascades:	 2.81			 
  1992 urban return level		  3.45	 22.66	 4.09	 45.48
  2012 urban return level		  3.48	 23.75	 4.12	 46.58
  Peak (2006) urban return level		  3.77	 34.10	 4.40	 56.72
North Cascades:	 2.68			 
  1992 urban return level		  4.24	 58.53	 4.50	 68.16
  2012 urban return level		  4.43	 65.39	 4.66	 73.94
  Peak (2006) urban return level		  6.01	 124.57	 5.90	 120.19
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for the Willamette Valley are much more modest. Agricultural losses as percentage 
points are highest for the more agricultural Willamette Valley, and are somewhat 
sensitive to the assumed urban return level. Because models 1 and 2 generate 
similar projections within an assumed level of urban returns, the assumption of 
urban return level has a larger effect on forest and agricultural projections than any 
assumptions about the presence of agglomeration economies.

Conclusion and Suggestions for Future Research
This paper develops a plot-level spatial econometric land-use model and estimates 
it with USGS LCT GIS panel-data from 1980 to 2000 for the western halves of the 
states of Oregon and Washington. The discrete-choice framework we use models 
plot-scale choices of the three dominant land uses in this region: forest, agriculture, 
and urban development. The land-use choice is a function of county average net 
returns to alternative land uses, and plot level measures of land quality, including 

Table 12—Ecoregion forest land-use projections for 2040 under alternative urban returns scenarios 
(private land)

				    Model 2 (with  
	 	 Model 1	 	 agglomeration economies)

	 Forest share 	 Forest share		  Forest share	  
	 (2000)	 (2040)	 Change	 (2040)	 Change

Coast Range:	 75.36		  Percent		  Percent
  1992 urban return level		  74.78	 -0.77	 74.54	 -1.09
  2012 urban return level		  74.75	 -0.82	 74.49	 -1.16
  Peak (2006) urban return level		  74.44	 -1.22	 74.12	 -1.66
Puget Lowland:	 52.52			 
  1992 urban return level		  45.05	 -14.22	 44.53	 -15.21
  2012 urban return level		  43.02	 -18.08	 42.12	 -19.80
  Peak (2006) urban return level		  32.28	 -38.53	 31.26	 -40.47
Willamette Valley:	 35.49			 
  1992 urban return level		  34.75	 -2.08	 33.96	 -4.30
  2012 urban return level		  34.44	 -2.96	 33.58	 -5.38
  Peak (2006) urban return level		  32.02	 -9.76	 31.22	 -12.02
Cascades:	 85.12			 
  1992 urban return level		  84.29	 -0.97	 83.56	 -1.82
  2012 urban return level		  84.25	 -1.01	 83.53	 -1.87
  Peak (2006) urban return level		  83.95	 -1.37	 83.23	 -2.22
North Cascades:	 63.70			 
  1992 urban return level		  61.61	 -3.28	 61.75	 -3.07
  2012 urban return level		  61.42	 -3.58	 61.59	 -3.32
  Peak (2006) urban return level		  59.82	 -6.09	 60.34	 -5.29
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soil classes and Euclidian distances to cities and roads. The estimation includes 
measures of spatial land-use agglomeration economies in a framework that allows 
for both spatial and temporal correlation in the unobservables. We specify a random 
parameters logit RPL model, which is estimated by maximum simulated likelihood. 
The estimation uses discrete-choice panel data techniques and instruments for the 
spatial agglomeration variables with landscape-level land quality variables in an 
application of the recently developed control function. The combination of panel 
data RPL with the control function is a novel approach to estimating a fully spatial 
multinomial discrete-choice land-use model with GIS landscape data.

The estimated econometric model is used to project landscape change in the 
presence of alternative assumptions regarding future urban returns. The level 
of future returns to urban uses is uncertain, especially given the recent housing 
boom and bust, which has seen wide swings in urban returns. The landscape 
projections indicate substantial urban growth and loss of forest and farmlands in 
the Puget Lowland and Willamette Valley ecoregions, with minimal changes in 
the Coast Range, Cascades, and North Cascades regions. Although these results 
are not surprising, our analysis of the sensitivity of projections to alternative real 

Table 13—Ecoregion agricultural land-use projections for 2040 under alternative urban returns scenarios 
(private land)

				    Model 2 (with  
	 	 Model 1	 	 agglomeration economies)

	 Ag share 	 Ag share		  Ag share	  
	 (2000)	 (2040)	 Change	 (2040)	 Change

Coast Range:	 9.89		  Percent		  Percent
  1992 urban return level		  9.74	 -1.50	 9.67	 -2.24
  2012 urban return level		  9.75	 -1.40	 9.67	 -2.24
  Peak (2006) urban return level		  9.78	 -1.13	 9.66	 -2.35
Puget Lowland:	 12.53			
  1992 urban return level		  11.58	 -7.54	 9.88	 -21.12
  2012 urban return level		  11.45	 -8.58	 9.34	 -25.43
  Peak (2006) urban return level		  10.63	 -15.11	 6.54	 -47.77
Willamette Valley:	 47.26			
  1992 urban return level		  43.63	 -7.68	 43.41	 -8.16
  2012 urban return level		  43.55	 -7.86	 43.12	 -8.77
  Peak (2006) urban return level		  42.91	 -9.21	 41.05	 -13.15
Cascades:	 5.35 			
  1992 urban return level		  5.38	 0.55	 5.36	 0.21
  2012 urban return level		  5.38	 0.66	 5.36	 0.32
  Peak (2006) urban return level		  5.39	 0.85	 5.38	 0.65
North Cascades:	 6.07			
  1992 urban return level		  6.26	 3.19	 6.02	 -0.74
  2012 urban return level		  6.27	 3.38	 6.03	 -0.58
  Peak (2006) urban return level		  6.30	 3.79	 6.07	 -0.02
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urban returns levels is perhaps less well understood, and yet extremely relevant for 
environmental planning. The Puget Lowland ecoregion is the most sensitive por-
tion of the Northwest to swings in the returns to urban uses of land. In particular, 
the share of the Puget Lowland ecoregion projected to be developed is between 
12 and 14 percentage points higher if the level of real urban returns remains at the 
levels observed in 2006 as compared to whether real urban returns were at the more 
modest levels observed in 2012. Variation in the projected development share of 
the Puget Lowland ecoregion between 12 and 14 percentage points presents major 
challenges for environmental management, as 12 percent of a 1.8 million ha region 
is approximately 0.2 million ha. The four other Northwest ecoregions have much 
less variation in response to alternative levels of future urban returns.

The analysis presented here provides a technical foundation for developing 
larger scale models from the LCT database, which includes a random sample of  
10- by 10-km landscape blocks within each ecoregion in the contiguous United 
States for 1973, 1980, 1986, 1992, and 2000. Additional data for 2006 are cur-
rently being processed by USGS, and the LCT data are expected to be updated in 
the future. The combination of a repeated spatial-panel database and continued 
updating makes the LCT a candidate database for future large-scale econometric 
land-use models. Many past national and regional-scale models have been estimated 
from the NRI (e.g., Langpap and Wu 2011, Lewis and Plantinga 2007, Lubowski 
et al. 2006). For example, the Forest Service has extensively used the NRI-based 
Lubowski et al. (2006) model for RPA and climate change assessments. However, 
because the NRI has no plans to release post-1997 plot-level data with a similar 
sampling methodology to 1982–1997 NRI data, a new data source and new model 
will need to be developed to account for post-1997 land-use decisions. Our analysis 
shows that the LCT provides a plausible alternative database to the NRI for future 
national-scale land-use models. We provide evidence in the “Basic Econometric 
Framework and Database Consruction” section that the LCT does not systemati-
cally underrepresent urban development as compared to the NRI. This contrasts 
with what others have found with different land-cover data sources derived solely 
from automated interpretation of satellite imagery (Irwin and Bockstael 2007, Kline 
et al. 2009). Although the LCT uses satellite imagery as a primary data source, 
the USGS manually edits and combines the satellite imagery with aerial photos, 
topographic maps, and Google Earth to improve classification accuracy.

There are many potential avenues for future econometric modeling from 
LCT data. First, scaling the regional analysis here up to the national level would 
serve multiple purposes of interest for the Forest Service, including national-scale 
resource assessments, analysis of national climate change policies such as carbon 



41

A Spatial Econometric Analysis of Land-Use Change With Land Cover Trends Data

sequestration payments, and analysis of large-scale open-space conservation 
programs and ecosystem services. An open question is whether a single national 
model would be preferable to a set of multiple regional-scale models such as we 
have here. A single national-scale model would have an advantage of simplicity (one 
set of parameters), and would be particularly applicable for simulations of national-
scale land-use programs (e.g., carbon sequestration payments) that require some 
approach to endogenizing net returns measures as a function of land-use changes 
(e.g., Lubowski et al. 2006). On the other hand, estimating multiple regional-scale 
models would surely provide more accurate local- and regional-scale projections 
by estimating regional parameters. One useful research project that would yield 
insights here would involve testing whether estimated parameters are structurally 
different across regions.

Second, unlike land-use survey-based datasets such as the NRI, the LCT allows 
researchers to observe the spatial pattern of land-use change, opening up the pos-
sibilities for more complete spatial econometric modeling. Our analysis with LCT 
block-level unobservables and block-level land-use patterns provides one possibility 
for specifying spatial econometric land-use models, but the availability of LCT data 
enables researchers to explore alternative spatial specifications of land-use models. 
We view this as a fruitful future path for improving the spatial properties of empiri-
cal models and corresponding landscape simulations. Another useful improvement 
over the present analysis would be to include finer scale data on independent vari-
ables that drive land-use decisions, such as parcel-level land-use regulations. Alter-
natively, a fruitful approach to improving spatial specificity could adapt Bockstael’s 
(1996) two-step approach of including estimated parcel-level land-use returns 
directly into the econometric land-use model, where the returns are estimated in a 
first-step hedonic price model that explains property sales or rental prices. However, 
adding such spatial detail is extremely labor intensive, and so there will certainly 
be tradeoffs between increasing spatial specificity and the scale with which a model 
can be estimated and applied in a simulation or projection.

Finally, on a more regional note, the most common land cover change in the 
Pacific Northwest LCT data arises from timber harvesting, which can be tracked 
with the LCT methodology by following transitions between covers classified as 
forest, mechanically disturbed, and grass/shrub. Timber harvesting is not a change 
in land use as modeled in this paper, but the LCT data provide a source for econo-
metrically modeling the spatial properties of the timber harvest decision and its 
relevant impacts on environmental resources.
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