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Abstract
Stanton, Sharon M.; Christensen, Glenn A., comps. 2015. Pushing boundaries: new 

directions in inventory techniques and applications: Forest Inventory and Analysis 
(FIA) symposium 2015. 2015 December 8–10; Portland, Oregon. Revised edition. Gen. 
Tech. Rep. PNW-GTR-931. Portland, OR: U.S. Department of Agriculture, Forest 
Service, Pacific Northwest Research Station. 384 p.

These proceedings report invited presentations and contributions to the 2015 Forest 
Inventory and Analysis (FIA) Symposium, which was hosted by the Research and 
Development branch of the U.S. Forest Service. As the only comprehensive and 
continuous census of the forests in the United States, FIA provides strategic information 
needed to evaluate sustainability of current forest management practices across all 
ownerships. Papers and abstracts included in the publication have been sorted into 
general topic areas, including forest carbon accounting, change detection, and techniques 
development. Symposium papers cover high priority and timely issue-based topics 
including climate change, carbon flux, wildlife, disturbance, bioenergy, geo-spatial 
extensions, change monitoring, and integrating remote sensing and GIS applications.

Keywords: statistics, estimation, sampling, modeling, remote sensing, forest health, 
data integrity, environmental monitoring, cover estimation, international forest monitoring.
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Preface
The twelfth Forest Inventory and Analysis Symposium was held December 8-10, 2015, 
in Portland, Oregon. The symposium brought together almost 200 inventory and forest 
scientists from across the United States and four foreign countries. There were 145 
presentations and 12 posters emphasizing the development of innovative approaches to 
incorporating non-traditional approaches and uses of inventory information. The goal of 
the symposium is to provide a forum for international forest scientists, managers, and 
stakeholders to share insights on a wide variety of topics, including contemporary issues, 
science policy, mensuration, geospatial products, and inventory methods.

The symposium organizers thank all participants and presenters, especially those 
who submitted papers for these proceedings. We would like to convey special thanks 
and acknowledgement to the late Paul Van Deusen, Principal Research Scientist 
of National Council for Air and Stream Improvement. Paul was an accomplished 
biometrician and enthusiastic collaborator with FIA, including actively participating in 
the organization of the symposia—his contributions will be greatly missed.
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THE RESEARCH CONTRIBUTIONS OF DR. PAUL VAN DEUSEN

Thomas B. Lynch, Francis A. Roesch, John Paul McTague, Jeffrey H. Gove,  
Gregory A. Reams, and Aaron R. Weiskittel1

Abstract—Dr. Paul Van Deusen’s recent passing concluded a rich 30+-year research 
career dedicated to development and implementation of quantitative methods for forestry 
and natural resources. Since the early part of his career as a biometrician with the USDA 
Forest Service Southern Research Station in the 1980s-1990s and continuing with his 
later employment at NCASI, Dr. Van Deusen has made many research contributions that 
have been directly or indirectly important for the implementation of FIA data collection 
methods and for the analysis and interpretation of FIA data. We have attempted to 
summarize highlights of Dr. Van Deusen’s contributions to FIA and to forestry, as well as 
natural resources in general.

On August 21, 2015 the forestry profession lost Dr. 
Paul Van Deusen, a generational science leader in 
applying quantitative sciences to the contemporary 
issues of each decade of his career. Paul’s knowledge 
and practical applications of forest biometrics were 
uniquely multi-dimensional as this paper chronicles. 
In the mid-to-late 1990s Paul worked with the Forest 
Service’s Forest Inventory and Analysis (FIA) 
program, and inventory experts and users of FIA’s 
partner and user community in defining the statistical 
design and estimation techniques for FIA’s annual 
forest inventory. Paul was a rare combination of theory 
and practicality and an ardent student of Occam’s 
razor or ‘law of parsimony’ and the current annual FIA 
panel design is a direct reflection of this principle. Dr. 
Van Deusen was a founding member of the first FIA 
science symposium held in November of 1999 in San 
Antonio, Texas. He continued to work closely with the 

FIA science and user community and was a member 
of the planning committee for this symposium, the 12th 
FIA science symposium. He also worked tirelessly 
with the organizing committee of each and every 
Annual National FIA User’s Group Meeting sponsored 
by the Society of American Foresters over the last two 
decades. We dedicate this symposium to Dr. Paul Van 
Deusen and invite you to read this tribute to Paul’s 
research contributions.

EARLY YEARS AND THE 
SOUTHERN STATION
Dr. Paul Van Deusen received his Ph.D. from the 
University of California, Berkeley under the direction 
of Dr. Gregory Biging, where he also interacted 
with Dr. Lee Wensel who was then developing the 
CACTOS growth model for California forests. Paul’s 
doctoral work contributed to the stand generator for 
CACTOS (Van Deusen 1984; Van Deusen and Biging 
1984; Biging et al. 1994). Previously, he received 
an M.S. from Mississippi State University working 
with Drs. Thomas Matney and Al Sullivan, where 
among other projects they published early south-wide 
individual tree volume equations for loblolly pine 
(Van Deusen et al. 1981) and a system of equations 
for predicting volume and diameter of sweetgum 
trees to any height (Van Deusen et al. 1982). Prior to 
his M.S., Paul earned a B.S. in forest management 
from the University of Massachusetts. After leaving 
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Berkeley, Paul was employed by the Institute of 
Quantitative Studies unit in the USDA Forest Service 
Southern Research Station at New Orleans, LA 
headed by Project Leader Dr. Tommy Dell. The unit 
in those days had responsibility for technical aspects 
of the southern FIA (then termed Forest Survey) and 
Dr. Van Deusen developed a keen interest in forest 
sampling problems. 

Dr. Van Deusen was one of the early contributors to 
the application of Monte Carlo Integration to forest 
sampling problems. With Dr. Walter Meerschaert, 
he published a paper proving that critical height 
sampling was unbiased for any tree taper function 
using the framework provided by the cylindrical 
shells integral (Van Deusen and Meershaert, 1986). 
By remarkable coincidence, Lynch (1986) published 
a paper in a different journal taking a very similar 
approach to critical height sampling independently 
of Dr. Van Deusen’s work. With Lynch, Dr. Van 
Deusen was the first to apply the variance reduction 
technique of antithetic variates to obtain unbiased 
estimates of tree volume (Van Deusen and Lynch 
1987), combining the technique with importance 
sampling that had previously been introduced into 
forestry by Gregoire et al. shortly prior (Gregoire et 
al. 1985, 1986; and Furnival et al. 1986). Importance 
sampling was originally developed to reduce the 
number of computer operations needed in Monte 
Carlo analyses (Kahn and Marshall, 1953). Dr. Van 
Deusen (1987a, 1990a) was also the first to apply the 
control variates technique often used for variance 
reduction in Monte Carlo integration to the unbiased 
estimation of tree stem volume. At about the same 
time, Van Deusen (1987c) discussed design versus 
model-based estimates in reference to 3-P sampling 
and Van Deusen (1988) investigated simultaneous 
estimation with a squared error loss function. Dr. Van 
Deusen (1995a) later proposed difference sampling 
as an alternative to importance sampling. Since that 
time antithetic variates and control variates have had 
other applications in forest sampling and promise to 
remain part of the “tool kit” in forest sampling for the 
foreseeable future.

During the 1980s, the potential effects of acid rain on 
forest growth became an issue of interest, and Dr. Van 
Deusen made several contributions in this area. He 
made a pioneering application of the Kalman filter in 
dendrochronology by applying it to increment core 
data, which were being used to study possible effects 
of acid rain on tree growth (Van Deusen 1987b, 1988, 
1989a, 1990b,c). Although Visser (1986) published 
an application of the Kalman filter to tree ring data 
slightly earlier, Van Deusen (1987b, 1988) had 
formulated it independently before the Visser (1986) 
paper was published. While at Berkley he had taken 
a course from Dr. Andrew Harvey, econometrician 
and expert on Kalman filtering. Dr. Van Deusen also 
supervised work on a project to study increment cores 
obtained with probability proportional to size sampling 
on point samples, which in that era were used by the 
southern FIA (formerly called “Forest Survey”). As 
part of that project, Drs. Juha Lappi and Robert Bailey 
quantified bias in growth estimates due to collection of 
increment cores on point samples (Lappi and Bailey 
1987). Due to the sampling method, trees with cores 
showing faster growth also had larger inclusion zones 
and were more likely to be sampled than other trees of 
a given initial size a fixed number of years previous. 
Lynch also worked on the project and proposed ratio 
estimators to correct the problems, testing these in 
simulations (Lynch and Huebschmann 1992). Dr. Van 
Deusen (1986) also obtained likelihood equations for 
fitting tree diameter distributions (e.g, the Weibull 
distribution) when sample trees were selected from 
point samples. Another contribution to point sampling 
research included estimators for point clusters (Van 
Deusen and Grender 1989). Van Deusen and Baldwin 
(1993) proposed methods of sampling and predicting 
tree dry weight. Van Deusen (1992) discussed growth 
dynamics for naturally-occurring loblolly pine in the 
south. The recurrence of slash pine blight was analyzed 
by Van Duesen and Snow (1991). In an extension of his 
tree-ring research, Dr. Van Deusen collaborated on the 
use of data to detect large-scale disturbances in Reams 
and Van Deusen (1993), the standardization of tree-ring 
data in Van Deusen and Reams (1993), and on historic 
climatic variation in Reams and Van Deusen (1998).
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Obtaining compatible estimates of the components for 
forest growth from remeasured point samples or from 
partial replacement sampling was an issue of interest 
during Dr. Van Deusen’s tenure with the Southern Station, 
especially since the FIA plots at the time were point 
samples. Dr. Van Deusen made several contributions 
in this area. Significant papers by Dr. Van Deusen that 
focused on improved estimation included Van Deusen et 
al. (1986), Van Deusen (1993, 1996a, 1999a), and Roesch 
and Van Deusen (1993). As indicated above, Dr. Van 
Deusen had taken econometrics coursework at Berkeley 
during his Ph.D. studies and was aware of generalized 
least squares as used by econometricians. He realized that 
generalized least squares could be applied to the forest 
inventory problem of obtaining compatible estimates 
of forest growth from remeasured point samples and 
partial replacement data. He developed a framework 
that included partial replacement sampling and achieved 
partial compatibility for estimates of the components of 
growth using remeasured point or plot sample data (Van 
Deusen 1989b). Subsequently, Lynch (1995) applied 
restricted generalized least squares in a similar framework 
to achieve exact equality between growth component 
estimators. Van Deusen later applied generalized least 
squares to obtain one of the early estimators for the 
annual FIA system, which was new at that time (the mid 
or later 1990s). This estimator allowed specification of a 
restriction that could be varied in strength from exact to 
approximate. The generalized least squares framework 
remains an important approach to the analysis of FIA and 
other large forest inventory datasets.

In 1997, Dr. Van Deusen proposed the technique 
of multiple imputation for annual forest inventory 
applications, which had previously been used by 
statisticians working in other fields. Since then, the 
method has been widely used to supply missing data 
in forestry datasets and to develop tree lists for forest 
growth simulators among other applications. Although 
single imputation had been applied in the Swedish 
National Survey (Holm et al. 1979, Ranneby et al. 
1987) and the Finnish forest survey (Poso 1978), and 
Moeur and Stage (1995) had proposed nearest neighbor 
methods, Van Deusen’s (1997) application of multiple 
imputation to natural resource data was pioneering.

NCASI AND LATER CAREER
After working for the USDA Forest Service Southern 
Station for a 10 year period, Dr. Van Deusen worked 
as a biometrician for the National Council for Air and 
Stream Improvement (NCASI), where his interest 
in forest sampling and FIA continued. He also 
developed software for harvest scheduling, among 
many other endeavors. In the early 1990s, Dr. Van 
Deusen, focused his research effort into building a 
multi-objective harvest scheduling program called 
HABPLAN. HABPLAN can be described as a Model 
I harvest schedule with an integer formulation that 
permits the user to obtain solutions that are spatially 
compliant with adjacency constraints. Paul elected 
to achieve optimality using the Metropolis heuristic 
in a methodology that is best described as simulated 
annealing. Dr. Van Deusen collaborated with others 
later to use the HABPLAN harvest scheduler for 
landscape-scale analysis of forestry guidelines using 
bird habitat models in Loehle et al. (2006). He also 
constructed an ingenious matrix generator program 
called HABGEN, and wrote both applications in 
JAVA. Some of his publications in this area include 
Van Deusen (1999b) concerning multiple solution 
harvest scheduling, Van Deusen (2001a) which relates 
to harvest scheduling with spatial constraints, and Van 
Deusen (1996b) which applied Bayesian concepts to 
habitat and harvest scheduling. His collaborations and 
contributions in habitat modeling and ecology also 
appear in Wigley et al. (2001), Mitchell et al. (2008), 
Loehle et al. (2009), Miller et al. (2011), Irwin et al. 
(2015), Van Deusen and Irwin (2012), Van Deusen 
et al. (1998) and Van Deusen (2002a). Van Deusen 
(2010) discussed the evaluation of the option of carbon 
storage in forests.

In the late 1990’s, Dr. Van Deusen was part of a 
group of scientists and professionals who were a key 
influence on changing the FIA to the current national 
annual design from the various regional periodic 
designs. The implementation of annual inventories 
by the Forest Inventory and Analysis (FIA) program 
in the United States initiated entirely new threads 
of estimation-focused research. It was immediately 
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obvious that the traditional way of thinking about and 
analyzing remeasured samples was inadequate for the 
panelized annual sample design. One of the earliest 
papers on the subject was Van Deusen (1997). The 
significant implications of the design were discussed 
in Van Deusen (2000a, 2000b) and Van Deusen et 
al. (1999). Additional significant research is found 
in Van Deusen (2001b, 2002b, 2004), on alternative 
designs and estimators for annual inventories. 
Spinney et al. (2006) unveiled one of at least three 
comprehensive on-line estimation tools for FIA data 
(SOLE). The other two tools are COLE (Proctor et 
al., 2002; Spinney et al., 2005) and GForest (Spinney 
and Van Deusen, 2007). With respect to this sample 
design, many papers offered interesting perspectives 
on improved estimation. Van Deusen (2005), in an 
attempt to nudge FIA into choosing more efficient 
estimation methods, gave an alternative view of some 
of the issues that led to the existing procedures. Van 
Deusen (2007a, 2007b) then showed an alternative 
way for FIA to achieve the long-standing goal of 
ensuring compatible marginal totals in tables using 
weighted estimators. Van Deusen and Heath (2010) 
proposed weighted analysis methods for mapped forest 
inventory data. The need for estimators that consider 
the specific timing of the observations from this design 
was recognized in these and the later publications of 
Van Deusen and Roesch (2007, 2009a, 2009b, 2013), 
Roesch and Van Deusen (2010a,b, 2012, 2013), and 
Van Deusen et al. (2013). 

Until his passing, Dr. Van Deusen continued to 
investigate alternative designs and estimators for 
special problems in forestry. A notable collaboration 
with Dr. Jeff Gove started with the problem of 
sampling downed woody debris and resulted in 
the “sausage method” of estimation in Gove and 
Van Deusen (2011) and a general spoked transect 
discussion in Van Deusen and Gove (2011). Dr. Van 
Deusen also contributed to the three-dimensional 
jigsaw-puzzle view of forest monitoring in Roesch 
and Van Deusen (2013). The utility of the simple 
systematic well- dispersed sample design, currently 
used by FIA, that Paul was very instrumental in 
effecting, is being discovered by many investigators 

for use in highly specialized studies. Finally, Dr. Van 
Deusen considered alternate ways of sampling and 
estimating tree volume, biomass and carbon, which is 
an issue on which FIA is still working (Van Deusen 
and Roesch, 2011).

Like many of his contemporaries, Paul also 
contributed to improving the integration of remotely 
sensed data and forest inventories. Van Deusen 
(1994, 1995b) discussed the correction of bias in 
change estimates from thematic maps. Roesch, Van 
Deusen, and Zhu (1995) investigated estimators for 
updating forest area coverage using AVHRR and 
forest inventory data, while Van Deusen (1996c) 
gave unbiased estimates of class proportions from 
thematic maps.

Most biometricians have some talent with and affinity 
towards computers and the programming thereof. 
Dr. Van Deusen was no exception in this area; on the 
contrary he was quite exceptional. He was an early 
adopter of *nix (i.e., Unix, Linux) computational 
platforms and was instrumental in converting several 
colleagues from proprietary systems to Linux. In the 
nineties, when most people were using PCs or Macs, 
Dr. Van Deusen was working on Sun Microsystems 
SPARC-based workstations running Solaris Unix as 
the operating system. Eventually, in the late 1990s 
Dr. Van Deusen was drawn to Linux, an open source 
alternative to Unix, and began building his own 
computers running Red Hat (and later Fedora) Linux. 
Dr. Van Deusen was comfortable with a diverse 
array of programming languages, both closed (on 
SPARC) and open-source (on Linux). His “Dynaclim” 
Kalman filtering system (Van Deusen and Kortez, 
1988) was written in the Gauss (Aptech Systems) 
matrix language. The online applications like COLE 
(Proctor et. al, 2002) developed by Dr. Van Deusen 
and his staff (at various times including: John Beebe, 
Patrick Proctor, Mike Spinney, and Rei Hayashi) 
employed a variety of different open-source languages 
including perl, Java, JavaScript, Grass, Povray (a ray 
tracing program, used in GForest for 3D views of 
individual plots), mySQL (later MariaDB), R, LaTeX 
(for automated report generation through Sweave in 
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R) and, of course, HTML. Dr. Van Deusen was an 
advocate for the Linux and open-source development 
model (Proctor et. al, 2003) and would often comment 
that it would have been much more difficult to develop 
similar online tools on other (i.e., closed) platforms. 
Dr. Van Deusen’s preferred software for everyday 
work on Linux was a combination of R for analysis 
and LaTeX for manuscripts. He would joke that he did 
not know how to use a spreadsheet program.

CONCLUSIONS
The tools mentioned above give testimony to Paul’s 
contributions as a “complete biometrician.” Although 
many of us tend to prefer the theoretical developments 
of our craft, a complete biometrician gets an idea, 
develops the theory to express the idea, and then 
packages the results into a product that is usable by 
others. Paul was not only adept at simplifying complex 
ideas to the point where they were understandable 
to any reader of his publications, he was also 
extremely adept at developing user-friendly systems to 
implement those ideas, and he did that in every area of 
his research.

Unfortunately, Paul passed away on August 21, 2015, 
but he has left a rich legacy to the forest biometrics 
community. Dr. Van Deusen remained an active and 
vibrant scientist until his death, as will be evidenced 
by his posthumous publications. So far, we know 
of Roesch et al. (2015). Given the many areas that 
he had an interest in, we suspect that there are other 
manuscripts still in process.
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ADDITIVITY AND MAXIMUM LIKELIHOOD ESTIMATION OF 
NONLINEAR COMPONENT BIOMASS MODELS

David L.R. Affleck1

Abstract—Since Parresol’s (2001) seminal paper on the subject, it has become common 
practice to develop nonlinear tree biomass equations so as to ensure compatibility among 
total and component predictions and to fit equations jointly using multi-step least squares 
(MSLS) methods. In particular, many researchers have specified total tree biomass models 
by aggregating the expectations of nonlinear component equations. More recently, an 
alternative approach has been used wherein compatibility is ensured by specifying a total 
biomass equation plus one or more component disaggregation functions. Yet calibration 
of such equations typically has not recognized the additivity of the biomass data or the 
implied stochastic constraints necessary for development of a valid probability model. For 
model selection based on information criteria, stochastic simulation, Bayesian inference, 
or estimation with missing data, it is important to base estimation and inference on 
probabilistic models. Thus, we show how to specify valid stochastic models for nonlinear 
biomass equation systems and how to estimate parameters using maximum likelihood 
(ML). We also explain how ML procedures can accommodate unobserved or aggregated 
component biomass data. We use Parresol’s slash pine data set to contrast model forms and 
demonstrate Gaussian ML from complete and missing data using open-source software.

Forest inventory programs commonly report estimates 
of total aboveground biomass and carbon in live trees. 
The estimates are often obtained from individual 
tree equations that also furnish estimates for foliage, 
branches, stems, and other tree components. For 
many purposes, compatibility among component and 
total tree biomass models is important. As pointed 
out by Parresol (2001) this compatibility should, 
at a minimum, ensure that component biomass or 
carbon estimates do not exceed estimates of whole-
tree biomass or carbon, and that component estimates 
sum to the estimates of the totals. Yet this level 
of compatibility is insufficient for analytical and 
estimation procedures such as mixed-effects modeling, 
stochastic simulation, and Bayesian inference. These 
techniques require that the additive nature of tree 
biomass measurements be recognized and that valid 
probabilistic models be formulated.

The objectives of this research were to synthesize 
alternative approaches to nonlinear biomass equation 
specification within a probabilistic modeling 
framework, and demonstrate how the models and ML 
algorithms can be extended to accommodate missing 
component biomoass observations.  

ADDITIVITY OF BIOMASS 
COMPONENTS
Let Y1,Y2,…,YM denote M biomass components 
of a tree and Yt the total of interest. A fundamental 
identity is Yt = Σm Ym. This identity holds when the 
symbols represent unobserved tree biomass quantities 
and is often desired of biomass estimates. Yet it also 
generally holds when the symbols represent biomass 
measurements. This is because total tree biomass 
typically goes unmeasured and is obtained instead by 
summing the component biomass estimates gathered in 
the field. From the identity stems the result that, given 
a set of predictors x, the joint probability law for a set 
of random variables Y1,Y2,…,YM and Yt is
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That is, the joint probability model for Y1,Y2,…,YM 
and Yt is a simple multiplicative function of the model 
for Y1,Y2,…,YM with the multiplier being independent 
of any model parameters or predictors. As such, the 
ML estimators of the parameters governing the former 
model can be obtained by maximizing only the latter 
model. Given the biomass components and their 
additivity there is no additional information in the 
biomass totals.

SYSTEMS OF NONLINEAR 
BIOMASS EQUATIONS
Parresol (2001) noted that in the nonlinear setting, 
additivity of component estimates can be guaranteed 
only by restricting the total biomass equation to be 
the sum of the component biomass equations. He 
advocated direct specification of individual component 
equations E(Ym) = gm(xm; βm), deriving the equation for 
the total (and/or subtotals) through aggregation E(Yt) = 
Σm gm(xm; βm), and completing a statistical model

Ym	 = gm(xm; βm) + εm	 m = 1,2,…,M
Yt	 = Σm gm(xm; βm) + εt

allowing for non-constant variance as well as cross-
correlations on the error terms ε•. Parresol further 
recommended joint estimation of the parameters of 
this system by MSLS using observations of component 
and total biomass.

An alternative approach, developed initially in the 
Chinese literature (Tang et al. 2000; see also Dong et 
al. 2015), is to specify first an equation for the total, 
then use multiplicative disaggregation functions to 
yield component equations. For example, 

Yt	 = gt(xt; βt) + εt

Yc	 = gt(xt; βt) gcs(xcs; βcs) + εc

Yw	 = gt(xt; βt) [1 – gcs(xcs; βcs)] gwb(xwb; βwb) + εw

Yb	 = gt(xt; βt) [1 – gcs(xcs; βcs)] [1 – gwb(xwb; βwb)] + εb

where Yc, Yw, and Yb denote respectively crown, stem-
wood, and stem-bark biomass; and gcs(•) and gwb(•) 
are functions bounded by 0 and 1 that disaggregate, 

respectively, the total into crown and stem fractions, 
and the stem fraction into wood and bark fractions. 
Tang and Wang (2002) describe a MSLS approach 
for this system that accounts for non-constant error 
variance and cross-correlations among errors.

While guaranteeing additivity of estimates, neither of 
the above systems recognizes the additivity of the data 
and thus neither represents a valid probability model. 
It follows that the associated MSLS strategies are not 
ML procedures. Essentially, Yt = Σm Ym together with 
gt(xt; βt) = Σm gm(xm; βm) implies εt = Σm εm, meaning 
that the variance function and cross-correlations 
of εt are constrained. The MSLS procedures do not 
recognize these constraints, so using the observed 
totals in estimation amounts to specifying an 
internally inconsistent system and estimators with 
inscrutable properties. The simplest way to align the 
above equation systems with probabilistic models 
is to strike the submodels for biomass totals. With 
component variance and cross-correlation structures 
otherwise preserved the reduced systems are valid 
probability models; parameters can be estimated 
by ML and information criteria such as AIC can be 
used in model selection. The models can then also be 
extended to accommodate mixed-effects or Bayesian 
specifications, or used for stochastic simulation.

MISSING BIOMASS DATA
A further advantage of specifying a valid probabilistic 
component biomass model is that missing data patterns 
can be accommodated. In particular, if the missingness 
mechanism is uninformative (Little & Rubin 1987, 
ch.1) then the complete data likelihood for impacted 
trees can be integrated to yield an observed data 
likelihood for ML estimation.

With component biomass data, there are two important 
forms of missingness. The first results when individual 
components (and thus biomass totals) go unobserved. 
For example, if crown material is lost and only stem 
biomass components are observed then the likelihood 
for the tree in question reduces to
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A second form of missingness is when all components 
are represented (and thus the total is computable), but 
some are known only in aggregate. For example, if 
crown biomass and overall stem biomass (but not bark 
and wood biomass) are available for a certain tree, 
then its contribution to the overall likelihood is 

Both integrals are complex in the general case, but 
easily obtained for Gaussian models.

CASE STUDY: PARRESOL’S (2001) 
SLASH PINE DATA
Parresol (2001) presented biomass data for 40 slash 
pine (Pinus elliottii) grown in Louisiana, USA. Table 1 
reproduces the data and identifies observations masked 
from missing data analyses.

To the complete and simulated-incomplete data were 
fit Parresol’s (2001) aggregative system of equations 
with variance functions

var(Ym) = θm1(d.b.h.) 

and unstructured cross-correlations between crown, 
bark, and wood biomass observations from the same 
tree. With the same variance and cross-correlation 
structures, a disaggregation-based system of equations 
was also fit with

	 gt(xt; βt) = exp[ βt1 + βt2 ln(d.b.h.) + βt2 ln(h) ]

	 gcs(xcs; βcs) = (1 + exp[ βcs1 + βcs2 ln(d.b.h.) + 
βcs2 ln(h) ])-1

	 gwb(xwb; βwb) = (1 + exp[ βwb1 + βwb2 ln(d.b.h.) + 
βwb2 ln(h) ])-1

where h is tree height.

The models were fit by Gaussian ML using the gnls 
function of the nlme package (Pinheiro et al. 2014) 
in R (R Core Team 2014). To do so, a symmetric 
covariance structure was coded from the basic gnls 
correlation structure; this allowed for reduction 
of the covariance matrix to account for missing or 
aggregated components.

Model fit statistics are in Table 2. The systems provide 
comparable predictive models, and the patterns of 
missingness shown in Table 1 only slightly degrade 
model-data agreement. The models are also similar 
to the two-stage and three-stage least squares models 
presented in Parresol (2001) but, as they constitute 
valid probability models, they can be extended to 
include random effects (e.g., to express dependence 
among trees within plots) or prior information on 
parameters (using Bayesian techniques).
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Table 1—Slash pine biomass data from Parresol (2001) with tree diameter at breast height (d.b.h.) and total 
height (h).  Shaded cells identify data masked from some analyses; within these cells component values 
printed in white are assumed missing (i.e. unknown along with the tree total) while those printed in black are 
assumed known only in aggregate (i.e. stem mass known but not wood or bark separately).

d.b.h. height Green mass (kg)
Tree (cm) (m) Wood Bark Crown Total
1 5.6 7.9 6.5 2.3 1.0 9.8
2 6.4 8.5 7.4 2.6 2.1 12.1
3 8.1 10.7 17.6 4.5 2.3 24.4
4 8.4 11.3 18.5 4.3 4.2 27.0
5 9.1 11.0 22.6 5.4 5.6 33.6
6 9.9 13.1 30.6 7.4 5.5 43.5
7 10.4 14.3 32.9 6.7 6.4 46.0
8 11.2 14.6 40.6 9.3 6.2 56.1
9 11.7 14.3 46.0 10.7 7.7 64.4
10 12.2 14.9 51.6 13.1 6.1 70.8
11 11.9 16.8 60.4 10.1 5.4 75.9
12 13.2 13.7 62.8 15.2 10.7 88.7
13 12.2 15.8 67.5 12.9 15.3 95.7
14 13.7 18.0 81.2 12.5 8.7 102.4
15 14.2 16.5 94.3 18.2 11.2 123.7
16 15.0 20.1 123.4 16.5 7.7 147.6
17 15.7 16.8 107.3 21.5 19.7 148.5
18 16.5 17.1 123.8 22.1 28.9 174.8
19 16.5 17.1 151.6 24.6 16.8 193.0
20 19.6 13.7 140.4 25.1 46.2 211.7
21 17.5 19.2 170.4 27.4 16.8 214.6
22 17.8 18.3 169.6 31.7 24.0 225.3
23 18.5 17.7 160.3 36.9 47.5 244.7
24 19.6 19.8 199.8 38.7 19.7 258.2
25 18.5 22.9 231.6 29.6 24.6 285.8
26 19.8 18.6 217.9 33.9 45.8 297.6
27 20.6 17.4 216.0 32.6 61.2 309.8
28 21.6 17.7 200.6 40.2 75.4 316.2
29 19.8 18.9 217.5 38.5 62.0 318.0
30 22.9 19.8 314.8 43.1 43.2 401.1
31 23.6 18.3 287.1 63.4 51.7 402.2
32 23.1 18.9 290.9 44.3 76.7 411.9
33 24.1 21.3 320.1 50.6 75.6 446.3
34 26.4 19.2 308.6 65.7 116.0 490.3
35 24.6 25.0 403.0 49.8 69.8 522.6
36 25.1 19.8 390.4 48.8 83.5 522.7
37 29.0 20.4 445.2 60.4 88.0 593.6
38 28.4 26.8 736.4 84.0 79.9 900.3
39 31.8 27.4 770.9 93.8 170.2 1034.9
40 33.0 27.7 921.3 108.0 169.2 1198.5
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Table 2—Component root mean squared error (RMSE) and corrected Akaike’s information criterion (AICc) for 
alternative models, parameter estimation routines, and data. 

RMSEa (kg)
Model Estimation Data Crown Bark Wood Total AICcb

Aggregative ML complete 13.3 5.1 26.9 30.4 784.6
ML incomplete 13.2 5.2 26.9 30.7 786.4
2SLSc complete 13.9 5.0 26.7 31.4 795.6
3SLSc complete 12.8 5.0 26.7 29.8 808.5

Disaggregation ML complete 13.4 4.8 26.2 29.6 789.1
ML incomplete 13.4 5.4 26.2 30.3 792.8

a Based on the complete data without weight functions or degrees of freedom adjustments.
b Based on the complete data and a joint Gaussian model for crown, bark, and wood biomass.
c From coefficients published in Parresol (2001).
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BUILDING GENERALIZED TREE MASS / VOLUME COMPONENT 
MODELS FOR IMPROVED ESTIMATION OF FOREST STOCKS  

AND UTILIZATION POTENTIAL

David W. MacFarlane1

Abstract— Accurately assessing forest biomass potential is contingent upon having 
accurate tree biomass models to translate data from forest inventories.  Building 
generality into these models is especially important when they are to be applied over 
large spatial domains, such as regional, national and international scales.  Here, new, 
generalized whole-tree mass / volume component models are discussed and tested.  The 
models integrate principles of tree branching architecture and stem taper into compatible 
equation systems for estimating whole-tree mass or volume components across a range 
of species and site conditions. The models were tested using data collected in Michigan, 
USA, as part of a national effort by the Forest Inventory and Analysis (FIA) Program 
of the US Department of Agriculture to improve estimation of tree mass components, 
including the merchantable mass of the tree.  

The results suggest that the new variable-form variable-density models will provide 
superior predictions of tree mass components and whole-tree mass, as compared to 
standard allometric models, across a range of tree species and forest conditions, even 
when tree density is held constant within the tree and derived from published values. 
Whole-tree volume and stem taper models, derived from the biomass equation system, 
could provide flexible characterization of whole-tree mass utilization potential under 
different local, regional or national merchantability standards for industrial round wood 
production.  The generality of the model system, in terms of accommodating a wide 
range of tree forms, might also allow it to be used across many forest types and growing 
conditions, including urban forests, agroforestry systems and plantation forests.    
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METHODS FOR ESTIMATING ABOVEGROUND BIOMASS AND ITS 
COMPONENTS FOR FIVE PACIFIC NORTHWEST TREE SPECIES

Krishna P. Poudel1 and Temesgen Hailemariam2

Abstract—Performance of three groups of methods to estimate total and/or component 
aboveground biomass was evaluated using the data collected from destructively sampled 
trees in different parts of Oregon. First group of methods used analytical approach to 
estimate total and component biomass using existing equations, and produced biased 
estimates for our dataset. The second group used a system of equations fitted with 
seemingly unrelated regression (SUR), and was superior to group I methods. The third 
group of methods predicted the proportions of biomass in each component using beta, 
Dirichlet, and multinomial logistic regression (MLR). The MLR approach produced 
smaller root mean squared error (RMSE) compared to the SUR approaches except for 
grand fir branch biomass while the beta and Dirichlet regressions provided smaller RMSE 
compared to the SUR approaches for 85 percent of the species-component combinations.

Forest carbon reporting requires information on tree 
measurements, forest area estimates, and methods 
to estimate forest biomass. Tree measurements and 
forest area estimates for the official U.S. forest carbon 
reporting are obtained from the U.S. Forest Service’s 
Forest Inventory and Analysis (FIA). Forest biomass 
estimates until 2009 were based on the equations 
developed by Jenkins and others (2003) but after 2009 
these estimates are obtained using the component 
ratio method of the FIA (FIA-CRM). These methods 
were developed for national scale application but are 
commonly used to estimate biomass at the local scale. 
Therefore these methods may be biased at the local scale 
if there is spatial variation in the tree form due to one or 
more unknown predictors in the sub-region or subarea.

DATA
A detailed biomass data collection was carried out by 
destructively sampling 90 trees in different forests 
within the state of Oregon. The 90 trees belonged 
to five different species: Douglas-fir (Pseudotsuga 

menziesii (Mirbel) Franco), Grand fir (Abies grandis 
(Dougl. ex D. Don) Lindl.), lodgepole pine (Pinus 
contorta), western hemlock (Tsuga heterophylla), and 
red alder (Alnus rubra). Efforts were made to select 
trees to give an approximately equal representation 
across a range of size class while avoiding the trees 
with severe defects and close to stand edges. Trees that 
were forked below breast height and with damaged 
tops were also not included in sampling. The average 
D.B.H. ranged from 24.6 cm to 54.9 cm and average 
height ranged from 17 m to 33 m. Volume of 5.18 
m bole sections was converted into biomass by 
multiplying it by the average density of the disks taken 
from two ends. Total bole biomass was obtained by 
summing section masses. Individual branch wood and 
foliage biomass was obtained by fitting species specific 
log linear regression as a function of branch diameter.

METHODS
Methods for estimating aboveground biomass (AGB) 
used in this study belonged to three major groups. The 
first group of methods used analytical approach based 
on existing equations. The analytical methods are the 
FIA-CRM, the equations used by the FIA-PNW and 
the equations developed by Jenkins and others (2003). 
The equations used in FIA-CRM and FIA-PNW 
methods can be found in Woodall and others (2011) 
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2 Professor, Department of Forest Engineering, Resources and 
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and Zhou and Hemstrom (2010), respectively. The 
second group is the locally fitted systems of equations 
using a seemingly unrelated regression. We fitted 
two systems of equations: a DBH based single entry 
system (simple SUR) and a multiple entry system 
that included DBH and other explanatory variables 
(extended SUR) to estimate component and total AGB. 
The systems were constrained such that the sum of the 
predicted biomass from component equations is equal 
to the total AGB obtained from the equation for total 
AGB. Third group of methods predicted proportion 
of total AGB in different components using beta, 
Dirichlet, and multinomial logistic regression (MLR). 
The predicted proportions were then multiplied by 
observed total AGB to obtain predicted biomass 
estimates in different components. These generalized 
regression models assume that the errors of component 
biomass equations are beta, Dirichlet, and multinomial 
distributed, respectively. The beta and Dirichlet 
regressions have been described by Ferrari and 
Cribari-Neto (2004) and Maier (2010), respectively. 
Performance of all the methods was evaluated based 
on bias and root mean squared error (RMSE).

RESULTS AND DISCUSSION
The FIA-CRM, FIA-PNW, and the Jenkins methods 
were biased and produced the highest RMSE values 
among the methods used in the study. The average 
bias and RMSE produced by these methods are 
given in Table 1. These methods produced similar 
estimates for total AGB except for Douglas-fir. The 
Jenkins method for Douglas-fir produced total AGB 
that was respectively 18.4 and 23.7 percent higher 
than the estimates provided by the FIA-PNW and 
FIA-CRM methods. Despite their similar predictions 
for total AGB, these methods showed inconsistent 
discrepancies in component biomass estimates (Fig. 1). 

It is important to note, however, that the component 
biomass estimates obtained from these methods were 
similar for lodgepole pine and red alder, trees with 
smaller D.B.H. in our study. Indeed, these methods were 
more sensitive to tree size compared to other methods. 
For example, in Douglas-fir, the RMSE percent for 

total AGB dropped from 57.7 to 11.1 percent, 10.2 
to 7.1 percent, and 16.3 to 8.5 percent when Jenkins, 
FIA-CRM, and FIA-PNW equations, respectively, were 
applied to trees with less than 94 cm D.B.H.

The average bias and RMSE produced by simple and 
extended SUR approaches are shown in Figure 2. 
These methods consistently provided smaller RMSE 
compared to FIA-CRM, FIA-PNW, and Jenkins 
methods. Including additional explanatory variables 
than just D.B.H. in the SUR models resulted in 
the decrease in RMSE percent from 10.7 to 8.3 for 
Douglas-fir, 4.7 to 4.3 for grand fir, 22.8 to 20.5 for 
lodgepole pine, 10.7 to 1.9 for western hemlock, 
and 14.0 to 8.0 for red alder total AGB respectively. 
The RMSE for bole biomass estimation was reduced 
by 2.3, 0.2, 6.9, 10.1, and 2.0 percent for Douglas-
fir, grand fir, lodgepole pine, western hemlock, and 
red alder respectively by using the extended SUR 
approach instead of the simple SUR. It is logical 
because one would, for example, expect differences, at 
least, in the bole biomass for a tree with same D.B.H. 
but different height which would not be accounted for 
by D.B.H. only models.

However, it should be noted that even though the 
RMSE for total AGB is decreased by using the 
extended SUR, the RMSE for some component 
biomass increased (Fig. 2). This could have been 
avoided by not constraining the extended SUR models 
i.e. fitting independent component models rather than 
fitting a system of equations which in turn would have 
affected the additivity of the component models.

The beta, Dirichlet, and MLR unbiasedly predicted the 
proportions of biomass in different components. These 
methods consistently produced smaller values for bias 
and RMSE compared to the FIA-CRM, FIA-PNW, and 
Jenkins methods but there were some exceptions when 
these methods were compared against the simple and 
extended SUR methods (Table 2). There was no clear 
winner within this group of methods.

The beta regression produced smaller RMSEs 
compared to the simple SUR models except for grand 
fir foliage and bark biomass and Douglas-fir branch 
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biomass while it produced smaller RMSEs than the 
extended SUR models except for grand fir foliage, 
bark, and branch biomass. It is unclear whether the 
poor performance of beta regression in grand fir 
component proportion estimation is due to smaller 
sample size (n=9) because it performed better than 
both SUR methods for bole mass and better than the 
simple SUR for branch biomass for this species. In 
case of other species-component combinations, beta 
regression produced up to 24.6 and 17.7 percent lower 
RMSE for conifers and up to 46.8 and 40.9 percent 
lower RMSE for red alder compared to the simple and 
extended SUR methods respectively.

The Dirichlet regression also produced smaller RMSEs 
compared to SUR methods with some exceptions. It 
specifically performed poorly for red alder producing 
up to 32.1 and 22.3 percent higher RMSE compared to 
simple and extended SUR methods respectively. In the 
case of conifers, it produced smaller RMSEs compared 
to simple SUR except for Douglas-fir branch 

biomass while it performed better than extended SUR 
except for western hemlock bark and grand fir branch 
biomass estimation.

The MLR consistently produced smaller RMSEs 
compared to simple SUR methods for all species and 
all components. It also produced smaller RMSEs 
compared to the extended SUR for all species and 
components except for grand fir branch biomass for 
which it produced 2.7 percent higher RMSE compared 
to the extended SUR method. Once again, one of the 
reasons for this could have been smaller sample size 
(n=9) for grand fir. In a simulation study, Peduzzi and 
others (1996) showed that with less than 10 events 
per predictive variables, the logistic regression model 
produced biased coefficients in both positive and 
negative directions. However, this method provided 
better estimates (up to 4.4 and 6.8 percent smaller 
RMSE compared to simple and extended SUR 
approaches respectively) for other components even 
for grand fir. 

 
 
 
 

Figure 1—Average component biomass estimates produced by the FIA-CRM, FIA-PNW, and Jenkins methods in different species 
(Species are DF = Douglas-fir; GF = Grand Fir; LP = Lodgepole Pine; RA = Red Alder; WH = Western Hemlock).
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Figure 2—RMSE produced by simple and extended SUR approaches in estimating component biomass for different species 
(Species are DF = Douglas-fir; GF = Grand Fir; LP = Lodgepole Pine; RA = Red Alder; WH = Western Hemlock).

Even though the methods or models that are capable 
of predicting biomass at large scale are desired, the 
use of such models without local calibration could 
lead to serious bias due to the differences in scale of 
development and application of such models. Findings 
of this study provide information on the efficiency of 
selected methods in quantifying component and total 
AGB. Methods to predict proportions are promising 
to apportion total AGB to different components. One 
advantage of using Dirichlet regression and MLR 
over beta regression is that these regressions allow 
simultaneous fitting of the component proportions 
and therefore the predicted proportions sum to 1. 
Application of the methods to predict component 
proportions for other species and locations and with 
the larger dataset would further validate their accuracy.
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Table 1—Average bias and RMSE for component and total aboveground biomass produced by the FIA-CRM, 
FIA-PNW, and Jenkins approaches (Species are DF = Douglas-f﻿ir; GF = Grand Fir; LP = Lodgepole Pine; RA = 
Red Alder; WH = Western Hemlock).

Method Species
Bias (kg) RMSE (kg)

Foliage Bark Branch Bole Total Foliage Bark Branch Bole Total

FIA-CRM

DF -79.6 -189.6 -73.3 -109.7 -32.5 126.0 281.1 136.8 289.8 234.5
GF -14.4 -208.7 105.4 -161.2 107.3 24.9 270.6 166.8 255.6 281.0
LP 3.2 -4.8 19.4 25.1 72.4 12.7 12.5 37.9 70.5 101.8
WH -11.2 -148.8 77.7 -184.0 17.6 20.9 184.1 154.3 240.2 88.3
RA -4.8 -29.4 3.5 -27.7 -2.5 6.4 41.2 79.6 53.8 87.7

FIA-PNW

DF -14.9 -143.2 -161.2 182.8 -136.6 37.7 232.5 280.3 311.7 376.1
GF -67.0 -132.4 185.4 114.6 100.7 88.4 175.1 263.6 229.8 265.7
LP 6.6 -3.9 22.7 38.8 64.2 12.0 9.4 40.6 78.7 99.7
WH 34.5 -19.6 166.4 45.0 226.4 49.4 26.9 237.3 81.8 305.7
RA -1.8 -29.6 13.8 19.6 2.1 2.5 41.9 71.0 35.8 71.5

Jenkins

DF -102.1 -255.5 -134.8 -93.8 -586.2 176.0 418.7 246.5 597.6 1327.7
GF -7.0 -174.7 125.9 180.0 124.2 16.3 228.5 188.1 249.4 203.9
LP 3.5 -18.7 29.7 49.1 63.6 9.9 26.7 44.6 102.5 104.2
WH 7.0 -103.8 128.9 216.8 248.9 13.6 136.2 185.0 305.8 323.9
RA -3.6 -26.8 17.5 61.0 48.2 5.0 38.8 81.3 80.3 105.6

Table 2—Average bias and RMSE of component biomass produced by the beta, multinomial logistic, and 
Dirichlet regression approaches (Species are DF = Douglas-fir; GF = Grand Fir; LP = Lodgepole Pine; RA 
= Red Alder; WH = Western Hemlock). Predicted component biomass was obtained by applying predicted 
proportions to the observed total aboveground biomass.

Method Species
Bias (kg) RMSE (kg)

Foliage Bark Branch Bole Foliage Bark Branch Bole

Beta

DF -0.218 -2.619 -1.221 2.994 15.3 20.0 72.5 79.8
GF 1.109 -0.392 -0.152 -0.320 13.7 14.3 24.3 36.0
LP -0.122 0.105 -0.111 -0.766 5.9 6.6 22.2 25.5
WH 0.811 -0.386 1.330 -1.567 13.6 5.4 32.8 43.2
RA 0.350 -0.258 3.801 -3.230 1.9 4.2 22.4 20.8

MLR

DF 0.001 -0.005 -0.004 -0.083 17.2 23.2 63.7 74.3
GF -0.002 0.000 0.001 0.001 9.4 6.1 25.7 35.4
LP -0.007 -0.006 -0.025 -0.114 7.0 6.5 21.6 27.9
WH 0.009 0.008 0.042 0.108 11.4 5.1 29.8 40.8
RA -0.001 -0.017 -0.023 -0.173 1.1 2.6 13.6 12.9

Dirichlet

DF -1.948 -2.971 6.807 -1.979 17.5 24.3 70.8 83.0
GF -0.832 0.177 -0.312 0.968 9.4 6.0 24.7 33.5
LP -1.515 -1.356 0.729 1.990 7.5 7.0 21.7 28.6
WH 1.473 -2.130 5.325 -4.501 13.3 7.1 34.9 45.7
RA -0.859 -5.289 15.286 -9.353 1.6 15.8 51.6 35.6
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LEGACY TREE DATA: A NATIONAL DATABASE OF DETAILED TREE 
MEASUREMENTS FOR VOLUME, WEIGHT,  

AND PHYSICAL PROPERTIES

P.J. Radtke, D.M. Walker, A.R. Weiskittel, J. Frank, J.W. Coulston, J.A. Westfall1

Abstract—Forest mensurationists in the United States have expended considerable effort 
over the past century making detailed observations of trees’ dimensions. In recent decades 
efforts have focused increasingly on weights and physical properties. Work is underway 
to compile original measurements from past volume, taper, and weight or biomass studies 
for North American tree species. To date, taper records have been recovered from over 
150,000 trees, and biomass records from another 22,000. Upon completion the database 
will serve many purposes including the development and testing of taper, volume, and 
biomass estimators for about thirty U.S. tree species that comprise roughly two-thirds of 
the Nation’s growing stock. The work is going very well, especially for eastern species that 
currently make up a majority of the collection to-date. Work will continue in the East, but 
a major emphasis going forward will be the collection of data sets from western species.

INTRODUCTION
Forest mensurationists in the United States have 
expended considerable effort over the past century 
making detailed observations of trees’ dimensions 
and physical properties. Many studies involved 
felling trees to make dimensional measurements of 
main stem attributes including: scaling diameters and 
lengths of merchantable logs (Allen, 1902; Kenety, 
1917); determination of cubic foot volumes, taper, 
bark thickness, and internal defects (Hornibrook, 
1950; Pemberton, 1924); and tree-ring analysis for 
reconstructing height and diameter growth over time 
(Bishop et al., 1958). Stem wood and bark physical 
properties have been carefully studied in felled-tree 
studies, including extensive efforts carried out by the 
Forest Service to characterize wood specific gravity 
in commercially important species (Maeglin and 
Wahlgren, 1972; Mitchell, 1964).

Interest in estimating biomass yields and production 
have necessitated studies involving the green and 
dry weight contents of felled trees, including branch 
and foliage components together with stem wood 
and bark, and roots (Whittaker and Woodwell, 1968). 
The collection of felled tree data has continued 
to the present time, with measurement protocols 
varying to suit underlying research goals. Often the 
goals involve the measurement of stem dimensions 
along with weights and basic physical properties of 
aboveground components (Saucier and Clark, 1985). 
Studies primarily concerned with outside-bark stem 
dimensions have successfully relied on nondestructive 
techniques including the use of optical dendrometers 
or direct measurement with the use of ladders or 
climbing ropes (Reed, 1926; Westfall and Scott, 2010).

Despite shifting interests and research goals over time, 
researchers have recognized the value of incorporating 
information from past studies into new analyses 
and tools. Often summary results such as tables or 
equations are used in place of original measurements 
because the original data are not available (Jenkins 
et al., 2003). Challenges with standardizing 
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measurements collected using different protocols or 
instruments have also been noted to be problematic 
(Wiemann and Williamson, 2012). Despite these 
challenges, many original data sets listing detailed 
tree measurements are known to exist, and methods 
exist for standardizing or “harmonizing” data collected 
using different tools and methods (Stahl et al., 2012). 
The goal of this work is to compile a comprehensive 
set of detailed field and laboratory measurements for 
use in developing estimators of standing tree volume, 
weight, and carbon contents. A further goal is to 
develop a sharable repository to facilitate long-term 
archival and re-use of legacy tree data for a wide range 
of research or management applications.

APPROACH
Facilities and individuals affiliated with the U.S. 
Forest Service, universities, private companies, and 
various other institutions were identified as potential 
points of contact for acquiring legacy data. An initial 
review of published research articles, written reports, 
and theses and dissertations was conducted to find data 
sets directly incorporated into written materials. When 
only available as paper copies, print materials were 
scanned to digital image format, primarily as multi-
page portable document format (PDF) files. Optical 
character recognition (OCR) software was used to 
extract tabular data from PDF files or other digital 
images into ASCII text. Other printed lists of tree-
related measurements such as unpublished computer 
printouts were also digitized using OCR when original 
digital files could not be found.

Many electronic files were obtained and processed 
using a range of hardware and software tools to 
compile measurement data into ASCII text files 
that could be easily shared and transferred to other 
computer software for management, analysis, and 
public distribution where allowed by data set owners. 
Non-print media obtained with viable data sets 
included punched cards, reel- and cartridge-type 
magnetic tape, floppy disks, CD-rom optical disks, 
hard disk drives, and portable media such as USB 
thumb drives or files transmitted over the Internet. 
A range of binary file formats were encountered 

including several from electronic spreadsheet, 
database management, and statistical analysis 
software. Data originated from various operating 
systems including VAX/VMS®, MS-DOS®, Microsoft 
Windows®, Unix®, Linux®, and Apple® O/S versions 
spanning over thirty years of change in mainstream 
computer technology.

Hand-written paper forms were also common, 
including field-tally sheets, Forest Service 558a forms, 
keypunch forms, and various notebooks containing 
field and laboratory records. These data were entered 
manually since OCR was ineffective at digitizing 
hand-written entries. It was also necessary to manually 
enter data from some printouts of fixed-width 
computer files, since OCR has only limited ability to 
determine the number of blank spaces strung together 
in a sequence. Scatterplot digitization software was 
used to efficiently extract stem taper diameter and 
height coordinate pairs from 558a forms (p. 71; 
Chapman and Demeritt, 1936).

Legacy Tree Database
A relational database schema was developed to 
accommodate the range of attributes and study designs 
represented in legacy data sets. The public view of the 
database contains roughly 575 attributes, including 
key fields, arranged into seven basic tables (Table 
1—Legacy database relational tables and selected 
attributes in each table. Relational keys not shown.). 
With few exceptions, the tree was the basic unit of 
observation in the database. A few studies were added 
to the compilation that collected specimens or samples 
deemed useful for the development of biomass 
estimators even if no tree-level data were available. An 
example was a set of wood and bark moisture content 
measurements collected from quaking bolts upon 
delivery to a mill.A number of primary and secondary 
keys link relevant observations among tables and 
provide flexibility to add measurements to the 
database without restructuring the underlying database 
structure. Widely-used and freely-available software 
tools, such as PostgreSQL, Apache Server, and PHP 
were used as much as possible to promote accessibility 
and encourage adoption of the database structure or its 
contents over the WWW.
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Table 1—Legacy database relational tables and selected attributes in each table. Relational keys not shown.

Table No. Attributes Typical Attributes
LOCATION 30 Source; LAT/LON; Study design; 

TREE 400 Size; Component; Weight; Volume; MC; SG; Protocol

STEM 10 Taper

SECTION 35 Dimensions; Weight

DISK 50 MC; SG; Bark; Wood

BRANCH 35 Position; Dimensions; Component; Weight

CORE 15 SG

Figure 1—Examples of print and electronic media containing legacy tree data records.
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STATUS AND DISCUSSION
To-date, 220 distinct data sets containing 174,115 
individual trees have been fully incorporated into the 
database format, with many others not yet fully digitized 
or formatted to match the legacy database structure. 
Over 151,000 trees having stem taper measurements 
are included, along with about 22,000 and 11,000 trees 
having dry weights and green weights, respectively 
(Table 2—Number of Legacy trees having dry and 
green weight records and taper measurements for 
selected species.). Mainly just those species represented 
by 100 or more trees measured for stem taper are 
shown in Table 2—Number of Legacy trees having 
dry and green weight records and taper measurements 
for selected species., except for a few commercially 
important western species that are currently 
underrepresented in the collection and others that have 
stem forms not conducive to taper measurements.

Tree records from the Southern Region make up 
the largest subset of legacy data to-date, with 45% 
of all taper data being from the four major southern 
yellow pines, sweetgum, and yellow-poplar. The high 
proportion of data from southern species is a result of 
several factors: 1) that the work was aided by a small 
number of individuals who were able to assist us in 
obtaining large collections of tree biomass and taper 

data from the Southeast; 2) that our search began with 
southern and eastern locales, and only recently has 
been expanded to find comparable data sets further 
north and west; and 3) that many northern and western 
studies of stem volumes were conducted decades 
earlier than southern studies, especially in southern 
pines which have been intensively managed only since 
about 1950 (Fox et al., 2007).

Efforts to recover legacy data will continue under the 
auspices of this work for some time, with increased 
attention given to the recovery of data sets in all 
geographic regions of the United States. Significant 
collections of Central American and Canadian 
legacy data have been identified that may be suitable 
to include with the legacy tree database as well 
(Navar et al., 2013; Ung et al., 2008). Including 
trees outside of U.S. borders may aid in developing 
models for species whose ranges are not limited to the 
contiguous 48 states. The database design includes 
tools for continuously adding legacy records so 
that ongoing work or newly recovered data may be 
added to the compilation; further, as field researchers 
and practitioners gain familiarity with standardized 
sampling protocols, measurement attributes, and the 
existence of public data repositories like this one, the 
number of contributions is expected to grow.
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Table 2—Number of Legacy trees having dry and green weight records and taper measurements 
for selected species.

Common_Name SPCD Dry wt. Green wt. Taper Common_Name SPCD Dry wt. Green wt. Taper

balsam fir 12 271      23           1,459     hackberry spp. 460 16           14           242        

white fir 15 12        30           941        flowering dogwood 491 140         60           290        

subalpine fir 19 169      - 217        common persimmon 521 11           6             104        

Alaska yellow-cedar 42 4          - 737        American beech 531 339         10           1,077     

Atlantic white-cedar 43 - - 259        ash spp. 540 467         279         686        

eastern redcedar 68 655      17           894        white ash 541 161         71           388        

tamarack (native) 71 26        - 167        black ash 543 - - 163        

western larch 73 77        - 15          green ash 544 43           43           164        

Engelmann spruce 93 107      - 600        loblolly-bay 555 - - 134        

white spruce 94 340      57           1,277     American holly 591 22           13           129        

black spruce 95 415      9             1,148     black walnut 602 1             1             299        

red spruce 97 155      48           450        Arizona walnut 606 190         - -

Sitka spruce 98 - - 224        sweetgum 611 780         771         5,810     

jack pine 105 224      - 3,080     yellow-poplar 621 440         416         4,767     

sand pine 107 138      - 652        magnolia spp. 650 175         - 37          

lodgepole pine 108 505      19           204        cucumbertree 651 1             1             157        

shortleaf pine 110 481      397         6,470     sweetbay Magnolia 653 17           8             417        

slash pine 111 991      833         14,208   water tupelo 691 202         203         348        

spruce pine 115 75        1             182        blackgum 693 137         32           1,189     

sugar pine 117 4          - 217        swamp tupelo 694 184         203         1,655     

western white pine 119 96        - 36          bay spp. 720 188         - -

longleaf pine 121 751      787         6,088     American sycamore 731 41           40           430        

ponderosa pine 122 543      254         2,890     poplar spp. 740 170         142         286        

Table Mountain pine 123 100      - 151        balsam poplar 741 21           16           215        

red pine 125 129      - 2,665     eastern cottonwood 742 72           - 176        

pitch pine 126 117      - 553        bigtooth aspen 743 85           - 566        

pond pine 128 118      18           1,157     quaking aspen 746 535         12           2,517     

eastern white pine 129 236      77           2,642     black cherry 762 145         78           825        

loblolly pine 131 3,450   2,950      31,146   oak spp. 800 113         6             707        

Virginia pine 132 190      216         3,121     white oak 802 491         380         5,284     

singleleaf pinyon 133 102      76           - scarlet oak 806 159         142         1,700     

Austrian pine 136 - - 285        northern pin oak 809 - - 127        

Douglas-fir 202 548      18           1,349     southern red oak 812 92           84           1,900     

baldcypress 221 28        28           290        cherrybark oak 813 19           19           414        

pondcypress 222 93        83           696        laurel oak 820 48           48           1,187     

northern white-cedar 241 20        - 273        overcup oak 822 4             4             183        

western redcedar 242 66        - 540        swamp chestnut oak 825 1             1             244        

hemlock spp. 260 - - 216        water oak 827 218         234         2,126     

eastern hemlock 261 58        32           623        Texas red oak 828 - - 107        

western hemlock 263 91        - 615        willow oak 831 72           72           520        

red maple 316 709      391         3,864     chestnut oak 832 156         150         2,512     

silver maple 317 14        14           211        northern red oak 833 332         162         2,371     

sugar maple 318 568      92           1,861     post oak 835 37           30           1,163     

buckeye spp. 330 - - 113        black oak 837 128         139         1,923     

birch spp. 370 95        69           469        live oak 838 - - 238        

yellow birch 371 466      20           773        black locust 901 29           21           514        

sweet birch 372 38        32           145        basswood spp. 950 32           32           360        

paper birch 375 304      - 1,562     American basswood 951 31           - 510        

hickory spp. 400 281      199         2,993     elm spp. 970 68           56           820        

pecan 404 8          - 101        American elm 972 133         - 241        

shagbark hickory 407 - - 128        unknown/other tree 999 573         46           855        

All species 22,373    11,164    151,139 

No. Legacy Trees No. Legacy Trees
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GAPS IN SAMPLING AND LIMITATIONS  
TO TREE BIOMASS ESTIMATION:  

A REVIEW OF PAST SAMPLING EFFORTS OVER THE PAST 50 YEARS

Aaron Weiskittel, Jereme Frank, James Westfall, David Walker, Phil Radtke, David Affleck,  
David Macfarlane1

Abstract—Tree biomass models are widely used but differ due to variation in the quality 
and quantity of data used in their development. We reviewed over 250 biomass studies 
and categorized them by species, location, sampled diameter distribution, and sample 
size. Overall, less than half of the tree species in Forest Inventory and Analysis database 
(FIADB) are without a published biomass model and most of the sampled trees are 
less than 13 inches diameter at breast height (d.b.h.). Although some species are well 
represented with biomass sampled, most focus on the aboveground components and as a 
result, there are important spatial gaps in their sampling as there was general divergence 
between the observed and sampled biomass centroids. In addition, most studies we 
analyzed did not sample trees of poor form or vigor, which means the models may not be 
representative of the larger population. Currently, this information is being used to address 
existing biomass sampling gaps in order to develop more robust prediction models.  

Tree-level biomass models are generally derived by 
destructively sampling a subset of trees, drying and 
weighing their components, and using allometry to 
relate some easily measured metric (e.g., diameter) to 
the whole tree or component dry weight. Due to high 
costs, most biomass studies sample a small number of 
trees over a limited area, thus making extrapolation 
to different locations or larger areas difficult due to 
differences in climate, site characteristics, management 
practices, tree form, and other properties across the 
landscape. As such, those seeking to derive stand- and 
landscape-level biomass estimates generally rely on 
geographically generalized allometric models that use 
data from multiple studies and locations to refit models 
to a larger area (e.g., Schmitt and Grigal 1981) or use 
pseudo-data (Jenkins et al. 2003, Pastor et al. 1984).

In addition, many biomass studies group species to 
ensure an adequate sample size for model fitting. For 
example, the ratio estimators of Jenkins et al. (2003) 
were generalized for 10 species groups across the 
United States. In theory, generalized models should 
perform well at the scale for which they are developed, 
however, when applied to a single site or region or a 
particular species, errors could be high. 

With the assumption that gaps in previous sampling 
efforts could cause generalized model bias, we 
formally examined the existing body of biomass 
literature. Our objectives were to document existing 
studies’ coverage in terms of: 1) geography; 2) 
species; 3) components measured; 4) size and diameter 
distribution; and 5) sample size. We utilized USDA 
Forest Service FIA database (FIADB; O’Connell et al. 
2014) for comparisons to a substantial compilation of 
destructively sampled “legacy” trees to assess gaps.
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of Montana; and Associate Professor (DM), Department of 
Forestry, Michigan State University. AW is corresponding author: 
to contact, e-mail at aaron.weiskittel@maine.edu.
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METHODS
For each published biomass study, we recorded the 
author, year, species, and location. All studies we 
examined were conducted in the United States. Sample 
size, average, minimum, and maximum tree diameter, 
and sampled components by location and species were 
noted. We examined each article to determine if tree 
sampling restrictions were imposed as evidenced by 
avoiding trees of poor form (e.g., low forks or broken 
tops), poor health (e.g., high risk of mortality, lacking 
vigor, or diseased).  

Generally, we could estimate the geographic 
coordinates within 0.05°. However, for some 
articles, the coordinate precision was considerably 
lower because the location description was too 
general or area sampled too large. To assess whether 
the sampled biomass represented the biomass 
distribution across a species’ range, we developed 
maps showing past biomass study locations for 
the 20 most voluminous eastern species and 10 
most voluminous western species with FIA derived 
biomass per acre. The observed aboveground FIA 
biomass centroid and the derived legacy biomass 
centroid were also plotted.

The number of trees sampled was summarized by 
five specific geographic regions: 1) Northeast (NE); 
2) Southeast (SE); 3) Inter-mountain West (IMW), 
4) Pacific Northwest (PNW) and 5) North Central 
(NORCEN). 

Although Wang (2014) identifies 47 different 
biomass component classes, eight major component 
groups were summarized in this analysis, which 
included: 1) stem wood; 2) stem bark; 3) total stem 
(wood & bark); 4) branch wood and bark; 5) total 
aboveground wood and bark (excluding foliage); 6) 
total aboveground (including foliage); 7) foliage; and 
8) root biomass. As a metric for balancing the number 
of trees sampled (n_legacy) and the percentage of 
biomass across the landscape (pct_bio), we calculated 
a sampling completeness value (SCV) as n_legacy/
pct_bio/10

RESULTS
We examined 262 studies with 43,006 trees. Thirty 
studies contained nearly 62 percent of these trees with the 
work of Clark et al. (1986) contributing nearly 5,000 trees 
and a comprehensive sampling across the SE. Young et 
al. (1980) sampled over 900 trees in Maine, while Perala 
and Alban (1980) sampled extensively across the Great 
Lakes region. To date, we have compiled original data 
from over 150 studies with over 15,000 trees. 

There are models or legacy data for 166 of the 346 tree 
species in the Forest Inventory and Analysis database 
(FIADB). Preliminary estimates suggest that the top 
20 species by volume comprise nearly 85 percent of 
the biomass in the FIADB and 47 percent of the trees 
destructively sampled in the literature. Though 95 
percent of the trees are less than 13 inches diameter at 
breast height (d.b.h) (Fig. 1), 95 percent of the hardwood 
and conifer biomass in FIADB is contained in trees less 
than 26 inches and 43 inches d.b.h., respectively. 

Of the 262 studies, we could not discern whether 
175 studies (25,372 trees) sampled with restrictions. 
We determined that 42 studies (4,291 trees) imposed 
sampling restrictions while 45 studies (10,820 trees) 
were random in their selection methods. Generally, the 
restrictions were evidenced in methodologies that avoided 
trees that were open-grown, heavily defoliated, broken at 
the top, low-forked, diseased, or otherwise distorted. 

Maps for four example species indicate a general 
divergence between the observed and sampled centroids 
(Fig. 2). The Allegheny Plateau was an observed center 
of species biomass. Only eight trees were sampled for 
red maple (Acer rubrum L.) in this area (Wood 1971) 
and none of the trees were over 11.8 inches d.b.h.

With regard to biomass components, we identified 
24,412 trees that have been destructively sampled for 
above stump (≥ 0 inches) biomass across the United 
States (Table 1). Most of these trees (19,862) measured 
stem biomass, while 16,559 and 12,961 provided 
estimates of wood and bark, respectively. Branch and 
foliage biomass were estimated for 19,431 and 21,510 
trees, respectively. A smaller number of trees contain 
estimates for total aboveground biomass (AGB) 
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leaving the stump component poorly represented. 
Although root biomass contain 17 percent of the whole 
tree (FIADB), it is largely under-sampled as only 
3,834 trees had root biomass measurements.

Table 2 shows the FIADB proportion by species, region, 
and diameter class compared to the number of legacy 
trees sampled for aboveground wood and bark biomass. 
This summary is an estimation of biomass using the 
trees measured in the FIADB without accounting for 

the density of plots. Representation is good for the 
top 20 percent of biomass, but there is an obvious gap 
in large Douglas-fir (Pseudotsuga menziesii (Mirb.) 
Franco)  trees. Certain hardwoods, such as sugar maple 
(Acer saccharum Marsh.) and northern red oak (Querus 
rubra L.) in the North Central region, and 10-20 inch 
d.b.h. red maple, and northern red oak in the Northeast, 
are relatively undersampled. SCVs indicate good 
representation for major species in the SE. 

Figure 1—Comparison between the frequency of trees by diameter in the Forest Inventory and Analysis (FIA) database and legacy 
databases (top panels) for hardwoods and conifers. Bottom panels show the proportion of biomass by diameter in the FIA database. 
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DISCUSSION
Three primary sampling gaps were observed in this 
assessment: 1) larger diameter classes (>25 inches 
d.b.h.); 2) root biomass; and 3) spatial gaps. Examining 
the top four species by volume in the United States, we 
observed gaps in the southern Cascades in Douglas-fir. 
Sampling here would pull the legacy biomass centroid 
towards the FIA biomass centroid. Red maple studies 
were largely absent in the Allegheny Plateau and 
northern Michigan, while ponderosa pine observations 
were largely absent in eastern Oregon. 

We present SCV to assess whether sampling intensity 
is sufficient. The largest gaps had a high percentage 
of biomass in the FIADB and low number of trees 
sampled. Consequently, the lower the SCV value 
the bigger the gap. Since funding poses a serious 

limitation for this type of research, we might set 
an SCV goal of 1 and assess how many trees, by 
grouping, need sampled. Where the SCV exceeds the 
SCV goal we would have a sufficient sample under 
this scenario. Otherwise we would prioritize trees with 
the lowest SCV (e.g., large Douglas-fir trees in the 
PNW, red oak in the NORCEN, and eastern white pine 
(Pinus strobus L.) in the NE). 

Nearly half of the studies likely imposed some sort of 
sampling restriction. While the CRM method applies 
a cull volume deduction to the stem, most generalized 
biomass models do not obviously account for this 
and may overestimate for poorly formed unhealthy 
trees. We recommend that future studies examine how 
variation in tree form and health influences biomass 
and carbon content estimation.

Figure 2—Known biomass study locations and maximum sample size sampled for the four most prevalent species by volume across the 
United States plotted over biomass per acre as estimated from the FIA database. Centroids are calculated only for studies with actual data. 
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FIA is currently sampling trees across the United 
States to fill in current species-, spatial-, and size-
related gaps. Emphasis is on sampling large trees and 
recent work has been conducted in Pennsylvania, 
Oregon, and Michigan. The costs associated with 
destructively sampling trees can be incredibly high. 
As such, university partners are seeking additional 
collaborators to share resources and knowledge to 
achieve common goals. 	
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RATIO EQUATIONS FOR LOBLOLLY PINE TREES

Dehai Zhao, Michael Kane, Daniel Markewitz, Robert Teskey1

Abstract—The conversion factors (CFs) or expansion factors (EFs) are often used to convert 
volume to green or dry weight, or from one component biomass to estimate total biomass or other 
component biomass. These factors might be inferred from the previously developed biomass and 
volume equations with or without destructive sampling data. However, how the factors are related 
to tree size such as DBH, height or tree volume had not been examined. Using the tape and 
biomass measurement data of about 2000 destructively sampled loblolly pine trees, we developed 
several nonlinear equations to relate ratios between stem green/dry weights and stem volume to 
DBH and height, or tree volume. We also developed tree fractional biomass component equations 
with the Dirichlet regression and logratio regression approaches. These two approaches guarantee 
all component proportions sum to 1, and have almost the same performance. The ratios are 
functions of tree size and can be better estimated by DBH and HT than by stem volume.

The conversion factors (CFs) and expansion factors (EFs) are commonly used to convert 
tree volume to green and dry weights or from one component or total biomass to other 
components. These factors are usually derived from previously developed biomass and/
or volume equations. How the factors are related to tree size had not been formally tested. 
Traditionally, separate tree fractional biomass component equations were developed, but 
this approach cannot hold the constraint that all component proportions sum to one. Using 
loblolly pine expanded datasets and new modeling approaches, in the study we developed a 
series of ratio equations for: (1) ratio of stem total green weight to total outside volume, (2) 
ratio of stem-wood dry weight to total outside volume, (3) proportions of stem-wood and bark 
in stem biomass, and (4) proportions of stem-wood, bark, branch, and foliage components in 
total tree aboveground biomass. We also compared two new modeling approaches.

DATA AND METHODS
Data are from (1) 1280 trees with taper measurements 
and green weight of cut-bolts, from which tree stem 
outside volume and stem green weight with bark were 
calculated; (2) 274 trees with taper measurements, 
green weights of disks, and dry weight without bark, 
from which tree stem outside volume, stem green 
weight with bark, and dry weight of stem without bark 
were calculated; (3) 481 new destructively sampled 
trees with taper measurements, green weights of cut-
bolts and branch with foliage, green weights of disks, 
subsampled branch with foliage, dry weights of disk 
wood, bark, branch and foliage. For the new sampled 
trees, stem green weight, dry weight of stem without 

bark (stem-wood), dry weight of bark, dry weight of 
branches, and dry weight of foliage were calculated 
for each tree. Stem volume for each tree was obtained 
using Bailey’s (1995) over-lapping-bolts method.

For the ratio of stem weight to volume, the ratio 
equations were fitted in a system of stem volume, stem 
green or dry weight, and ratio equations with NSUR 
approach following Zhao et al. (2015) 4-step fitting 
strategies. The ratio equations were also directly fitted 
to stem volume using the OLS.

The Dirichlet regression Model (DRM) and log-ratio 
regression OLS Model (LGRM) approaches were 
used to model stem biomass composition and total 
aboveground biomass composition.
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RESULTS
The ratio of stem green weight to volume ( /gw vR ) and ratio of stem dry weight to volume ( /dw vR ) can be estimated 
by tree diameter at breast height (DBH, cm) and total height (HT, m) or stem outside volume (VOL, m3):

 , or

Proportions of stem-wood and bark in stem biomass can be estimated with the following equations:

Biomass allocation in total tree aboveground biomass can be estimated by DBH and HT using either DRM or LGRM:
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DISCUSSION AND CONCLUSIONS
Both the Dirichlet regression and log-ratio regression 
approaches can be used to model biomass allocation, 
with almost the same performance. The approaches 
guarantee all components sum to one. The models 
based on DBH and HT perform better than the model 
based on stem volume only.
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THE 2014 TANANA INVENTORY PILOT:  
A USFS-NASA PARTNERSHIP TO LEVERAGE ADVANCED REMOTE 

SENSING TECHNOLOGIES FOR FOREST INVENTORY

Hans-Erik Andersen1, Chad Babcock2, Robert Pattison3, Bruce Cook4, Doug Morton4, and Andrew Finley5

Abstract—Interior Alaska (approx. 112 million forested acres in size) is the last 
remaining forested area within the United States where the Forest Inventory and Analysis 
(FIA) program is not currently implemented. A joint NASA-FIA inventory pilot project 
was carried out in 2014 to increase familiarity with interior Alaska logistics and evaluate 
the utility of state-of-the-art high-resolution remote sensing (lidar+hyperspectral+thermal 
airborne imaging) to support an FIA inventory of interior Alaska.  

DATA DESCRIPTION
In the 2014 Tanana inventory pilot project, FIA plots 
were established at a 1:4 intensity (or 1 plot per 24,000 
acres) on a regular (i.e. systematic) hexagonal grid 
across both Tanana Valley State Forest and Tetlin 
National Wildlife Refuge, within the Tanana valley 
of interior Alaska. The relatively sparse FIA field 
plot sample described was augmented with sampled 
airborne remotely-sensed data acquired with the 
G-LiHT (Goddard-Lidar/Hyperspectral/Thermal) 
system to increase the precision of inventory parameter 
estimates. G-LiHT is a portable, airborne imaging 
system, developed at NASA-Goddard Space Flight 
Center, that simultaneously maps the composition, 
structure, and function of terrestrial ecosystems using 
lidar, imaging spectroscopy, and thermal imaging. 
G-LiHT provides high-resolution (~1 m) data that 

is well suited for studying tree-level ecosystem 
dynamics, including assessment of forest health and 
productivity of forest stands and individual trees. In 
addition G-LiHT data support local-scale mapping 
and regional-scale sampling of plant biomass, 
photosynthesis, and disturbance.  The data is accurately 
georeferenced and can be matched very precisely 
with field plot data that are georeferenced using high-
accuracy (dual-frequency, GLONASS-enabled) GPS. 
G-LiHT data was acquired in July-August, 2014 along 
single swaths (250 meters wide) spaced 9.3 km apart 
over the entire Tanana inventory unit (135,000 sq.km). 
Standard (design-unbiased, plot-based) FIA estimation 
approaches are compared with model-assisted (i.e. 
approximately design-unbiased) and model-based 
(spec. Bayesian hierarchical) approaches which utilize 
relationships between field measurements and G-LiHT-
derived structural and spectral metrics. 

Several modified FIA field measurement protocols 
were used to provide additional information on 
boreal forest conditions, including: 1) Ground cover 
measurements to quantify biomass/carbon of lichens 
and mosses, 2) Soil core sampling to quantify soil 
carbon content , 3) Two microplots to increase 
sample of small (1”-5”) diameter trees , and 4) High-
precision GPS to enable accurate registration of field 
plots to airborne remote sensing data. Preliminary 
analyses indicate a strong relationship between 
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lidar-derived variables and forest inventory metrics 
and also suggest that the addition of a second 
microplot at subplot locations further improves 
model fit for biomass prediction in the boreal 
forestes of interior Alaska.

ANALYSIS METHODS
In this study three different approaches were used 
to estimate forest inventory variables of interest; 
with particular emphasis on estimation and mapping 
of aboveground carbon. The three estimation 
procedures include 1) the standard, design-based 
approach currently used by the annual FIA inventory 
for estimation of  inventory parameters  within 
the contiguous US, 2) a model-assisted technique 
where sample collections of remote sensing data 
can be incorporated into the estimation procedure 
to potentially decrease uncertainty while still being 
approximately design-unbiased; and 3) a Bayesian 
multilevel h i e r a r c h i c a l  modeling approach. 
We plan to assess the accuracy and bias of the 
three approaches experimentally via simulation and 
application within the Tanana Valley State Forest and 
Tetlin National Wildlife Refuge, using the field and 
remote sensing data collected during the 2014 Tanana 
Inventory Pilot project.

CONCLUDING REMARKS
Given the remoteness (i.e. lack of transportation 
infrastructure) and size of interior Alaska, it is 
prohibitively expensive to implement a FIA inventory 
at the same sampling intensity as the lower 48 (1 
plot per 6000 acres). It is also expected that remote 
sensing (both airborne and spaceborne) will be 
heavily relied-upon to achieve acceptable levels 

of precision for inventory estimates in interior 
Alaska (i.e. levels that will provide a clear picture of 
present status and important trends in forest resource 
conditions).  By comparing design and modelbased 
approaches we will gain understanding about how 
model bias influences forest inventory estimates 
for interior Alaska and determine if it is possible 
to obtain approximately design-unbiased inventory 
estimates while leveraging the flexibility of model
based approaches.
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A BAYESIAN HIERARCHICAL MODEL FOR SPATIO-TEMPORAL 
PREDICTION AND UNCERTAINTY ASSESSMENT USING REPEAT 

LIDAR ACQUISITIONS FOR THE KENAI PENINSULA, AK, USA

Chad Babcock1, Hans-Erik Andersen2, Andrew O. Finley3, and Bruce D. Cook4

Abstract—Models leveraging repeat LiDAR and field collection campaigns may be one 
possible mechanism to monitor carbon flux in remote forested regions. Here, we look to 
the spatio-temporally data-rich Kenai Peninsula in Alaska, USA to examine the potential 
for Bayesian spatio-temporal mapping of terrestrial forest carbon storage and uncertainty.

INTRODUCTION AND MOTIVATIONS
Models leveraging repeat LiDAR and field collection 
campaigns may be one possible mechanism to monitor 
carbon flux in remote forested regions. Hopkinson et 
al. (2008) showed that it is possible to detect growth 
using repeated LiDAR collections for a pine plantation 
in Ontario, Canada. Plot-level field measures of forest 
height increment paralleled corresponding changes in 
LiDAR height, indicating that it may be possible to 
track forest growth by monitoring change in LiDAR 
metrics from year to year. Yu et al. (2008) constructed 
difference metrics by subtracting LiDAR variables 
derived from repeat LiDAR collections. Using these 
as predictor variables in a linear regression, they 
showed that forest height and volume increment can be 
predicted moderately well in a boreal forest in Finland. 
Hudak et al. (2012) developed biomass maps for two 
LiDAR acquisitions over a mixed conifer forest in 
Idaho, USA and showed that, even when LiDAR point 
densities differed dramatically between the datasets, 
it was possible to estimate change in biomass by 
subtracting the two predicted maps.

Considering the demonstrated ability of multi-temporal 
LiDAR to estimate forest growth, it is not surprising 
that there is great interest in developing forest carbon 
monitoring strategies that rely on repeated LiDAR 
acquisitions for remote areas. Allowing for sparser 
field campaigns, LiDAR stands to make monitoring 
forest carbon cheaper and more efficient than field-
only sampling procedures. There are issues concerning 
the few procedures currently proposed to assess 
growth, and subsequently carbon flux, using multi-
temporal LiDAR though. Most linear regression 
approaches implicitly assume that remote sensing 
and field data are collected in the same season, which 
is problematic for most large-area field inventory 
campaigns. To increase spatial field sampling coverage 
without incurring extra cost, typically, only portions of 
the network of permanent sample plots are remeasured 
each year. Since the LiDAR and field data need to 
be coincident for proper calibration, the researcher 
is forced to discard all inventory data from other 
years or otherwise assume temporal misalignments 
to be negligible. We need methods capable of using 
temporally disjointed data appropriately. Further, 
subtracting maps of separately predicted forest 
biomass does not allow for prediction uncertainty 
to be properly carried through to the estimation of 
carbon flux. Without an accurate and useful assessment 
of carbon flux uncertainty, we have no way of 
understanding if predicted values are reliable.
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Here, we look to the spatio-temporally data-rich Kenai 
Peninsula in Alaska, USA to examine the potential 
for Bayesian spatio-temporal mapping of terrestrial 
forest carbon storage and uncertainty. The modeling 
framework explored here can predict forest carbon 
through space and time, while formally propagating 
uncertainty through to prediction. Bayesian spatio-
temporal models are flexible frameworks allowing for 
forest growth processes to be formally integrated into 
the model. By incorporating a mechanism for growth-
--using temporally repeated field and LiDAR data---
we can more fully exploit the information-rich field 
inventory network to improve prediction accuracy.

MOTIVATING DATASET 
DESCRIPTION
LiDAR data for the Kenai Peninsula has been 
collected on four different occasions---spatially 
coincident LiDAR strip samples in 2004, 09 and 14, 
along with a wall-to-wall collection in 2008 (Table 
1). There were 436 inventory locations measured at 
least twice between 2002 and 2014 (Figure 1). Plot 
locations exhibit a clustered configuration of up to 4 
plots within a cluster (Figure 1, inset). Inventory data 
was collected according to the US Forest Service 
Forest Inventory Analysis plot design (Bechtold & 
Patterson, 2005). LiDAR information was acquired 
at least once over most of the inventory plots with 
many having LiDAR collected during 2, 3 or 4 
different campaigns.

Figure 1—Kenai Peninsula study area. The orange region 
represents the coverage area for the 2008 wall-to-wall LiDAR 
dataset. The green areas represent the 2014 LiDAR strip dataset 
coverage. The 2004 and 2009 LiDAR datasets closely (but not 
completely) spatially coincide with the 2014 LiDAR dataset. The 
purple cross hairs locate the inventory plot locations (FUZZED). 
The inset map in the top left area of the figure zooms in on one 
cluster of plot locations. The Alaska state boundary map in the 
lower shows the location of the Kenai Peninsula in red.

Table 1—LiDAR acquisitions

Acquisition year
Strip sampling /  

wall to wall
Strip spacing,  

strip width
Average point  

density
2004 strip sampling 10 km, 300 m 7.88 points/m2

2008 wall to wall NA 1.81 points/m2

2009 strip sampling 10 km, 300 m 4.13 points/m2

2014 strip sampling 10 km, 300 m 7.38 points/m2
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MODEL FRAMEWORK
Bayesian hierarchical spatio-temporal modeling 
frameworks offer a useful solution to the problems of 
temporally misaligned data and uncertainty assessment 
(Cressie & Wikle, 2011). Here, we explore this class 
of models to develop a unified statistical framework 
capable of coupling the temporally misaligned and 
repeated measures of field inventory and LiDAR 
data for the Kenai Peninsula. This framework is 
able to predict forest carbon through space and time, 
while formally propagating uncertainty through to 
prediction. Bayesian spatio-temporal models are 
flexible frameworks allowing for forest growth 
processes to be formally integrated into the model. 
By incorporating a mechanism for growth—using 
temporally repeated field and LiDAR data—we can 
more fully exploit the information-rich field inventory 
network to improve prediction accuracy (Babcock et 
al., In Review). These frameworks also provide access 
to spatially and temporally explicit posterior predictive 
distributions useful for summarizing uncertainty. 
Because predictions of forest carbon for each year 
result from the same model in a spatio-temporal 
framework, it is possible to probabilistically assess 
uncertainty of carbon flux by summarizing posterior 
predictive distributions appropriately.

CONCLUDING REMARKS
Results from this research will impact how forests are 
inventoried. It is too expensive to monitor terrestrial 
carbon flux using field-only sampling and estimation 
strategies and currently proposed model-based 
techniques leveraging LiDAR lack the ability to 
properly utilize temporally misaligned data---we need 
new and innovative methods to track forest carbon 
dynamics in remote regions. Bayesian hierarchical 
spatio-temporal modeling frameworks offer a solution 
to these shortcomings and, further, easily allow for 
formal predictive error assessment. which is useful 
decision making about the certainty of our estimates 
and about when and where to collect future field and 
LiDAR data to best improve prediction accuracy.
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DOWN WOODY MATERIAL, SOIL AND TREE CORE COLLECTION AND 
ANALYSIS FROM THE 2014 TANANA PILOT PLOTS

Robert R. Pattison, Andrew N. Gray, Patrick F. Sullivan, and Kristen L. Manies1

Abstract—In the summer of 2014 the US Forest Service’s Forest Inventory and Analysis 
(FIA) Program of the Pacific Northwest (PNW) Research Station in conjunction with 
NASA Goddard carried out a pilot inventory of the forests of interior Alaska. This 
inventory was conducted on the State of Alaska’s Tanana Valley State Forest and on the 
Tetlin National Wildlife Refuge. As part of the field protocols that were implemented, 
field crews measured Down Woody Material (DWM), sampled soils and collected tree 
cores. The DWM protocols were based on standard FIA protocols. The soil sampling 
included a modified protocol based on the US Geological Survey’s (USGS) protocols 
for the boreal forests of the region. The tree core measurements were made on cores 
collected from site and age trees of FIA plots. The results of these data collection efforts 
will provide insights into carbon content in these forests and into trends in tree growth 
rates. In addition, because it was a pilot inventory the goals were to improve field 
sampling methods prior to a full scale inventory of the interior forests of Alaska.  

INTRODUCTION
Interior Alaska has experienced some of the greatest 
increases in temperature globally and this trend is 
predicted to continue. The results of this warming 
trend appear to manifest in large scale changes in 
the region, leading some to suggest that a “biome 
shift” is underway (Beck et al. 2010, Juday et al. 
2015). Such a shift could have dramatic impacts on 
local communities, which are dependent on wildlife 
and forest resources. In addition, as boreal forests 
worldwide contain to up 30% of terrestrial carbon, 
warming trends may impact global carbon cycles 
(Tarnocia et al. 2009). 

Interior Alaska contains an estimated 15% of the 
forested lands in the US but does not have an FIA or 
other large scale inventory. The 2014 inventory in 
the Tanana Valley State Forest and Tetlin National 

Wildlife Refuge in interior Alaska was the first large 
scale systematic inventory in the region since the 
early 1980s. This inventory sought to test new field 
protocols to provide critical insights into current 
conditions in the region. Of particular interest are the 
carbon stores in soils and in trends in tree growth for 
these forested plots. 

Downed woody material and soils properties are 
poorly understood for much of interior Alaska. 
Knowledge of DWM and soil carbon can improve 
insights into carbon storage and fire dynamics of these 
ecosystems (Gould et al. 2008, Beck et al. 2011).     

STUDY AREA
The Tanana Valley is located in Interior Alaska, north 
of the Alaska Range, following the Tanana River. A 
systematic sample of 98 plots was measured within 
the Tanana Valley State Forest and the Tetlin National 
Wildlife Refuge (NWR). These plots represent a ¼ 
sample of the standard FIA grid. 
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METHODS
The crews used a standard P2 DWM protocols for 
sampling the DWM and a modified soils protocol 
developed by the USGS that included the use of a soil 
corer (Nadler and Wein 1998) and tile probes. Tile 
probe measurements were made to sample the depth 
of the active thaw layer.  Soils sampling was limited to 
a depth of 40” because of the logistical constraints of 
packing excesses materials. Tree cores were collected 
from the field and analyzed for growth trends in a tree 
core analysis lab. 

RESULTS AND DISCUSSION
There were 95 field plots that were sampled for soils. 
Of these 51 (54 percent) had frozen soils present at 
depths < 40”. The depths of the frozen layer ranged 
from < 1” to 37” (Fig. 1). There were 21 plots in 

which crews tallied gravel and did not hit frozen 
soils and 14 plots in which soil probes reached > 
40”. There were 7 plots where the substrate was 
classified as unknown (neither rock or nor frozen). 
In many boreal forest ecosystems (e.g., black spruce 
dominated forests) the maximum thaw of the soils 
occurs in the September or October (Hollingsworth 
et al. 2008) - well after the optimal time to inventory 
the above ground forested conditions (June- mid 
August). As a result the soil sampling efforts used in 
this study are likely to not be capturing the maximum 
thaw depth of the soils and therefore not sampling 
full available soil carbon pool in these forest 
soils. The FIA program is currently considering 
alternative methods to sample soil carbon pools more 
effectively. These methods include using more robust 
soil sampling methods that require the use of gas 
powered augers.   

Depth
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Figure 1—Distribution of depth to frozen layer on the 51 plots that had frozen soils. 
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Unlike the soils, the DWM protocols were generally 
not constrained by frozen soil conditions. One 
exception was the presence of frozen duff on 
several plots which prevented crews from obtaining 
accurate measurements of duff depth. Duff 
measurements can be useful in providing insights 
into fuel properties of forests.  

Accurate aging of trees is important to determine 
stand age and site quality.  In order to account for 
the time it takes for trees to reach breast height a set 
value is typically added to the counted rings on cores. 
However black spruce trees can take 50 + years to 
reach breast height. In order to account for this long 
period of time changes to core collection location 
such as collection cores at the base of trees are being 
considered. The preliminary results of the trends in 
tree growth rates across all of the field plots suggests 
that both black and white (Picea glauca) spruce have 
seen increases in tree growth. The greatest increases 
in growth occurred from 1920- 1950. From 1950 to 
the present tree growth rates showed stable to slight 
increases in growth. These trends are counter to recent 
studies suggesting that tree growth rates are declining 
in interior boreal forests (Juday et al. 2015). 
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CHARACTERIZING FOREST VEGETATION OF THE TANANA VALLEY: 
WHAT CAN FOREST INVENTORY AND ANALYSIS DELIVER?

Bethany Schulz1

Abstract—Vegetation profile data were collected as part of a forest inventory project 
in the Tanana Valley in interior Alaska, providing a means of characterizing the forest 
vegetation. The black spruce forest type was most common, followed by Alaska paper 
birch, and white spruce, quaking aspen, and balsam poplar. For individual tree species, 
black spruce was recorded on 68 percent of all plots, birch was recorded on 67 percent 
and white spruce on 58 percent. The distribution of growth habits in horizontal layers 
varied by forest type. There was a higher percentage tree cover in hardwood forest types. 
Shrubs were prominent in all forest types, dominating in the lowest horizontal layer 
in black spruce forests and mid layers in other forest types. The most common species 
recorded include (in descending order) lingonberry, black spruce, Alaska paper birch, bog 
Labrador tea, white spruce, green alder, bog blueberry, and prickly rose all recorded on at 
least 35 percent of all plots. A full census of vascular plants on 25 subplots accumulated 
almost 2.5 times as many species as the Vegetation profile protocol on 101 subplots on 
the same set of plots. 

INTRODUCTION
Understanding the existing distribution and abundance 
of plant species in ecosystems is important for 
monitoring the effects of a changing climate on 
natural ecosystems. In Alaska, changing distribution 
and composition of vegetation have been observed as 
shrubs encroach into tundra (Dial and others 2007); 
hardwoods replace spruce in some areas (Rupp 
2011); and white spruce forests are expanding in 
others (Roland and others 2013). At the same time, 
new pest outbreaks are being observed that could 
further influence shifts in vegetation composition 
(USDA Forest Service 2015). These changes can 
effect biomass accumulation and greenhouse gas 
emissions (Rupp 2011). Vegetation data collected 
on the ground is relatively scarce in Alaska, but 
is needed to aid the interpretation of the remotely 
sensed-data that managers depend on with increasing 
frequency. The Forest Inventory and Analysis (FIA) 

2014 project in interior Alaska provides a systematic 
sample of 98 plots within the Tanana River Valley, 
in part to estimate biomass. Documenting vegetation 
characteristics now is essential for monitoring 
vegetation change over time. Using data generated 
from FIA’s Vegetation Profile (VEG profile) protocol, 
I characterize the vegetation in the different forested 
conditions sampled, and demonstrate what can be 
reported using this new set of measurements. 

STUDY AREA
The Tanana Valley is located in Interior Alaska, north 
of the Alaska Range, following the Tanana River. 
Systematic samples of 71 plots within the Tanana 
Valley State Forest and 27 plots on the Tetlin National 
Wildlife Refuge (TNWR) were collected from June 
through August, 2014. 
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METHODS
The FIA Core-Optional VEG profile, level of detail 3 
protocol was implemented on all plots (USDA Forest 
Service 2014). Both forest and non-forest conditions 
were sampled if accessible. Data were collected on 
each subplot and included the distribution of plant 
growth habit cover by layer. Layer 1 is between the 
ground and 2 feet, Layer 2 is between 2 and 6 feet, 
Layer 3 is between 6 and 16 feet, Layer 4 is 16 feet 
and higher. Up to four of the most abundant species 
per growth habit, if present with at least 3-percent 
subplot cover, were also recorded with percentage of 
subplot cover. In addition, a full census of all vascular 
plants on subplot 1 was implemented on the plots 
within the TNWR. These data were summarized by 
averaging subplot cover measurements to either plot or 
domain, and determining the percentage of plots where 
species were recorded for various domains.

RESULTS
Conditions
Of the 98 sampled plots, 73 were intact (100 percent 
single condition), 11 were fully forested but with 
multiple conditions, and 14 plots included some non-
forest land cover class (Table 1). Black spruce (see 
Appendix Table 1 for list of common and scientific 
names) forest type was most the common, with 38 
intact plots, and occurring on seven samples with 
multiples condition and eight edge plots. Alaska paper 
birch (birch) was the second most common with 20 
intact plots; white spruce was third with eight intact 
plots. All of the non-forest land cover classes sampled 
were natural vegetation types, with shrubland being 
most common. Full descriptions of forested conditions 
sampled are included in Table 1. 

Structure
Data from the intact forest condition plots were used to 
characterize structure overall and by forest type. Total 
tree cover on 73 intact plots included 23 plots with 
cover greater than 60 percent, 42 plots with greater 
than 40, and four with less than 10 percent. There were 
27 plots with the highest percent tree cover in Layer 
4. Twelve of these plots had average tree cover of 60 

percent or more and 14 had cover between 25 and 
60 percent. There were 16 plots where the maximum 
tree cover was in Layer 2 and Layer 3. The maximum 
tally tree cover was recorded in Layer 1 on 13 plots. 
Non-tally trees (a growth habit to describe species 
growing as trees but not included in standard tree 
measurements) were recorded on10 plots, three plots 
had an average of more than10 percent subplot cover.

Average shrub cover exceeded tree cover on 40 plots. 
Overall, average subplot shrub cover exceeded 10 
percent in Layer 3 on16 plots and in Layer 4 on 19 plots. 
Grasses and forbs contributed to cover primarily in 
Layer 1. The average overall grass cover was 4 percent, 
recorded on all but two plots, and 22 plots had grass 
cover of 10 percent or more. Forbs had an average cover 
13 percent, cover greater than 10 percent on 24 plots. 

Structure was quite different between forest types. 
Average subplot cover of growth habits by layer for 
stands of the three main forest types that were at 
least 35 years old are shown in Figure 1. Shrubs were 
important in all types but varied by height. 

Most abundant species
A total of 105 species were recorded using VEG Profile 
protocols. Tree and shrub species dominated the most 
abundant species collected (Table 2) and most forest 
types had several top species in common. The hardwood 
types with only a few sample plots had a few unique 
species. Although forb and grass growth habit cover 
were recorded on most plots as structure, only a few 
species exceeded the 3-percent threshold for recording 
(blue-joint reed grass, field horsetail, and fireweed).

Tree species distributions were examined by size 
across forest types.  Large trees (LT) were 5 inch or 
greater in diameter, and small trees (SD) were less than 
5 inch diameter (USDA Forest Service 2014). Black 
spruce and birch forest types are tied for number of 
other tree species found on single condition plots, but 
white spruce and birch trees are found on more forest 
types and condition combinations than black spruce 
trees (Table 1). Non-tally tree species were recorded as 
either large or small trees on seven plots, and included 
Bebb willow, green alder, and Scouler’s willow. 
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Table 1—Number of plots by forested condition and percentage of plots with records of large (LT) and small 
(SD) trees by species 

Tree species
Black 

spruce
Alaska  

paper birch
White 

spruce
Quaking 
aspen

Balsam 
poplar Tamarack

Condition and Forest 
Type Description

Plot
Count LT SD LT SD LT SD LT SD LT SD SD

Single condition: Number Percentage of plots where recorded
Black spruce 38 47 100 21 50 21 0 8 8 0 0 8
Paper birch 20 20 45 80 90 55 60 5 25 5 5 0
White spruce 8 0 0 75 50 100 88 25 25 13 0 0
Aspen 3 0 33 33 67 67 67 67 67 0 0 0
Balsam poplar 3 0 0 0 0 33 67 0 0 100 100 0
Non-stocked 1 0 0 0 0 0 0 0 0 0 0 0
Multiple condition:
Black spruce/ Paper 
birch 4 75 100 100 100 50 100 0 0 0 0 0

Black spruce / Multi 
age 3 33 100 0 100 67 100 0 0 0 0 0

White spruce/ Multi age 2 0 0 0 0 100 100 0 0 50 0 0
Paper birch/ Multi age 1 0 0 100 100 100 100 0 0 0 0 0
White spruce / Paper 
birch 1 0 100 100 100 100 100 0 0 0 0 0

Some non-forest:
Black spruce/ 
Shrubland 3 33 100 0 33 0 0 0 0 0 0 33

Black spruce/ Mixed 
Veg 2 50 100 50 0 50 100 0 50 0 0 0

White spruce/ 
Shrubland 2 0 0 100 50 100 50 0 0 0 0 0

Black spruce/ 
Shrubland/Mixed Veg 1 100 100 100 0 100 100 0 0 0 0 0

Black spruce/ Non-
vascular 1 100 100 0 100 0 0 0 0 0 0 0

White spruce/ Mixed 
Veg 1 100 100 0 100 100 100 0 0 0 0 0

Paper birch / Shrubland 1 0 0 0 0 0 0 0 0 0 0 0
Paper birch /Non-
vascular 1 0 100 0 100 0 0 0 0 0 0 0

Paper birch / Mixed 
Veg 1 100 100 0 100 100 0 0 0 0 0 0

White spruce/Non-
vascular 1 100 0 0 0 0 100 0 0 0 0 0
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Figure 1—Average subplot percentage of cover by growth habit by layer for three predominant forest types in interior Alaska
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Table 2—Most common abundant species and percentage of plots where recorded overall and by forest type; 
superscripts indicate the rank of the five most common species within each forest type

Forest type

Species 
common name

All Plots
(n=98)

Black 
spruce 
(n=38)

Paper birch 
(n=20)

White 
spruce 
(n=8)

Balsam 
poplar 
(n=3)

Aspen 
(n=3)

Other 
(n=25)

Percentage of plots where recorded
Lingonberry 721 843 654 38 0 33 88
Black spruce 682 1001 45 0 0 33 76
Alaskapaperbirch 673 534 1001 882 0 67 2 68
Bog Labrador tea 624 872 555 0 0 33 64
White spruce 585 34 703 1001 672 672 72
Green alder 536 40 752 633 0 672 60
Bog blueberry 387 534 25 0 0 33 44
Prickly rose 368 8 703 882 672 33 32
Bluejoint 289 13 40 38 672 672 28
Dwarf birch 2410 425 5 0 0 0 24
Field horsetail 16 11 20 633 672 33 16
Quaking aspen 16 11 30 25 0 1001 4
Fireweed 12 3 25 13 33 672 8
Thinleaf alder 8 0 5 38 1001 0 4
Balsam poplar 6 0 5 13 1001 0 4
Redosier dogwood 2 0 0 0 672 0 0

n = number of plots

The two most commonly recorded shrub species, 
lingonberry and bog Labrador tea, made up the majority 
of shrub cover in Layer 1 in black spruce forest types. 
Alder and willow species were common and provided 
cover in the mid layers of most other conditions 
sampled. An alder species was recorded on 58 of 98 
plots, and on 30 of those plots, the average subplot 
cover was greater than15 percent. There were 54 plots 
with one to three species of willow, and 32 plots with 
willow species that may be encountered either as shrubs 
or trees (USDA NRCS 2015, Viereck and Little 2007).

TNWR full census
A complete census on 25 subplots accumulated 135 
species, whereas the VEG Profile method recorded 
only 55 species on a total of 101 subplots on the same 
Tetlin plots (some subplots were inaccessible). There 
were 82 species recorded on the full census that were 
not captured and only nine species recorded with VEG 
Profile not in the full census. Of those species present 
on 50 percent of sampled subplots for each effort, the 

lists matched except for four species recorded on the 
full census trial (dwarf scouring rush, field horsetail, 
red fruit bearberry, and prickly rose).

DISCUSSION
The VEG Profile provides important information 
about the arrangement of all vascular plants in the 
forest stands sampled. Structure characterization is 
important for fire behavior models/maps of vegetation 
types. Data on the distribution of large and small trees 
support the observations that black spruce types seem 
to be increasingly replaced by hardwoods rather than 
regenerating black spruce (Rupp 2011). Although 
VEG Profile captures the presence of large shrubs and 
non-tally trees with cover and height layer, the only 
allometric equations for calculating biomass of large 
shrubs are based on stem diameters (Chojnacky and 
Milton 2008). Stem diameter measures for large woody 
shrubs and non-tally tree species should be considered 
in the future for inclusion into biomass estimations. 
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APPENDIX TABLE 1 – COMMON AND SCIENTIFIC NAMES
Common name Scientific name
Alaska paper birch Betula neoalaskana Sarg.
Balsam poplar Populus balsamifera L.
Black spruce Picea mariana (Mill.) Britton, Sterns & Poggen.
Blue joint Calamagrostis canadensis (Michx.) P. Beauv.
Bog blueberry Vaccinium uliginosum L.
Bog Labrador tea Ledum groenlandicum Oeder
Dwarf birch Betula nana L.
Dwarf scouring rush Equisetum scripoides Michx.
Field horsetail Equisetum arvense L.
Fireweed Chamerion angustifolium (L.) Holub ssp. angustifolium
Green alder Alnus viridis (Chaix) DC.
Lingonberry Vaccinium vitis-idaea L.
Prickly rose Rosa acicularis Lindl.
Quaking aspen Populus tremuloides Michx.
Red fruit bearberry Arctostaphylos rubra (Rehder & Wilson) Fernald
Red osier dogwood Cornus sericea ssp. sericea
Tamarack Larix larcinia (Du Roi) K.Koch)
Thin leaf alder Alnus incana (L.) Moench ssp. tenuifolia (Nutt.) Breitung
White spruce Picea glauca (Moench) Voss
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EVALUATING CARBON STORES AT THE EARTH-ATMOSPHERE 
INTERFACE: MOSS AND LICHEN MATS OF SUBARCTIC ALASKA

Robert J. Smith1, Sarah Jovan2, Bruce McCune3

Abstract—A fundamental goal of the forest inventory in interior Alaska is to accurately 
estimate carbon pools in a way that sheds light on the feedbacks between forests and 
climate.  In boreal forests, moss and lichen mats often serve as the interface between 
soils and the atmosphere, therefore characterizing the biomass and composition of 
mats is essential for understanding how forest carbon exchange might interact with 
shifting climatic regimes.  Previous estimation approaches did not permit volumetric 
estimates of moss mats and were based on inconsistent definitions distinguishing 
between soil, duff, and moss layers.  We confronted these challenges by implementing 
a novel, non-destructive technique centered on three research questions.  First, what 
is the pattern of biomass and carbon distribution for moss/lichen ground layers in 
subarctic, interior Alaska?  Second, how do climatic and stand-level factors drive these 
patterns?  Third, what are the functional consequences and ecosystem effects of moss/
lichen ground layers?  Moss and lichen species were assigned to functional groups 
based on the capacity to fix nitrogen, serve as wildlife forage, indicate disturbance, alter 
hydrology, or signal eutrophic conditions (among other ecosystem functions).  Among 
99 sites located in the Tanana River valley of interior Alaska, biomass averaged 12 934 
kg ha-1 (SD: 8546), of which carbon was an estimated 5456 (3778) kg ha-1.  Biomass 
had a weakly negative relationship with plant litter depth, to which topoedaphic and 
climatic factors also contributed.  On average there were 7.2 functional groups per site 
– most frequent and abundant were nitrogen-fixing mosses, which commonly formed 
extensive, thick carpets.  Together, these findings imply that moss and lichen mats in the 
Tanana River area can contribute substantially to both forest nitrogen stores and organic 
carbon sequestration.

1 Robert J. Smith, PhD candidate, Department of Botany and Plant 
Pathology, Oregon State University, Corvallis, OR; 541-609-0438; 
smithr2@onid.oregonstate.edu
2 Sarah Jovan, Research Ecologist, Pacific Northwest Research 
Station; Resource Monitoring and Assessment Program, Portland, 
OR; 503-808-2070; sjovan@fs.fed.us
3 Bruce McCune, Professor, Department of Botany and Plant Pathol-
ogy, Oregon State University, Corvallis, OR; 541-737-1741; Bruce.
McCune@science.oregonstate.edu
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AN EVALUATION OF FIA’S STAND AGE VARIABLE

John D. Shaw1

Abstract—The Forest Inventory and Analysis Database (FIADB) includes a large 
number of measured and computed variables.  The definitions of measured variables are 
usually well-documented in FIA field and database manuals.  Some computed variables, 
such as live basal area of the condition, are equally straightforward.  Other computed 
variables, such as individual tree volume, require a more in-depth understanding of 
the FIA compilation system, such as how equations are selected based on species 
and plot location. For other computed variables, their derivation and meaning might 
not be clear to many users based on readily-available documentation.  As a result, 
users may be prone to making their own assumptions about the meaning of these 
variables.  This can be the case for users of the data and those who evaluate the use of 
FIA data, such as in the peer review process, where the value of certain variable can 
be debated.  FIA stand age is one variable that is commonly used, but for which there 
is apparently disagreement about its meaning and usefulness. The “controversy” over 
this variable even exists with the FIA program, partly due to small differences in the 
way it is computed regionally or user experience with the variable in analysis. In this 
paper, the relationship between FIA stand age and other stand-level descriptors, such 
as composition, structure, and stand origin are explored. Some guidelines for the use of 
the variable, such as when it is appropriate to use it “straight”, and when other factors 
should be considered in analyses, will be presented. 

1 Lead Analyst, USDA Forest Service, Rocky Mountain Research 
Station, Forest Inventory and Analysis, Ogden, UT. 
Phone: 801-598-5902, e -mail address: jdshaw@fs.fed.us
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ANALYSIS ISSUES DUE TO  
MAPPED CONDITIONS CHANGING OVER TIME

Paul Van Deusen1

Abstract—Plot mapping is one of the innovations that were implemented when FIA 
moved to the annual forest inventory system.  Mapped plots can improve the precision of 
estimates if the mapped conditions are carefully chosen and used judiciously.  However, 
after plots are remeasured multiple times, it can be difficult to properly track changes in 
conditions and incorporate this into the analysis.  Early discussions about plot mapping 
considered 2 mapping options: 1) full mapping and 2) fuzzed mapping.  Full mapping is 
what FIA adopted.  Fuzzed mapping (fuzzing) was felt to provide less precision, since it 
would assign a single condition to each subplot.  However, fuzzing would never allow 
a condition proportion to be less than 0.25 and would be much easier to track over time 
than full mapping.  These issues are elaborated and some comparisons based on FIA data 
are presented.

1 Paul Van Deusen, Principal Research Scientist (PCVD), National 
Council of Air and Stream Improvement, Tewksbury, MA 01876. 
To contact, email at pvandeusen@ncasi.org.
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ARE OBSERVED TRENDS IN HARDWOOD TREE GRADE DUE TO 
RESOURCE CHANGES OR DATA ANOMALIES?

Thomas Brandeis, Christopher Oswalt, Jeffery Stringer, and Stan Zarnoch1

Abstract—Preliminary analyses show decreasing amounts of higher grade tree volumes 
in the east-central United States, suggesting degradation in the hardwood saw-log 
resource. While there were indications of trend, the quality and repeatability of the tree 
grade data themselves has been questioned, questions that Quality Control data could not 
answer. While the quantification of tree grade on Forest Inventory and Analysis plots has 
potential value, subjectivity and inconsistency limits the variable’s usefulness.

The temperate broadleaf and mixed broadleaf/conifer 
forests of the east-central United States are an important 
ecological and economic resource. Preliminary analyses 
and anecdotal evidence have shown decreasing 
prevalence of higher quality trees as defined by their 
tree grade, suggesting degradation in the hardwood saw-
log resource. If true, such trends could indicate forest 
management shortcomings or large-scale demographic 
changes. The indepth analysis of volume across tree 
grades required to assess this situation, however, also 
requires careful scrutiny and understanding of the 
methods used to grade a tree. Tree grading is one of the 
most subjective evaluations made on a Forest Inventory 
and Analysis (FIA) plot and requires that field crews 
have considerable training and experience before 
accuracy and repeatability is achieved. 

We investigated trends in the proportion of volume 
in each tree grade from 2001 to 2013 in Kentucky 
(KY) and Tennessee (TN) for a selection of high-value 
timber species. Additionally, we examined the Quality 
Assurance/Quality Control (QA/QC) data collected 
during this period.

METHODS
Forest Inventory and Tree Grading 
Procedures
Volume of the saw-log portion (FIA variable 
VOLCSNET) (Woudenberg and others 2010, 
Oswalt and Conner 2011) of the tree is estimated for 
sawtimber-sized trees that meet certain minimum 
requirements. Trees that meet sawtimber size 
requirements are graded for tree quality. Tree grades 
1 through 4 are in descending order of quality. A tree 
grade 1 tree is larger, with a minimum diameter at 
breast height (d.b.h.) of 16 inches, and has more clear 
wood free of defects within the saw log. Grades 2, 3, 
and 4 are of smaller d.b.h. or have less clear wood in 
the saw log. Tree grade 5 is different. These trees do 
not meet the requirements of tree grades 1-4 but have 
a saw log located somewhere in the tree other than 
the butt portion, e.g., upper stem or branch, or have at 
least two noncontiguous 8-foot long logs.

Data Queried from the FIA Database
We queried the FIA Database (FIADB) to extract data 
on selected sawtimber-size hardwood trees measured 
in KY and TN from 2001 to 2013. Both States are on 
5-year remeasurement cycles. The response variable 
chosen was the proportion volume in each tree grade 
on each plot. Values of zero were generated so that 
each tree grade had a value on every plot. Comparisons 
were made among the proportions of volume in each 
tree grade to evaluate whether there were changes 
over time. Several hardwood species were chosen for 

1 Supervisory Research Forester (TB) and Research Forester 
(CO), USDA Forest Service, Southern Research Station, Forest 
Inventory and Analysis, 4700 Old Kingston Pike, Knoxville, TN 
37919; Professor Hardwood Silviculture and Forest Operations 
(JS), University of Kentucky, Department of Forestry, Lexington, 
KY 40546; Research Mathematical Statistician (SZ), USDA 
Forest Service, Southern Research Station, Forest Inventory and 
Analysis, 200 W.T. Weaver Boulevard, Asheville, NC 28804. TJB 
is corresponding author: to contact, call (865) 862-2030 or e-mail 
at tjbrandeis@fs.fed.us.

mailto:tjbrandeis@fs.fed.us
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inclusion in the query based on expert knowledge of 
the resource and demand by forest industry. We also 
queried the database for older data from the periodic 
forest inventories by tree grade, filtering on the same 
hardwood species. Percentages of volume by tree grade 
were calculated by dividing the volume in each tree 
grade by the total volume for that inventory. Blind and 
cold-check QA/QC data for tree grade were extracted 
for these same States. Field data collection in both KY 
and TN was done by Forest Service, U.S. Department 
of Agriculture personnel during the periodic 
inventories. However, with the implementation of 
annualized inventories starting in 2001, State natural 
resource agency personnel have collected the data. 

Statistical Methods
We tested for differences between individual years of 
data, not between the averages of multiple years. For 
example, we compared 2001 to 2002, 2002 to 2003, 
etc., but not the average for the cycle ending 2004 to 
the average for the cycle ending 2009. This was done 
for two reasons. First, we are interested in differences 
in tree data from specific measurement years. Second, 
we treat individual years of data as independent from 
one another except when comparing one year to its 
remeasured value five years later, e.g., comparing 2002 
to 2007. Comparing averages for a full cycle of panels 
or remeasured years would violate the assumption of 
sample independence, and other methods must then 
be used to assess statistical differences (Westfall and 
others 2013). Estimates and standard errors were 
computed for each tree grade and year using a ratio of 
means estimator, then compared using the overlapping 
confidence interval method. 

The accuracy and repeatability of tree grade by the 
field crew and QA/QC foresters were assessed using 
matrices of frequency distributions. It was assumed that 
the more experienced, highly trained QA/QC foresters 
provided a truer assessment of tree grade against 
which the field crew calls were judged. While variation 
around the relatively subjective tree grade assessment 
is to be expected, we focused our examination on 
whether field crews showed any consistent bias toward 
over- or under-estimating the tree grade. 

RESULTS
The numbers of trees extracted from FIADB ranged 
from a high of 591 trees in TN in 2013 to a low of 353 
trees in KY in 2002. In an average year for TN and 
KY combined, there were 40.1 grade 1, 107.8 grade 2, 
178.7 grade 3, 99.7 grade 4 and 23.7 grade 5 trees.

In KY, the mean plot volume percentage in tree 
grade 1 reached a high value in 2002 then decreased 
significantly to 2004 (Fig. 1). In TN, mean tree-grade-1 
plot volume percentage was stable until 2005, when 
it decreased significantly from 2006 and then began 
increasing until 2013 (Fig. 2). For tree grade 2, the 
percentages in KY held relatively stable with some 
fluctuations across the study period. In TN, however, 
tree grade 2 decreased from 2005 to 2006, recovered, 
and then decreased again. Volume percentages in tree 
grades 3 and 5 remained relatively stable in both States, 
while tree grade 4 percentages behaved erratically. 

Periodic inventory results for KY show that percentages 
of volume remained relatively stable except for tree 
grade 1. Tree grade 1 in KY was 13.4 percent of the 
volume in 1988, while in 2004 (moving average of 
annualized data from 2001 to 2004) it was 24.2 percent 
(Table 1). Tree grade 1 also showed volatility in TN 
(Table 1). Tree grade 4 in TN displayed a decrease 
from 1989 to 1999, low values through 2004, then an 
increase that continued through 2009 and 2012. In KY, 
tree grade 2 values from 1998 were comparable to those 
found in the KY 2004 annualized moving average. 

QA/QC Results
Of the field plots that were revisited by QA/QC 
foresters to conduct blind checks on field crew 
measurements, a total of 440 trees were assessed during 
both visits in Kentucky from 2001 to 2013 (Table 2). 
On average across all years, there was a 66.0-percent 
agreement on the tree’s grade. In Tennessee there were 
224 trees graded with 64.6-percent agreement. Notable 
in the QA/QC data were the small number of trees that 
were blind-checked in some years and how variable 
the numbers of checked trees were from year to year. 
Extremes ranged from only 7 trees blind-checked in 
TN in 2002 and 2012 to 104 trees in KY in 2005. 



New Directions in Inventory Techniques & Applications Forest Inventory & Analysis (FIA) Symposium 2015 61PNW-GTR-931

Figure 1—Mean percentage of plot net saw-log volume per plot by tree grade with standard errors of the mean, 
Kentucky, 2001-2013.

Figure 2—Mean percentage of plot net saw-log volume per plot by tree grade with standard errors of the mean, 
Tennessee, 2001-2013.
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Table 1—Percentage of net volume (cubic feet) of saw-log portion of sawtimber trees on timberland by 
hardwood tree grade for Kentucky and Tennessee for periodic inventories (KY 1988, TN 1989, TN 1999) and 
annualized moving averages (2004, 2009, 2012).

Inventory year—Kentucky Inventory year—Tennessee
Grade 1988 2004 2009 2012 1989 1999 2004 2009 2012

1 13.4 24.2 13.0 13.8 8.6 22.7 16.2 6.9 9.5

2 30.4 31.5 31.2 29.3 20.6 29.7 33.5 23.3 21.7

3 37.3 33.2 37.9 39.0 46.6 35.6 38.2 40.2 39.0

4 11.4 5.6 11.5 12.2 18.9 7.2 8.0 25.6 25.2

5 7.4 5.4 6.4 5.7 5.4 4.7 4.1 4.0 4.6

Table 2—Numbers of trees graded on plots visited by both field crew and Quality Assurance/Quality Control 
foresters with numbers and percentage of tree grade agreements for Kentucky and Tennessee, 2002 to 2013.

Measurement 
year

Kentucky Tennessee

Total trees 
graded by 
either field 
or QA/QC

Total trees 
with both 
field and 
QA/QC 
grades

Number 
with 

matching 
grades

Percent 
trees with 
matching 

grades

Total trees 
graded by 
either field 
or QA/QC

Total trees 
with both 
field and 
QA/QC 
grades

Number 
with 

matching 
grades

Percent 
trees with 
matching 

grades

2002 9 8 7 87.5 7 7 4 57.1

2003 36 33 23 69.7 9 8 4 50.0

2004 39 38 26 68.4 11 9 5 55.6

2005 104 98 61 62.2 68 61 35 57.4

2006 34 33 18 54.5 28 25 20 80.0

2007 19 19 8 42.1 13 11 4 36.4

2008 15 15 12 80.0 0 0 - -

2009 11 11 7 63.6 28 28 24 85.7

2010 54 54 33 61.1 10 10 7 70.0

2011 24 24 17 70.8 10 10 8 80.0

2012 25 25 17 68.0 7 7 4 57.1

2013 70 70 45 64.3 33 33 27 81.8

Total 440 428 274 66.0 224 209 142 64.6
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Frequency distributions of tree grade agreement 
and disagreement were examined. All possible 
combinations of field crew and QA/QC tree grade 
calls were put in matrices by State and year. Based on 
a visual examination of these sparse data, there may 
have been a slight trend toward field crews calling 
tree grades higher than QA/QC foresters when they 
were in disagreement. Overall, however, this possible 
trend was weak and based on too few instances to 
judge adequately.

DISCUSSION
While there were indications of trend over time 
from 2001 to 2013, the quality and repeatability of 
the tree grade data themselves has been called into 
question. Zarnoch and Turner (2005) questioned 
the validity of the 2001 tree grade data from KY 
based on values observed in the preceding periodic 
forest inventories. They cited amounts of tree grade 
1 volume that were twice as great in 2001 as they 
were in the periodic inventory of 1988 (Zarnoch and 
Turner 2005). They postulated that changes in the 
training of KY field crews on tree grading resulted 
in assigning too many trees to tree grade 1 when 
compared to past inventories. However, there has been 
no documentation or studies to indicate the possibility 
of a similar bias in the TN data, where a decrease in 
tree grade 1 volume was also observed. The TN field 
crews operated and were trained independently of the 
KY field crews. 

While we can postulate management or biological 
reasons for steady decreases or increases in certain 
grades of volume over time, it is harder to do so for the 
seemingly abrupt changes seen in tree grade 4. There, 
we must consider that observed trends might be due 
to training inconsistencies or field crew turnover. The 
QA/QC data did not provide satisfactory answers to 
these questions, primarily due to the paucity of data 
for specific grades during any given year. Perhaps with 
a larger QA/QC sample, patterns would have emerged. 
While the quantification of tree grade on FIA plots has 
potential value, the subjectivity and inconsistency of 
the variable limits its usefulness in TN and KY.
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ASSESSMENT OF NATIONAL BIOMASS  
IN COMPLEX FORESTS AND TECHNICAL CAPACITY SCENARIOS

Matieu Henry1, Javier G. P. Gamarra1, Gael Sola1, Luca Birigazzi1, Emily Donegan1, Julian Murillo1, 
Tommaso Chiti2, Nicolas Picard3, Miguel Cifuentes-Jara4, S Sandeep5, Laurent Saint-André6

Abstract—Understanding forest ecosystems is paramount for their sustainable 
management and for the livelihoods and ecosystem services which depend on them. 
However, the complexity and diversity of these systems poses a challenge to interpreting 
data patterns. The availability and accessibility of data and tools often determine the 
method selected for forest assessment. Capacity building is fundamental to ensure 
that sampling methods, data analysis and use of tools are efficiently and sustainably 
appropriated. FAO has trained people from over 30 countries to develop tools and 
databases to improve forest resource assessment. In highly diverse inventory plots 
in the tropics, the use of one single pantropical allometric equation (models for the 
estimation of forest elements such as biomass and carbon stock) for all trees inventoried 
is the norm in many countries. However these equations present large biases and/or 
uncertainties for several tropical regions of the world, due to their compositional and 
structural complexity, and their limited representation in the original datasets used 
to build the pantropical model. In order to contribute to the elimination of bias and 
increasing accuracy, we propose a combined approach to stand biomass estimation 
following statistical methods that depends on both the availability of equations and/
or destructive data, and the existing capacities in the country. We illustrate the methods 
through different scenarios of existing technical capabilities and data availability, taking 
GlobAllomeTree as a source for allometric equations. GlobAllomeTree provides access 
to existing available allometric equations and relevant documentation, supports the 
development of new models and builds a network of national experts for data-sharing and 
collaboration. The different alternative approaches proposed present a realistic roadmap 
towards the reduction of uncertainties and biases in reporting national stocks.

1 Food and Agriculture Organization of the United Nations, Viale 
delle terme di Caracalla, 00153; Roma, Italy
2 Università degli Studi della Tuscia (UNITUS), Department for 
Innovation in Biological, Agro-Food and Forest System (DIBAF), 
Via S. Camillo de Lellis, 01100 Viterbo, Italy
3 Centre de coopération internationale en recherche agronomique 
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Yaounde, Cameroon, COMIFAC, Yaounde, Cameroon
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(CATIE). Programa Cambio Climático y Cuencas. 7170 CATIE, 
Turrialba, Cartago 30501, Costa Rica 
5 Department of Soil Science, Sustainable Forest Management 
Division, Kerala Forest Research Institute, Peechi - 680653, Kerala, 
India
6 Institut National de la Recherche Agronomique (INRA), UR1138, 
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USING FOREST INVENTORY AND ANALYSIS DATA  
TO UNDERSTAND BIOTIC RESISTANCE TO PLANT INVASIONS 

ACROSS THE EASTERN UNITED STATES

Basil V. Iannone III1, Kevin M. Potter2, Hao Zhang3, Christopher M. Oswalt4,  
Qinfeng Guo5, Christopher W. Woodall6, Songlin Fei7

Abstract—Biological invasions and their impacts are likely to increase with the 
expansion of global commerce, making the need to identify key drivers and regulators 
of invasion perhaps greater than ever.  One of the most enduring, and tested, hypotheses 
for explaining invasions is the “biotic resistance hypothesis.”  Broadly, this hypothesis 
states that communities having greater biodiversity have fewer unfilled niches, making 
them less invasible. Using data from 46,071 Forest Inventory and Analysis plots located 
across the forests of the Eastern United States, we tested for associations between 
native trees and invasive plants that would suggest the presence of biotic resistance.  
For both invasive species richness and cover, we determined: 1) if accounting for the 
spatial heterogeneity nested within a large geographic area improves models of biotic 
resistance, 2) if the direction, magnitude, and spatial variability of associations pertaining 
to biotic resistance differ based on how biotic resistance is measured, and 3) if the 
direction and magnitude of associations pertaining to biotic resistance vary with either 
scale or location.  These determinations will provide clarity regarding the role of biotic 
resistance in regulating invasion patterns across large geographic areas.  We found that 
accounting for heterogeneity allowed for better models of biotic resistance, and that both 
invasion measures were negatively associated with native tree biomass and evolutionary 
diversity, but positively associated with native tree species richness. A few sub-regions, 
however, exhibited opposite associations. Association size tended to be greatest for 
evolutionary diversity. Strong negative associations were aggregated within and near 
the Appalachian Mountains.  Finally, association size and direction were affected by 
both scale and location, although location seemed more influential. As forests and the 
services they provide are increasingly harmed by invasive plants, particularly in our study 
region, the findings of this investigation will have implications for both invasive species 
management and policy.  
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SEEING THE FOREST FOR THE TREES: UTILIZING MODIFIED 
RANDOM FORESTS IMPUTATION OF FOREST PLOT DATA FOR 

LANDSCAPE-LEVEL ANALYSES

Karin L. Riley1, Isaac C. Grenfell2, and Mark A. Finney3

Abstract—Mapping the number, size, and species of trees in forests across the western 
United States has utility for a number of research endeavors, ranging from estimation of 
terrestrial carbon resources to tree mortality following wildfires. For landscape fire and 
forest simulations that use the Forest Vegetation Simulator (FVS), a tree-level dataset, 
or “tree list”, is a necessity.  FVS is widely used at the stand level for simulating fire 
effects on tree mortality, carbon, and biomass, but uses at the landscape level are limited 
by availability of forest inventory data for large contiguous areas.  Detailed mapping 
of trees for large areas is not feasible with current technologies, but statistical methods 
for matching forest plot data with biophysical characteristics of the landscape offers a 
practical means to populate landscapes with a limited set of forest plot inventory data.  
We used a modified Random Forests approach with Landfire vegetation and biophysical 
predictors to impute plot data from the U.S. Forest Service’s Forest Inventory Analysis 
(FIA). This method imputes the plot with the best statistical match, according to a 
“forest” of decision trees, to each pixel of gridded landscape data.  Landfire data was 
used in this project because it is publicly available, offers seamless coverage of variables 
needed for fire models, and is consistent with other datasets, including burn probabilities 
and flame length probabilities generated for the continental U.S. by Fire Program 
Analysis (FPA).  We used the imputed inventory data to generate maps of forest cover, 
forest height, and existing vegetation group at 30-meter resolution for the entire western 
U.S.  The results showed good correspondence between the target Landfire data and the 
imputed plot data. In future work, we plan to use the imputed grid of inventory data for 
landscape simulation studies to analyze a wide range of fuel management problems. 
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DEVELOPMENT OF FOREST REGENERATION IMPUTATION MODELS 
USING PERMANENT PLOTS IN OREGON AND WASHINGTON

Karin Kralicek, Andrew Sánchez Meador, and Leah Rathbun1

Abstract—Imputation models were developed and tested to estimate tree regeneration 
on Forest Service land in Oregon and Washington. The models were based on Forest 
Inventory and Analysis and Pacific Northwest Regional NFS Monitoring data. The data 
was processed into sets of tables containing estimates of regeneration by broad plant 
associations and spanning a large variety in forest cover conditions. The output tables 
were organized to facilitate their use within variants of FVS commonly used in the Pacific 
Northwest region. The methods were implemented in a highly reproducible fashion to 
ensure future model adaptability.

INTRODUCTION
Growth and yield models are an important tool for 
foresters and land managers. They are often used to 
assess the impacts of different management actions on 
tree growth and mortality through time. The Pacific 
Northwest Region of the National Forest System uses 
the Forest Vegetation Simulator (FVS) growth and 
yield model to analyze information at multiple scales, 
from stands of a few acres in size to entire watersheds. 
Currently FVS requires users to specify forest 
regeneration densities for all variants applicable in 
Oregon and Washington. A need exists to have forest 
regeneration models that are standardized and can be 
easily incorporated into FVS.

An alternative to traditional predictive model-based 
methods for estimating regeneration is imputation. 
Imputation involves replacing missing measurements 
with realistic measurements from one or more stands 
with similar characteristics (Ek and others 1997, 
Hassani and others 2004). Imputation approaches 
offer advantages over traditional modeling approaches 

in that they can easily provide estimates of multiple 
species simultaneously and are not subject to 
parametric assumptions regarding the distributions of 
response variables. 

STUDY AREA
The study area is all National Forest System lands in 
Oregon and Washington. Coastal and dry inland effects 
combine with the topographic effect of numerous 
mountain ranges and valleys to produce a wide range 
of climatic zones and vegetation types. This highly 
diverse region contains seven distinct ecological 
variants, over 850 plant associations and totals just 
over 25.0 million acres of NFS land (U.S. Department 
of Agriculture, Forest Service 2014). The majority of 
Oregon and Washington’s forests are dominated by 
coniferous forest types, predominantly Douglas-fir 
(Pseudotsuga menziesii), western hemlock (Tsuga 
heterophylla), ponderosa pine (Pinus ponderosa), and 
lodgepole pine (Pinus contorta). 

1 Research Lab Assistant (KK) Quantitative Ecology Lab, School 
of Forestry, Northern Arizona University, Box 15018, Flagstaff, 
AZ 86011 USA; Assistant Professor (ASM) School of Forestry, 
Northern Arizona University, Box 15018, Flagstaff, AZ  86011 
USA; and Regional Biometrician (LR) Pacific Northwest Regional 
Office, USDA Forest Service, 1220 SW 3rd Ave, Portland, OR 
97204, USA. KK is corresponding author: to contact, call (480) 
593-0199 or e-mail at karin.kralicek@gmail.com.
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METHODS
Forest Inventory and Analysis and Pacific Northwest 
Regional NFS Monitoring plot data from Oregon and 
Washington were combined into a single data set. 
The data were then subset based on a list of criteria 
in preparation for imputation. Subplots sampled after 
2001 on Forest Service lands were targeted to ensure 
sampling protocols were standardized. Additional 
criteria included natural origin with no evidence of 
artificial seeding, planting, or site preparation and 
each microplot associated with a subplot need to be 
dominated by a single condition class. If a subplot was 
sampled between 2001 and 2003 and was remeasured 
in the next measurement period (2011 to 2013) then 
both subplots were only included in the final data set if 
there was evidence of a significant disturbance 5 to 10 
years prior to the most recent measurement; otherwise 
only the recent remeasurement was included. 

Plot and tree data were used to calculate subplot level 
attributes including estimates of tree density, forest 
canopy, and fuels. Due to the high number of plant 
associations and variants, plant associations were 
grouped resulting in 402 distinct plant association-
variant combinations (VPAG). Based on these VPAGs, 
the data were further subset to ensure an adequate 
sample size for the development of imputation models, 
resulting in 64 VPAGs. Although the resulting 64 
VPAGs were only 16 percent of the original VPAGs, 
they represent 78 percent of the subplots in that 
original data.

Lastly, and to aid in validating our models, the 
data were split into two groups: a “training” data 
(75 percent) and a “testing” data (25 percent). The 
training data was treated as a complete set and used to 
develop models, whereas the testing data was treated 
as missing regeneration measurements, candidates for 
imputation, and utilized as a validation data set. 

Empirical knowledge along with generalized linear 
model procedures and correlation analysis were used 
in preliminary analysis to determine the attributes 
most related to regeneration. Based on the resulting 
important attributes, tabular imputation tables were 
compiled and validated. Additionally, performance 
and predictive capability of the tabular imputation 
model was compared with results using various nearest 
neighbor approaches. 
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EFFECTS OF HEIGHT AND LIVE CROWN RATIO IMPUTATION 
STRATEGIES ON STAND BIOMASS ESTIMATION

Elijah J. Allensworth1 and Temesgen Hailemariam2

Abstract—The effects of subsample design and imputation of total height (ht) and 
live crown ratio (cr) on the accuracy of stand-level estimates of component and total 
aboveground biomass are not well investigated in the current body of literature. To assess 
this gap in research, this study uses a data set of 3,454 Douglas-fir trees obtained from 
102 stands in southwestern Oregon to simulate different combinations of subsample 
designs and imputation methods. The predictive ability of the regional ht and cr 
imputation methods on estimates of component and total aboveground biomass for a 
range of subsample sizes (n = 0,…, 15) and subsample designs (simple random selection, 
largest trees by diameter at breast height (d), smallest trees by d, trees grouped about 
the median by d, and several combinations of the latter three designs) is evaluated using 
the leave-one-out cross validation technique. The best methods for imputing ht and cr 
independently are identified which are then used to simultaneously impute ht and cr 
across the range of subsample sizes and designs. Methods to impute cr include the current 
methods used in the southern Oregon variant of the USFS Forest Vegetation Simulator 
(SO-FVS) and in the southwestern Oregon variant of the ORGANON growth and 
yield model (SWO-ORGANON) from Oregon State University as well as subsample-
calibrated versions of both. Methods to impute ht include the current methods used in 
SO-FVS, SWO-ORGANON, and a collection of equations developed by Temesgen et al. 
(2008) as well as subsample-calibrated versions of each. The findings of this study should 
be beneficial in identifying the most accurate ht and cr imputation method to estimate 
component and total aboveground biomass for each subsample size and selection method.
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FIA DATA AND SPECIES DIVERSITY - SUCCESSES AND FAILURES 
USING MULTIVARIATE ANALYSIS TECHNIQUES, SPATIAL LAG AND 

ERROR MODELS AND HOT-SPOT ANALYSIS

Andrew J. Hartsell1

Abstract—This study will investigate how global and local predictors differ with 
varying spatial scale in relation to species evenness and richness in the gulf coastal plain.  
Particularly, all-live trees >= one-inch d.b.h. Forest Inventory and Analysis (FIA) data was 
used as the basis for the study.  Watersheds are defined by the USGS 12 digit hydrologic 
units.  The dataset includes various environmental data such as temperature, rainfall, frost 
free days, soil productivity, stand age, latitude, longitude, average elevation, and land 
use fragmentation or disturbance indicators. Multivariate analysis techniques such as 
nonmetric multidimensional scaling (NMS) and multi-response permutation procedures 
(MRPP) were performed using the software package PC-ORD to identify patterns within 
the data. Spatial lag and error models where created using the freeware GeaDa. These 
models reveal how various predictors of tree diversity (Shannon’s, Simpson’s and species 
richness) differ not only from each other, but change as spatial scale varies.

Preliminary results indicate that global variables such as climate and productivity have 
a greater impact on diversity indicators than more local variables such as disturbance 
and land use.  However, this changes as spatial scale decreases, where land-use and 
disturbance play a larger role in predicting tree diversity in southern forests.  Additionally, 
the presence of southern pine plantations has a profound impact on diversity indicators at 
certain scales.  However, the impact varies depending on the indicator.  At certain scales, 
the presence of plantations has a negative effect on evenness indicators and a positive 
effect on species richness.  MRPP analysis proved to be futile, while only one watershed 
size yielded a solution of greater than one axis using NMS.  NMS on HUC10 watersheds 
yielded a three axis solution that proved to be insightful. 
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WHEN DOES BIODIVERSITY MATTER?  
ASSESSING ECOSYSTEM SERVICES ACROSS BROAD REGIONS 

USING FOREST INVENTORY AND ANALYSIS DATA

Kevin M. Potter1, Christopher W. Woodall2, Christopher M. Oswalt3, Basil V. Iannone III4, Songlin Fei5,

Abstract—Biodiversity is expected to convey numerous functional benefits to forested 
ecosystems, including increased productivity and resilience. When assessing biodiversity, 
however, statistics that account for evolutionary relationships among species may 
be more ecologically meaningful than traditional measures such as species richness. 
In three broad-scale studies, we applied evolutionary diversity metrics to assess the 
relationship between biodiversity and forest function across broad U.S. regions, using 
Forest Inventory and Analysis (FIA) data. In one study, we assessed trends in live 
aboveground tree biomass (LAGB) in relation to tree biodiversity on 79,000 FIA 
plots across the United States, controlling for site productivity and live tree stocking. 
Biodiversity was more closely associated with greater LAGB on low-productivity sites 
with low tree stocking. This is consistent with the expectation that the coexistence 
of functionally different species increases forest productivity in less productive and 
more stressful environments, while dominant and highly productive species are able to 
competitively dominate in more productive habitats. In a second study, we assessed the 
associations between tree diversity metrics and invasive species diversity and cover on 
39,000 FIA plots across the Southeast.  Region-wide, tree biodiversity was higher on 
plots that also had invasive plants, and plot-level “invadedness” was positively correlated 
with evolutionary biodiversity. Among the biodiversity metrics, plot invadedness was 
most strongly correlated with phylogenetic diversity. The results suggest that forest 
tree biodiversity in parts of the Southeast may actually indicate the presence of better 
environmental conditions for invasive plants. In a third study, we tracked regional 
changes in forest community biodiversity separately for trees and seedlings on FIA plots 
across broad regions of the eastern United States. We detected broad-scale patterns of 
forest evolutionary diversity change that are consistent with expected early effects of 
climate change. Such changes could alter the ecological functions of forest communities.
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FIESTA – AN R ESTIMATION TOOL FOR FIA ANALYSTS

Tracey S. Frescino1, Paul L. Patterson2, Gretchen G. Moisen3, Elizabeth A. Freeman4

Abstract—FIESTA (Forest Inventory ESTimation for Analysis) is a user-friendly R 
package that was originally developed to support the production of estimates consistent 
with current tools available for the Forest Inventory and Analysis (FIA) National 
Program, such as FIDO (Forest Inventory Data Online) and EVALIDator. FIESTA 
provides an alternative data retrieval and reporting tool that is functional within the R 
environment, allowing customized applications and compatibility with other R-based 
analyses. Over the last few years, the tool has expanded to include new modules that 
accommodate nonresponse, photo-based estimators, two-phase regression estimators 
for inclusion of temporal remote sensing data, as well as small area estimates. Here, we 
describe these new modules and illustrate with FIA applications in the Interior West.
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USING SMALL AREA ESTIMATION AND LIDAR-DERIVED VARIABLES 
FOR MULTIVARIATE PREDICTION OF FOREST ATTRIBUTES

F. Mauro1, V.J. Monleon2, and H. Temesgen1

Abstract— Small area estimation (SAE) techniques have been successfully applied in forest 
inventories to provide reliable estimates for domains where the sample size is small (i.e. small 
areas).  Previous studies have explored the use of either Area Level or Unit Level Empirical 
Best Linear Unbiased Predictors (EBLUPs) in a univariate framework, modeling each variable 
of interest at a time, and not considering their potential correlation. Yet most forest inventory 
variables such as basal area (G) and volume (V) are strongly correlated. In this situation, EBLUPs 
for multivariate responses can improve the quality of the estimates. In this study, we apply 
multivariate SAE techniques in a LiDAR assisted forest inventory. We compare the resulting 
estimates to those obtained using traditional univariate SAE techniques and other synthetic 
estimates widely used in forest inventories. The study area is a set of Bureau of Land Management 
(BLM) and Bureau of Indian Affairs (BIA) owned forest lands in Southwestern Oregon. The small 
areas are the subsets of the BLM\BIA lands in the study area contained in each 12 level Hydrologic 
Unit Codes (HUC12). Variables of interest were G and V. A total of 899, 0.125 acre plots were 
measured in the field. Univariate and multivariate fixed effects and mixed effects regression models 
were developed. Preliminary results show that correlation between HUC12 level random effects 
for different variables is moderate while residuals for different variables are highly correlated.

Forest planning needs information about forest 
structure, available stock, health status and other 
variables at different scales in order to make informed 
and better management decisions. This information 
is usually obtained through sampling and is therefore 
subject to certain amount of uncertainty.  Increasing the 
sample size of field surveys is a possibility to reduce 
the uncertainty of the estimates, but this solution 
may not be affordable. A large variety of techniques 
have been developed to use of inexpensive or easier 
to obtain auxiliary information to increase sampling 
efficiency. These techniques can be either design 
based such as stratification (Hawbaker et al., 2009), 

ratio/regression estimators, generalized regression 
estimators (GREG) (Breidenbach and Astrup, 
2012), or model based, such as synthetic prediction 
(Breidenbach and Astrup, 2012; Næsset et al., 2011; 
Næsset, 2002)2012; N\\uc0\\u230{}sset et al., 2011; 
N\\uc0\\u230{}sset, 2002. In general, these methods 
provide accurate estimates for large populations. 

However, in addition to estimates of means and totals 
for the whole population, where sample sizes are 
usually large, estimates are needed for subpopulations 
where the sample size is reduced. Depending on the 
context, these subpopulations can be stands, counties, 
species or other units, and they are usually referred 
to as small areas. Design based and model assisted 
estimators are, in general, unbiased or nearly so for 
these small areas. Unfortunately, these estimators 
are unreliable for small areas because of their large 
variances when the sample size is small. On the 
other hand, model based synthetic estimators for 
subpopulations may not suffer the abovementioned 
problem of high variance, but they assume that all 
small areas follow a model that is common for the 
whole population. If there is significant variability 
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among small areas, then there may be a high risk of 
obtaining biased estimates for subpopulations. For 
those cases, Empirical Best Linear Unbiased Predictors 
(EBLUP’s), based on linear mixed models, have 
been proposed (Rao and Molina, 2015) as one of the 
main alternatives to gain efficiency by using auxiliary 
information and correct both the high variance of 
design based estimators and the bias of model based 
synthetic estimators

The need for suitable methods to provide estimates 
for small subpopulations has been recognized 
by Næsset, et al. (2011 p. 3612) and different 
studies have explored the use of EBLUPs in forest 
inventories assisted by remote sensing auxiliary 
information. Area level EBLUPs were used by 
Goerndt et al., (2011), and unit level EBLUPs have 
been tested by Breidenbach and Astrup, 2012; 
Goerndt et al., 2013; Magnussen et al., 20142012; 
Goerndt et al., 2013; Magnussen et al., 2014. In 
those studies, EBLUP’s were derived from univariate 
linear mixed models where only one response 
variable was considered at each time. Certain 
results from the SAE literature show that, when the 
residuals and small area random effects for different 
variables of interest are correlated, an additional 
gain in efficiency can be obtained if the EBLUP’s 
are based on multivariate models (i.e Multivariate 
EBLUP’s MEBLUP’s), that correctly account for 
those correlations (Datta et al., 1999; Molina, 2009). 
Certain attributes of interest for forest inventories 
such as basal areas (G) and volumes (V) might be 
highly to moderately correlated, so that  potential 
gains in efficiency can be expected if estimates for 
these variables are based on MEBLUP’s. No study to 
the date has analyzed this potential improvement in 
forest inventories. 

This paper explores with a case study how estimated 
means for G and V can be improved when using 
MEBLUP’s instead of univariate EBLUP’s (UEBLUP’s 
hereafter), based on LiDAR auxiliary information.

STUDY AREA
The study area is the set of Bureau of Land 
Management (BLM) and Bureau of Indian Affairs 
(BIA) owned lands covered by the DOGAMI 
LiDAR survey carried out in Southwestern Oregon. 
Approximately 1,630,000 acres were covered by the 
LiDAR flight, of which 254,389 acres are managed 
by BLM and BIA. Coastal coniferous forest with 
variable degree of species mixing is prevalent, being 
Douglas fir (Pseudotsuga Menziesii (Mirb) Franco) the 
dominant species. Other softwoods such as western 
hemlock (Tsuga hetorphila (Raf.) Sarg.), sitka spruce 
(Picea sitchensis (Bong.) Carr.) and red cedar (Thuja 
plicata Donn ex D.Don) are relatively frequent. The 
most frequent hardwoods species are red alder (Alnus 
rubra Bong.), bigleaf maple (Acer macrophyllum 
Pursh), Oregon myrtille (Umbellularia californica 
(Hook. & Arn.) Nutt.) and tanoak (Notholithocarpus 
densiflorus (Hook. & Arn.) Manos, Cannon & 
S.H.Oh). In general, hardwood species are frequent 
in the understory and play a secondary role in the 
upperstory, where conifers are by far more abundant. 

LIDAR DATA
LiDAR data were collected during the spring and 
summer of 2008 and 2009 using a Leica ALS Phase 
II laser. The average return density was 0.761returns/
ft2. Flight and laser sensor specifications are provided 
in Table 1.

Table 1—Flight parameters and sensor specification

Description
Sensor Leica ALS50 Phase II
Flying altitude 3000 ft above ground level
Field of view 28° (±14° from nadir*)
Pulse rate > 105 kHz
Pulse mode Single
Mirror scan rate 52.5 Hz
Overlap 100 % (50% side-lap)
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A grid was overlaid on the study area and traditional 
LiDAR height covariates, including extreme values, 
percentiles, and fractions of pulses above different 
thresholds were computed for each pixel using 
FUSION (Mc Gaughey, 2010). The pixel size was 
0.125 acres (75 ft side). Only returns with heights 
of at least 3.28 ft above the ground were used to 
compute LiDAR covariates. The return threshold 
for computing cover covariates was set at a height 
of 6.56 ft. Pixels where the 80th percentile of the 
LiDAR returns was higher than 9.85 ft and where 
more than 2% of the first returns were above 19.69 
ft were regarded as forested and pixels that did 
not meet these criteria were removed. This forest 
mask was visually assessed to ensure that omission 
and commission errors were low.  Total area of 
the BLM\BIA owned lands classified as forest 
according to those criteria was 251,000 ac (≈2 
million pixels).

GROUND INVENTORY AND  
VARIABLES OF INTEREST
Forested areas were stratified based on two LiDAR 
metrics (80th percentile and standard deviation of the 
LiDAR heights). A total of 30 strata were defined and, 
within each one, a random sample of 30 pixels was 
selected to be measured in the field. Field crews visited 
all the selected locations except one and measured a 
total of 899 circular plots of approximately the same 
area as the pixels. 

The diameter at breast height (DBH), height and 
species of every tree larger than 5.5 in were recorded. 
Trees smaller than 5.5 in were measured only in 
concentric plots of 0.02 ac. Standing volume for each 
tree was computed using regional species specific 
volume equations included in the US National 
Volume Estimator Library. Tree volumes were 
aggregated at plot level and then converted to per 
acre values applying the corresponding expansion 
factors to large (DBH≥ 5.5 in) and small trees (DBH< 
5.5 in). Basal area per acre was similarly computed 
for each plot.

SUBPOPULATIONS OF INTEREST
The study area was divided in smaller subpopulations 
using the 12 level Hydrologic Unit Codes (HUC12). 
The BLM and BIA owned lands included in each 
HUC12 estimates were considered as small areas, and 
mean per hectare values of V and G, were obtained 
for each one. The study area, forest mask and HUC12 
used to define subpopulations are shown in Figure 1.

MODEL SELECTION
Univariate Models
A method similar to the one described in Goerndt et 
al., (2011), based on fitting linear fixed effects models, 
was applied to select the LiDAR predictors for each 
response variable. Once the auxiliary variables were 
selected, linear mixed effects models with the same 
LiDAR predictors and random intercepts for each 
HUC12 were obtained. Significance of HUC12 level 
random effects was tested for each model.

Multivariate Models
The LiDAR predictors associated with each variable 
of interest were not modified and correlation between 
HUC12 random effects associated to V and G were 
considered in the multivariate model. The plot or 
pixel levels random effects for different variables 
were considered independent for this analysis. 
In addition, multivariate fixed effects models 
considering the correlation between residuals for 
different variables were fit.  

RESULTS AND CONCLUSION
In both univariate and models the HUC12 random 
effects were significant. When modelled together, 
the correlation between the HUC12 random effects 
for each variable was moderate and negative 
(-0.155). Multivariate fixed effects models showed 
that the correlation between residuals for G and V 
was strong and positive (0.952). Further analyses 
will develop models that include both the correlation 
between random effects for each variable within the 
HUC12 and the correlations between residuals for 
different variables.
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Figure 1—Study area. BLM\BIA owned forest lands (green) and HUC12 employed to define subpopulations of interest.
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BATCH REPORTING OF FOREST INVENTORY STATISTICS  
USING THE EVALIDATOR

Patrick D. Miles1

Abstract—The EVALIDator Web application, developed in 2007, provides estimates and 
sampling errors of forest statistics (e.g., forest area, number of trees, tree biomass) from 
data stored in the Forest Inventory and Analysis database. In response to user demand, 
new features have been added to the EVALIDator. The most recent additions are 1) the 
ability to generate multiple reports in a single retrieval (batch reporting); 2) the flexibility 
to report change components (growth, removals, and mortality) by stand and/or tree 
classification values as recorded at the time of the first or second measurement; and 3) 
the ability to generate reports of ratio estimates that have pages, rows, and columns. 
Information on the data and methods used is provided along with sample output from a 
query that demonstrates the new batch feature.

INTRODUCTION
The EVALIDator Web-application was designed to 
simplify the generation of population estimates—and 
their associated sampling errors—from data in the 
Forest Inventory and Analysis database (FIADB) 
(USDA Forest Service 2015). The EVALIDator guides 
the user, via a graphical user interface (GUI), to 
select 1) the desired attribute estimate; 2) the area of 
interest; 3) the page, row, and column classifiers; and 
4) additional filtering. The user can generate desired 
output in as few as seven mouse clicks. Depending on 
the type of retrieval and the size of the geographic area 
queried, the output will be generated in from several 
seconds to several minutes. Over 50,000 retrievals 
were completed using this method in 2014.

The EVALIDator GUI was designed to prevent users 
from obtaining estimates that are not possible given 
the underlying data set. For example, forest land 
volume estimates for inventories collected prior to 
the annual inventory design (Bechtold and Patterson 
2005) may not be available because tree measurements 

were often not collected on reserved and unproductive 
forest land. Therefore, if the user selects volume 
on forest land as the estimate of interest using the 
EVALIDator GUI, the user will be presented with 
only a list of those inventories where this estimate 
is appropriate (usually only on annual inventories 
completed after 1998).

There are situations in which a user might need to run 
hundreds or thousands of retrievals for an analysis. 
The siting of a mill, for example, may require a “wood 
basket” analysis where several estimates would be 
needed for several hundred possible mill locations. 
The analysis might also include a sensitivity analysis 
where the radius of the wood basket may vary from 
50 to 100 miles from the prospective mill locations. A 
different approach is required for this type of analysis. 
Users cannot be expected to use the EVALIDator GUI 
interface thousands of times waiting from seconds to 
minutes after each run to save the output for future 
use. Thus an application programming interface (API) 
was developed for the EVALIDator web-application. 
This API can be integrated into an MS-Excel® macro-
enabled spreadsheet to enable batch processing of 
these estimates.

mailto:pmiles@fs.fed.us
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Because the EVALIDator API bypasses the 
EVALIDator’s GUI, there is an increased likelihood 
that the user will produce forest statistics that are not 
supported by the data. For example, the user could try 
to produce an estimate of the volume on forest land for 
the 1977 inventory of Minnesota. However, the 1977 
Minnesota inventory predates the annual inventory 
implementation, so tree measurements would not 
have been taken on reserved and unproductive 
forest land. The estimate returned would be based 
only on productive nonreserved forest land, thereby 
underreporting the desired number. It is suggested that 
a trial run of the EVALIDator GUI be used to verify 
that an estimate is supported by the data.

METHODS
The EVALIDator API requires 16 parameters (Table 
1). Figure 1 shows how this information can be used to 
invoke the EVALIDator Web application. This example 
contains the URL (first line) and the parameters 
(subsequent  lines) necessary to generate an estimate of 
the “Area of timberland, in acres” by “Stand-size class”, 
and “Ownership group – Major”, within “50” miles of 
latitude “45” degrees North, and “-93” degrees West.

Copying and pasting a series of URLs containing 
these 16 parameters would be awkward and time 
consuming. An MS-Excel macro was created to 
demonstrate how URLs and parameters could 

Table 1. EVALIDator API input parameters.

Parameter Valid values
reptype “State”, “Circle”
lat 0.0000 to 90.0000 (decimal degrees NAD83)
lon -180.0000 to 180.0000 (decimal degrees 

NAD83)
radius 0.0 to 1000.0 (units are in miles)
snum See values of attribute_descr  variable in 

ref_pop_attribute FIADB table
sdenom If not performing a ratio estimate then enter 

“No denominator - just produce estimate.“ For 
ratio estimates see values of attribute_descr  
variable in ref_pop_attribute FIADB table.

wc See values of eval_grp variable in 
pop_eval_grp FIADB table. When more 
than one evaluation group is selected 
the evaluation group numbers should be 
separated by a comma.

pselected See values of label_var variable in 
evalidator_variable_library table where page_
list=’Y’.
If pages breakdowns are not desired enter 
“None”

rselected See values of label_var variable in 
evalidator_variable_library table where row_
list=’Y’.

cselected See values of label_var variable in 
evalidator_variable_library table where 
col_list=’Y’.

ptime “Accounting”, “Previous”, “Current”, “Previous 
if available else current”, “Current if available 
else previous”
Note:  Always use “Current” unless 
generating growth, removals or mortality 
estimates.

rtime “Accounting”, “Previous”, “Current”, “Previous 
if available else current”, “Current if available 
else previous”
Note:  Always use “Current” unless 
generating growth, removals or mortality 
estimates.

ctime “Accounting”, “Previous”, “Current”, “Previous 
if available else current”, “Current if available 
else previous”
Note:  Always use Current unless generating 
growth, removals or mortality estimates.

wf SQL clause filter used for non-ratio estimates.
wnum SQL clause filter - only applied to numerator 

in a ratio estimate .
wnumdenom SQL clause filter - applied to both numerator 

and denominator in a ratio estimate.

http://apps.fs.fed.us/Evalidator/batcheval.jsp?
reptype=Circle
&lat=45.0
&lon=-93.0
&radius=50
&snum=Area of timberland, in acres
&sdenom=No denominator - just produce estimate.
&wc=272014,552014
&pselected=None
&rselected=Stand-size class
&cselected=Ownership group - Major
&ptime=Current
&rtime=Current
&ctime=Current
&wf=
&wnum=
&wnumdenom=

Figure 1. Example parameters for the EVALIDator API. Note: 
all this information would be on a single line and copied to the 
browser address line.
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be submitted as a batch retrieval. An MS-Excel 
workbook named “BatchInternetEvalidator.xlsm” 
containing this macro can be downloaded from a link 
on the FIA Data and Tools page (http://www.fia.fs.fed.
us/tools-data/default.asp). 

When the workbook is downloaded and opened, 
a worksheet named “Sheet1” will appear (Fig. 
2). On this worksheet, there is a button labeled 
“QueryEvalidatorWeb-application”. Clicking this 
button will result in the execution of the macro named 
“getMillLocationEstimate,” which will then create 
nine html pages (there are three mill locations listed 
on Sheet1 and three estimates will be created for each 
mill) that are each automatically opened and displayed 
in MS-Excel. Users can modify the code in the macro 
to generate additional estimates. 

The MS-Excel macro “getMillLocationEstimate”, as 
currently written, will read information for up to 1000 
mill locations1 from the MS-Excel worksheet labeled 
“Sheet 1.” Mill location information is contained in 
the columns labeled “Latitude” and “Longitude.” 
The radius in miles of the circular area is contained 
in the column labeled “Radius.” The column labeled 
“EvaluationGroups” identifies the inventories to be 
used in this retrieval. In this example 272013 refers 

1 The maximum number of mill locations can be easily increased 
by modifying the macro code (line 21 of the appendix).

to the Minnesota (Federal Information Processing 
Standards state code = 27) 2013 inventory and 552013 
refers to the Wisconsin 2013 inventory. For each mill 
location, the macro will generate three population 
estimate reports. The first report is for the “Area 
of timberland, in acres” (see line 12 in appendix) 
by “Forest type” (see line 38 in appendix) and by 
“Ownership group – Major” (see line 39 in appendix). 
The second report is for the “Net volume of live 
trees (at least 5 inches d.b.h./d.r.c.), in cubic feet, on 
timberland” (see lines 13 and 14 in appendix). The 
third report is a ratio report. It reports the “Average 
annual net growth of live trees (at least 5 inches 
d.b.h./d.r.c.), in cubic feet, on timberland” divided by 
the “Average annual removals of live trees (at least 
5 inches d.b.h./d.r.c.), in cubic feet, on timberland.” 
It should be noted that this is for the area that was 
timberland at both the time of the current and previous 
inventories as this provides a more realistic ratio 
estimates of the actual removals that have occurred on 
lands that remained in the timberland base. The code is 
executed by left-clicking on the “QueryEvalidatorWeb-
application” button on Sheet1 with the computer’s 
mouse device. The output from this example is 
stored in nine html files. The filenames consist of the 
MillName combined with the estimate number.

Figure 2. MS-Excel Workbook “BatchInternetEvalidator.xlsm” Sheet1 with “QueryEvalidatorWeb-application” button to initiate 
EVALIDator batch runs.

http://www.fia.fs.fed.us/tools-data/default.asp
http://www.fia.fs.fed.us/tools-data/default.asp
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RESULTS
The code in Figure 1, when entered into a browser’s 
address line, will return an html page that can be copied 
and pasted into an MS-Excel worksheet. The output 
from this query is depicted in Table 2. The total area 
of timberland within 50 miles of a site located at 45 
degrees North and -93 degrees West is 1.0 million acres. 
The sampling error for this estimate, based on one 
standard deviation, is 4.8 percent or +/- 50,000 acres. 
This estimate is based on 445 FIA timberland plots.
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APPENDIX
Workbook BatchInternetEvalidator.xlsm macro 
getMillLocationEstimate is triggered by clicking on 
the “QueryEvalidatorWeb-application” button. The 
code for the macro is provided below.

Sub getMillLocationEstimate()

    Dim mill_lat As Double

    Dim mill_lon As Double

    Dim mill_radius As Double

    Dim evalGroups As String

    Dim mill_id As String

Table 2. Results from running query depicted in 
Figure 1.

Numerator type Area of timberland, in acres
Statecd/EVALID(s): 
Wisconsin 552014
Minnesota 272014
Page variable=None (based on values from the Current 

inventory).
Row variable=Stand-size class (based on values from the 

Current inventory). 
Column variable=Ownership group - Major (based on 

values from the Current inventory). 
Circle retrieval centered at 45.0 degrees north and -93.0 

degrees west with a radius of 50 miles.
Filtering clause(s):

Estimate:

  Ownership group - Major
Stand-size class Total Public Private
Total 1,040,428 90,646 949,782

Large diameter 566,608 39,853 526,755

Medium diameter 290,017 18,116 271,901

Small diameter 168,573 32,676 135,897

Nonstocked 15,230 - 15,230

 
Sampling error percent:
  Ownership group - Major
Stand-size class Total Public Private
Total 4.8 16.99 5.02

Large diameter 6.51 24.82 6.76

Medium diameter 8.96 34.37 9.29

Small diameter 12.29 27.5 13.69

Nonstocked 31.95 - 31.95

 
Number of non-zero plots in estimate:
  Ownership group - Major
Stand-size class Total Public Private
Total 445 39 409

Large diameter 252 20 232

Medium diameter 150 10 140

Small diameter 76 15 62

Nonstocked 11 - 11

http://www.fia.fs.fed.us/library/database-documentation/
http://www.fia.fs.fed.us/library/database-documentation/
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    Dim sURL As String

    Dim sResult As String

    Dim urlStr As String

    Dim numerator(3) As String

    Dim denominator(3) As String

    numerator(1) = “Area of timberland, in acres”

    numerator(2) = “Net volume of live trees (at least 5 
inches d.b.h./d.r.c.), in cubic feet, on timberland”

    numerator(3) = “Average annual net growth of live 
trees (at least 5 inches d.b.h./d.r.c.), in cubic feet, on 
timberland”

    denominator(1) = “No denominator - just produce 
estimate.”

    denominator(2) = “No denominator - just produce 
estimate.”

    denominator(3) = “Average annual removals of live 
trees (at least 5 inches d.b.h./d.r.c.), in cubic feet, on 
timberland”

    For i = 2 To 1001 ‘maximum number of mills is set 
to 1000

        For j = 1 To 3

        mill_lat = ThisWorkbook.Sheets(“sheet1”).
Range(“a” + LTrim(Str(i)))

        mill_lon = ThisWorkbook.Sheets(“sheet1”).
Range(“b” + LTrim(Str(i)))

        mill_radius = ThisWorkbook.Sheets(“sheet1”).
Range(“c” + LTrim(Str(i)))

        evalGroups = ThisWorkbook.Sheets(“sheet1”).
Range(“d” + LTrim(Str(i)))

        mill_id = ThisWorkbook.Sheets(“sheet1”).
Range(“e” + LTrim(Str(i)))

        If mill_id <> “” Then

        urlStr = “http://apps.fs.fed.us/Evalidator/
batcheval.jsp?”

        urlStr = urlStr + “reptype=Circle”

        urlStr = urlStr + “&lat=” + Str(mill_lat)

        urlStr = urlStr + “&lon=” + Str(mill_lon)

        urlStr = urlStr + “&radius=” + Str(mill_radius)

        urlStr = urlStr + “&snum=” + numerator(j)

        urlStr = urlStr + “&sdenom=” + denominator(j)

        urlStr = urlStr + “&wc=” + evalGroups

        urlStr = urlStr + “&pselected=None”

        urlStr = urlStr + “&rselected=Forest type”

        urlStr = urlStr + “&cselected=Ownership group - 
Major”

        urlStr = urlStr + “&ptime=Current”

        urlStr = urlStr + “&rtime=Current”

        urlStr = urlStr + “&ctime=Current”

        urlStr = urlStr + “&wf=”

        urlStr = urlStr + “&wnum=”

        urlStr = urlStr + “&wnumdenom=”

        sResult = GetHTTPResult(urlStr)

        Call OpenTextFile(mill_id + “_” + Format(Str(j), 
“00”), sResult)

        End If

        Next j

    Next i

End Sub

Function GetHTTPResult(sURL As String) As String

    Dim XMLHTTP As Variant, sResult As String
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    Set XMLHTTP = CreateObject(“WinHttp.
WinHttpRequest.5.1”)

    XMLHTTP.SetTimeouts “300000”, “300000”, 
“300000”, “300000” ‘timeout= 300 seconds

    XMLHTTP.Open “GET”, sURL, False

    XMLHTTP.Send

    ‘Debug.Print “Status: “ & XMLHTTP.Status & “ - “ 
& XMLHTTP.StatusText

    sResult = XMLHTTP.ResponseText

    ‘Debug.Print “Length of response: “ & Len(sResult)

    Set XMLHTTP = Nothing

    GetHTTPResult = sResult

End Function

Sub OpenTextFile(mill_id As String, sResult As 
String)

Dim File_Path As String, folder_path As String

File_Path = Application.ActiveWorkbook.Path + “\” + 
mill_id + “.html”

Open File_Path For Output As #1

Write #1, sResult

Close #1

    ChDir _

        Application.ActiveWorkbook.Path

    Workbooks.Open Filename:= _

        Application.ActiveWorkbook.Path + “\” + mill_id 
+ “.html”

End Sub



APPLICATIONS  
IN FOREST HEALTH
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PROJECT CAPTURE: USING FOREST INVENTORY AND  
ANALYSIS DATA TO PRIORITIZE TREE SPECIES FOR 
CONSERVATION, MANAGEMENT, AND RESTORATION

Kevin M. Potter1, Barbara S. Crane2, William W. Hargrove3

Abstract—A variety of threats, most importantly climate change and insect and 
disease infestation, will increase the likelihood that forest tree species could experience 
population-level extirpation or species-level extinction during the next century. Project 
CAPTURE (Conservation Assessment and Prioritization of Forest Trees Under Risk 
of Extirpation) is a cooperative effort across the three Forest Service deputy areas to 
establish a framework for conservation priority-setting assessments of forest tree species 
across the entire United States. Forest Inventory and Analysis (FIA) data represent an 
unmatched resource for conducting broad-scale, spatially explicit assessments of the 
risk posed by climate change and other threats to the genetic integrity of forest tree 
populations and species. Project CAPTURE uses FIA data, along with life history trait 
and pest and pathogen threat information from other sources, to categorize and prioritize 
nearly 400 tree species for conservation, monitoring, management and restoration across 
all forested lands in the contiguous United States and Alaska. Specifically, we used FIA 
data to (1) generate 4-km2 resolution maps predicting the genetic pressure that could be 
imposed by climate change on forest tree species and to (2) compile information about 
the biological attributes and genetic diversity of individual species. This assessment tool 
should be valuable for scientists and managers attempting to determine which species 
and populations to target for monitoring efforts and for pro-active gene conservation and 
management activities.

1 Kevin M. Potter, Research Associate Professor, Department of 
Forestry and Environmental Resources, North Carolina State 
University, Research Triangle Park, NC; (919) 549-4071  
kpotter@nscu.edu
2 Barbara S. Crane, Regional Forester, USDA Forest Service, 
Southern Region, National Forest System, Atlanta, GA;  
(404) 347-4039, barbaracrane@fs.fed.us
3 William W. Hargrove, Research Ecologist, USDA Forest Service, 
Southern Research Station, Eastern Forest Environmental Threat 
Assessment Center, Asheville; (828) 257-4846, whargrove@fs.fed.us
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1 Lead Analyst, USDA Forest Service, Rocky Mountain Research 
Station, Forest Inventory and Analysis, Ogden, UT. 
Phone: 801-598-5902, e -mail address: jdshaw@fs.fed.us

DEVELOPMENT OF FULL REGENERATION ESTABLISHMENT MODELS 
FOR THE FOREST VEGETATION SIMULATOR

John D. Shaw1

Abstract—For most simulation modeling efforts, the goal of model developers is to 
produce simulations that are the best representations of realism as possible.  Achieving 
this goal commonly requires a considerable amount of data to set the initial parameters, 
followed by validation and model improvement – both of which require even more 
data.  The Forest Vegetation Simulator (FVS) is a widely-used, distance-independent 
forest growth simulator that can be used to model a wide variety of forest conditions 
and silvicultural treatments.  Extensions to FVS include modules for simulating fire 
effects and the impacts of insects and disease.  Being an important silvicultural tool, the 
incorporation of realistic tree regeneration, with or without the occurrence of treatments, 
is a desirable component.  Regeneration is implemented in FVS using two kinds of 
models – full establishment models, which are calibrated to automatically regenerate 
seedlings (including root and stump sprouts) in response to stand conditions and 
treatments, and partial establishment models, in which the establishment of new trees 
is largely under the control of the user.  Although establishment models have been part 
of FVS since the 1980s in its predecessor, Prognosis, only a few of the 19 FVS variants 
currently in use have full establishment models.  While user demand has been high for 
full establishment models to be added to more variants, the accessibility to sufficient 
regeneration data has been a barrier to implementation.  As a wide-ranging data source, 
the Forest Inventory and Analysis (FIA) program has potential to assist with development 
of full establishment models in variants that are currently lacking them.  FIA has 
formed a partnership with other parts of Forest Service Research and Development, 
National Forest Systems, and other researchers who have an interest in, or are currently 
working on forest regeneration modeling.  The goal of the partnership will be universal 
implementation of full establishment models within FVS. 

mailto:jdshaw@fs.fed.us
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MODELING URBAN HOST TREE DISTRIBUTIONS FOR INVASIVE 
FOREST INSECTS USING A TWO-STEP APPROACH

Mark J. Ambrose, Frank H. Koch, Denys Yemshanov, and P. Eric Wiseman1

Abstract – Many alien insect species currently impacting forested ecosystems in 
North America first appeared in urban forests. Unfortunately, despite serving as critical 
gateways for the human-mediated spread of these and other forest pests, urban forests 
remain less well documented than their “natural” forest counterparts.  While Forest 
Inventory and Analysis (FIA) data provide good information about the composition of 
natural forests, only a small percentage of the more than 26,000 communities in the US 
and Canada have completed any sort of urban forest inventory, and these inventories have 
commonly been restricted to street trees. We devised a two-step approach that utilizes 
the available local inventory data to comprehensively model urban host tree distributions 
at a regional scale. We illustrate the approach for three tree genera – ash (Fraxinus), 
maple (Acer), and oak (Quercus) – that are associated with high-profile insect pests.  
Available inventory data include 60 sample-based inventories of entire cities (i-Tree Eco 
inventories) and 475 street tree inventories. First, based on existing inventories, we use 
a suite of explanatory spatial variables to model the proportion of the total basal area (as 
a proxy for forest volume) occupied by each genus. Second, we apply a similar suite of 
spatial variables to estimate the total basal area of these communities. These estimates 
will be combined to estimate basal area of each genus in non-inventoried communities 
and to construct region-wide urban distribution maps for each genus. By merging these 
maps with similar data on natural forests (e.g., distribution maps developed from FIA 
plot data), we are able to provide a more complete host setting for spread modeling 
efforts.  Urban FIA projects promise to provide information about the composition of 
urban forests, but it will be some time before most US urban areas have been inventoried 
intensely.  This modeling approach provides a use for urban FIA data as they become 
available to better understand urban forests at larger spatial scales.

INTRODUCTION
Many alien insect species currently impacting 
forested ecosystems in North America first appeared 
in urban forests. Unfortunately, despite serving as 
critical gateways for the human-mediated spread of 
these and other forest pests, urban forests remain 

less well documented than their “natural” forest 
counterparts.  Forest Inventory and Analysis (FIA) 
plot data are an excellent resource for estimating host 
species distributions, since they provide a nationwide, 
systematic, and fairly intensive sample.  However, FIA 
data generally do not depict conditions in urban forests 
(with the exception of the limited amount of Urban 
FIA data that are just coming on-line).  This results in 
a major data gap with respect to forest pests, in terms 
of both the early detection of new pests as well as the 
modeling of pest spread, including spread via human-
mediated pathways (U.S. Government Accountability 
Office 2006).

1 Research Assistant (MJA), Department of Forestry & Environ-
mental Resources, NC State University, Forestry Sciences Labora-
tory, 3041 Cornwallis Rd., RTP, NC 27709; Research Ecologist 
(FHK), USDA Forest Service, Southern Research Station, Eastern 
Forest Environmental Threat Assessment Center, RTP, NC; 
Research Scientist (DY), Natural Resources Canada, Canadian 
Forest Service, Great Lakes Forestry Centre, Sault Ste. Marie, 
ON; Associate Professor (PEW), Department of Forest Resources 
and Environmental Conservation, Virginia Tech, Blacksburg, VA.  
MJA is the corresponding author: to contact, call (919) 549-4078 
or email mambrose@fs.fed.us .

mailto:mambrose@fs.fed.us
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Many communities have some sort of independent 
urban inventory, but they are piecemeal and have a 
variety of formats and sample densities. This makes 
it challenging to apply such data for broad-scale 
analyses (such as a pest risk map).  Our objective is 
to compile such available urban forest inventory data, 
and use them as basis for models to estimate presence 
of host trees of interest in non-sampled communities 
throughout study region (Eastern US).  We focus 
on key host genera for three prominent invasive 
forest insect pests in Eastern US, maple (Acer), ash 
(Fraxinus), and oak (Quercus). 

DATA AND METHODS
Data
We acquired urban forest inventory data from over 
700 communities across the United States and Canada. 
Data are from two basic types of inventories: (1) 
sample-based whole-city (e.g., i-Tree ECO, formerly 
known as UFORE; Nowak and Crane 2000; Nowak 
et al. 2008) inventories; (2) street tree/public tree 
inventories.  Of these datasets, the vast majority were 
from street/public tree inventories.

The street tree inventory data, usually lacked 
information needed to determine the absolute 
dominance (i.e., in terms of BA per hectare) of our 
genera of interest. Therefore, we used relative basal 
area (BA) as our measure of the importance of each 
genus in urban forests.   For each inventory dataset we 
calculated the proportion of BA represented by each of 
the three genera.

Step 1:  Modeling relative basal area
Our interest was in the overall urban forest tree 
population, but most of our data came from street/
public tree inventories.  So our first step was to model 
the relationship between street tree and whole-city 
populations using data from cities where both types of 
inventory had been conducted.  We had data of both 
types from 41 cities across the US and Canada, but 
these cities were spatially imbalanced; clustered in 
certain states (MN, VA).  To address this imbalance, 
we used geographically weighted regression (GWR) 

(ESRI 2012), where the dependent variable was 
relative BA for each genus from whole-city inventory 
and the independent variable was the relative BA 
from street tree inventory.  In GWR, an individual 
regression runs for each observation, using an adaptive 
kernel to determine neighborhood for each model.

We then applied the GWR models to adjust the BA 
proportions in the 464 Eastern US cities having only 
street tree inventories and combined those data with 
the 60 cities that had whole-city inventories that did 
not require adjustment.

Next, we constructed models to estimate BA 
proportion for each host genus from the adjusted 
data set.  We used boosted decision trees (Sherrod 
2014) with a 20% validation (random) sample. Our 
explanatory variables included the following: 

•	 Geographic: latitude, longitude, elevation
•	 Demographic: population (2010 Census)
•	 Climatic: annual extreme minimum temperature, 

summer maximum temperature, precipitation, 
growing degree days, last freeze, annual number of 
wet days, moisture index

•	 Land cover: proportion natural, agriculture, 
developed, forested; road density

Step 2: Modeling total urban forest  
basal area
Total urban forest BA per hectare estimates were 
available from i-Tree Eco output for 78 cities across 
continental US.  Our aim was to relate total urban 
forest BA (all species) to canopy cover.  Canopy cover 
estimates were derived from 2011 National Land 
Cover Database (NLCD).  The canopy cover map 
product (30-m spatial resolution) was developed in 
cooperation with USFS.

We again used GWR, with an adaptive kernel 
to determine modeling neighborhood for each 
observation. The primary explanatory variable was the 
estimate of each city’s total canopy cover; this measure 
combines canopy density measure with city’s total 
land area. Population density served as an additional 
explanatory variable
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RESULTS AND DISCUSION
Our models of relative BA fit rather well for all three 
genera.  The model explained 0.67 of the variation in 
relative BA of maple.  The fit was not quite as good for 
oak, explaining only 0.59 of the variation.  For ash, we 
needed to remove to outlying cities (Minot and Grand 
Forks, ND) to achieve a good fit.  With those cities 
dropped from the data set, our model explained about 
0.67 of the variation (Fig. 1).

Initial results of modeling total BA from canopy cover 
are encouraging.   We achieved a good fit overall (r2= 
0.79), but the BA of a few cities was significantly 

under-predicted (Fig. 2).  We aim to refine this model.  
We plan to seek additional data to expand the set of 
cities used for this portion of the model.  We also will 
explore using additional explanatory variables. 

We intend to combine our model of relative BA for our 
genera of interest with our total BA model to estimate 
the total BA for each genus in each city.  Then we will 
apply the combined model steps to estimate amount of 
oak, ash, maple in all populated places across Eastern 
US. Ultimately, we hope to extend the models to the 
Western US and Canada.

Figure 1—Results of boosted decision tree model for relative basal area of (a) maple, (b) oak, and (c) ash.

A

B

C
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By merging these maps with similar data on natural 
forests (e.g., distribution maps developed from 
Forest Inventory and Analysis plot data), we are able 
to provide a more complete host setting for spread 
modeling efforts.  Urban FIA projects promise to 
provide information about the composition of urban 
forests, but it will be some time before most US urban 
areas have been inventoried intensely.  This modeling 
approach provides a use for urban FIA data as they 
become available to better understand urban forests at 
larger spatial scales.  It may be useful to consider FIA 
urban inventories as potential input to models such as 
these when determining where to implement future 
urban FIA i-Tree Eco inventories.
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in the US Forest Service Urban and Community 
Forestry Program, staffs of urban forestry-related 
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with data.  Without their cooperation, this research 
would have been impossible. Special thanks go to 
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Figure 2—Results of geographically weighted regression of total urban forest basal area on city canopy cover.  Cities where the model 
strongly under-predicts the basal area are circled in red.
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UNDERSTANDING MACROSCALE INVASION PATTERNS AND 
PROCESSES WITH FIA DATA

Songlin Fei, Basil V. Iannone III, Christopher M. Oswalt, Qinfeng Guo,  
Kevin M. Potter, Sonja N. Oswalt, Bryan C. Pijanowski, Gabriela C. Nunez-Mir1 

Abstract—Using empirical data from FIA, we modeled invasion richness and invasion 
prevalence as functions of 22 factors reflective of propagule pressure and/or habitat 
invasibility across the continental US. Our statistical models suggest that both propagule 
pressure and habitat invasibility contribute to macroscale patterns of forest plant 
invasions. Our investigation provides insight into sub-continental invasion patterns and 
processes, confirming the utility of accounting for multiple invasion measures and sub-
regional heterogeneity. 

Biological invasions are a major component of global 
change, resulting in significant impacts. Despite 
the vast number of smaller-scale investigations, 
these studies cannot provide comprehensive insight 
into the complexities of invasions at macroscales. 
Stronger inferences about biological invasions may 
be obtained when accounting for multiple invasion 
measures and the spatial heterogeneity occurring 
across large geographic areas. We pursued this 
inquiry by utilizing a multi-measure, multi-regional 
framework to investigate forest plant invasions at a 
sub-continental scale. 

METHODS
We mapped invasion richness and invasion 
prevalence across the contiguous 48 states of the USA 
based on FIA invasive plants dataset. To determine 
the extent to which different invasion measures and 
spatial heterogeneity affect factors most associated 
with invasion patterns, we modeled each invasion 
measure separately for eastern and western forests 
as a function of 22 variables reflecting propagule 

pressure and habitat invasibility using simultaneous 
autoregressive error models (SARerr). 

INVASION SPATIAL PATTERNS  
AND DRIVERS 
Eastern forests were more invaded than western 
forests. The invasion richness per county was twice 
more in the East than the West (6.1 ± 0.1 and 3.2 
± 0.2, respectively). Invasive prevalence was 48 ± 
1% in the East and 10 ± 1% in the West. Invasion 
patterns were spatially heterogeneous both for the 
East and West.

Both propagule pressure and habitat invasibility 
contribute to macroscale patterns of forest plant 
invasions. 

Population density, distance to the nearest port, and 
years since annexation by the USA were positively 
related to invasion richness and prevalence. We 
also found that human-caused forest fragmentation, 
along with native tree live biomass, species richness, 
and phylogenetic richness, was associated with the 
observed invasion patterns. 

1 Associate Professor (SF), Postdoc Scholar (BVI), Professor (BCP), 
and Graduate Student (GCN), Department of Forestry and Natural 
Resources, Purdue University; Research Forester (CMO), Research 
Ecologist (QG), and Research Forester (SNO), USDA Forest 
Service Southern Research Station; Research Associate Professor 
(KMP), Department of Forestry and Environmental Resources, 
North Carolina State University. SF is corresponding author: to 
contact, call (765) 496-2199 or e-mail at sfei@purdue.edu
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DISCUSSIONS
Our investigation provides insight into sub-continental 
invasion patterns and processes. By accounting for 
spatial heterogeneity, we detected a declining effect of 
propagule pressure on macroscale invasion patterns. 
Our analyses suggest that eastern and western forests 
as a whole are at different stages of invasion and are 
influenced by different drivers, indicating a need for 
considering spatial heterogeneity when prescribing 
invasive plant management and policy. 
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EARLY-SERAL STAND AGE AND FOREST STRUCTURAL  
CHANGES IN PUBLIC AND PRIVATE FORESTLANDS  

IN WESTERN OREGON AND WASHINGTON

Robert L Deal*, Sharon Stanton1, Matthew Betts2 and Zhiqiang Yang2

Abstract—Federal forests in the Pacific Northwest region have undergone exceptional 
changes in management over the past 20 years, and these changes have led to a reduction 
in regional timber production and significant changes in the management and current 
age structure of forests.  Public lands include large areas of older forests with relatively 
little younger early-seral forests. In contrast, private lands include large areas of younger 
forests and little land in older forests.  The lack of early-seral forests on federal lands is 
an important and distinguishing characteristic of these forests and there is concern about 
the amount and type of early-seral wildlife habitat available in the region.  Reductions 
in timber harvests in federal forests in the PNW region in recent years may lead to 
significant changes in forest age class structure between public and private lands.  Lack 
of regeneration harvests may also reduce early-seral forest habitat on federal lands and 
this loss of early-seral habitat is a conservation concern for wildlife species that depend 
on this type of forest habitat.  Conversely, the amount and intensity of management in 
industrial private lands have has increased with a greater proportion of private forests in 
relatively young stands less than 20 years old.  

We assess changes in forest stand age, forest structure and vegetation in public and 
private lands using both USFS Forest Inventory and Analysis and LANDSAT data to 
compare differences among forestland owners since the Northwest Forest Plan was 
implemented.  Findings show significant differences in stand age and forest structure 
between federal, state and private forestlands in the Northwest Forest Plan area.  We are 
conducting analyses of forest stand and understory data to assess potential differences 
between public and private landowners and relate to quality of wildlife habitat for 
ungulates and birds.  We will report results with implications for forest management and 
wildlife habitat in the PNW region.

1 USDA Forest Service, Pacific Northwest Research Station, 
Portland OR
2 Department of Forest Ecosystems and Society, Oregon State 
University, Corvallis, OR
* Presenting Author
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AN EARLY LOOK AT FOREST REGENERATION INDICATOR RESULTS 
FOR THE MIDWEST AND NORTHEAST UNITED STATES

William H. McWilliams and James A. Westfall1

Abstract—Interacting regeneration stressors create challenges for policy makers and 
managers who are tasked with making decisions for restoring forest following major 
disturbances, such as harvest or catastrophic mortality. Concern over an aging forest, 
dwindling young forest habitat, and restoration of native forests in the midwest and 
northeast United States has resulted in the development of the regeneration indicator 
(RI), a new ecological health indicator derived from 25 years of measuring advance 
regeneration in Pennsylvania. The RI protocols were added to the Northern Research 
Station (NRS), Forest Inventory and Analysis (FIA) program sample plot design in 2012. 
Two case studies are presented that exemplify the scope of possible inferences from the 
existing data. The examples use two key variables—numbers of seedlings and browse 
impact—to highlight potential applications of this metric. Future research should focus 
on identifying issue-oriented geographic hot spots, further development of regeneration 
adequacy analytics, and integration with other publicly available geographic datasets. 

INTRODUCTION
Multiple interacting regeneration stressors challenge 
wide-ranging policy and management decisions for 
restoring native forest ecosystems following major 
disturbances, such as harvest or catastrophic mortality. 
Some of the more complicated stressors are invasive 
plants, herbivory, and changing climate. Although 
it has been accepted as fact that tree regeneration 
determines future forest composition, structure, 
and health following stand replacement events, 
regeneration studies for subcontinental-scale forest 
landscapes are rare.

Concern over an aging forest, dwindling young 
forest habitat, and restoration of native forests in the 
midwest and northeast United States has resulted in 
the development of the regeneration indicator (RI), 
a new ecological health indicator derived from 25 
years of experience measuring advance regeneration 
in Pennsylvania (McWilliams et al. 2012). The RI 
protocols include a suite of tree-seedling and browse 

impact measurements that were added to Northern 
Research Station (NRS), Forest Inventory and 
Analysis (FIA) program sample plot design in 2012 
(McWilliams et al. 2015).

The goal of this paper is to demonstrate decisions 
for making inferences and observations using the RI 
data with examples that range from the substate to 
subcontinental scale. Only general guidance is offered 
because the of many prospective uses, sample sizes, 
and options for geographic applications preclude more 
complete recommendations in this short paper.

METHODS
In 2012, the NRS-FIA program began taking 
measurements for a suite of ecosystem health 
indicators collected during the leaf-on season. A 
12-percent subsample of the core Phase 2 sample 
was selected randomly within estimation strata; the 
subsample plots are referred to as “Phase 2-plus.” 
Each RI sample is coincident with Phase 2 and other 
Phase 2-plus indicator samples, including down woody 
material, vegetation structure, and soils.

1 Research Foresters (WM and JW), Northern Research Station, 
USDA Forest Service, 11 Campus Blvd., Suite 200, Newtown 
Square, PA, 19073; WM is corresponding author:  to contact, call 
(610) 557-4050 or e-mail wmcwilliams@fs.fed.us.
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The vegetation structure measurements are collected 
on forested conditions and comprised of a vegetation 
profile, an invasive plant survey, and the RI. The 
vegetation profile includes estimates of percent cover 
by growth habit for four height classes and an aerial 
view of the subplot. The invasive plant survey is 
made up of percent cover estimates for 43 invasive 
plant species encountered on the subplot. The RI 
measurements are collected on microplots within 
the subplot and include a tally of all established 
tree seedlings at least 2-inches in length (or height) 
by species, assignment of each seedling to one of 
six height classes, and an assessment of root-collar 
diameter for large-seeded species. A browse impact 
code is also recorded based on conditions surrounding 
the sample plot. Details of plot, subplot, and microplot 
design are provided in USDA Forest Service 2012.

Two case studies exemplify the scope of possible 
inferences for data that range from small to large 
scales and to illustrate opportunities and limitations 
of analyzing results. The case studies use two key 
variables—numbers of seedlings and browse impact—
to highlight reporting and research products. 

The first case study presents estimates of seedlings 
in West Virginia. The estimates are based on 83 
forested Phase 2-plus samples collected in 2012-
2013. Population estimates for the six seedling-height 
classes were combined into three to take advantage of 
lower sampling errors associated with larger sample 
sizes of the wider range of heights. These traditional 
FIA sampling errors represent one standard error or a 
68-percent confidence level. 

The second case study is a geographic evaluation 
of browse impact comparing results for a variety of 
scales. The visualization includes RI data for 2012-
2013 for Delaware (four samples), Maryland (19), 
and New Jersey (17) to represent minimum reporting 
options. These results are compared to the NRS-FIA 
region-wide data for 2012-2013 (1,711) and the full 
baseline data set for Pennsylvania (292) to provide 
context. Statistical confidence intervals for population 
estimates are used to suggest bounds for deriving 
logical conclusions from the results.

RESULTS
In the Midwest and Northeast, large blocks of forest 
land are aging and subject to a plethora of stressors, 
which means stand-replacement disturbances will 
likely become more common. Estimates of the number 
of seedlings by height class, species, and spatial 
extent provide information for predicting future forest 
composition and prospective regeneration management 
challenges (Fig. 1a-c). Sampling errors for species and 
species groups range from 20 percent for the number 
of red maple seedlings to 70 percent for boxelder (see 
Appendix Table 1 for list of common and scientific 
names). The sampling errors exceed 25 percent for 
all species that comprise 3 percent or less of the total 
number of seedlings, suggesting a possible limit for 
taxa-specific inferences at these sample sizes. It is 
apparent that with only two inventory panels complete, 
nearly all of the estimates for species by height 
class lack statistical confidence needed for making 
inferences. The visualization of seedlings per acre 
across West Virginia clarifies spatial patterns of seedling 
development. The seedlings per-acre classes can be 
adjusted as needed for species, forest types, and regions 
of interest, subject to statistical confidence limitations.

Results displayed in a geographic context can facilitate 
the understanding of how and where deer browse 
has the most impact. The distribution of samples by 
browse impact for the NRS-FIA region provides a first 
look at general patterns of high versus low browse 
impact, e.g., Maine compared to central Pennsylvania 
(Fig. 2a). Figure 2b shows three states with relatively 
small sample sizes combined with the full baseline 
data set for Pennsylvania. Even though low sample 
sizes prevent rigorous spatial analysis for the three 
small states, including the Pennsylvania samples and 
the ecological province boundaries assists in observing 
broad browse impact patterns. For example, samples 
for western Maryland appear to follow the relatively 
nondescript patterns of the Central Appalachian 
Broadleaf Province. Combining the Outer Coastal 
Mixed province portions of the three small states 
suggests careful monitoring is needed because of the 
abundance of high browse impact samples.
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Figure 1—a) Number of seedlings by height class; b) Number of seedlings ranked by species for species with at least 1 percent of the total 
number of seedlings; and c) distribution of forested Phase 2-plus samples by the average number of seedlings per acre, West Virginia 2012-
2013. Error bars represent 1 standard error or a 68-percent confidence interval.

DISCUSSION
The RI results provide meaningful insight into the 
character and abundance of the seedling component for 
the NRS-FIA region; however, it is clear that caution 
is needed for making inferences. The relatively small 
sample size at the regional level means that some 
states, study regions, and variables have sample sizes 
that limit the ability to make inferences. Consequently, 
reporting templates for West Virginia and Maryland 
would be quite different because analyses need to be 
tailored to fit statistical limitations. Presenting the 
results with error bars and geographic distributions 
for the major variables of interest provides insights 
for the smaller states. It becomes obvious that more 

information is needed for taxa-specific abundance 
(numbers of seedlings) and structure (seedling height). 
These attributes are critical for understanding the 
future status of forest ecosystems following stand-
replacement disturbance.

These results reflect only two of the seven panels of 
measurements that will eventually comprise the first 
full baseline data set for the RI. Completion of the 
baseline data set in 2018 will improve the level of 
statistical confidence in the estimates and facilitate 
more detailed studies. 
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Figure 2—a) Distribution of forested Phase 2-plus samples on forest land by browse impact, b) distribution of forested phase 2-plus 
samples and by browse impact and ecological province (Cleland et. al. 2007), NRS-FIA states, US, 2012-2014. Error bars represent 1 
standard error or a 68-percent confidence interval. (Note: results for Pennsylvania are for 2010-2014).
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FUTURE WORK
As with any new ecological health indicator, there 
are numerous research extensions and applications 
to enhance the utility of science products. Future 
research should focus on an analysis of composition 
and structure of the seedling component as the data set 
expands and a geospatial analyses to identify high-risk 
areas, such as forest types with poor regeneration or 
areas with high browse impact.

Research is also needed to address the viability, or 
adequacy, of the regeneration process. While analytics 
that adjust existing regeneration guidelines to reflect 
browse impact have been applied for the mid-Atlantic 
States (McWilliams et al. 1995), similar analytics 
for the Central, Lake, and New England States are 
needed. Once complete, such metrics will facilitate a 
seamless and transparent assessment of regeneration 
adequacy for the major forest types of the Northeast 
and Midwest. This is a critical need due the aging of 
mixed oak and northern hardwood forests of the region 
and regeneration stress factors that interact to make 
regeneration difficult.

Modern resource questions often require multivariate 
studies that combine geographic data to better 
understand complex relationships. There are many 
research opportunities to integrate the RI data with 
other publicly available geographic datasets. For 
example, tree-species migration studies would benefit 
from including soils (USDA Natural Resource 
Conservation Service 2015), climate (NOAA National 
Weather Service 2015), and disturbance (USDI 
Geological Survey 2015).

The RI was designed to supplement NRS-FIA’s 
vegetation profile and invasive plant survey 
information. Combining results from these three 
components of the vegetation structure measurements 
provides a fuller appraisal of the forest understory that 
will better address emerging issues, e.g., the status 
and condition of new forest communities (Royo and 
Carson 2006). In turn, this should improve our ability 
to evaluate sustainability of future forest values in the 
Midwest and Northeast.
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APPENDIX 
Table 1—Common and scientific names of FIA tree species.

Species Common name Scientific name1

American beech Fagus grandifolia

American hornbeam Carprinus caroliniana

black cherry Prunus serotina

black oak Quercus velutina

blackgum Nyssa silvatica

boxelder Acer negundo

chestnut oak Quercus prinus

eastern hophornbeam Ostrya virginiana

eastern redbud Cercis canadensis

flowering dogwood Cornus florida

mockernut hickory Carya alba

northern red oak Quercus rubra

pignut hickory Carya glabra

pin cherry Prunus pensylvanica

red maple Acer rubrum

sassafras Sassafras albidum

serviceberry spp. Amelanchier spp.

slippery elm Ulmus rubra

sourwood Oxydendron arboreum

striped maple Acer pensylvanicum

sugar maple Acer saccharum

sweet birch Betula lenta

white ash Fraxinus americana

white oak Quercus alba

yellow birch Betula alleghaniensis

yellow-poplar Liriodendron tulipifera
1 USDA Natural Resources Conservation Service, 2014.
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FOREST DISTURBANCES TRIGGER EROSION CONTROLLED FLUXES 
OF NITROGEN, PHOSPHORUS AND DISSOLVED CARBON 

Marek Matyjasik1, Gretchen Moisen2, Todd A. Schroeder2, Tracy Frescino2, Michael Hernandez1

Abstract—The initial phase of the research that addressed correlation between annual 
forest disturbance maps produced from LANDSAT images and  water quality and 
flow data  indicate that forest disturbances in conjunction with intense atmospheric 
precipitation commonly trigger fluxes  of several chemical constituents, such as nitrogen,  
phosphorus carbon. These fluxes appear to be correlated with intense soil erosion. While 
concentration on N, P and dissolved C do not significantly fluctuate, their total fluxes vary 
by five to twenty times when flow volumes increase by on order of magnitude during 
peak flow rates. These large fluxes of N, P and dissolved C are transferred to downstream 
watersheds affecting effectively environmental ecosystems of upstream and downstream 
areas.  These fluxes are also highly correlated with wild fire triggered erosion. Erosion 
has been modeled using ERMiT:  Erosion Risk Management Tool, developed specifically 
for post-fire assessments that predicts the probability associated with a given amount of 
single-storm soil erosion in tons/acre for a given hillslope  topography in each of five 
years following forest wildfire. Erosion modeling allows changing vegetation cover as 
the function of severity of forest disturbances. Input data in erosion modeling include 
types of soils, types of vegetation cover, slope angle, burn severity level, and hydrologic 
conditions for the modeled area. Niitrogen fluxes from two study area have been 
correlated with ERMiT  modeled erosion. Both areas display high correlation between 
erosion and nitrogen fluxes, with correlation coefficients higher than 0.7. 

1 Weber State University, Ogden, Utah 
2 FIA, Ogden, Utah
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INTEGRATING FIELD PLOTS, LIDAR, AND LANDSAT TIME SERIES TO 
PROVIDE TEMPORALLY CONSISTENT ANNUAL ESTIMATES  

OF BIOMASS FROM 1990 TO PRESENT

Warren B. Cohen1, Hans-Erik Andersen2, Sean P. Healey3, Gretchen G. Moisen4, Todd A. Schroeder5, 
Christopher W. Woodall6, Grant M. Domke7, Zhiqiang Yang8, Robert E. Kennedy9, Stephen V. Stehman10, 

Curtis Woodcock11, Jim Vogelmann12, Zhe Zhu13, Chengquan Huang14

Abstract—We are developing a system that provides temporally consistent biomass 
estimates for national greenhouse gas inventory reporting to the United Nations 
Framework Convention on Climate Change. Our model-assisted estimation framework 
relies on remote sensing to scale from plot measurements to lidar strip samples, to 
Landsat time series-based maps. As a demonstration, new field plots are strategically 
located across six diverse Landsat scenes within the major forested regions of the US. To 
distribute the plots across structure and cover gradients within each scene, we use forest 
structure metrics derived from recent lidar acquisitions. Landsat time series are used to 
derive disturbance and recovery history metrics that, when linked to the plots and the 
lidar strip samples, facilitate improved mapping of current biomass. Because the mapping 
model is based on Landsat history metrics it can be walked back in time to 1990, using 
Landsat data acquired since 1972. This provides a temporally consistent approach for 
mapping biomass at an annual time-step, using a model that has well characterized errors 
from diagnostics associated with the plots and lidar strip samples from the current period. 

1 Warren B. Cohen (presenting author, wcohen@fs.fed.us; 541-750-
7322) 
2 Hans-Erik Andersen (handersen@fs.fed.us)
3 Sean P. Healey (seanhealey@fs.fed.us)
4 Gretchen G. Moisen (gmoisen@fs.fed.us)
5 Todd A. Schroeder (tschroeder@fs.fed.us)
6 Christopher W. Woodall (cwoodall@fs.fed.us)
7 Grant M. Domke, (gmdomke@fs.fed.us), USDA Forest Service
8 Zhiqiang Yang (zhiqiang.yang@oregonstate.edu)
9 Robert E. Kennedy (rkennedy@coas.oregonstate.edu), Oregon 
State University
10 Stephen V. Stehman, State University of New York (svstehma@
syr.edu)
11 Curtis Woodcock (curtis@bu.edu), Boston University
12 Jim Vogelmann (vogel@usgs.gov)
13 Zhe Zhu (zhezhu@usgs.gov), USGS
14 Chengquan Huang, University of Maryland (cqhuang@umd.edu)
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USING LANDSAT TIME-SERIES AND LIDAR TO INFORM 
ABOVEGROUND CARBON BASELINE ESTIMATION IN MINNESOTA

Ram K. Deo1, Grant M. Domke2, Matthew B. Russell3, Christopher W. Woodall2, and Michael J. Falkowski4

Abstract—Landsat data has long been used to support forest monitoring and 
management decisions despite the limited success of passive optical remote sensing for 
accurate estimation of structural attributes such as aboveground biomass. The archive 
of publicly available Landsat images dating back to the 1970s can be used to predict 
historic forest biomass dynamics. In addition, increasing regional scale availability and 
high sensitivity of LiDAR for biomass mapping also needs exploration of its utility in 
back-projection modeling.  This study has combined recent national forest inventory 
(NFI) data (2007-2011) with the Landsat data from 1986-2011 and a regional LiDAR 
dataset acquired by the Minnesota Department of Natural Resources (DNR) to assess the 
potential of the remote sensing data in predicting aboveground forest biomass back to 
the 1990 baseline used in the United Nations Framework Convention on Climate Change 
reporting in the US. Since obtaining cloud-free Landsat images at required seasons for 
a regional or national study is unlikely, pixel level polynomial models were fitted to a 
suite of time-series predictors obtained from cloud-free Landsat data of a single scene in 
Minnesota such that each predictor represented only one growing season between 1986 
and 2011. Similarly, selected LiDAR variables were back-projected using Landsat metrics 
as explanatory variables. The rational for this effort was to obtain a wall-to-wall inventory 
for any target year that does not have remote sensing data by combining a set of projected 
predictors and current NFI data. Several candidate models were developed to produce 
biomass maps for the year 2000 to compare the outputs with the extant map of National 
Biomass and Carbon Dataset (NBCD) circa 2000 and annual NFI plot measurements. 
We found that the model including back-projected LiDAR metrics did not significantly 
improve the prediction accuracy as compared to the model based only on projected 
Landsat metrics. As the polynomial-projected Landsat-based model provided accuracy 
similar to the NBCD model, the former may be used for reference mapping back to 1990.

INTRODUCTION
Regional scale, spatially explicit and periodic 
quantification of aboveground biomass (AGB) is 
critical for forest carbon accounting and analysis of 
growth dynamics (Powell et al., 2010). Additionally, a 

back-in-time biomass baseline is necessary to evaluate 
national efforts (e.g., forestry-based) on greenhouse 
gas (GHG) emissions reduction implemented within 
the United Nations Framework Convention on 
Climate Change (UNFCCC). Any spatial inventory 
of forest AGB for the past that lacked sufficient field 
samples can most reliably apply historic satellite 
imagery (Huang et al., 2010). Landsat remotely sensed 
data has long been used to support forest inventory 
despite limited success of the passive optical data for 
accurate estimation of AGB. The archive of publicly 
available Landsat data dating back to the 1970s 
can be integrated with available standard national 

1 Postdoctoral Research Associate, Department of Forest 
Resources, University of Minnesota, St. Paul, MN 55108; rkdeo@
umn.edu
2 Research Foresters, Northern Research Station, Forest Inven-
tory and Analysis, USDA Forest Service, St. Paul, MN 55108; 
gmdomke@fs.fed.us; cwoodall@fs.fed.us
3 Assistant Professor, Department of Forest Resources, University of 
Minnesota, St. Paul, MN 55108; russellm@umn.edu
4 Research Associate Professor, Department of Forest Resources, 
University of Minnesota, St. Paul, MN 55108; mfalkows@umn.edu
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forest inventory (NFI) data to predict biomass in a 
temporally consistent approach. The NFI system in 
the US, implemented by the Forest Inventory and 
Analysis (FIA) program of the USDA Forest Service, 
has evolved over time with a nationally consistent 
design adopted since1999. It has been documented 
that resource estimates based on the current annual 
design compared to previous periodic designs produce 
inconsistent results (Goeking et al., 2015). 

LiDAR technology has been found to provide 
the most sensitive remote sensing metrics (e.g., 
height distribution, strata density, canopy cover) 
to characterize forest structural attributes. Several 
studies have highlighted the strengths of LiDAR for 
landscape scale forest inventory and mapping, and 
such applications are receiving increasing attention, 
especially when regional scale LiDAR acquisitions 
are publicly available (e.g., MN High Resolution 
Elevation Mapping Project; see http://arcgis.dnr.state.
mn.us/maps/mntopo/). This provides an opportunity 
to combine one-time LiDAR data with the time-series 
Landsat data for back-projection modeling of AGB.

This study was initially designed to combine a recent 
cycle (2007-2011) of FIA data with time-series 
Landsat data from 1986-2011 to assess the efficacy 
of the optical remote sensing data in back-projecting 
AGB to the 1990 baseline used in the US for national 
GHG inventory (NGHGI) reporting to the UNFCCC. 
An additional goal was to evaluate the inclusion of 
back-projected LiDAR metrics (as predictors in the 
modeling frames) from the recently acquired dataset 
with anticipation of improving the prediction accuracy 
of AGB for the reference year. 

METHODS
FIA Data
Aboveground biomass data for the annual NFI plots 
measured in 2000 and 2007 to 2011 in northeastern 
Minnesota were obtained from the FIA program. The 
data were processed at the FIA, Northern Research 
Station to comply with the privacy requirements of 
actual plot locations. The plot biomass data scaled 

to tons per ha were based on nationally consistent 
allometric equations (Jenkins et al. 2003) applied to 
the records of all subplots and micro-plots in each 
NFI plot.

Remote Sensing Data
We acquired a time-series (1986-2011) of near-
anniversary date Landsat-5 Thematic Mapper 
(TM) surface reflectance data for a single scene in 
Minnesota (WRS-2 path 27, row 27) from the USGS 
Climate Data Record (CDR, http://espa.cr.usgs.
gov/ordering/new). The acquired images were 
radiometrically and atmospherically preprocessed 
at the source via LEDAPS software (http://landsat.
usgs.gov/CDR_LSR.php). The time-series collection 
contained one cloud-free image per peak leaf-on 
season between mid-July and mid-September when 
consistent landscape conditions and phenology can 
be expected due to similar solar geometry; however, 
only 17 of the 26 seasons contained cloud-free images 
with a maximum gap of 2 years. The CDR products 
included surface reflectance-derived spectral indices 
(http://landsat.usgs.gov/-CDR_ECV.php) as well 
as individual bands for each acquisition. Six spatial 
predictors from Landsat data were considered for 
AGB modeling: Band-5, NDVI (normalized difference 
vegetation index), NBR (normalized burn ratio), IFZ 
(integrated forest z-score), TCA (tasseled cap angle), 
and DI (disturbance index). Band-5, NDVI, and NBR 
were obtained directly from CDR while IFZ, TCA, 
and DI were derived as described in Huang et al. 
(2010), Pflugmacher et al. (2012) and Healey et al. 
(2005) respectively. 

A highly accurate LiDAR dataset (5 cm vertical 
error), acquired in spring 2011 (May, 3-26) with 
1-1.5 m pulse spacing, is publicly available for over 
75 percent coverage of the target Landsat scene to 
the northeastern side called the Arrowhead region. 
The raw LiDAR data were downloaded from the 
MnGeo web-portal (http://www.mngeo.state.mn.us/
chouse/elevation/-lidar.html#data) and processed to 
obtain 30 grid-metrics representing canopy cover, 
elevation distributions, and proportion of returns in 
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vertical strata following Falkowski et al. (2010). The 
analysis for spatial inventory was focused only to the 
Arrowhead region of Minnesota.

Modeling Approach
Since obtaining cloud-free Landsat images at nominal 
intervals for a regional or national study was unlikely, 
a pixel-level polynomial (3rd degree) curve fit (De 
Jager and Fox, 2013) was applied to each of the six 
time-series predictors obtained from the Landsat 
time-series (17 images between 1986-2011) for the 
target scene ( WRS-2 path-27, row-27). The rationale 
for this approach was to obtain a wall-to-wall 
inventory for any target year that does not have cloud-
free satellite images by combining a set of projected 

predictors from polynomial models and current 
FIA data. The FIA plot data was attached to the 
Landsat and LiDAR predictors to obtain a reference 
frame for modelling. The collinear spatial variables 
were pruned and then best-subset and Random 
Forest (RF)-based variable selection approach 
was followed to develop robust and parsimonious 
spatial models for predicting AGB (Falkowski et al., 
2009, 2010). Several AGB models were formulated 
using the RF-based k-Nearest Neighbor (k-NN) 
imputation approach (Crookston and Finley, 2008). 
The candidate models were dependent on different 
combinations of Landsat and LiDAR derived spatial 
predictors, number of observations (plots within 
years) used in the reference frame and number of 

Table 1—Fitted models for aboveground biomass and accuracy statistics for the Arrowhead region in 
northeastern Minnesota

Model

Predictors and 
reference years for the 
model frame

No. of 
plots

Value 
of k

% variance
explained

Plot-level validation with 
FIA data in 2000
(n= 262)

Polygon-level 
validation with NBCD 
2000 (n= 110)

Bias % RMSE (mt/ha) Bias % RMSE (mt)

1
6 actual TM metricsψ 
from 2007, 08, 10 & 11 1347 1 19.27 -2.2432 61.9552 -13.4873 1421.7299

2
6 projected TM metrics 
from 2007-2011 1661 1 25.79 -1.3484 63.6090 -9.7693 1236.7107

3
TM band-5 and 3 LiDAR£ 
metrics from 2011 only 253 1 62.82 -2.1143 61.8594 -13.0971 1417.8929

4
6 projected TM metrics 
from 2011 only 327 1 24.71 3.5179 58.5749 5.1847 1237.4841

5
6 actual TM metrics 
from 2007, 08, 10 & 11 1347 3 18.95 -3.1665 61.4549 -13.4693 1427.2498

6
6 projected TM metrics 
from 2007-2011 1661 3 26.03 -2.7252 63.5456 -10.2685 1263.1804

7
TM band-5 and 3 LiDAR 
metrics from 2011 only 253 3 62.86 -1.2213 61.5482 -12.9604 1412.8583

8
6 projected TM metrics 
from 2011 only 327 3 24.83 4.3745 58.0422 4.9054 1237.3781

9
6 actual TM metrics 
from 2007, 08, 10 & 11 1347 5 19.16 -2.1723 62.3220 -12.9010 1397.7346

10
6 projected TM metrics 
from 2007-2011 1661 5 25.87 -3.2511 63.8337 -10.0981 1252.0701

11
TM band-5 and 3 LiDAR 
metrics from 2011 only 253 5 62.8 -1.8642 61.6539 -13.0042 1415.1248

12
6 projected TM metrics 
from 2011 only 327 5 24.88 4.8440 58.6628 5.5991 1249.3276

NBCD Model 5.0480 43.0694
ψ 6 TM metrics: Band-5, DI, NBR, IFZ, TCA, and NDVI.
£ 3 LiDAR metrics: Maximum elevn, average elevn, and canopy cover based on percentage of all returns above 2 m.
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nearest neighbors (k) considered for the imputation 
(Table 1). For LiDAR dependent models obtained 
from the plot data and coinciding LiDAR metrics of 
the acquisition year, only the selected LiDAR metrics 
were back-projected for a target year via Landsat 
variables. The selected LiDAR metrics were projected 
using the RF-based k-NN imputation models fitted to 
a frame obtained from 5000 arbitrary points across 
the target area where both LiDAR metrics as response 
and Landsat metrics as predictors were extracted in a 
GIS environment. The accuracy of model predictions 
for the year 2000 was evaluated at plot-level using the 
FIA data of 2000 and also at 110 arbitrary polygon-
level (~10 - 133 ha) using an extant AGB map 
circa 2000 from the National Biomass and Carbon 
Dataset (NBCD, http://whrc.org/mapping/nbcd/). 
The performance of AGB models was assessed using 
statistical measures of bias (predicted - observed) and 
root mean square error (RMSE), to select the most 
suitable model for spatial inventory in 1990.

RESULTS AND DISCUSSION
Polynomial curve-fitting to the time-series actual 
Landsat-derived metrics revealed a better coefficient 
of determination (R2) (i.e., temporal consistency) with 
band-5 where almost 50% of pixels in the target area 
attained an R2 > 0.40; DI, IFZ, NBR, NDVI and TCA 
had 37.17%, 32.86%, 31.43%, 17.20% and 4.20% of 
their respective pixels with R2 > 0.40. The RF-based 
variable selection algorithm for Landsat dependent 
models did not identify any collinear metrics but 
identified only three prime metrics for the LiDAR 
dependent model. When spatial models of the selected 
LiDAR metrics dependent on Landsat metrics were 
developed, reasonable R2 values were obtained (0.56, 
0.49 and 0.65 for ElevMax, ElevAv and Cover-above-2 
m, respectively) with the fitting dataset for the year 
2011. However, performance of these models when 
applied for back-projection using the Landsat metrics 
for the year 2000, were not tested in absence of data.

The plot level validation of AGB prediction 
using FIA measurements from the inventory year 

2000 showed that the model including LiDAR 
metrics and the projected TM band-5, yield least 
bias with k = 3 NN in the imputation. Further, 
the bias of the model including LiDAR was very 
close to the model dependent on polynomial-
projected TM metrics. However, the inspection of 
RMSE infers that the model based on projected 
TM predictors from the year 2011 with only 327 
plots provided the least error. Additionally, the 
models based on LiDAR metrics have similar 
RMSE as the models based only on actual TM 
derived predictors. Although the LiDAR model 
performed well when applied in the same year 
from which it was built, the back-projection 
was impaired because ultimately it relied on 
TM predictors which become insensitive in high 
biomass areas. All the models provided negative 
bias, except the projected TM only model with 
fewer plots, suggesting that the imputation models 
result in under predictions of AGB. This fact 
of under prediction and the range of observed 
RMSE are also highlighted in Powell et al. (2013). 
An interesting finding is that the NBCD model 
provided the highest bias (but least RMSE) at 
plot-level compared to all the models formulated 
in this study. A comparison of polygon-level total 
estimates by the models evaluated in this study at 
k= 3 against the NBCD are shown in Figure 1. 

CONCLUSIONS
Including current LiDAR data for back-projection 
of AGB did not improve prediction accuracy. The 
model based only on back-projected TM, or based 
on back-projected LiDAR provided similar estimates 
and hence either could be used. That said, it may 
be more efficient to just apply projected Landsat 
metrics rather than exploring many LiDAR metrics 
and conducting their back projection using Landsat 
variables. Rather than applying back-projected 
LiDAR explained by TM variables, it may be better 
to directly use back-projected TM variables in the 
model to minimize bias.
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Figure 1—Polygon-level total aboveground biomass estimates for different models (see Table 1) compared with NBCD model estimates for 
the Arrowhead region in northeastern Minnesota.
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THE NEW FOREST CARBON ACCOUNTING FRAMEWORK  
FOR THE UNITED STATES

Grant M. Domke1, John W. Coulston2, Christopher W. Woodall1

Abstract—The forest carbon accounting system used in recent National Greenhouse 
Gas Inventories (NGHGI) was developed more than a decade ago when the USDA 
Forest Service, Forest Inventory and Analysis annual inventory system was in its infancy 
and contemporary questions regarding the terrestrial sink (e.g., attribution) did not 
exist.  The time has come to develop a new framework that can quickly address new 
questions, enables forest carbon analytics, and uses all the inventory information (e.g., 
disturbances and land use change) while having the flexibility to engage a wider breadth 
of stakeholders and partner agencies. The Forest Carbon Accounting Framework (FCAF) 
is comprised of a forest dynamics module and a land use dynamics module. Together 
these modules produce data-driven estimates of carbon stocks and stock changes in forest 
ecosystems that are sensitive to carbon sequestration, forest aging, and disturbance effects 
as well as carbon stock transfers associated with afforestation and deforestation. The 
new accounting system was used in the 2016 NGHGI report and research is currently 
underway to incorporate emerging non-live tree carbon pool data, remotely sensed 
information, and auxiliary data (e.g., climate data) into the FCAF. 

1 USDA Forest Service, Northern Research Station, St. Paul,  
MN 55108
2 USDA Forest Service, Southern Research Station, Knoxville,  
TN 37919
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FUTURE FOREST CARBON ACCOUNTING CHALLENGES: THE 
QUESTION OF REGIONALIZATION

Michael C. Nichols1

Abstract—Forest carbon accounting techniques are changing. This year, a new 
accounting system is making its debut with the production of forest carbon data for EPA’s 
National Greenhouse Gas Inventory. The Forest Service’s annualized inventory system is 
being more fully integrated into estimates of forest carbon at the national and state levels 
both for the present and the recent past. With the advent of this new accounting system, 
however, a need persists for information at smaller scales. For example, National Forest 
managers are being asked to incorporate carbon management into Forest planning. Local 
government agencies often request a need for estimates of carbon in their jurisdictions. 
Production of carbon estimates at small scales has always presented major challenges. 
The quality and coverage of U.S. forest inventories has varied over time and among 
different parts of the country. The full incorporation of FIA’s uniform annualized 
inventory into carbon accounting offers new opportunities to overcome these challenges.

1 USDA Forest Service, Northern Research Station, Durham,  
NH 03824
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THE GREAT CARBON PUSH-PULL:  
WHERE SCIENCE IS PUSHING AND POLICY IS PULLING  

THE OFFICIAL FOREST CARBON INVENTORY OF THE US 

Woodall, C.W.1, Domke, G.M.1, Coulston, J.2, Russell, M.B.3, Smith, J.A.4, Perry, C.H.1, Healey, S.5, Gray, A.6

Abstract—A national system of field inventory plots (FIA) is the primary data source 
for the annual assessment of US forest carbon (C) stocks and stock-change to meet 
reporting requirements under the United Nations Framework Convention on Climate 
Change (UNFCCC).  The inventory data and their role in national carbon reporting 
continue to evolve.  The framework of the previous C accounting system (up through 
2015) was developed more than a decade ago when FIA’s annual inventory system 
was just being implemented and contemporary questions regarding the terrestrial C 
sink (e.g., attribution) did not exist.  The time has come to develop a new framework 
that can quickly address new questions, enables C analytics, and uses all the inventory 
information (e.g., disturbances and land use change) while having the flexibility to 
engage a wider breadth of stakeholders and partner agencies.  The current and future 
status of the science and framework of the US’ official C inventory will be discussed in 
the context of UNFCCC reporting and future C commitments.

1 USDA Forest Service, Northern Research Station, St. Paul, MN 
2 USDA Forest Service, Southern Research Station, Knoxville, TN
3 University of Minnesota, Department of Forest Resources,  
St. Paul, MN
4 USDA Forest Service, Northern Research Station, Durham, NH
5 USDA Forest Service, Rocky Mountain Research Station,  
Ogden, UT
6 USDA Forest Service, Pacific Northwest Research Station, 
Portland, OR
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DETERMINING FOREST CARBON STOCK LOSSES  
DUE TO WILDFIRE DISTURBANCE IN THE WESTERN UNITED STATES

John M. Zobel1 and John W. Coulston2

Abstract—Quantifying carbon stock losses after wildfire events is challenging due 
to the lack of detailed information before and after the disturbance.  We propose to 
use the extensive Western FIA database (including periodic and annual inventories) to 
recreate pre- and post-fire conditions to better estimate actual carbon losses.  Methods 
include using remeasurement date where available, growth models for forecasting and 
backcasting, and wildfire data and mapping from the United States Geological Survey.  
We will discuss the results and provide specific examples to demonstrate the proposed 
modeling system.

1 University of Tennessee, Knoxville, TN 37996
2 USDA Forest Service, Southern Research Station, Knoxville,  
TN 37919 
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HIERARCHICAL MODELS FOR INFORMING GENERAL BIOMASS 
EQUATIONS WITH FELLED TREE DATA

Brian J. Clough, Matthew B. Russell, Christopher W. Woodall, Grant M. Domke, and Philip J. Radtke1

Abstract— We present a hierarchical framework that uses a large multispecies felled 
tree database to inform a set of general models for predicting tree foliage biomass, with 
accompanying uncertainty, within the FIA database. Results suggest significant prediction 
uncertainty for individual trees and reveal higher errors when predicting foliage biomass 
for larger trees and for conifers. Consequently, we found large uncertainties when applying 
the fitted models to predict plot-scale foliage biomass for FIA data within Minnesota. 
These results suggest that applying general equations with fixed parameters may ignore 
significant error when used to estimate foliage biomass within the FIA database. 

INTRODUCTION
The National Greenhouse Gas Inventory (NGHGI) 
requires that forest biomass component pools are 
quantified at the national scale, and within FIA this 
is accomplished by aggregating biomass estimates 
calculated for individual trees (Woodall et al., 2011). 
Currently these are derived from a set of equations 
with fixed parameters (Jenkins et al., 2003), which fail 
to account for uncertainty when estimating biomass 
pools at the tree scale (Wayson et al., 2014; Weiskittel 
et al., 2015). This limitation may be particularly 
problematic when estimating variable and dynamic 
biomass components such as tree foliage. Recently 
a large felled-tree database has been compiled by 
the USFS Volume Biomass Project, providing the 
opportunity to inform uncertainty surrounding 
biomass models with field-measured data for many 
North American tree species. We used these data to 

address two specific objectives: (1) assess the expected 
uncertainty range of foliage biomass at the tree-scale; 
and (2) quantify the effect of these errors on plot-level 
estimates of foliage biomass within a set of FIA data. 

STUDY AREA
The felled tree data, which were compiled from 
many previously published and unpublished studies 
(hereafter referred to as “legacy data”), come from 
130 unique locations spanning the United States and 
Canada. Models fitted to these data were applied to 
estimate foliage biomass and associated uncertainty 
across the state of Minnesota, United States. 

METHODS
Data
The legacy data we utilized consist of 5690 
observations of foliage biomass (kg), total biomass 
(kg), and diameter at breast height (dbh; cm). These 
data cover a range of tree sizes (1.0-115.4 cm) and 
represent 99 species spread across all 10 species 
groups used by Jenkins et al. (2003). For prediction, 
we utilized the most recent cycle (2009-2013) of 
FIA measurements for Minnesota (N=174,883 
across 6,144 plots). We included both adult trees and 
saplings in this set and filtered the data to remove 
dead trees.  

1 Postdoctoral Research Associate (BJC), Department of For-
est Resources, University of Minnesota, St. Paul, MN 55108; 
Assistant Professor of Forest Ecosystem Health (MBR), University 
of Minnesota, St. Paul, MN 55108; Research Forester (CWW), 
Northern Research Station, Forest Inventory and Analysis, USDA 
Forest Service, St. Paul, MN 55108; Research Forester (GMD), 
Northern Research Station, Forest Inventory and Analysis, USDA 
Forest Service, St. Paul, MN 55108; Associate Professor of Forest 
Biometrics and Modeling (PJR), Virginia Polytechnic Institute, 
Blacksburg, VA 24061; BJC is corresponding author: to contact, 
call (609) 480 7952 or e-mail at bclough@umn.edu.

mailto:bclough@umn.edu
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Model
Our empirical model follows a “component ratio” 
approach (Chojnacky et al., 2013; Domke et al., 2012) 
where:`	 

		  [1] 
		  [2] 
		  [3]

where BMtotal is total aboveground biomass (kg), FR 
is a foliage component ratio, BMfol is foliage biomass 
(kg), dbh is diameter-at-breast height (cm), and the 
remaining terms are model parameters. Note that while 
our target is foliage biomass, the component ratio 
approach requires fitting a model for total biomass 
as well. Observed foliage ratios (FR) were calculated 
as observed foliage biomass (kg)/observed total 
aboveground biomass (kg). 

Model Fitting
Models [1] and [2] were fit to the legacy data using 
a hierarchical Bayes approach. We used weakly 
informative normal prior distributions (i.e.,~N(0,20)) 
on the regression coefficients (β0, β1, α0, α1). Model 
variances were specified with vague gamma priors 
(i.e., σ2 ~ Gamma(0.001, 0.001)). In addition, we 
placed vague “hyper-prior” distributions on the 
priors of the regression coefficients, allowing the 
model parameters from all groups to arise from a 
set of common distributions. Models were fit via 
Markov chain Monte Carlo (MCMC) methods 
using Stan, called from R via the RStan package 
(Stan Development Team, 2014). Our program 
generated posterior predictions from [1], [2], and [3] 
simultaneously, which allows us to assess prediction 
uncertainty in foliage biomass at both tree and plot 
scales. 

Assessing tree-scale uncertainty
We characterized the range of tree-scale uncertainty 
within our model by performing Bayesian posterior 
predictive checks (Gelman et al., 1996). We generated 
1,000 simulated datasets, of the same dimensions as 
the legacy data, by taking draws from the posterior 
predictive distribution, resulting in a marginal 

posterior distribution for every tree within the dataset. 
We compared the simulated means, as well as tree-
scale 95% uncertainty ranges, to observed foliage 
biomass from the legacy data.  

Application to FIA data
The fitted hierarchical model was then applied to 
generate posterior predictive distributions, based on 
500 simulations, for every tree within the Minnesota 
FIA data. These were aggregated into plot estimates 
by multiplying predicted foliage biomass with an 
adjustment factor to standardize biomass estimates 
on a per hectare basis and summing this product 
within plots. This procedure resulted in a distribution 
of predicted foliage biomass stock (kg*ha-1) at each 
plot, which we summarized by its mean and 95% 
uncertainty interval range. 

RESULTS 
For individual trees within the legacy data, overall 
mean posterior predicted foliage biomass was 13.3 
kg for conifers and 5.5 kg for hardwoods. The 
corresponding mean uncertainty bounds (95% credible 
intervals from the posterior simulations) were ±47.12 
kg and ±19.44 kg respectively. These uncertainties are 
large relative to the mean, but for both groups there is 
much higher error around predicted foliage biomass 
for large trees than for smaller individuals (Figure 1). 
In general, uncertainty is higher for conifers than for 
hardwoods within the legacy data, though hardwoods 
in these data generally had less foliage biomass. 

When applied to predict foliage biomass for FIA 
data, the fitted models resulted in an overall mean 
of 3932.2 kg*ha-1 across all plots. The large tree-
scale uncertainties noted in our first analysis led 
to considerable error at the plot level, with an 
average uncertainty interval of 3492.4 kg*ha-1. 
The distributions of both the plot-scale means and 
uncertainties are skewed to the left (Figure 2), with 
most plots predicted to have relatively little foliage 
biomass, and a smaller number of plots possessing 
larger stocks with accompanying large error bounds.  

ln( ) =  0 + 1 ln( h) + , 
ln( ) =  0 +  1 ln( h) +  ,  

= * ,   
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Figure 1—Observed vs. predicted foliage biomass for the legacy 
data. Error bars represents the 95% uncertainty intervals resulting 
from the posterior predictive checks we performed. 

Figure 2—Predicted means and 95% uncertainty intervals of  
plot-scale foliage biomass (kg*ha-1) for 6,115 FIA plots  
within Minnesota.
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DISCUSSION
Per reporting guidelines for NGHGIs outlined by the 
United Nations’ Framework Convention on Climate 
Change, the United States is required to provide 
quantitative estimates of uncertainties surrounding 
standing forest carbon stocks (IPCC, 2006). In order 
to best support development of international policy 
and decision-making, all nations should aim for these 
error estimates to be both reasonable and all-inclusive. 
Our results suggest that the current approach, where 
biomass pools are estimated via equations with 
fixed parameters, ignores substantial uncertainties 
associated with allometric functions for estimating 
foliage biomass. 

A hierarchical framework such as we use here 
provides an ideal approach for capturing this 
error. While non-hierarchical simulation-based 
approaches have been proposed (e.g., Wayson et al., 
2014)”type” : “article-journal” }, “uris” : [ “http://
www.mendeley.com/documents/?uuid=8beb78c2-
5742-41c0-8282-826aabf09cae” ] } ], “mendeley” : 
{ “formattedCitation” : “(Wayson et al., 2014, these 
require a priori decisions about the distributions 
underlying model parameters. In a hierarchical model, 
the dimensions of these distributions are determined 
by the fitting data (Green et al., 1999). Further, when 
a Bayesian approach is employed, uncertainties 
in both model parameters and data are seamlessly 
integrated into predicted estimates. Of course fitting 
a hierarchical model requires felled-tree data, so 
projects that aim to compile and enhance existing 
datasets, such as the USFS Volume Biomass Project, 
are integral to this approach. 

While the uncertainties found by our analysis are large, 
these results do carry some important caveats. First, 
the legacy data are sparse relative to the study area, 

and provide varying coverage across species groups. 
Ongoing work aims to fill gaps in these data, in order 
to provide a more representative dataset for the whole 
United States. Second, while we found large prediction 
errors in the foliage biomass pool, the extent to which 
this impacts overall uncertainty in the forest carbon 
pool remains unclear. Future work will assess whether 
similar error bounds can be expected for other, larger 
biomass components (i.e. roots, which are similarly 
dynamic), as well as for total aboveground biomass. 

CONCLUSIONS
By using a hierarchical model fit to a large felled-tree 
database, we reveal large uncertainty from allometric 
functions for predicting foliage biomass. Given the 
need for complete and accurate error estimates to 
support decision making related to the management 
of greenhouse gas emissions, these results may have 
important implications for national and international 
policy related to climate change. A hierarchical 
approach and the availability of the legacy data were 
important in uncovering these uncertainties, and we 
argue that such a framework should be adopted by 
future NGHGIs. That said more research is required to 
assess if the scale of uncertainty we found for foliage 
biomass is particular to this component, or if it will 
have a large impact on the estimation of the overall 
forest carbon pool.  
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LITTER CARBON STOCKS IN FORESTS OF THE US ARE MARKEDLY 
SMALLER THAN PREVIOUSLY REPORTED 

Grant Domke1, Charles Perry1, Brian Walters1, Christopher Woodall1, Matthew Russell2, James Smith3

Abstract—Forest ecosystems are the largest terrestrial carbon sink on earth with more 
than half of their net primary production moving to the soil via the decomposition of 
litter biomass. Therefore, changes in the litter carbon pool have important implications 
for global carbon budgets and carbon emissions reduction targets and negotiations. Litter 
accounts for an estimated 5 percent of all forest ecosystem carbon stocks worldwide. 
Given the cost and time required to measure litter attributes, many nations that are 
signatories to the United Nations Framework Convention on Climate Change (UNFCCC) 
report estimates of litter carbon stocks and stock changes using default values from the 
Intergovernmental Panel on Climate Change (IPCC) or country-specific models. Here 
we present, for the first time, estimates of litter carbon obtained using more than 5,000 
field measurements from the national forest inventory of the United States. These field-
based estimates mark a 44% reduction (2,081±77 Tg) in litter carbon stocks nationally 
when compared to country-specific model predictions reported in previous UNFCCC 
submissions. Our work suggests that IPCC defaults and country-specific models used 
to estimate litter carbon in temperate forest ecosystems may grossly overestimate the 
contribution of this pool in national carbon budgets.

1 USDA Forest Service, Northern Research Station, 1992 Folwell 
Ave., St. Paul, MN 55108 
2 University of Minnesota, Department of Forest Resources, 1530 
Cleveland Ave. N., St. Paul, MN 55108
3 USDA Forest Service, Northern Research Station, 271 Mast Rd., 
Durham, NH 03824
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INCORPORATING CLIMATE INTO BELOWGROUND CARBON 
ESTIMATES IN THE NATIONAL GREENHOUSE GAS INVENTORY

Matthew B. Russell, Grant M. Domke, Christopher W. Woodall, and Anthony W. D’Amato1

Abstract— Refined estimation of carbon (C) stocks within forest ecosystems is a critical 
component of efforts to reduce greenhouse gas emissions and mitigate the effects of 
projected climate change through forest C management. Recent evidence has pointed 
to the importance of climate as a driver of belowground C stocks. This study describes 
an approach for adjusting allometric models of belowground C with climate-derived 
predictions of belowground C stocks and quantifies the change in reported belowground 
C stocks applied to the US National Greenhouse Gas Inventory (NGHGI). Climate-
adjusted predictions varied by region and forest type, but represented a 6.4% increase 
at the national scale when compared to current estimates. By combining allometric 
equations with trends in temperature, we conclude that climate variables can be used to 
adjust the US NGHGI estimates of belowground C stocks. Such strategies can also be 
used to determine the effects of future global change scenarios within a biomass and C 
accounting framework.

INTRODUCTION
The logistical and methodological constraints associated 
with estimating forest carbon (C) in belowground pools 
have created a need for refined modeling approaches 
to quantify belowground C stocks. Although allometric 
equations are designed to account for a large portion of 
the apparent variability associated with belowground 
biomass (Litton and others, 2003), there are some 
drawbacks to this approach. Allometric equations 
lack the flexibility to incorporate climate information 
that integrates differences in ecosystem productivity 
and allows for evaluations of future climate change 
scenarios on global C cycles. Highlighting this concern, 
Reich and others (2014) recently compiled a global 
dataset and concluded that forest biomass found in 
coarse roots was inversely related to mean annual 

temperature, suggesting that climate may act as a driver 
of belowground C allocation. 

The objective of this project is to adjust belowground 
C estimation procedures for reporting in the US 
National Greenhouse Gas Inventory (NGHGI) through 
integrating climate information. Specific objectives 
are to (1) adjust estimates of belowground C by 
combining allometric and climate-derived approaches 
using current and projected climate attributes and (2) 
quantify the effect of the adjusted estimation approach 
on belowground forest C in the US NGHGI.

METHODS
FIA Data
All data were obtained from the publically-available 
Forest Inventory and Analysis (FIA) database 
(Woudenberg and others 2010; http://apps.fs.fed.
us/fiadb-downloads/datamart.html). These data 
were accessed and compiled in May 2014. Publicly 
available data from the FIA database are regularly 
updated when data collection and/or processing 
anomalies are found and corrected. Additionally, new 
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data are added regularly which may be reflected by 
small changes in the past or current estimates. If an 
FIA plot was remeasured at any point, only the most 
recent measurement was used in this analysis.

Belowground Carbon in the US National 
Greenhouse Gas Inventory (BGCNGHGI)
Here, as in the NGHGI, live belowground C is defined as 
all coarse living roots greater than 2 mm diameter (Smith 
and others 2013). In the current NGHGI, belowground 
carbon stocks are estimated in two stages. First, total 
aboveground biomass is estimated using allometric 
equations (Jenkins and others 2003; their Table 4). 
Second, a ratio of coarse root to total aboveground 
biomass is calculated (Jenkins and others 2003 [their 
Table 6]; Smith and others 2013), dependent on whether 
the species is a hardwood or conifer. As observations 
of belowground tree biomass and C are often limited 
(Zianis and others 2005), relying on allometric equations 
has been necessary to obtain estimates from national-
scale forest inventories such as FIA’s. 

As outlined in Jenkins and others (2003), parameters 
indicate that the belowground ratio will decrease 
for larger diameter trees. For a fixed d.b.h., the 
belowground ratio will be larger for conifers compared 
to hardwood species. Belowground biomass was 
estimated for all FIA plots in the lower 48 states 
and coastal Alaska using the most recent inventory 
measurement by performing current NGHGI 
estimation strategies. Biomass was converted to C by 
multiplying by 0.5, assuming 50% of biomass is C. 
Estimates of belowground C were scaled to the plot 
level and are hereby abbreviated as BGCNGHGI.

Climate-adjusted Models of Belowground 
Carbon (BGCClimAdj)
Belowground C modeling approaches that incorporate 
climatic attributes may be used both to adjust our 
estimates of coarse root C stocks at the national scale 
(i.e., application in the US NGHGI) and to enhance 
evaluations of future climate change scenarios on forest 
C cycles. We estimated climate-sensitive predictions of 
belowground biomass (BGBClim) for all FIA plots as a 
linear function of the following explanatory variables: 

mean annual temperature, natural or planted stand, 
hardwood- or conifer-dominated stand, and stem 
biomass of live trees (Reich and others 2014). We 
assigned the hardwood/conifer variable using the FIA 
forest type code by separating conifer-dominated forest 
type codes (i.e., FORTYPCD <= 409) with hardwood-
dominated codes (FORTYPCD >= 500). Values for 
BGBClim were converted to belowground carbon 
(BGCClim) by multiplying by 0.5. 

Adjustment factors were estimated to align allometric- 
and climate-derived estimates: 

	 AdjFactor =BGCClim/BGCNGHGI,   	 [1]

where AdjFactor is the ratio of climate- to allometric-
derived belowground C for a specific forest type found 
in a given geographic region. New climate-adjusted 
estimates of belowground C (BGCClimAdj) are then: 

	 BGCClimAdj = BGCNGHGI*AdjFactor	 [2]

RESULTS AND DISCUSSION
Estimates of belowground carbon from the approaches 
currently employed in the US NGHGI suggest that C 
stocks are dependent on geographic region and forest 
type. Mean BGCNGHGI was largest in hemlock-Sitka 
spruce forests in the Pacific Northwest (40.76±0.96 
Mg ha-1 [mean±SE]) and redwood forests in the 
Pacific Southwest (59.27±7.06 Mg ha-1). Climate-
derived stock estimates of belowground C (BGCClim) 
were slightly smaller in magnitude when compared 
to BGCNGHGI estimates (e.g., hemlock-Sitka spruce 
[33.82±0.80 Mg ha-1] and redwood forests [45.64±5.44 
Mg ha-1]) and generally showed decreasing C at lower 
latitudes (Figure 1). On average, BGCClim estimates 
were 0.60 Mg ha-1 greater than current BGCNGHGI 
models when considering all forest types.

The adjustment factors ranged from 0.77 to 1.60 with 
little variability within a region of interest. Compared 
to current NGHGI models, model differences 
showed greater belowground C stocks occurring in 
the Appalachian Mountain region and areas where 
northern hardwood forests are common, e.g., in the 
upper Midwest and northeastern US states.  
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Conversely, areas of smaller belowground C stocks 
were identified across the Pacific Northwest and 
Southeast US (Figure 1). The states of Oregon and 
Washington were predicted to display the largest 
negative mean difference in belowground C stocks 
(-10.6% and -10.7%, respectively). Comparatively,  
this region contains the largest belowground C stocks 
in the US, quantified using model imputation strategies 

(Wilson and others 2013). Conversely, the largest 
mean positive difference in belowground C stocks was 
in the states of Kentucky, Tennessee, and Oklahoma 
(28.0%, 26.7%, and 22.6%, respectively). Ultimately, 
this represented a total estimated increase of 368.87 Tg 
of belowground C across the US, or a 6.4% increase 
when compared to currently implemented NGHGI 
models (Table 1).

Figure 1—Distribution of differences between live-tree belowground C estimates from the National Greenhouse Gas Inventory and 
climate-adjusted estimates (BGCNGHGI - BGCClimAdj; Mg ha-1). Red colors indicate higher estimated belowground C and purple colors 
less belowground C.

Table 1—Largest mean  percent differences of belowground C by state for current US National Greenhouse 
Gas Inventory (BGCNGHGI) and climate-adjusted estimates (BGCClimAdj).

State BGCNGHGI (SE) BGCClimAdj (SE) Mean % difference
Population-level belowground C (Tg)

Washington 410.46 (1.29) 366.61 (1.26) -10.70%
Oregon 478.52 (1.03) 427.63 (0.99) -10.60%
California 456.22 (1.37) 428.69 (1.27) -6.00%
Oklahoma 47.62 (2.54) 58.36 (2.54) 22.60%
Tennessee 160.47 (1.27) 203.39 (1.29) 26.70%
Kentucky 109.67 (1.83) 140.42 (1.84) 28.00%
All states 5798.84 6167.71 6.40%
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The majority of forest types displayed negative 
mean differences between current NGHGI and 
climate-adjusted models, indicating greater live 
tree belowground C stocks when using the adjusted 
models. The larger stocks in climate-adjusted 
models are partially a reflection of the ability of this 
framework to account for temperature-related shifts in 
patterns of belowground allocation within a species; a 
relationship held constant in current NGHGI models.  

CONCLUSIONS
A number of findings emerged from our investigation 
of incorporating climate variables into the estimation 
of belowground C stocks.  First, climate variables 
can be used to adjust the US NGHGI estimates of 
belowground C stocks. Specifically, adjustment 
factors were specified to amend current coarse root 
C stocks estimated from allometric equations by 
incorporating mean annual temperature at various 
locations across the US. Second, for the US NGHGI, 
incorporating mean annual temperature increased 
national belowground C stocks by 6.4%. Future work 
that integrates both climate and stand conditions 
(e.g., stand origin and forest type) will increase our 
ability to predict belowground C stocks across regions 
containing a mixture of management and climate 
regimes. Finally, as a means of refining NGHGIs, 
climate-adjusted models depicting belowground C 
stocks can be adopted to incorporate the impacts 
of future global change and management scenarios 
on C sequestration patterns and stocks. Adjusting 
current models so that they are sensitive to climate 
variables will aid modelers seeking to forecast forest 
C stocks by incorporating projected changes in climate 
variables such as temperature and precipitation.
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LEVERAGING FIA DATA FOR ANALYSIS BEYOND FOREST REPORTS: 
EXAMPLES FROM THE WORLD OF CARBON

Brian F. Walters1, Grant M. Domke1, Christopher W. Woodall1

Abstract—The Forest Inventory and Analysis program of the USDA Forest Service 
is the go-to source for data to estimate carbon stocks and stock changes for the annual 
national greenhouse gas inventory (NGHGI) of the United States. However, the different 
pools of forest carbon have not always been estimated directly from FIA measurements. 
As part of the new forest carbon accounting framework, pools historically estimated from 
models based upon the literature, and lacking FIA data, are getting updated with fresh 
models utilizing empirical data on the forest floor, soils, and down dead wood collected 
since 2000. We will demonstrate how we constructed custom datasets to inform model 
development, along with how we integrated ancillary geospatial data. We will also 
discuss potential future uses of FIA and ancillary data to inform carbon estimates as well 
as exploring new ways to communicate carbon reporting to the public.
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ADVANCING INDIVIDUAL TREE BIOMASS PREDICTION: 
ASSESSMENT AND ALTERNATIVES TO THE  

COMPONENT RATIO METHOD

Aaron Weiskittel, Jereme Frank, David Walker, Phil Radtke, David Macfarlane, James Westfall1

Abstract—Prediction of forest biomass and carbon is becoming important issues in the 
United States. However, estimating forest biomass and carbon is difficult and relies on 
empirically-derived regression equations. Based on recent findings from a national gap 
analysis and comprehensive assessment of the USDA Forest Service Forest Inventory 
and Analysis (USFS-FIA) component ratio method (CRM) for estimating both biomass 
and carbon using historical individual tree biomass data, alternative approaches for 
predicting forest biomass and carbon were evaluated. The different CRM approaches 
tested included: 1) development and use of a unified stem taper equation to estimate stem 
volume; 2) updated model forms and parameters for predicting biomass components; 
and 3) comparison of alternative wood density values. Overall, these modifications show 
the potential to improve estimates of forest biomass and carbon, but additional testing is 
required before implementation. 

Estimation of national forest biomass and carbon in 
the United States is increasingly desirable for many 
reasons. Recent studies evaluated nationally-prominent 
(Domke et al. 2012) and regionally-prominent 
(Westfall 2012) biomass estimation methods and 
found significantly disparate results, instigating 
research into current estimation methods. However, 
assessing biomass estimation methods and developing 
new methods are difficult due to the requisite for 
independent empirical data. A national biomass 
estimation research project currently is acquiring the 
necessary data for improving biomass estimation.

Currently, the USDA Forest Service Forest Inventory 
and Analysis (USFS-FIA) uses the component ratio 
method (CRM) to estimate biomass. This method 
relies on sound wood volume estimates, component 
ratio estimators (Jenkins et al. 2003), and bark 

and wood density values (Miles and Smith 2009). 
These ratio estimators are generalized across the 
United States into two broad groups (hardwoods and 
softwoods) and a fixed species-level value is assumed 
for bark ratios and densities. In contrast, over 25 
different species-level volume forms are used across 
over 20 different regions. These models are largely 
delineated across state lines (see Fig. 1 in Woodall et 
al, 2011), though it may be more appropriate to group 
across ecologically delineated spatial units. 

Estimation of different components at different 
taxonomic and geographic levels may be 
appropriate because of large observed variation in 
these relationships.  However, to our knowledge 
this assumption has not been formally examined. 
For instance, using hardwood and softwood ratio 
estimators at the national level may lead to errors when 
estimating at a regional or state level. With regard to 
bole estimation, separate volume equations of varying 
form may be overly complex, whereas a single model 
form could simplify implementation while improving 
estimation at varying scales. In this analysis, we evaluate 
alternative approaches to volume and component 
estimation within the context of the CRM method. 

1 Associate Professor (AW) and Research Assistant (JF), School 
of Forest Resources, 201 Nutting Hall, University of Maine, 
Orono, ME 04469-5755; Research Associate (DW) and Associate 
Professor (PR), Department of Forest Resources and Environmen-
tal Conservation, Virginia Tech University; Associate Professor 
(DM), Department of Forestry, Michigan State University; and 
Research Forester (JW),  Northern Research Station, USDA Forest 
Service. AW is corresponding author: to contact, e-mail at aaron.
weiskittel@maine.edu.



New Directions in Inventory Techniques & Applications Forest Inventory & Analysis (FIA) Symposium 2015 126PNW-GTR-931

The primary objectives are:

1.	Develop and test a unified bole volume model
2.	Examine variation in wood specific gravity
3.	Provide an improved component ratio model
4.	Compare these modifications to the current CRM 

method on trees with observed biomass

Considering that one objective is to estimate volume 
at varying scales (nationally, regionally, and perhaps 
statewide), a formal examination of these factors 
at the national level warrants a unified approach, 
while allowing for methods to examine how different 
taxonomic groupings and geographical specifications 
influence estimates. Mixed-effects modeling allows for 
such an approach. Using all available tree data across 
the United States and incorporating taxonomic and 
regional random effects provide a flexible framework to 
formally examine what groupings are most appropriate. 

METHODS
We compiled a volume and biomass “legacy” data 
set of over 100,000 trees with stem taper profiles and 
over 3,000 trees with aboveground biomass (AGB), 
bole, top, and foliage biomass observations. For each 
component we estimated biomass using 1) the original 
component ratio method (CRM); 2) a refit CRM where 
we generated new coefficients using CRM/Jenkins 
model forms and species groupings (CRM1); and 3) 
a modified CRM using species-specific parameters 
derived from non-linear mixed-effects models (CRM2). 
The Jenkins model and CRM impose a merchantability 
limit from 1-foot stump to a 4-inch top. For the 
modified CRM, we remove these limits and estimate 
bole biomass from ground line to a 0 inch top. Aside 
from merchantability limits and how parameters were 
estimated, the methods follow Woodall et al. (2011). 

We chose the Kozak (2004) taper model form and 
incorporated a mixed-effects structure (Li et al. 2012). 
While results from previous work (Li and Weiskittel 
2010) suggest that a segmented taper model (e.g., 
Clark et al. 1991) may offer small gains in estimation 
accuracy, we thought that the variable exponent 
equation of Kozak (2004) offered a more flexible 

model form that can ease the estimation and updating 
of parameters with minimal reduction in accuracy. 

The form of the Kozak (2004) model with random 
effects is:

where X = 1 - z1/3 / 1 - p1/3,Q = 1 - z1/3, dob = diameter 
outside bark, H = total tree height, D =  diameter at 
breast height (d.b.h.), h = section height from ground, 
p = 1.3/H (relative breast height), and z = h/H (relative 
height from ground). We generated models separately 
for hardwoods and softwoods and modified the original 
Kozak (2004) function by adding nested random 
effects coefficients for Jenkins species groups and 
species (Gp0/Sp0 and Gp3/Sp3). For the modified CRM, 
rather than generate new coefficients using existing 
species-level-regional volume models, we estimate 
volume using the Jenkins species groups (CRM1), 
while we used species as the random effect for the 
modified estimate (CRM2). To convert from outside 
bark diameter to inside bark diameter (dib), we used 
the following equation: dib = (a + Spa) * dob(b+Spb).

We derived new coefficients for AGB and ratio 
estimators (CRM1) using equation forms and broad 
species groupings (Jenkins et al. 2003). In the second 
formulation (CRM2) for AGB, we used a simple non-
linear model form: (a + Spa) * DBH(b+Spb). We also 
estimated parameters using a mixed-effects Chapman-
Richards formulation with species as a random effect 
on all parameters (CRM2). The Jenkins et al. (2003) 
ratio model is below:

	

The mixed-effects Chapman-Richards model is 
specified as follows: 

Using data from the legacy database, we calculated 
mean wood specific gravity and 95percent confidence 
interval for 12 species that had a sample size of at 
least 30 observations. We compared this to the value 
presented in Miles and Smith (2009).  



New Directions in Inventory Techniques & Applications Forest Inventory & Analysis (FIA) Symposium 2015 127PNW-GTR-931

RESULTS
Model performance was strong with no clear trend in 
the residuals for any given species (Fig. 1). By species, 
whole tree volume percent root mean square error 
ranged from 8.6 to 24.4 percent (Table 1), which was 
comparable and in some cases better than the regional 
volume equations. 

There was considerable regional variation in wood 
specific gravity for a given species and these values 
were generally significantly different than the value 
reported by Miles and Smith (2009) (Fig. 2). For 
example, mean specific gravity values for sugar maple 
(Acer saccharum Marsh.) ranged from 0.61 inches the 
northeast to 0.65 inches the north-central region, while 
Miles and Smith (2009) reports 0.56 inches.

CRM underestimated stem biomass by 5.0 ± 20.2 
percent (mean ± SD) overall, while top biomass was 
underestimated by 43.3 ± 108.2 percent. Using the 
unified taper function for species groups (CRM1) and 
species-specific (CRM2), we found stem biomass error 
estimates of 1.5 ± 19.0 percent and 0.8 ± 19.3 percent, 
respectively. Since the Miles and Smith (2009) specific 
gravity values were used throughout the analysis, 
some improvement over the current regional volume 
equations was indicated. Likewise, improved accuracy 
with the newly generated AGB and ratio estimators 
(CRM1) as well as additional improvement using the 
mixed-effect AGB and Chapman-Richards formulation 
(CRM2) were observed (Table 2). 

Figure 1—Prediction errors (predicted – observed) for diameter outside bark (d.o.b in inches) over relative height (disc height divided by 
total height) using the unified taper equation for nine prominent species with a lowess regression trend line (red). 
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Table 1—Summary statistics and errors associated with volume estimates for a species-level unified  
taper equation.

Common name SPCD n
Min 

d.b.h. 
(in)

Mean 
d.b.h. 
(in)

Max 
d.b.h. 
(in)

Outside 
bark 

volume 

(ft3)

Outside 
bark 

volume 

error (ft3)

Outside 
bark 

volume 

RMSE (ft3)

Inside 
bark 

volume 

(ft3)

Inside 
bark 

volume 

error (ft3)

Inside 
bark 

volume 

RMSE (ft3)

Loblolly pine 131 10664 5.0 11.1 38.3 27.88 -1.27 4.72 22.75 -1.27 5.01
Ponderosa pine 122 360 5.0 15.9 38.9 61.03 -6.29 14.70 48.96 -6.06 15.44
Red maple 316 1540 5.0 10.8 41.8 22.43 0.59 5.48 19.59 0.61 5.12
White oak 802 2604 5.0 12.1 44.4 30.91 0.25 6.12 25.66 0.32 5.54
Sugar maple 318 92 5.1 11.3 29.7 23.91 0.95 4.83 20.88 0.75 4.38
Yellow-poplar 621 2378 5.0 13.1 39.5 42.93 0.07 4.82 34.78 0.02 4.25
Northern red oak 833 1010 5.0 13.7 34.4 39.88 1.15 7.08 33.56 0.91 6.36
Sweetgum 611 2300 5.0 11.7 32.6 31.81 -0.57 5.14 26.41 -0.35 4.55
Quaking aspen 746 154 5.1 8.2 15.4 11.35 -0.12 1.46 9.56 -0.04 1.06
Engelmann spruce 93 100 5.0 8.1 17.8 10.77 -0.05 2.00 9.47 -0.10 1.99
Shortleaf pine 110 4435 5.0 11.0 26.1 26.82 -0.94 3.85 21.99 -0.94 4.02
White fir 15 596 5.1 17.3 48.7 68.91 -0.06 10.70 51.85 -0.45 9.83
Eastern white pine 129 1597 5.0 13.1 32.8 40.77 -0.22 5.56 35.01 -0.39 5.41
Black oak 837 1004 5.0 13.0 28.7 35.17 0.82 4.67 28.07 0.70 3.81
Chestnut oak 832 1464 5.0 12.3 34.0 30.46 0.10 4.59 24.19 -0.53 4.01
Slash pine 111 5513 5.0 9.0 23.8 16.68 -0.31 2.03 12.74 -0.50 2.24
American beech 531 402 5.1 13.6 35.0 35.73 1.57 6.41 32.36 2.08 6.53
Eastern hemlock 261 189 5.8 14.2 30.4 48.25 0.48 6.33 40.13 0.63 4.77
White ash 541 183 5.0 13.5 26.5 45.12 -0.75 5.97 37.02 -0.30 4.93
Water oak 827 691 5.0 11.8 30.1 27.38 0.12 3.57 23.67 -0.01 3.30
Black cherry 762 176 5.0 12.7 31.9 41.23 -0.50 5.94 36.66 -0.19 5.69
Hickory spp. 400 1711 5.0 12.1 33.8 31.54 0.04 5.20 25.46 -0.25 4.28
Virginia pine 132 1739 5.0 9.0 21.6 14.63 -0.50 1.82 12.77 -0.24 1.89
Post oak 835 578 5.0 11.6 25.3 23.26 0.24 2.95 18.74 0.00 2.58
Scarlet oak 806 1022 5.0 11.9 31.1 29.35 0.65 5.16 24.43 0.61 4.35
Southern red oak 812 893 5.0 12.4 48.9 29.43 0.64 5.95 23.92 0.20 4.63
Swamp tupelo 694 886 5.0 11.7 32.7 28.35 0.63 5.31 22.74 0.97 5.12
Paper birch 375 339 5.0 8.6 19.4 10.34 -0.08 1.77 9.14 -0.13 1.66
Northern white-cedar241 66 7.2 9.2 11.7 9.42 0.07 0.75 8.00 0.04 0.69
Balsam fir 12 494 5.0 8.4 18.9 11.89 0.09 1.56 10.61 0.03 1.42
All All 61535 5.0 11.3 48.9 27.83 -0.32 4.79 22.91 -0.39 4.57
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Figure 2—Comparison between average regional specific gravity and Miles and Smith (2009) reported specific gravity. Error bars are 
presented for the 95 percent confidence interval.
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Table 2—Summary statistics and mean errors (standard deviation in parentheses) for all observations 
and four common eastern species between the current component ratio method (CRM), CRM with refitted 
parameters (CRM1) and modified CRM with species-specific parameters and updated model forms (CRM2). 
Error was estimated as predicted – observed. Mean CRM estimated error is derived from mean observed 
biomass with merchantability limits, while estimated error for CRM1 and CRM2 are derived from mean 
observed biomass without merchantability limits. Bole and Top are CRM estimates, while Above-ground and 
Foliage are Jenkins (2003) estimates.

Component
Common 

Name

No. of 

trees

Min. 

d.b.h. 

(in)

Mean 

d.b.h. 

(in)

Max. 

d.b.h. 

(in)

Mean 

observed 

biomass (lbs) 

(with merch. 

limit)

Mean observed 

biomass (lbs) 

(without 

merch. limit)

Above-ground Loblolly pine 645 5.0 11.8 24.0 1088.6 1088.6 -245.4 [277.7] 58.5 [217.6] 5.2 [214.8]

Above-ground Red maple 148 5.0 8.7 33.7 624.9 624.9 10.4 [125.0] 37.8 [115.3] -8.6 [105.8]

Above-ground Yellow-poplar 71 5.2 11.6 20.3 1117.2 1117.2 -68.2 [198.0] -23.9 [196.2] 9.8 [193.1]

Above-ground White oak 155 5.0 9.4 29.7 1011.5 1011.5 -39.8 [360.3] 0.2 [331.7] -31 [324.9]

Above-ground All 3154 5.0 10.5 33.7 968.7 968.7 -159.7 [326.4] -9.3 [256.0] 1.3 [209.7]

Bole Loblolly pine 645 5.0 11.8 24.0 849.3 916.8 -33.2 [126.5] -7.9 [128.9] -34 [133.0]

Bole Red maple 148 5.0 8.7 33.7 403.8 461.4 -18.8 [128.3] 24 [211.2] 15.6 [201.6]

Bole Yellow-poplar 71 5.2 11.6 20.3 863.8 929.4 -129.6 [167.5] -76.4 [165.4] -87 [168.9]

Bole White oak 155 5.0 9.4 29.7 614.9 694.2 12.0 [89.8] -16.8 [87.0] 7.5 [103.2]

Bole All 3154 5.0 10.5 33.7 701.0 770.7 -34.8 [141.6] -11.3 [146.7] -6.5 [148.6]

Foliage Loblolly pine 645 5.0 11.8 24.0 40.1 40.1 9.6 [15.2] 4.4 [12.4] -6.3 [15.3]

Foliage Red maple 148 5.0 8.7 33.7 13.8 13.8 -0.4 [11.0] 2.2 [13.9] -1.8 [10.2]

Foliage Yellow-poplar 71 5.2 11.6 20.3 15.3 15.3 5.6 [8.5] 10.3 [11.8] 2.2 [6.8]

Foliage White oak 155 5.0 9.4 29.7 30.3 30.3 -10.5 [20.8] -6.3 [20.0] -8.5 [19.8]

Foliage All 3154 5.0 10.5 33.7 28.2 28.2 2.8 [18.0] 2.4 [16.4] -3.4 [15.3]

Top Loblolly pine 645 5.0 11.8 24.0 199.2 131.7 -67.3 [86.2] -1.3 [82.0] 4.3 [75.9]

Top Red maple 148 5.0 8.7 33.7 213.3 155.7 -103.2 [566.2] -54 [507.4] -62 [506.6]

Top Yellow-poplar 71 5.2 11.6 20.3 238.2 172.5 -60.0 [175.2] 6.3 [149.7] -40 [161.5]

Top White oak 155 5.0 9.4 29.7 366.4 287.1 -204.9 [522.4] -138 [433.0] -89 [357.7]

Top All 3153 5.0 10.5 33.7 239.9 170.2 -104.3 [259.5] -33.8 [220.3] -22 [194.9]

Mean CRM 

estimated error 

(lbs)

Mean CRM1 

estimated 

error (lbs)

Mean CRM2 

estimated 

error (lbs)
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DISCUSSION
This analysis indicates that a unified, nationally-
consistent taper equation has potential to improve 
upon regional, species-specific volume equations. 
The taper equation has the advantage of estimating 
compatible total and merchantable volume when 
compared to existing approaches used by the FIA. 
Continuing efforts will focus on acquiring additional 
stem taper data. 

The mixed-effects modeling framework that we 
propose here has the potential to examine species 
groupings by assessing the magnitude of the random 
effect and grouping by influential species traits. 
The similar performance between the species group 
volume/biomass model and the species model suggests 
that grouping species may be appropriate. Examining 
the branch component, we see improvement by first 
removing merchantability restraints and refitting 
coefficients (CRM1) and additional improvement 
by fitting a more flexible model form that allows for 
variation between species (CRM2). We present results 
from our most robust model with random effects 
on all coefficients. Future analyses will examine 
simplifying by species groups, removing parameters 
as appropriate, and grouping by geographical units 
to address local variability. This subject is not well 
understood, but recent work (Westfall 2015) suggests 
that local bias issues need to be addressed as part of 
the model development process. 

Our examination of species-level wood specific gravity 
suggests that there can be considerable differences as 
regional estimates were generally statistically different 
than what is currently being used by the FIA CRM 
method. Previous efforts have suggested strong spatial 
patterns in wood specific gravity and this may need 
to be accounted for. In addition, other analyses have 
suggested that localized specific gravity estimates can 
improve stem biomass estimates.
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REDUCING UNCERTAINTY AND INCREASING CONSISTENCY: 
TECHNICAL IMPROVEMENTS TO FOREST CARBON POOL 

ESTIMATION USING THE NATIONAL FOREST INVENTORY OF THE US  

1Woodall, C.W., Domke, G.M., Coulston, J., Russell, M.B. Smith, J.A.,  
Perry, C.H., Ogle, S.M., Healey, S., Gray, A.

Abstract—The FIA program does not directly measure forest C stocks. Instead, a 
combination of empirically derived C estimates (e.g., standing live and dead trees) 
and models (e.g., understory C stocks related to stand age and forest type) are used to 
estimate forest C stocks. A series of recent refinements in FIA estimation procedures have 
sought to reduce the uncertainty associated with the national C inventory by: 1) refining 
forest floor C estimates with in situ data, 2) updating the live belowground and understory 
C pools modeling approaches, 3) refining objective delineations between woodland and 
forest land uses, and 4) revising managed land delineations.  The results of these studies 
in the context of forest C accounting and future refinements are discussed in the context 
of UNFCCC reporting.

1 Woodall, C.W., USDA Forest Service, Northern Research Station 
Domke, G.M., USDA Forest Service, Northern Research Station 
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Smith, J.A., USDA Forest Service, Northern Research Station 
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DEAD WOOD INVENTORY AND ASSESSMENT IN SOUTH KOREA

Jong-Su Yim1, Rae Hyun Kim, Sun-Jeong Lee, Yeongmo Son

Abstract—Dead wood (DW) plays a critical role not only in maintaining biodiversity but 
also in stocking carbon under UNFCCC. From the 5th national forest inventory (NFI5; 
2006-2010) in South Korea, field data relevant to the DW including standing and downed 
dead trees by four decay class, etc. were collected.  Based on the NFI5 data, the average 
volume of DW over the country is estimated to be 12.3m3/ha of which the total carbon 
stock accounts for 10.9 Tg C. Recently, NFI6 (2011-2015) has been implemented into 
monitoring and assessing forest resources including DW over time. We are to analyze 
relationship between DW and stand structure for sustainable forest management. 

INTRODUCTION
From an economic point of view, dead wood means 
natural loss for timber production. Since 1996, the 
dead wood has been recognized as one of carbon pools 
under UNFCCC (IPCC, 2000) and has played a crucial 
role in maintaining biodiversity. From the 5th national 
forest inventory (NFI5) of South Korea (Kim et al., 
2010), field data relevant to the dead wood including 
standing and downed dead trees have been collected. 
Additionally, to assess Greenhouse gas Inventory in 
forest sector, biomass conversion/expansion factors 
for biomass and dead organic matter at a national level 
have been developed. The objectives of this research 
are to estimate tree mortality with annual inventory 
system and to assess carbon stock for dead wood with 
developed carbon factors by decay classes. 

MATERIAL AND METHODS
In South Korea, national forest inventory system has 
been changed to support sustainable forest management 
at the national level and to report national forest 
resources to international institutes including the FAO, 
UNFCCC, etc.  The first new inventory was conducted 
during 2006-2010. In this study, field data from the 5th 

NFI was used to assess tree mortality and carbon stock 
with developed carbon factors by decay classes. 

Dead wood inventory
Sampling design
With the NFI5 design, a systematic sampling with 
clusters was adopted. As shown in Fig. 1, the total of 
4,000 sample clusters was systematically distributed 
with a square grid of 4km and 20% of the clusters 
were surveyed each year (Kim et al., 2010). 

Plot design
In this inventory system, a cluster plot having 4 
subplots was applied. Each subplot consists of the 
three concentric circles for collecting stand variables 
(Fig. 1). Dead wood inventory was implemented at 
the center subplot with a plot size of 400 m2.  On each 
center subplot, forest variables were collected relevant 
to dead wood (standing and downed trees) such as tree 
species, diameter (DBH or DCH), length or height, 
decay classes by 4 classes, dead cause, etc. 

In order to convert mortality into carbon stock, 
biomass conversion factors (BCF) and carbon 
factors (CF) by forest groups and decay classes were 
developed (Yoon, et al., 2011; KFRI, 2014) as shown 
in the Table 1.  In the case of BCFs, those of non-
conifer tree species were slightly higher than those 
of conifer tree species, whereas CFs of conifer tree 
species were higher. 

1 Research Scientist(YIM; KIM), PhD-student(LEE), and Senior 
Scientist(SON), Korea Forest Research Institute, 57 Hoegiro, 
Dongdaemun-Gu, Seoul 130-712, Republic of Korea. Yim is 
corresponding author: to contact, call (+82) 2-961-2892 or e-mail 
at yimjst@korea.kr.
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Figure 1—Sampling and plot design for the 5th National Forest Inventory in South Korea.

Table 1—Carbon conversion factors of dead wood by decay classes and tree groups. 

Biomass conversion factors (g/cm3) Carbon factors (percent)

Classification 1 2 3 4 1 2 3 4

Conifer 0.38 0.34 0.26 0.15 49.5 50.2 50.2 51.6

Non-conifer 0.48 0.37 0.29 0.16 48.6 48.6 48.6 48.3
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Dead wood assessment
Mortality estimation at the subplot level
In order to estimate growing stock volumes for 
each standing dead tree and felled dead wood, there 
are two equations that are similar to equations for 
standing trees. The mortality at a subplot level was 
estimated by Eq. (2). 

),( heightdbhfms =  , 
),( lengthdchfm f = Eq. (1)

'
11

i

n

f
f

n

s
s

i a

mm
y

fs

∑∑
==

+

=
Eq. (2)

where 	 :sm the mortality of standing dead tree s, 
	 :fm the mortality of felled dead tree f,  
	 sn , :fn the number of standing dead  
	 tree (s) and felled dead wood (f) per subplot i, 
	 :iy  total mortality per subplot i , and actual  
	 plot size at a subplot i. 

Carbon stock estimation at the subplot 
level
In this study, estimating carbon stock for each dead 
wood was done with the following equation:

sss cfmc ×=  , fff cfmc ×= Eq. (3)

where  sc , :fc carbon stock of standing dead tree 
s and felled dead tree f, :cf  carbon factor by decay 
class and tree group 
The total carbon stock at the subplot can be estimated 
by Eq. (2).

Combining of annual estimates
As mentioned above, field data were annually 
collected. To combine annual data, we assumed that 
field data are collected at a same period which is so-
called Temporally Indifferent Method (Kangas, 1993; 
Bechtold and Patterson, 2005; Yim et al., 2012). The 
estimators for simple random sampling were applied 
(Cochran, 1977). 
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RESULTS AND DISCUSSION
Mortality by tree groups
As most forests in South Korea were reforested during 
in 1970-1980s, current forest areas by age classes are 
included in 40-50 years (KFS, 2011). The stand density 
is relatively high accounting for 1,305 trees per hectare 
on average.  Based on NFI5, the average volume of 
DW over the country is estimated to be 12.3 m3/ha 
as shown in Table 2. The total mortality accounts for 
about 75 million m3 and the mean mortality is about 
12.3 m3/ha. Mortality could be divided into standing 
dead tree and felled wood, of which were 3.5 m3/ha 
and 8.8 m3/ha, respectively. As most forests in South 
Korea were reforested during in 1970-1980s. Recently, 
numerous trees felled by “the Forest tending project 
(2004-2008)”, however the felled trees left in the forest 
due to a low forest road density.

Carbon stock in dead wood 
The observed total number of DWs accounts for 
about 50,457 trees. When decay classes divided, the 
three and four classes comprised about 70 percent of 
the total DW. Especially, felled woods were about 
70 percent. For this reason, the total carbon stock in 
DW at 2010 year is estimated to be 10.9 Tg C (Table 
2). Regard to decay classes, the classification is not 
clear, that is overly dependent on surveyor’s subjective 
decisions. There is necessary for more clear definitions 
of decay classes for field survey.

Recently, the NFI6 (2011-2015) has been implemented 
for monitoring and assessing forest resources including 
the DW over time and we aim to analyze relationship 
between DW and stand structure for sustainable 
forest management from a economic point of view. 
In order to improve uncertainty of DW carbon pool 
under UNFCCC, wood density and carbon conversion 
factors by decay classes for each tree species at the 
national level should be developed.  
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Mortality Carbon stock in dead wood
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USING FIA AND LANDSAT OBSERVATIONS  
TO IMPROVE THE SPATIAL AND TEMPORAL RESOLUTION  

OF FOREST CARBON ESTIMATES

Karen Schleeweis1, Chengquan Huang2, Khaldoun Rishmawi2, Feng Aron Zhao2, Jeffery G. Masek3, 
Richard K. Houghton4 and Samuel N.Goward2

Abstract—For nearly a decade, the USFS FIA, NASA, and the University of Maryland 
have collaborated on the NASA/NACP funded North American Forest Dynamics 
(NAFD) project, and developed new approaches for annual mapping of CONUS forest 
dynamics (1984-2011).  Building on this foundation of empirical research and results, 
the collaboration will continue with a new Carbon Cycle Science Synthesis Research 
effort to improve the spatial and temporal estimation of forest related carbon emissions.  
This newly funded study will 1) produce annual age and biomass maps and 2) use 
these national products to advance estimates from a Carbon Bookkeeping model.  The 
work will allow the model to calculate carbon fluxes from forest disturbances and post-
disturbance recovery processes with unprecedented spatial and temporal details.  Using 
NAFD disturbance maps and spectral trajectories from Landsat time-series stacks, forest 
areas can be separated into three broad age categories.  “Young” forests had stand-
clearing disturbance occurring with known year between 1985 and 2013. “Middle-aged” 
forests are areas recovering to forest include pixels that were not identified as forest 
(spectrally) in 1984 but became forested in later years, or forests that grew substantially 
over 30 years as indicated by trends in the 30-year Landsat surface reflectance record.  
“Old” forests include locations that remained forested between 1984 and 2014 and 
showed no obvious trend in the 30-year Landsat record.   During this presentation, the 
three- tiered approach to model per pixel estimates of age and biomass using NAFD 
products and FIA plot data will be discussed along with results from prototype studies 
and updates to the bookkeeping model.
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(Presenter) 302-981-9622; 
2 Department of Geographical Sciences, University of Maryland, 
College Park, MD 20742, cqhuang@umd.edu ; rishmawi@umd.edu ; 
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THE FUTURE OF THE U.S. FOREST CARBON SINK

Richard Birdsey1, Yude Pan2, Fangmin Zhang3

Abstract—For more than a decade, the U.S. forest carbon sink including carbon in 
harvested wood products has been persistently removing more than 200 million tons of 
carbon from the atmosphere, enough to offset 16% of CO2 emissions from fossil fuel 
use. Maintaining or increasing this valuable benefit of forests is an important element 
of the U.S. strategy to reduce net greenhouse gas emissions as part of the national 
commitment to the next global climate accord. Yet, doubts have been raised about the 
future of the U.S. forest carbon sink which is threatened by deforestation, increasing 
demand for bioenergy, aging forests, natural disturbances, and climate change. Resources 
Planning Act (RPA) projections, which reflect mainly the first 3 factors, suggest a rapidly 
decreasing carbon sink.  In contrast, projections from an ecosystem process model that 
reflect mainly the last 3 factors plus CO2 fertilization and N deposition, indicate that 
the forest carbon sink may persist for many more decades before saturating. On top 
of these contrasting baselines, there are opportunities for land management changes 
to help sustain or increase the U.S. forest carbon sink.  Here we analyze the influence 
of past drivers of change in U.S. forest carbon stocks, compare future baselines from 
different modeling approaches, and assess the prospects of land management to change 
the projected baselines. All of the results presented are based on modeling and analysis 
tools that are well calibrated to FIA standards and reported historical estimates, so that 
this information can be readily assimilated into policy considerations.  Suggestions for 
improving analysis capabilities in future assessments are included.
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DEVELOPMENT OF CARBON RESPONSE TRAJECTORIES USING FIA 
PLOT DATA AND FVS GROWTH SIMULATOR: CHALLENGES OF A 

LARGE SCALE SIMULATION PROJECT

James B. McCarter1 and Sean Healey2

Abstract— The Forest Carbon Management Framework (ForCaMF) integrates Forest 
Inventory and Analysis (FIA) plot inventory data, disturbance histories, and carbon 
response trajectories to develop estimates of disturbance and management effects on 
carbon pools for the National Forest System.  All appropriate FIA inventory plots are 
simulated using the Forest Vegetation Simulator (FVS) growth model to develop the 
carbon response trajectories for undisturbed, managed, and disturbance from fire, pests, 
and in some regions wind.  The challenges presented by the number of plots, number 
of FVS variants, selection of localization variables, growth calibration, regeneration, 
and disturbance magnitude calibration will be presented.  The carbon response curve 
fitting process will also be presented.  These response curves developed by forest 
type, disturbance type, initial carbon bin, and disturbance magnitude are then used in a 
stochastic simulation process that combines the annual disturbance maps over a 20 year 
period to determine a forest by forest realization of carbon changes at the forest level in 
response to observed disturbance patterns.  The resulting response curves can also be 
used to develop estimates of potential carbon response under alternative management or 
disturbance scenarios.

INTRODUCTION
The National Forest System (NFS) plays a critical 
role in mitigating greenhouse gas emissions in 
the U.S.  Various efforts are underway to access 
current conditions and potential trends of C on the 
forest of the NFS. One of these efforts, looking at 
the effects of disturbance on C accumulation is the 
Forest Carbon Management Framework (ForCaMF).  
ForCaMF combines Forest Inventory and Analysis 
plot information, Forest Vegetation Simulator (FVS) 
growth and carbon estimates, and Landsat-derived 
disturbance histories to provide forest level C stocks 
over a 20 year time frame.

STUDY AREA/DATA SOURCES
The U.S. Forest Inventory and Analysis (FIA) program 
provides a national-consistent and statistically-valid 
sample documenting trends in forest extent, status, 
condition, and resources (Bechtold and Patterson 
2005).   For each FIA plot on NFS lands, variables 
useful for C estimation are collected on the ground 
such as forest type, tree species, tree size, stand age, 
and recent disturbance.  The FIA database (O’Connell 
et al 2014) is queried for appropriate plots for each 
state to calculate tree volume, biomass, and C stocks 
via allometric equations based on the inventory 
information for each plot. Over 71,000 plots are 
being assessed and simulated for this and subsequent 
analyses.  Table 1 shows the breakdown of plots by 
region and state.

1 Research Associate Professor (JBM), NC State University, Dept. 
of Forestry & Environmental Resources, Campus Box 8008, 
Raleigh, NC, 27695; 
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contact, call 919-513-1248 or email james_mccarter@ncsu.edu
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MODELING FRAMEWORK
The Forest Carbon Management Framework 
(ForCaMF, Healey et al 2014, Raymond et al. 2015) 
was developed to leverage Landsat imagery, FIA 
plot data, and forest growth models in combination.  
Each FIA plots is simulated using the appropriate 
FVS (Crookston and Dixon 2005, Dixon 2002, 
Stage 1973) variant under a range of disturbances 
(undisturbed, management, fire, insect, and wind) 
customized for each region.  The resulting C numbers 
are provided by the Fire and Fuels Extension 
(FFE) to FVS (Rebain 2010).  For each region the 
FIA plots are grouped by forest type (Table 2), 
initial carbon bin (defined by 25, 50, 75, and 100% 
quartiles of initial C by region), disturbance type, 

and disturbance magnitude ((25, 50, 75, and 100% 
canopy disturbance).  Each of these bins has a 
mean trend line fit to all FIA plot trajectories using 
generalized estimation equations (GEE, Hardin and 
Hilbe 2003) using the geeglm() function in the R 
statistical software package (R Core Team 2015).  
See Raymond et. al. (2015) for additional details on 
the fit process.  These resulting trajectories for each 
combination of forest type, initial carbon, disturbance 
type, and disturbance magnitude are then combined 
with disturbance maps in a stochastic simulation 
framework (Healey et al. 2014) to arrive at estimates 
for each national forest.

Table 1—Number of FIA inventory plots by region and state.  Note: WY is listed for both R2 and R3 but only 
counted once in the total.

Region State FS Plots Region State FS Plots Region State FS Plots
R1 ID 5285 R5 CA 4639 R9 CT 0

MT 4949 DE 0
SD 591 R6 OR 4945 IA 0
WA 3940 WA 2362 MA 0

MD 0
R2 CO 2017 R8 AL 772 NL 0

KS 0 AR 2046 RI 0
NE 40 FL 1786 IL 415
SD 480 GA 886 IN 303
WY 832 KY 409 ME 32

LA 548 MI 3845
R3 AZ 2667 MS 1159 MN 3293

NM 2290 NC 1331 MO 1358
OK 210 HM 437

R4 ID 4512 SC 916 NY 7
NV 1001 TN 600 OH 128
UT 2586 TX 661 PA 423
WY 832 VA 1795 VT 332

WI 1848
WV 697

R10 AK 1716
Total 71089
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RESULTS AND DISCUSSION
R8 Case Study
The FVS growth results are grouped by forest type, 
initial carbon, disturbance type, and disturbance 
magnitude.  Individual plot trajectories are shown 
for loblolly/shortleaf plots for undisturbed (Figure 
1a), management (1b), and fire (1c) for carbon bin 2, 
disturbance magnitude 1 (number of plots that ended 
up grouped in each respective bin). The resulting 

fit trajectories for loblolly/shortleaf pine plots are 
shown for undisturbed (Figure1d) across the 4 initial 
carbon bins and management, carbon bin 2, and 4 
disturbance magnitudes (Figure 1e).  The 4 trajectories 
in 1e start at the same initial C level as the red line 
in 1d, but because the management simulation are 
targeted to remove 25, 50, 75, and 100% of the cover 
each management scenario starts below the initial 
starting point for cb=2 in 1d.  The results show that 
for this forest type/disturbance type/initial carbon bin 

Table 2—Forest types by region.  R1 used defined dominance types.  R2-10 use FIA forest types groups.

R1 R4 R6 R9
ABLA pinyon/juniper pinyon/juniper white/red/jack pine
HMIX douglas-fir douglas-fir spruce/fir
IMIX ponderosa pine ponderosa pine loblolly/shortleaf pine
PICO western white pine western white pine other eastern softwoods
PIPO fir/spruce/mountain hemlock fir/spruce/mountain hemlock exotic softwoods
PSME lodgepole pine lodgepole pine oak/pine
TMIX hemlock/sitka spruce hemlock/sitka spruce oak/hickory

western larch western larch oak/gum/cypress
R2 other western softwoods other western softwoods elm/ash/cottonwood
spruce/fir oak/hickory elm/ash/cottonwood maple/beech/birch
other softwoods elm/ash/cottonwood aspen/birch aspen/birch
pinyon/juniper aspen/birch alder/maple other hardoods
douglas-fir woodland hardwoods western oaks
ponderosa pine tanoak/laurel R10
fir/spruce/mountain hemlock R5 other hardoods spruce/fir
lodgepole pine pinyon/juniper woodland hardwoods fir/spruce hemlock
other western softwoods douglas-fir lodgepole pine
oak/hickory ponderosa pine R8 hemlock/sitka spruce
elm/ash/cottonwood western white pine white/red/jack pine elm/ash/cottonwood
aspen/birch fir/spruce/mountain hemlock spruce/fir aspen/birch
other hardoods lodgepole pine longleaf/slash pine alder/maple
woodland hardwoods redwood loblolly/shortleaf pine

other western softwoods other eastern softwoods
R3 california mixed conifer oak/pine
pinyon/juniper aspen/birch oak/hickory
douglas- fir alder/maple oak/gum/cypress
ponderosa pine western oaks elm/ash/cottonwood
fir/spruce/mountain hemlock tanoak/laurel maple/beech/birch
other western softwoods other hardoods aspen/birch
elm/ash/cottonwood woodland hardwoods other hardwoods
aspen/birch tropical hardwoods
woodland hardwoods 



New Directions in Inventory Techniques & Applications Forest Inventory & Analysis (FIA) Symposium 2015 144PNW-GTR-931

A B C

D E

Figure 1—Individual growth trajectories for R8, forest type 160 (loblolly/shortleaf pine), carbon bin 2, disturbance magnitude 1 for 
undisturbed (a), management (b), and fire (c).  The fit results for all 4 carbon bins are show for undisturbed (d) and for a single initial 
carbon bin (2) and the 4 disturbance magnitudes for the management (e) scenarios.

A B

Figure 2—Composite disturbance map for R8 (a.), all years combined to show scope of impacts of disturbance across area.  Orange 
outline are NFS lands, disturbances are as indicated in legend.  Disturbance map zoomed in (b.) to show specific detail on an individual 
disturbance on the Cherokee NF.
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combination each disturbance magnitude recovers, 
although at different rates over the 100-year simulation 
and achieve about the same level of C as the 
undisturbed plot.  These fit trajectories are developed 
for all forest type, initial carbon bin, disturbance type, 
and disturbance magnitude combinations.

Landsat derived disturbance maps are developed 
for the 1999-2001 time frame (Figure 2) for each 
region.  The disturbance maps are then combined with 
the individual trajectories in a stochastic simulation 
framework (Healey et al. 2014) for estimates of C for 
individual national forests.  The simulations for R8 are 
currently running at the time of writing of this abstract.

Modeling Other Regions
R8, while having a large number of states, only uses a 
single FVS variant.  For most western regions multiple 
FVS variants are required for each state (e.g. CA – 5 
variants, OR – 7 variants, WA – 5 variants).  This 
complicates the process of running the simulations 
because each variant has minor differences that 
need to be dealt with.  The simulation and analysis 
framework has been taught to automatically separate 
FIA plots by variant to run the simulations and then to 
combine the results back together for the next steps in 
the analysis process.

In addition each region has preliminary simulations 
run so that existing calibration data in the FIA 
databases can be used to develop regional calibration 
statistics.  These preliminary simulations are also 
used to establish initial carbon and cover values 
for the plots that are used as part of the disturbance 
map creation.  The regional calibration statistics 
are developed to adjust FVS growth rates based 
on growth data from the databases.  All plots have 
regional calibration adjustments applied.  This has the 
effect of increasing growth for some species but may 
decrease growth for others.  In addition to the regional 
calibration adjustments, plots that have sufficient 
increment data for that individual plots also are further 
adjusted using the plot specific increment information.  
This approach ensures that plots that contribute to 
the regional calibration statistics use their own plot 

specific information, but plots that do not include 
increment information are calibrated using the regional 
average information.

Challenges
R1 simulations had the advantage of a complete 
establishment model in the Inland Empire variant 
used for the region.  Other regions, R8 for example, 
do not have the full establishment model and 
therefore regeneration assumptions have be developed 
separately from the FVS growth model.  For all other 
regions a regeneration model was developed using the 
SEEDING table and management history information 
contained in the FIA database.  For each state all plots 
that contain seedling records are classified by forest 
type, overstory condition, and time since observed 
management to create a population of potential 
inventory records for any plots that need regeneration.  
When a regeneration event occurs in a simulation 
(management or disturbance activity) the pool of 
candidate stands for the matching forest type and 
management type is used to randomly select a plot.  If 
the existing plot has seedling records its own seedling 
records are used for regeneration.  If the current plot 
does not have seedling records a sample population 
from the seedling database is created, expanding age 
as needed to have a sufficient sample pool (>30) and 
a plot is selected to provide species composition and 
number of individuals by species for the regeneration 
event.  The size of individual seedling records 
introduced into the simulation is scaled by type and 
intensity of the disturbance. 

Running multiple simulations for 70,000+ plots 
results in the use of considerable disk space so all 
results are stored in ZIP files to reduce storage use.  
The simulation results for all simulations run so far 
(800,000 and counting) now takes over 106 GB of 
disk space.
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UTILIZING FOREST INVENTORY AND ANALYSIS DATA, REMOTE 
SENSING, AND ECOSYSTEM MODELS FOR NATIONAL FOREST 

SYSTEM CARBON ASSESSMENTS

Alexa J. Dugan1, Richard A. Birdsey2, Sean P. Healey3, Christopher Woodall4, Fangmin Zhang5, Jing M. 
Chen6, Alexander Hernandez7, James B. McCarter8

Abstract—Forested lands, representing the largest terrestrial carbon sink in the United 
States, offset 16% of total U.S. carbon dioxide emissions through carbon sequestration. 
Meanwhile, this carbon sink is threatened by deforestation, climate change and natural 
disturbances. As a result, U.S. Forest Service policies require that National Forests 
assess baseline carbon stocks and influences of disturbance and management activities 
on carbon stocks and trends, with the goal of incorporating carbon stewardship into 
management activities. To accomplish these objectives, we utilize Forest Inventory 
and Analysis datasets and remote sensing-based disturbance histories within a carbon 
modeling framework to estimate past and present carbon stocks and trends for each 
national forest. We integrate three forest carbon models: 1) Carbon Calculation Tool, 2) 
Forest Carbon Management Framework, and 3) Integrated Terrestrial Ecosystem Carbon 
model, to calculate baseline carbon stocks and the relative impacts of disturbance and 
non-disturbance factors on forest carbon stocks and flux. Results of the assessments 
ultimately help forest managers quantify carbon consequences of broad forest 
management strategies and project-level decisions. A case study from Flathead National 
Forest shows that disturbances, primarily fire and disease, have had the largest effect on 
forest carbon stocks.  

INTRODUCTION
Containing approximately a quarter of the total 
carbon (C) stored in U.S. forests, the National 
Forest System can play a critical role in mitigating 
greenhouse gas emissions through C sequestration. 
Climate change along with natural and anthropogenic 
disturbances may threaten or in some cases enhance 
forest C stocks. The effects of climate change and 
disturbances on forest C are both spatially and 

temporally complex, further complicating forest C 
management. Few studies have examined in detail 
the drivers of C stocks and trends at landscape-
management scales, such as across individual 
National Forests. Forest C assessments including a 
full attribution of natural and anthropogenic causes 
of observed change at the scale at which management 
decisions are made are needed. 
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Recognizing this, both international and national 
policies have been enacted with the goal of 
managing and sustaining these valuable forest 
resources. By signing the United National 
Framework Convention on Climate Change 
(UNFCCC), the U.S. agreed to report annual C 
stores and changes, including those on forested 
lands, as part of a complete greenhouse gas 
inventory. Furthermore, the U.S. Forest Service 
Climate Change Response Strategy and Performance 
Scorecard requires management units (i.e., National 
Forests) to report baseline C stocks and changes over 
time due to disturbance and management, and in the 
future, it is likely that management guidelines will 
incorporate C stewardship among other objectives. 

To address these mandates, we integrated remotely 
sensed and field-sampled data sources within a C 
modeling framework to develop a comprehensive 
assessment of forest C stocks and dynamics within 
each U.S. National Forest. Specifically we estimated 
the following: 1) baseline C stocks via the Carbon 
Calculation Tool (CCT), 2) effects of disturbances on 
C accumulation using the Forest Carbon Management 
Framework (ForCaMF), and 3) long-term relative 
effects of disturbance and non-disturbance factors 
(climate and atmospheric chemistry) on C stocks and 
flux using the Integrated Terrestrial Ecosystem Carbon 
model (InTEC). 

DATA SOURCES
Fundamental to the assessment of forest C stocks is 
a thorough inventory of all forested lands. The U.S. 
Forest Inventory and Analysis (FIA) program provides 
a nationally-consistent and statistically-valid sample 
documenting trends in forest extent, status, condition, 
and resources. Within each FIA plot, variables useful 
to C accounting are collected such as forest type, tree 
species, tree size, stand age, and recent disturbances 
(Bechtold and Patterson 2005). FIA datasets can be 
utilized to directly calculate tree volume, biomass, 
and C stocks via allometric equations (e.g., Woodall 
and others 2011). Along with FIA forested area 
measurements, C density and total C stocks in 

component pools can be estimated for an area of 
interest, such as a National Forest (e.g., Woodall and 
others 2013). FIA data is also suitable for deriving 
other C modeling inputs such as stand age and forest 
type maps (Zhang and others 2012), and growth and 
yield functions (Raymond and others 2015). Utilizing 
inventory-based, on-the-ground measurements 
enhances model confidence and facilitates comparisons 
across forests.

Along with other forest characteristics, disturbances, 
including their timing, types, and magnitudes, 
regulate the amount of C present in a forest and 
how that C may fluctuate overtime. Although 
inventory data is useful for tracking total C and net 
changes, and can reveal the effects of harvesting 
and mortality, it is less suited for tracking effects 
of specific disturbances and intensities on C stocks, 
and cannot assess the impact of climate change and 
atmospheric chemistry. Therefore, high-resolution 
disturbance and atmospheric data is also needed to 
model C dynamics with attribution to specific causes 
of change. Landsat satellite imagery and manual 
verification are used to detect annual changes in forest 
cover, and assign disturbance types (e.g., fire, insect, 
harvest) and magnitudes at 30-m resolution from 
1990-2011 (Healey and others 2014). High-resolution, 
measurement-based datasets (e.g. PRISM Climate 
Group) enable us to investigate growth enhancements 
and reductions due to climatic variability, CO2 
fertilization, and nitrogen deposition.

MODELING FRAMEWORK
For this project we use CCT (Smith and others 2010) 
to provide baseline C stocks and trends from 1990-
2013 on forested lands in National Forests. Annual C 
stocks are calculated by linear interpolation between 
at least two complete FIA surveys conducted since 
1990, and extrapolation to recent years after the last 
available inventory. C stocks within FIA plots are 
calculated using regional and forest-type specific 
conversion factors and coefficients within sets of 
equations (e.g., Woodall and others 2011). To estimate 
total C for each national forest, the C per hectare at the 
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plot location is multiplied by the total area that the plot 
represents, and then these totals are summed. CCT 
accounts for changes in forest area reflected in the FIA 
data, thus also reports annual C density (Woodall and 
others 2013).

ForCaMF builds upon CCT by utilizing FIA data along 
with Landsat-derived disturbance histories to estimate 
the relative impacts of disturbances and management 
activities on C stored in forested ecosystems from 
1990-2011 (Healey and others 2014). FIA plots are 
used as inputs to the Forest Vegetation Simulator 
(FVS) model (Crookston and Dixon 2005) to simulate 
C trajectories for non-soil C pools in 10-year intervals 
over a 100-year span (Raymond and others 2014). 
These trajectories are then used to track C storage 
change on the national forest over time as they are 
applied across Landsat-based maps of forest structure 
and disturbance. The relative impacts of disturbances 
are quantified based on the direct export of C to the 
atmosphere or other pools and prevented sequestration 
(Healey and others 2014, Raymond and others 2015). 

Lastly, InTEC (Chen and others 2000, Zhang and 
others 2012) expands upon both CCT and ForCaMF 
by attributing C stocks and flux to non-disturbance 
and disturbance factors. InTEC is a process-based, 
biogeochemical model calibrated with FIA-derived 
inputs including stand age, forest type, and net 
primary productivity-stand age relationships that 
drive forest growth (Zhang and others 2012). InTEC 
estimates the impacts of Landsat disturbances and 
stand age (time-since-disturbance) by calculating C 
emissions, transfers between live and dead pools, 
and accumulation. Fluctuations in non-disturbance 
factors including climate (i.e., temperature, 
precipitation), nitrogen deposition and atmospheric 
CO2 concentrations, which influence growth rates, 
guide forest C dynamics. A series of differential 
equations along with scalars and coefficients of 
allocation, turnover, decomposition, and C loss 
controls how disturbance and non-disturbance factors 
affect total net biome productivity and component C 
pools since 1950. 

RESULTS AND DISCUSSION
A Case Study: Flathead National Forest
Flathead National Forest (FNF) in Northwestern 
Montana, contains predominately subalpine fir (Abies 
lasiocarpa) and Douglas fir (Pseudotsuga menziesii) 
forests and about 10% of the forests are <10 years old 
(Fig. 1). Results of CCT in FNF indicate that from 1990-
2013 C density remained relatively stable around 155 
Mg ha-1 C (Fig. 2a), with aboveground live tree and soil 
C pools containing most forest C (Fig. 2b). ForCaMF 
results show that since 1990, there has been an increase 
in disturbance effects, with disease and fire having the 
greatest relative impacts (Fig. 3a). By 2011, disturbances 
emitted or prevented the sequestration of 4.8 Tg C, with 
considerable emissions in 2004 and 2007 due to fires 
(Fig. 3a). Increased disturbances may explain the subtle 
decline in C density in aboveground and belowground 
live pools and subsequent increase in dead down, 
standing dead, and forest floor pools from 1990-2013 
(Fig. 2b). InTEC outputs reveal that since the 1950s 
FNF fluctuated between a small C sink and source, but 
from 2000-2009 it remained a C source (Fig. 3b) due 
to both negative disturbance/aging and climatic effects 
(i.e., warmer, drier) (Figs. 3c-d). In 2010 FNF became 
a C sink again (Figs. 2b-c) as forests began recovering 
from recent disturbances (Fig. 3a) shown by the pulse of 
newly established stands (Fig. 1). The positive impacts 
of nitrogen deposition and CO2 fertilization were 
generally overshadowed by the much stronger, mostly 
negative disturbance and climate effects, cumulatively 
causing a loss in C over time (Figs. 3b-d). 

These C assessments can help inform management 
decisions. Results from FNF suggest that despite 
increased disturbances, C density has been stable (Fig. 
1a). However, if the goal is to increase C storage, it may 
be most effective to focus on mitigating disturbance 
effects, specifically disease and fire, which have had 
the most negative impacts on C trends (Fig. 2a). It 
is important that national forest managers place C 
management within a broader context of long-term 
sustainable management. These forests are diverse, multi-
use landscapes and C management adds another very 
complex dimension to already complicated strategies. 
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Figure 1—Age-class distribution displaying the percentage of forested area of each forest dominance type in 10-year age classes, derived 
from Forest Inventory and Analysis data.

Figure 2—Carbon Calculation Tool outputs for Flathead National Forest showing carbon density (Mg C ha-1) for (a) all ecosystem carbon 
pools combined from 1990-2013 and (b) each individual carbon pool in 1990 and 2013. 
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Figure 3—Model outputs for Flathead National Forest showing the relative effects of disturbance and non-disturbance factors on forest 
carbon trends. (a) Output from the Forest Carbon Management Framework showing impacts of management and disturbances occuring 
from 1990 and 2011 on non-soil C storage. Error bars specify the standard error of 500 error simulations. InTEC outputs showing 
the changes in total ecosystem C stocks from 1951-2010 due to: (b) disturbances including fire, harvests, insects, and disease and 
subsequent regrowth with stand age, (c) non-disturbance factors including climatic variability, nitrogen deposition, and atmospheric CO2 
concentrations, and (d) all disturbance/aging and non-disturbance factors combined. Positive values indicate the forest is a C sink from the 
atmosphere whereas negative values indicates a C source to the atmosphere. 
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THE ROLE OF OLD FORESTS AND BIG TREES IN FOREST CARBON 
SEQUESTRATION IN THE PACIFIC NORTHWEST

Andrew N. Gray1

Abstract—Forest ecosystems are an important component of the global carbon (C) 
cycle. Recent research has indicated that large trees in general, and old-growth forests in 
particular, sequester substantial amounts of C annually. C sequestration rates are thought 
to peak and decline with stand age but the timing and controls are not well-understood. 
The objectives of this study were to determine how the balance of tree growth, mortality, 
and dead wood decay vary by plant community type, site productivity, and stand age. 
We compiled remeasured tree and dead wood estimates from 8,767 inventory plots on 
Pacific Northwest Region National Forest lands and assessed changes by climax plant 
association zones (PAZs) and site productivity estimates of mean annual increment at 
culmination (MAI). Estimated maximum C density for old-growth stands (≥300 years old) 
varied significantly by MAI class within PAZ, but on average stands accumulated 66% of 
maximum stores by age 100. We did not see a decline in live tree production in older stands 
in moderate and low MAI classes, but a 33% reduction in high MAI classes. We found that 
mortality in undisturbed stands increased with stand age such that the net growth in live 
tree biomass, and the change in total C, was not significantly different from zero in stands 
over age 400 (0.15 ± 0.64 Mg/ha/yr for total C, 95% confidence interval). Mortality of 
large trees (>100 cm diameter) exceeded growth, but trees were growing into the larger size 
classes at a high-enough rate that a net increase in large tree C was seen across the region. 
Even though large trees accumulated C at a faster rate than small trees on an individual 
basis, their contribution to C sequestration was smaller on an area basis, and their 
importance relative to small trees declined in older stands compared to younger stands.

Forest ecosystems play a major role in the global 
carbon cycle because they can attain high levels of 
carbon storage, and can gain or lose carbon relatively 
rapidly (McKinley et al. 2011). Understanding the 
magnitude and drivers of C flux between forests 
and the atmosphere has been a focus of research 
given concerns about the effects of rising levels of 
atmospheric carbon dioxide on climate change (IPCC 
Core Writing Team 2007). The rate at which different 
forests store and release C through growth and 
decomposition is determined by available resources, 
environmental conditions, and their seasonal 
distribution. Some of this variation is reflected in the 
species composition of the plant community. 

The net rate of C sequestration also changes with 
forest age and successional stage. During forest 
development after disturbance, after an initial period 
of loss from decomposition, the net rate at which C 
accumulates in forest stands tends to peak early in 
stand development, and then declines as stands age. 
The timing of the loss phase, peak, and the relative 
speed of the decline are related to the balance between 
gross growth, or creation of new organic material, 
and mortality of living material (with the difference 
referred to as “net growth”). 

Old-growth forests store large amounts of C per 
unit area, but change in their stocks is sensitive to 
the balance of tree growth and mortality. Recent 
studies suggests that substantial rates of positive 
growth in old-growth forests may be more common 
than previously thought (Luyssaert et al. 2008). The 
characteristic rates and net effects of gross growth and 
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mortality of different tree sizes for C accumulation as 
stands age are not clear.

The objectives of this study were to assess the role of 
stand age, plant community type, and productivity on 
forest C stocks (excluding C in mineral soil) and their 
net changes as well as  net sequestration rates over a 
diverse range of forest conditions. We conducted the 
study with inventory data from a systematic sample of 
National Forests in the Pacific Northwest, USA, with 
repeat measurements of most aboveground C pools.

METHODS
We assessed C stocks and their change on the 22.5 
million ac of forested federal land administered by 
the Pacific Northwest (PNW) Region of the National 
Forest System (NFS). These lands are found primarily 

in the states of Oregon and Washington as well as 
parts of California and Idaho, U.S.A. NFS lands in 
this region occur in a great variety of conditions. We 
grouped individual plots into ten Plant Association 
Zones (PAZ; Table 1) designated by the climax tree 
species as classified by field crews using local NFS 
guides (Hall 1998). The data and compilation methods 
we used for this study are similar to those used in Gray 
and Whittier (2014). 

There were 8,767 grid points (“plots”) within NFS 
lands that had forested conditions measured 3 or 
more years apart. We grouped points of the same land 
class and measurement status on a plot into condition 
classes and assigned values for stand age, site index, 
and forest type based on the subsequent compilation 
of the FIA sample of the same plot location. We 

Table 1—Area and environmental characteristics of forested plots on Pacific Northwest national forests by 
climax Plant Association Zones (PAZ) . Values are means. Listed most common species make up ≥80% of the 
live tree carbon in a PAZ. PAZs are sorted from lowest estimated mean carbon density (Mg/ha) to highest.

Plant Association Zone (PAZ) Code
Area  

(1000 ha)

Annual 
Precipitation 

(cm)

Annual 
temperature 

(C)

Most common 
species 

(ranked)*
Juniperus occidentalis JUOC 97 48 6.7 JUOC, PIPO

Pinus ponderosa PIPO 1,102 61 6.1 PIPO

Pinus contorta PICO 416 84 4.8 PICO, PIPO, 
LAOC

Pseudotsuga menziesii PSME 1,212 82 6.1 PSME, PIPO

Abies lasiocarpa ABLA 776 105 2.2 PSME, ABLA, 
PIEN, PICO

Abies concolor &  
A. grandis

ABCOGR 1,669 91 5.3 PSME,  
ABCOGR, PIPO

Tsuga mertensiana & subalpine 
parkland

TSMEpark 924 183 3.6 TSME, ABAM, 
ABMAS, ABLA, 

PSME
Lithocarpus densiflorus LIDE3 229 210 9.8 PSME, LIDE3, 

ARME
Tsuga heterophylla & Picea 
sitchensis

TSHEPISI 1,742 188 7.8 PSME, TSHE

Abies amabilis ABAM 910 222 5.4 ABAM, TSHE, 
PSME

* In addition to the species names and codes shown in the first two columns, LAOC = Larix occidentalis, PIEN = Picea engelmanii, ABMAS = Abies 
magnifica var. shastensis, ARME = Arbutus menziesii
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grouped FIA site class codes into three “MAI classes” 
(<50, 50-120, >120 ft3/ac/yr). Estimates of above- 
and below-ground live tree and standing dead tree 
woody C used the regional equations of merchantable 
bole volume, national FIA equations of stump and 
bark volume, species-specific wood- and bark-density 
parameters, and ratios of top and branch biomass to 
merchantable bole biomass documented in Woodall 
et al. (2011).

Statistical estimates used standard double-sampling 
for post-stratification (Scott et al. 2005), with strata 
defined by national forest boundaries, Wilderness 
boundaries, and classified Landsat satellite imagery 
(Dunham et al. 2002). However, a model was used 
to estimate maximum C density from stand age for 
each PAZ*MAI class group using a cumulative two-
parameter Weibull model:

allCdens = exp(a0 + a1*(stdage**a2)) 

where allCdens was total C density (Mg/ha) and stdage 
was stand age (yrs). Modeling was done using proc 
NLIN in SAS and datasets were restricted to stand age 
300 (150 for the PICO PAZs) to avoid problems with 
extrapolation of models into regions of sparse data.

RESULTS & DISCUSSION
The maximum mean “total” C density (live and dead 
woody pools, tree foliage, understory vegetation, 
and forest floor combined) and the apparent rate at 
which it was reached varied by plant association zone 
(PAZ) and productivity (MAI) class. The Weibull 
model results identified significant differences in the 
maximum C density attainable by PAZ*MAI class 
(Table 2). Maximum C density was greater in more 
productive MAI classes than in less productive MAI 
classes within most of the PAZs, and also differed 
among PAZs. The apparent rate of C accumulation 
(i.e., the steepness of the curve) also differed among 
PAZs, with TSMEpark and ABCOGR showing the 
oldest stand age to attain 75% of maximum total C, 
and PIPO and JUOC the youngest. The mean stand 
age required to reach the 75% level across PAZs was 
125 years.

Sequestration rates varied significantly with stand age 
and MAI class. Gross growth increased to a plateau at 
the 80-100 year age class on low MAI sites, rose more 
quickly to plateau in the 20-40 year class on medium 
MAI sites, and peaked in the 20-60 year ages and fell 
by ~33% in older stands on high MAI sites (Fig. 1). 
Mortality rates for the medium and high MAI classes 
increased slowly but steadily as stand age increased, 
eventually matching the rates for gross growth. 
Consequently, net growth was not significantly 
different from zero for stands over 250 years old 
for these two groups. For the low MAI class group, 
the effect of the rate of C change due to mortality 
was more variable, with net growth not significantly 
different from zero for most stand age classes over 
175 years old.

Most of the accumulation of C in undisturbed stands 
across the study region was in small trees, with trees 
<20 in DBH at time 1 accounting for 69% of the gross 
growth and 87% of the net growth. Growth of the 
largest-diameter trees was offset by mortality, with net 
growth significantly <0 for trees 40-60 in DBH at time 
1 (Z=3.86, P<0.001), and not different from zero for 

Table 2—Predicted maximum total carbon density 
at stand age 300 (150 for PICO) by plant association 
zone (PAZ; see Table 1) and MAI class (and 95% 
confidence intervals). All major pools were included 
except mineral soil.

MAI class (m3/ha/yr)

PAZ Low (<3.5)
Medium 
(3.5-8.4) High (>8.4)

JUOC 26   (9) — —

PIPO 77   (5) 100   (12) 66   (27)

PICO 88   (6) 124   (14) —

PSME 123   (13) 237   (23) 221   (69)

ABLA 149   (17) 187   (16) 201   (81)

ABCOGR 162   (16) 246   (16) 382   (50)

TSMEpark 219   (23) 307   (35) 348   (55)

LIDE3 206   (80) 289   (44) 382   (65)

TSHEPISI 232   (44) 376   (24) 457   (24)

ABAM 271   (43) 381   (29) 425   (33)
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Figure 1—Annual changes in carbon in undisturbed stands by MAI class and stand age., showing gross growth on the top, and net growth 
(growth - mortality) on the bottom.
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trees >60 in DBH (Fig. 2). Nevertheless, the density of 
C in large trees (and all trees >10 in DBH) increased 
overall in undisturbed stands due to recruitment 
from smaller size classes (P<0.05). The increase in 
C density in large trees also held true when disturbed 
stands were included (P<0.05), although increases for 
all sizes were proportionately lower, particularly in the 
smaller tree sizes.
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Figure 2—Change in mean live tree carbon by tree size class, showing gross growth and net growth (growth - mortality) of trees in the 
class at time 1, and net change (growth into and out of a class plus net growth) for undisturbed stands and for all stands.
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CHANGE DETECTION FOR SOIL CARBON IN THE FOREST 
INVENTORY AND ANALYSIS

An-Min Wu, Edward A. Nater, Charles H. Perry, Brent J. Dalzell, and Barry T. Wilson1

Abstract—Estimates of carbon stocks and stock changes in the U.S. Department of 
Agriculture Forest Service’s Forest Inventory and Analysis (FIA) Program are reported 
as the official United States submission to the UN Framework Convention on Climate 
Change. Soil, as a critical component of the forest carbon stocks, has been sampled 
in about 10-year intervals in FIA with the re-measurement underway. However, the 
magnitude of detectable change in soil organic carbon (SOC) with the current sampling 
scheme is unknown. We aim to identify SOC variability and to best determine minimum 
detectable changes in SOC under the current sampling scheme. The project seeks to: 
identify statistical relationships between SOC and environmental covariates; normalize 
SOC data for main forest-type groups (FTGs) using identified covariates; and determine 
the minimum detectable change in the normalized SOC using power analysis. We 
investigated SOC variability for 8 FTGs: Oak-Hickory, Maple-Beech-Birch, Pinyon-
Juniper, Loblolly-Shortleaf Pine, Aspen-Birch, Douglas-Fir, Fir-Spruce-Mountain 
Hemlock and Woodland Hardwoods. Relationships between SOC and environmental 
covariates (biomass/soil properties in FIA, PRISM climate data, and DEM-derived terrain 
attributes) are determined by multiple linear regression and are used to normalize SOC 
variability. The results showed that terrain attributes were not significant in explaining 
SOC in the FIA dataset and climate data were only significant in certain FTGs locations. 
Except for Oak-Hickory, Maple-Beech-Birch and Pinyon-Juniper groups, sample 
numbers are insufficient to detect a change in SOC less than 10 percent (%) of the mean. 
To guide future sampling efforts, we will continue our study on detecting minimal change 
in SOC and to explore sample number and sampling frequency scenarios to inform future 
soil sampling protocols. 

The U.S. Department of Agriculture Forest Service’s 
Forest Inventory and Analysis (FIA) Program assesses 
nationwide forest resources to ensure sustainable 
management and to report critical status and trends 
(Smith, 2002). One of the critical reports from the FIA 
is an estimate of forest carbon stocks in biomass and 
soil as a part of the official United States submission 
to the United Nations Framework Convention on 
Climate Change (Smith et al., 2013). Although soil is 
the critical component in the forest carbon system, the 

magnitude of detectable change in soil organic carbon 
(SOC) in FIA is still unknown for current sampling 
density and time intervals (soils are sampled at roughly 
10-yr or longer intervals; Woodall et al., 2010). In 
order to ensure wise investment on sampling efforts, it 
is essential to determine which levels of SOC change 
are statistically meaningful.

In this study, our goals are to identify SOC variability 
in FIA and to determine the minimum SOC change 
that can be detected. Our specific objectives are to 1) 
identify relationships between SOC and environmental 
covariates, 2) reduce environment-affected SOC 
variability by data normalization, and 3) determine 
detectable SOC change using power analysis.
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MATERIALS
Mineral soils in FIA are sampled in 0-10cm and 10-
20cm depth intervals and in a 10-year or longer time 
interval. The current FIA database, measured between 
1999 –2011, contains 2783 unique plot samples with 
SOC measurements available in both depths. We used 
the latest sampling data from sites in the conterminous 
US; 5 coastal sites lacking elevation coverage in our 
terrain model were eliminated. A total of 2763 samples 
were used for the analysis. 

We applied the resampled 250-m Elevation Derivatives 
for National Applications(EDNA) for terrain attributes 
and the 800-m long-term climate norms from the 
PRISM data for climate parameters.

METHODS
We calculated composite SOC density in the top 20 cm 
of soil and investigated its variability within forest-
type groups (FTGs) at the sampling sites. Statistical 
analyses were stratified by FTGs to reduce variability 
in environmental and management conditions. FTGs 
selected for analyses were Oak-Hickory, Maple-
Beech-Birch, Pinyon-Juniper, Loblolly-Shortleaf 
Pine, Aspen-Birch, Douglas-Fir, Fir-Spruce-Mountain 
Hemlock and Woodland Hardwoods. 

We used multiple linear regression to build a best-
fit SOC model for each FTG using readily available 
environmental covariates such as topographic 
attributes, climate variables, and biomass and soil 
properties. Forest biomass C pools (e.g., understory 
aboveground & belowground, dead, standing dead, 
and litter; litter and forest floor thickness) and soil 
properties (ECEC, pH, total water, total N, coarse 
fragments, and texture layers) are available in the 
FIA database. We derived topographic attributes, 
including elevation, slope, aspect, plan/profile 
curvature, and contributing area, from the EDNA 
dataset. We obtained 30-year averaged annual 
precipitation and temperature (minimum, mean, and 
maximum) estimates from PRISM. Environmental 
covariates in best-fit regression models were selected 
for data normalization.

To make SOC comparable across various 
environmental conditions in the US, we normalized the 
distribution to the means of the identified covariates 
before SOC change detection. We adjusted SOC 
density by off-setting the distance of covariate values 
to the means of the covariates with proportions using 
the partial regression coefficients of the SOC model. 
Mean, standard deviation, and coefficient of variation 
(CV) of SOC density in each FTG before and after 
data normalization were examined.

We then ran power analysis to determine the 
minimum detectable change in SOC using current 
sample numbers. We calculated the required 
sample sizes needed to detect specific levels of 
change. Power analysis provides the perspectives 
of statistical significance (Cohen, 1969). Its 4 
components – sample size (n), effect size (Cohen’s 
d), a significance level (Type I error, or α) and power 
(=1-Type II error) – allow us to determine the sample 
size required or an experimental effect when giving 
constraints to the other components. We defaulted the 
significance level to be 0.05 with a power of 0.8 to 
estimate the required sample size for a given effect, 
or vice versa.

RESULTS: SOC RELATIONSHIPS
Overall, SOC variability across all sites is high. SOC 
density for all sites has a mean of 5.08 kg m-2 with 
a coefficient of variation (CV) of 0.64.  The SOC 
distribution varies by FTGs. The means of SOC 
range from 3.18 kg m-2 for the Loblolly-Shortleaf 
pine group to 6.97 kg m-2 for the Maple-Beech-Birch 
group (Table 1).

Preliminary analyses showed no significant 
relationships between SOC and terrain attributes, and 
only a few FTGs displayed significant relationships 
with climate. SOC models are mainly associated 
with biomass and soil properties (e.g. litter thickness 
or carbon, ECEC, coarse fragments). Besides these 
properties, SOC in Woodland Hardwoods, Pinyon-
Juniper, and Oak-Hickory groups is also driven by 
precipitation and/or temperature.
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RESULTS: DATA NORMALIZATION
Based on relationships between SOC and covariates 
identified in SOC models, data normalization reduces 
SOC variability for all FTGs. Data normalization 
adjusted diverse site environments to the means of 
covariates and improved CV by from 14 to 49.8 
percent (%), depending on FTGs (Table 1).  

RESULTS: POWER ANALYSIS
Comparing SOC detectable changes before and after 
normalization, the effect sizes for all FTGs increase 
with data normalization. Hence, the number of samples 
required for detecting change in SOC decreases. For 
example, Oak-Hickory (n=584), Maple-Beech-Birch 
(n=292) and Pinyon-Juniper (n=279) groups have 
sufficient sampling sites to detect SOC change ≤10 
percent (%) of the mean, but other FTGs require more 
samples for such detection (Table 1). The Douglas-fir 
group, which currently has 174 sample sites, would 
need 406 samples to detect a 10 percent (%) change.  

DISCUSSION
Terrain attributes were surprisingly not significant in 
building SOC models. Terrain attributes are typically 
a strong driver in SOC formation (Wu, 2014), but our 
results suggest that topography is not a major factor in 
driving SOC in forests at the national extent, possibly due 

to regional variations in ecological processes or terrain 
data resolution (Cao et al., 2012, Minasny et al., 2013). 

Soil properties used to build SOC models are soil 
texture, particle size and related properties (e.g. 
ECEC, coarse fragments, and total water), suggesting 
texture as an important factor to further investigate 
C stocks and stock changes. Future sampling effort 
might also focus in collecting more detailed soil 
texture information. 

Using covariate relationships, data normalization 
reduces sample numbers required in a given effect 
size. Data normalization, therefore, is effective 
for planning sampling efforts when study sites 
are located across a large area with diverse 
environmental conditions.  

Except for Oak-Hickory, Maple-Beech-Birch and 
Pinyon-Juniper groups, current FIA sample numbers 
are insufficient to detect changes in SOC stocks ≤10 
percent (%) of the mean. While re-measurements may 
allow us to detect SOC stock changes, our ability to do 
so is limited by the current number of sampling sites 
for most FTGs. 
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Table 1—Data normalization effect on variability and detectable change of soil organic carbon.

SOC density, 0-20 cm (kg m-2) Detectable change of the means
Original Normalized Effect size Original Normalized Improvement

Forest-type groups n Mean SD CV Mean SD CV Cohen’s d (kg m-2) (%) (kg m-2) (%) (%)

Oak-Hickory 584 5.11 3.16 0.62 5.20 2.71 0.52 0.16 0.52 10.2 0.44 8.5 15.8

Maple-Beech-Birch 292 6.97 3.50 0.50 6.97 3.01 0.43 0.23 0.81 11.7 0.70 10.0 14.0

Pinyon-Juniper 279 3.48 2.11 0.61 3.48 1.25 0.36 0.24 0.50 14.4 0.30 8.6 40.5

Douglas-Fir 174 6.19 3.78 0.61 6.19 3.14 0.51 0.30 1.14 18.4 0.95 15.3 16.9

Aspen-Birch 174 5.72 2.87 0.50 5.72 1.98 0.35 0.30 0.86 15.1 0.59 10.4 31.2

Woodland hardwood 137 3.97 2.36 0.59 3.97 1.18 0.30 0.34 0.80 20.2 0.40 10.1 49.8

Fir-Spruce-Mountain 
hemlock 136 5.92 3.49 0.59 5.92 2.17 0.37 0.34 1.19 20.1 0.74 12.5 37.8

Loblolly-Shortleaf 
pine 133 3.18 2.48 0.78 3.18 1.65 0.52 0.34 0.86 26.9 0.57 17.8 33.6

Abbreviations are as follows: SOC = soil organic carbon, SD = standard deviation, CV = coefficient of variation.



New Directions in Inventory Techniques & Applications Forest Inventory & Analysis (FIA) Symposium 2015 162PNW-GTR-931

LITERATURE CITED
Cao B., Grunwald S. & Xiong X. 2012. Cross-regional 

digital soil carbon modeling in two contrasting 
soil-ecological regions in the US. In: Minansy M., 
Malone B.P., and McBratney A.B. (Eds.), Digital 
Soil Assessments and Beyond: Proceedings of the 
5th Global Workshop on Digital Soil Mapping 
2012, Sydney, Australia. CRC Press. 

Cohen, J. 1969. Statistical power analysis for the 
behavioral sciences. Academic Press, Inc. pp.415.

Minasny, B., McBratney, A.B., Malone, B.P., & 
Wheeler, I. 2013. Digital mapping of soil 
carbon. Advances in Agronomy, 118, 1-47.

Smith, J.E., Heath, L.S., & Hoover, C.M. 2013. 
Carbon factors and models for forest carbon 
estimates for the 2005–2011 National Greenhouse 
Gas Inventories of the United States. Forest 
Ecology and Management, 307, 7-19.

Smith, W.B. 2002. Forest inventory and analysis: 
a national inventory and monitoring program. 
Environmental Pollution, 116, S233-S242.

Woodall, C.W., Amacher, M.C., Bechtold, W.A., 
Coulston, J.C., Jovan, S., Perry, C.H., Randolph, 
K.C., Schulz, B.K., Smith, G.C., Tkacz, B., & 
Will-Wolf, S. 2010. Status and future of the 
forest health indicators program of the USA. 
Environmental Monitoring and Assessment, 177, 
419-436.

Wu, A. 2014. Hillslope redistribution of soil 
organic carbon in the depressional landscape in 
Minnesota (Doctoral dissertation, University of 
Minnesota).



New Directions in Inventory Techniques & Applications Forest Inventory & Analysis (FIA) Symposium 2015 163PNW-GTR-931

EXTRAPOLATING EXISTING SOIL ORGANIC CARBON DATA TO 
ESTIMATE SOIL ORGANIC CARBON STOCKS BELOW 20 CM

Edward A. Nater, Cinzia Fissore, Charles H. Perry, An-Min Wu, Brent Dalzell, and Barry T. Wilson1

Abstract—Estimates of forest soil organic carbon stocks across the US are currently 
developed from expert opinion in STATSGO/SSURGO and linked to forest type.  The 
results are reported to the US EPA as the official United States submission to the UN 
Framework Convention on Climate Change. Beginning in 2015, however, estimates of 
soil organic carbon (SOC) stocks will be based on SOC data from soil cores collected in 
the field (0-10 and 10-20 cm depth). In addition, the Intergovernmental Panel on Climate 
Change (IPCC) Good Practice Guidance suggests these estimates extend to at least 30 cm 
for all forested lands. This study reports the results of that extrapolation effort. Data for 
this effort were obtained from the International Soil Carbon Network (ISCN) database, 
from analyses of more than 500 150 cm deep cores collected from forested sites across 
the Upper Midwest, and from cores taken at several US Forest Service Experimental 
Forests. SOC contents were adjusted to 0-10, 10-20, and 20-50 cm depth increments by a 
weighted average estimation technique if needed. Multiple linear regression modeling was 
used to predict the percent SOC of the 20 to 50 cm depth layer from the percent SOC of 
the 0-10 and 10-20 cm depth layers. Additional covariates included climatic data, latitude 
and longitude. Preliminary analyses show a best fit prediction R2 > 0.6 for all data. 

INTRODUCTION
The Forest Inventory Analysis (FIA) program has 
established a systematic measurement approach to 
provide statistically valid measures of a wide array 
of forest parameters, such as aboveground living 
tree biomass, dead and down biomass, woody shrub 
biomass, and others at thousands of forested sites 
across the United States. Soils are sampled at 0-10 
and 10-20 cm depths at a subset (1 of 16) of sites 
and analyzed for soil organic carbon, pH, extractable 
metals, and other properties. 

Currently, estimates of forest soil organic carbon (SOC) 
stocks across the US are developed from expert opinion 
in STATSGO/SSURGO and linked to forest type.  Results 

are reported to the US EPA as the official US submission 
to the UN Framework Convention on Climate Change. 
Starting in 2015, however, estimates of SOC stocks will 
be based on SOC data from soil cores (0-10 and 10-20 
cm depth) collected in the field by FIA. In addition, the 
IPCC Good Practice Guidance suggests these estimates 
extend to at least 30 cm for all forested lands.

Because FIA has not collected soils data below 20 
cm, the SOC content of these deeper horizons must 
be estimated by statistical modeling. Further, this 
pedometric model can only utilize data currently in 
the FIA database and environmental data that can be 
readily obtained from other established sources.

Our objectives are to 1) develop predictive statistical 
relationships for deep (20-50 cm) percent SOC from 
percent SOC in the 0-10 and 10-20 cm depth increments 
and from environmental variables that can be estimated 
for forested sites across the US; and 2) combine these 
new percent SOC estimates with bulk density data to 
estimate SOC stocks for soils below 20 cm. 

1 Professor (EN), Postdoctoral Fellow (AW), and Research Associ-
ate (BD), Department of Soil, Water, and Climate, University 
of Minnesota, Saint Paul, MN 55018; Assistant Professor (CF), 
Department of Biology and Environmental Science, Whittier 
College; Research Soil Scientist (CHP) and Research Forester 
(BTW), Northern Research Station, US Forest Service. EAN is 
corresponding author: to contact, call (612)625-9734 or email at 
enater@umn.edu
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MATERIALS AND METHODS
Mineral soil SOC data for US forests were obtained from 
three sources: 1) the International Soil Carbon Network 
(ISCN) database (International Soil Carbon Network, 
2012), 2) a study we (Nater and Fissore) conducted 
where more than 500 deep (150cm) cores were collected 
from forested sites in Minnesota, Michigan, and 
Wisconsin, and 3) data from deep soil cores collected on 
several USFS Experimental Forests. Because the cores 
in the ISCN and the Experimental Forests were collected 
by multiple investigators using different protocols, 
sample depth increments varied widely. In order to make 
this model applicable to existing FIA soils data, we 
had to standardize the data to 0-10 and 10-20 cm depth 
increments as per FIA protocols, and the 20-50 cm depth 
increment we sought to model. We estimated the percent 
SOC of the three depth increments by a weighted 
average method. The datasets were carefully examined 
before and after production of the estimate to eliminate 
cores <50 cm deep, cores having missing SOC values, 
or cores that had SOC values > 12 percent (generally 
indicating forest floor or an organic soil horizon) or ≤ 0 
percent. The initial combined dataset had 3,700 cores; 
more than 2800 remained after data validation. 

All cores had geospatial (latitude and longitude) 
data, which allowed us to obtain environmental data 
that could be used as covariates in our regression 
modeling. We obtained 30-year annual precipitation, 
minimum temperature, mean temperature, and 
maximum temperature for all sites (excluding sites 
in Alaska, Hawaii, and Puerto Rico, where estimates 
are unavailable) from PRISM (PRISM Climate 
Group, 2015. 

Stepwise multiple regression analyses were 
conducted in the statistical package R, v. 0.98.953 (R 
Development Core Team, 2011)

RESULTS
Not surprisingly, percent SOC values were not 
normally distributed and were normalized by a log 
transform. The dependent variable, Log(PercentC)35, 
is the log of the percent SOC in the 20-50 cm depth 
increment (35 cm is the midpoint of the increment). 
Independent variables used in the regression 
modeling included: 

•	 Log(PercentC)5 = log of PercentC in the 0-10 cm 
depth increment,

•	 Log(PercentC)15 = log of PercentC in the 10-20 cm 
depth increment,

•	 Precip = the 30-year average precipitation (mm) 
obtained from PRISM,

•	 Tmin = the minimum temperature (C) obtained from 
PRISM,

•	 Lat = latitude in degrees, and
•	 Long = longitude in degrees.

Stepwise multiple regression modeling to predict 
Log(PercentC)35 for the entire US produced the 
following model: 

Log(PercentC)35 = -0.636 + 0.679*Log(PercentC)15 
-0.0039*Long + 0.103* Log(PercentC)5 - 
0.0086*Tmin + 0.000064*Precip = 0.0029*Lat

Adjusted R2 = 0.63, df = 2817, F = 809.3, and 
p < 2.2e-16. With the exception of latitude, all 
variables in the regression were significant to 
p<0.001. 

The strong relationship observed with longitude 
suggested that a better fit might be obtained by 
regionalizing the dataset and separately analyzing 
individual regions. We split the dataset into three 
regions based on longitude: an Eastern Region 
(longitude > -105°, which is roughly in central 
Nebraska), a Western Region (longitude < -105° and > 
-128°), and a Far West Region (longitude < 128°, that 
only included Alaska and Hawaii). Because PRISM 
climate data are not available for Alaska or Hawaii, 
they would be removed from any analysis using Precip 
or Tmin; consequently, we felt it best to put them in 
their own, albeit small, region.
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Individual analyses of the three regions follows: 

Eastern Region
The best fit model for the Eastern Region was:

Log(PercentC)35 = -0.364 + 0.609*Log(PercentC)15 
+ 0.119* Log(PercentC)5 - 0.006*Tmin 

Adjusted R2 = 0.49, df = 1971, F = 834.6, and p 
< 2.2e-16. All variables in the regression were 
significant to p<0.001.

Western Region
The best fit model for the Western Region was:

Log(PercentC)35 = -0.00312 + 
0.855*Log(PercentC)15 + 0.000047* Precip - 
0.006*Lat 

Adjusted R2 = 0.74, df = 846, F = 825, and p < 
2.2e-16.  All variables in the regression were 
significant to p<0.001.

Far West Region
The best fit model for the Far West Region was:

Log(PercentC)35 = -0.00312 + 
0.855*Log(PercentC)15 

Adjusted R2 = 0.79, df = 40, F = 156.7, and p 
= 2.05e-15. Log(PercentC)15 was significant to 
p<0.001; no other variables were significant. 

DISCUSSION
Overall, the regression models provide a good estimate 
of the percent SOC in the 20-50 cm depth increment. 
This is particularly true in the Western Region, less so 
in the Eastern Region. This east-west disparity may be 
due to a longer history of forest soil disturbance in the 
eastern US, which could alter these relationships, or it 
may be due to the higher occurrence of poorly drained 
soils in the east, which tend to have much higher SOC 
contents than well-drained soils. Improvements to the 
model fit may be possible with the inclusion of soil 
textural data (estimated from NRCS Soil Survey data) 
and/or elevation data. 

Estimates of soil bulk density will be required in 
order to calculate SOC stocks at depth. FIA has no 
bulk density data for depths below 20 cm; therefore 
these data will have to be estimated, most likely from 
the USDA NRCS Soil Survey database for locations 
where data are present, and from other pedometric 
models for other locations (Sequeira et al. 2014). 
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ADDING NET GROWTH, REMOVALS, AND MORTALITY ESTIMATES 
FOR BIOMASS AND CARBON IN FIADB

Jeffery A. Turner1

Abstract—Traditional growth, removals, and mortality (GRM) estimates produced 
from Forest Inventory and Analysis (FIA) periodic inventories were limited to changes 
in volume on timberland. Estimates on forestland were added in the east as the first 
installment of annual inventory plots was remeasured. The western FIA units have 
begun annual remeasurement, precipitating the need to produce GRM estimates on the 
macroplot and for woodland species. In addition, FIA faces increased demand to produce 
biomass and carbon GRM estimates. Recent accomplishments that meet the need for 
expanded GRM estimation for carbon and biomass, as well as meeting the specific needs 
of the western FIA units, will be presented. The provided solution offers new challenges 
to the FIA on-line tools and our external users.

1 Forester, Southern Research Station, Forest Inventory and Analy-
sis, USDA Forest Service, 4700 Old Kingston Pike, Knoxville, TN 
37772. Call 865-862-2053 or email: jturner02@fs.fed.us
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IMPLEMENTING A NATIONAL PROCESS  
FOR ESTIMATING GROWTH, REMOVALS, AND MORTALITY  
AT THE PACIFIC NORTHWEST’S FOREST INVENTORY AND 

ANALYSIS’S REGION: MODELING DIAMETER GROWTH

Olaf Kuegler1

Abstract— The Pacific Northwest Research Station’s Forest Inventory and Analysis 
Unit began remeasurement of permanently located FIA plots under the annualized 
design in 2011.  With remeasurement has come the need to implement the national 
FIA system for compiling estimates of forest growth, removals, and mortality. The 
national system requires regional diameter-growth models to estimate diameters on 
trees in situations where the initial or terminal diameter is not known at the beginning 
or end of a measurement interval. Examples of such trees are those classified as alive 
at the beginning of the measurement interval and subsequently died (mortality) or have 
been harvested (removal).  This presentation provides an overview of how we adapted 
regionally specific models of diameter growth into FIA’s national compilation system.

1 Statistician, Pacific Northwest Research Station, Resource 
Monitoring and Assessment, USDA Forest Service, 620 SW Main 
St., Suite 400, Portland OR 97205. Phone: (503) 808-2028, email: 
okuegler@fs.fed.us 

mailto:okuegler@fs.fed.us
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A DIAMETER GROWTH MODEL  
FOR SINGLE-STEM GROWTH FORMS FOR THE  

INTERIOR WEST FOREST INVENTORY AND ANALYSIS’S REGION

Michael T. Thompson1

Abstract—The Interior West Forest Inventory and Analysis Unit (IWFIA) will soon 
transition from a regional system to a national FIA system for compiling estimates of 
forest growth, removals, and mortality. The national system requires regional diameter-
growth models to estimate diameters on trees in situations where the initial or terminal 
diameter is not known at the beginning or end of a measurement interval. Examples 
of such trees are those classified as alive at the beginning of the measurement interval 
and subsequently died (mortality) or have been harvested (removal). Only single-stem 
growth forms measured at either diameter at breast height (dbh) or diameter at root collar 
(drc) were used to build the model. The annual diameter growth rate was selected as the 
response variable and several potential predictor variables were tested for significance.  
After testing several regression equation forms, a non-linear model was chosen and the 
predictor variable selected was previous diameter.  

1 Resource analyst, Rocky Mountain Research Station, Forest 
Inventory and Analysis, USDA Forest Service, 507 25th Street, 
Ogden, UT 84401. Call 801-625-5375 or email: mtthompson@
fs.fed.us

mailto:mtthompson@fs.fed.us
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A DIAMETER GROWTH MODEL FOR THE SRS FIA

David Gartner1

Abstract—Changes in the national Forest Inventory and Analysis (FIA) processing 
system required the Southern Research Station’s FIA unit to create a diameter growth 
model to estimate the growth of trees that could not be measured at both ends of a 
measurement interval. Examples of such trees are trees that have died or been harvested, 
and trees that grow over the minimum diameter threshold. I used a form of the Chapman-
Richards function to model the growth. A function containing crown ratio, condition 
basal area, amount of basal area in larger trees, latitude, longitude, elevation, site class, 
tree mortality, and being on a plantation is used to modify the rate that a tree moves 
along the Chapman-Richard’s curve. The model was first fit using ordinary least squares, 
then this set of parameters were used to estimate the errors, and then the parameters 
were refit using a mixed effects model. The variables used to model the variance were 
remeasurement period and initial predicted growth.

1 Mathematical Statistician, Southern Research Station, USDA 
Forest Service, 4700 Old Kingston Pike, Knoxville, TN 39719. To 
contact, call (865) 862-2066 or e-mail at dgartner@fs.fed.us
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EVERYTHING YOU EVER WANTED TO KNOW ABOUT GRM* 
(*BUT WERE AFRAID TO ASK)

Jeffery A. Turner1

Abstract—Querying the Forest Inventory and Analysis Database (FIADB) for growth, 
removals, and mortality (GRM) estimates can certainly be a conundrum. Providing the 
flexibility necessary to produce a wide array of GRM estimates has the unfortunate side 
effect of added complexity. This presentation seeks to answer some recurring questions 
related to GRM and how our new system can be leveraged to meet our needs.

Questions addressed include:

•	 What is the difference between the accounting and other methods of summarizing 
GRM estimates? 

•	 Why do GRM estimates for an eastern evaluation include plots that are 10 years old?

•	 What happens when a tree:

•	 Is determined to be extraneous or missed at time 1?

•	 Species code differs between time1 and time 2?

•	 Is recorded as standing dead at time 1 but live at time 2?

•	 How can the same tree be a diversion in one estimate and a survivor tree different 
estimate?

•	 What is the difference between Beers/Miller and Van Deusen methodology? 

1 Forester, Southern Research Station, Forest Inventory and Analy-
sis, USDA Forest Service, 4700 Old Kingston Pike, Knoxville, TN 
37772. Call 865-862-2053 or email: jturner02@fs.fed.us

mailto:jturner02@fs.fed.us
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HURRICANE IMPACTS ON FOREST RESOURCES  
IN THE EASTERN UNITED STATES:  

A POST-SANDY ASSESSMENT

Greg C. Liknes, Susan J. Crocker, Randall S. Morin, and Brian F. Walters1

Abstract—Extreme weather events play a role in shaping the composition and structure 
of forests. Responding to and mitigating a storm event in a forested environment requires 
information about the location and severity of tree damage. However, this information 
can be difficult to obtain immediately following an event. Post-storm assessments using 
regularly collected forest information from the Forest Inventory and Analysis (FIA) 
program of the USDA Forest Service can help inform response to future storm events. 
We analyzed data from the FIA program for an area along the Atlantic Coast directly 
in the path of Hurricane Sandy in October 2012 as well as an area in West Virginia that 
received heavy snowfall coincident with the hurricane. The ratio of damaged trees to all 
live trees was not substantially different between the pre- and post-storm observations at 
field sites. However, the ratio of trees with broken tops to all live trees increased in the 
path of the storm from 0.025 to 0.041 and from 0.019 to 0.040 in the heavy snowfall area. 
Hardwoods experienced an increase in broken tops in both areas, while for softwoods, an 
increase occurred only in the heavy snowfall area.  

Extreme weather events act upon forests with 
outcomes ranging from minor changes in forest 
structure to major compositional shifts with long-
term ecological consequences. Impacts on forests 
have been documented using diverse methodologies, 
including satellite remote sensing and field studies, 
for multiple types of severe weather such as ice 
storms (Bragg et al. 2003, Irland 2000), wind 
storms (Everham and Brokaw 1996, Nelson et 
al. 2009, Stueve et al. 2010), tornadoes (Peterson 
2000), and hurricanes (Boose et al. 1994, Boutet 
and Weishampel 2003). Because of the sudden and 
dramatic implications of these major disturbance 
events, land managers and policy makers need rapid 
assessments of the impacts to forests. Gathering 
this type of information using remote sensing is 
often complicated by cloud cover that accompanies 
weather events, and logistical and safety challenges 

can impede immediate in situ data collection. As 
such, each new weather event is an opportunity 
to inform responses to future events. The Forest 
Inventory and Analysis (FIA) program of the USDA 
Forest Service collects forest data on a network of 
field plots across the United States on a recurring 
basis. Our objective was to use FIA data to assess 
changes in the condition of forest resources 
following a major hurricane which made landfall in 
the eastern United States.

Hurricane Sandy battered the Atlantic Coast of the 
United States in late October 2012, resulting in 
saltwater inundation from storm surges, rain-induced 
flooding, property damage estimated in the billions 
of dollars, and loss of life. Farther inland, a co-
occurring cold weather system deposited nearly 1 
meter of snow in the mountains of West Virginia and 
Maryland as well as heavy snow in five other states 
over the course of 2 days. 

1 Research Physical Scientist (GCL), Research Forester 
(SJC,RSM), Forester (BFW), Northern Research Station, USDA 
Forest Service, 1992 Folwell Ave, St. Paul, MN 55108; GCL is 
corresponding author: to contact, call (651) 649-5192 or email at 
gliknes@fs.fed.us.
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METHODS
We identified FIA plots for two storm-damaged areas: 
the Atlantic Coast, which experienced high winds in 
the direct path of the storm in parts of several states 
(for this analysis, Connecticut, Delaware, Maryland, 
New Jersey, New York, Pennsylvania, and Rhode 
Island); and the Appalachian Mountains of West 
Virginia, which received heavy snowfall (Fig. 1).

In the Atlantic region, areas of probable high winds 
(25.7 – 32.9 m sec-1) were identified using wind swath 
data from the National Hurricane Center. Areas of high 
snowfall (≥50 mm snow water equivalent) in the West 
Virginia Appalachians were identified using data from 
the National Operational Hydrologic Remote Sensing 
Center Snow Data Assimilation System (NOAA 
2004). For both regions, we selected FIA plots that 
were visited after the storm in either 2012 or 2013 
and compared them to their previous plot visit, which 
occurred  5 to 7 years earlier (Atlantic Coast: n=195; 
West Virginia: n=193). Using standard FIA estimation 
procedures (Bechtold and Patterson 2005), we 
examined the ratio of trees damaged by weather events 
to all live trees for trees greater than 12.7 cm d.b.h. 
for both the pre- and post-storm conditions. Damage 
was assessed with regard to both damage agent codes 
recorded by field staff as well as those trees for which 

a broken top was recorded. This ratio was estimated for 
all trees as well as separately for select hardwoods and 
softwoods common in each area, and also by genus.

We note that for a damage code to be recorded for an 
individual tree, a threshold must be met. For example, 
the threshold for wind damage is as follows:

Any damage to the terminal leader; damage = 20 
percent of the roots or boles with >20 percent of the 
circumference affected; damage >20 percent of the 
multiple-stems (on multi-stemmed woodland species) 
with >20 percent of the circumference affected;  >20 
percent of the branches affected; damage = 20 percent 
of the foliage with > 50 percent of the leaf/needle 
affected (USDA Forest Service 2010).

Broken tops are recorded for live trees if completely 
detached from the bole.

RESULTS
The ratio of weather-damaged trees to all trees was very 
low in both the path of the hurricane and in the heavy 
snowfall area in West Virginia and was not substantially 
different prior to Hurricane Sandy (Table 1). There is 
some variation between hardwoods and softwoods and 
by genus, although we note that high standard errors 
limit interpretation at the genus level. The impact is 
more apparent with regard to broken tops. In the coastal 
area, the broken top ratio increased from 0.025 to 0.041. 
The West Virginia snowfall area experienced a similar 
increase from 0.019 to 0.040. The ratio of broken tops 
for softwoods increased tenfold in the heavy snowfall 
area with most of the change occurring in eastern 
hemlock (Tsuga canadensis). Broken tops nearly 
doubled in hardwoods for the West Virginia study area 
with most tree species experiencing some increase. 

In the coastal hurricane path, softwoods showed 
a slight, but unsubstantial decrease (Table 1). The 
hardwood broken top ratio increased from 0.033 
to 0.057 with every genus experiencing some 
increase (although changes for some species are not 
substantial). Both Nyssa and Liquidambar (primarily 
tupelo and sweetgum species) had broken tops on 
more than 11 percent of all live trees after the storm.

Figure 1.— Areas impacted by Hurricane Sandy in 2012. Both 
areas of high snowfall in the mid-Atlantic states and areas of 
probable high winds in the direct path of the storm are shown.
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Table 1—Ratio of trees damaged by weather to all trees and ratio of trees with broken tops to all trees. The 
sample size of live trees used in each ratio estimate is provided, as well as the lower and upper bounds of 
the 95 percent confidence interval (95% C.I.). Estimates are provided for all species combined, for common 
hardwoods/softwoods, and by genus for common species. Estimates are provided for an area affected by 
high winds in the path of Hurricane Sandy and for an area in West Virginia that received more than 50 mm 
snow water equivalent in a single storm event.

Ratio of weather damage Ratio of broken tree tops n (live trees)
Pre-storm  
(95% C.I.)

Post-storm
(95% C.I.)

Pre-storm
(95% C.I.)

Post-storm
(95% C.I.)

Pre- 
storm

Post-
storm

Hurricane Path
Overall (Total) 0.005

(0.0004, 0.0096)
0.008

(0.0034, 0.0126)
0.025

(0.0181, 0.0319)
0.041

(0.0320, 0.0500)
4236 4888

Common
Softwoods

0.001
(0.00, 0.0031)

0.002
(0.00, 0.0047)

0.010
(0.0034, 0.0166)

0.008
(0.0022, 0.0138)

1197 1379

Chamaecyparis 0.000
(N/A)

0.016
(0.0013, 0.0307)

0.030
(0.0109, 0.0491)

0.017
(0.00, 0.0354)

70 64

Pinus 0.001
(0.00, 0.0031)

0.001
(0.00, 0.0029)

0.006
(0.0013, 0.0107)

0.005
(0.0004, 0.0096)

1127 1315

Common 
Hardwoods

0.007
(0.0003, 0.0137)

0.011
(0.0044, 0.0176)

0.033
(0.0237, 0.0423)

0.057
(0.0449, 0.0691)

2611 2970

Acer
0.005

(0.00, 0.0106)
0.017

(0.0019, 0.0321)
0.028

(0.0115, 0.0445)
0.051

(0.0330, 0.0690)
804 958

Fagus
0.000
(N/A)

0.020
(0.00, 0.0609)

0.027
(0.00, 0.0791)

0.032
(0.00, 0.0757)

58 69

Ilex
0.000
(N/A)

0.006
(0.00, 0.0185)

0.013
(0.00, 0.0419)

0.074
(0.0122, 0.1358)

136 185

Liquidambar
0.027

(0.00, 0.0797)
0.009

(0.00, 0.0212)
0.073

(0.0288, 0.1172)
0.114

(0.0598, 0.1682)
354 391

Liriodendron
0.017 

(0.00, 0.0437)
0.000 
(N/A)

0.029
(0.00, 0.0617)

0.065
(0.00, 0.1348)

108 111

Nyssa
0.000
(N/A)

0.013
(0.00, 0.0321)

0.082
(0.0371, 0.1269)

0.113
(0.0711, 0.1549)

200 228

Prunus
0.014 

(0.00, 0.0428)
0.007

(0.00, 0.0209)
0.031

(0.00, 0.0677)
0.064

(0.0094, 0.1186)
116 123

Quercus
0.000
(N/A)

0.009
(0.0008, 0.0172)

0.019
(0.0084, 0.0296)

0.025
(0.0088, 0.0412)

768 833

Sassafras
0.027

(0.00, 0.0826)
0.000
(N/A)

0.050
(0.00, 0.1176)

0.083
(0.00, 0.1687)

67 72
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Table 1—Ratio of trees damaged by weather to all trees and ratio of trees with broken tops to all trees. The 
sample size of live trees used in each ratio estimate is provided, as well as the lower and upper bounds of 
the 95 percent confidence interval (95% C.I.). Estimates are provided for all species combined, for common 
hardwoods/softwoods, and by genus for common species. Estimates are provided for an area affected by 
high winds in the path of Hurricane Sandy and for an area in West Virginia that received more than 50 mm 
snow water equivalent in a single storm event. (continued)

Ratio of weather damage Ratio of broken tree tops n (live trees)
Pre-storm  
(95% C.I.)

Post-storm
(95% C.I.)

Pre-storm
(95% C.I.)

Post-storm
(95% C.I.)

Pre- 
storm

Post-
storm

Snowfall (WV)
Overall (Total) 0.013

(0.0082, 0.0178)
0.012

(0.0070, 0.0170)
0.019

(0.0134, 0.0246)
0.040

(0.0300, 0.0500)
5360 4778

Common
Softwoods

0.002
(0.00, 0.0057)

0.017
(0.0024, 0.0316)

0.005
(0.00, 0.0115)

0.050
(0.0145, 0.0855)

392 376

Picea 0.000 
(N/A)

0.025
(0.00, 0.0647)

0.00
(N/A)

0.0
(N/A)

158 160

Tsuga  0.003
 (0.00, 0.0087)

0.018
(0.00,0.0369)

0.00
(N/A)

0.067
(0.0183, 0.1157)

234 216

Common 
Hardwoods

0.014
(0.0087, 0.0193)

0.012
(0.0066, 0.0174)

0.021
(0.0147, 0.0273)

0.039
(0.0290, 0.0490)

3770 3358

Acer  0.017 
(0.0080, 0.0260)

0.008
(0.0023, 0.0137)

0.017
(0.0090, 0.0250)

0.036
(0.0209, 0.0511)

1627 1412

Betula  0.004 
(0.00, 0.0096)

0.009
(0.00, 0.0194)

0.009
(0.00, 0.0202)

0.017
(0.0032, 0.0308)

544 493

Fagus  0.013 
(0.0001, 0.0259)

0.012
(0.00, 0.0242)

0.041
(0.0025, 0.0795)

0.090
(0.0379, 0.1421)

333 329

Fraxinus  0.026
(0.00, 0.0572)

0.033
(0.00, 0.0787)

0.000
(N/A)

0.089
(0.0055, 0.1725)

85 75

Oxydendrum  0.010
(0.00, 0.0288)

0.010
(0.00, 0.0296)

0.046
(0.0125, 0.0795)

0.052
(0.0126, 0.0914)

133 123

Prunus  0.006 
(0.00, 0.0175)

0.019
(0.00, 0.0440)

0.027
(0.0031, 0.0509)

0.023
(0.00, 0.0509)

243 249

Quercus  0.006 
(0.0000, 0.0120 )

0.006
(0.00, 0.0128)

0.015
(0.0050, 0.0250)

0.012
(0.0039, 0.0201)

673 567

Tilia  0.026 
(0.00, 0.0766)

0.012
(0.00, 0.0349)

0.035
(0.00, 0.0870)

0.064
(0.0128, 0.1152)

132 110

DISCUSSION
While overall reported estimates of damage were 
relatively low, this assessment provides an initial 
indication of the impacts of Hurricane Sandy on 
forests in the eastern United States. Analysis was 
influenced by several factors. First, a large-scale, long-
lived wind storm (i.e., a derecho) swept through West 
Virginia on June 29, 2012, just 4 months before the 
snowfall associated with Hurricane Sandy. Anecdotal 
reports indicated many trees in the state experienced 
weather-related damage due to wind gusts up to 44 m 
sec-1, and it is difficult to separate trees damaged by 

wind in June and those damaged in the snowstorm in 
late October when damage observations occurred after 
both events. In addition, the FIA damage codes used 
in the region through 2012 were generic and included 
a single code for weather. As a result, wind damage 
and heavy snowfall damage could both be labeled as 
“weather” damage. Beginning with the 2013 inventory 
year, more detailed codes were implemented. Finally, 
the amount of FIA data available for the post-storm 
period was limited at the time of this analysis. Damage 
appears to be sporadic and patchy with some plots 
having up to 25 percent of all trees impacted by 
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weather. Yet, a large number of plots in the storm areas 
had little or no weather-related damage that rose to 
the threshold described previously. As additional FIA 
observations become available, we will also examine 
mortality and down woody materials and should 
be better able to fully assess the impact on forest 
resources, in both the direct path of Hurricane Sandy 
and the associated snowstorm.
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CLOUD-BASED COMPUTATION FOR ACCELERATING  
VEGETATION MAPPING AND CHANGE DETECTION  

AT REGIONAL TO NATIONAL SCALES

Matthew J. Gregory1, Zhiqiang Yang2, David M. Bell3, Warren B. Cohen4,  
Sean Healey5, Janet L. Ohmann6, and Heather M. Roberts7

Abstract—Mapping vegetation and landscape change at fine spatial scales is needed 
to inform natural resource and conservation planning, but such maps are expensive 
and time-consuming to produce. For Landsat-based methodologies, mapping efforts 
are hampered by the daunting task of manipulating multivariate data for millions to 
billions of pixels. The advent of cloud-based geospatial computing platforms, such as 
the Google Earth Engine (GEE), enables a solution to big data problems by providing 
an environment for massively parallel processing of simple to complex algorithms.  In 
addition to the obvious processing benefits, GEE supplies access to petabytes of remote 
sensing, topographic, and climatological data, including the entire Landsat archive.  As a 
proof of concept, we will demonstrate the utility of GEE in vegetation change detection 
and mapping at both regional and national scales.  We showcase two current projects 
utilizing GEE:  1) a random-forest based ensemble model incorporating information from 
leading change detection algorithms and 2) a nearest neighbors model combining forest 
inventory plots and spatial predictors to produce regional to national forest vegetation 
maps.  Our early results suggest that this programming approach is ideal for rapid 
prototyping of change detection and forest vegetation modeling, including flexibility in 
specifying model forms and spatial covariates.  We envision that this type of computing 
system could support many of FIA’s national data products.  
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LAND-USE CHANGE AND NEW HOUSES ON FORESTLAND: 
CONTRASTING TRENDS OVER 30 YEARS IN  

OREGON AND WASHINGTON

Andrew N. Gray, Joel L. Thompson, and Gary J. Lettman1

Abstract—Conversion of forest, range, and agricultural resource lands to residential 
and commercial uses affects the available land base, management practices on remaining 
resource lands, habitat quality, and ecosystem services. The Forest Inventory and 
Analysis program (FIA) mandate includes monitoring changes in the land area in forest 
use, and this has proved valuable for policy-makers interested in the effectiveness of laws 
regulating changes in local land-use. A variety of semi-automated approaches have been 
used to identify land-use change with imagery, but distinguishing changes in land cover 
from changes in land use has proven difficult in many vegetation types. We mapped land-
use zones across Oregon and Washington and identified houses in 33 ha circles around 
81,556 photo-points distributed across non-federal ownerships. Interpretations were done 
using high-resolution digital NAIP imagery and earlier photography, with summaries 
and spatial analyses done in GIS. We found that the area of nonfederal land in resource 
land uses (forest, range, and agriculture) declined by 2 percent between 1974 and 2009 
in Oregon and by 4 percent between 1976 and 2006 in Washington.  After land-use plan 
implementation in Oregon, nonfederal land converted from resource land uses decreased 
from 0.37 to 0.10 ha per new resident. In Washington, the loss remained constant at 
0.18 ha per new resident. For lands remaining forestland in both states, housing density 
approximately doubled over a 30-year period. A substantial portion of the increased 
housing density on forestlands was in close proximity to public lands, suggesting an 
attraction of development in rural areas to amenities on public forestland. The Oregon 
Board of Forestry is using this ongoing study to assess the effectiveness of state 
conservation policies, establish metrics and indicators for use in limiting of productive 
forestland, and evaluate proposals to modify land-use laws and plans.

How urban and residential areas develop to 
accommodate population growth can have varying 
effects on forest and agricultural resource lands. A 
common concern with current land use change in the 
United States is with the expansion of housing and 
its effects on traditional economic production from 
rural lands (Kline et al. 2004, Wear et al. 1999) and 
on natural habitats and the ecosystem services they 
provide. In response to these concerns, some states in 

the Western United States have established planning 
programs to develop and update land use plans, often 
at the county or multicounty level, to guide the location 
and nature of development. Consideration in these 
plans is usually given to maintaining resource land 
uses while allowing development in appropriate areas.

In Washington State, the Growth Management Act of 
1990 required counties to adopt comprehensive plans 
and regulations to plan for and address the impacts 
of growth. Oregon enacted the Land Conservation 
and Development Act in 1973, which was fully 
implemented statewide by the mid-1980s. Both laws 
were intended to limit conversion of highly productive 
resource lands and to plan for the conversion of forest 
and agricultural lands to urban uses where appropriate.

1 Research Ecologist, PNW Research Station, USDA Forest 
Service, 3200 SW Jefferson Way, Corvallis, OR 97331; Forestry 
Technician, PNW Research Station, USDA Forest Service, 620 
SW Main St., Ste. 500, Portland, OR 97205; and Forest Economist, 
Oregon Department of Forestry, 2600 State St., Salem, OR 97310. 
ANG is corresponding author: to contact, call 541-750-7299 or 
email agray01@fs.fed.us.
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One of the goals of the Forest Inventory and Analysis 
(FIA) program is to track changes in the area of forest 
land, which has been a key part of inventory reports 
since the 1930s. However, given the low rate of land-
use change in most regions of the country (<0.5%/
yr), the current density of one plot per 2,400 hectares 
results in imprecise estimates at sub-state levels. A 
procedure based on photo-interpretation of FIA Phase 
1 points has proved useful for assessing change in 
relation to geography and landscape context (MacLean 
and Bolsinger 1997). The objective of this paper is 
to synthesize results of recent applications of that 
technique in the states of Oregon and Washington.

METHODS
The study area consisted of all Oregon and Washington 
counties, but most of the analyses excluded large 
federal landowners whose mandate is to maintain 
natural land cover (namely, National Forest 
Systems, National Park Service, and Bureau of Land 
Management). All other lands are referred to as 
“nonfederal” for convenience. Land use classes were 
defined by a combination of land cover, density and 
spatial pattern of human structures, road density, and 
the amount of area in contrasting, contiguous land 
uses. The minimum mapping unit of resource land uses 
(either pure or mixed combinations of forest, range, 
or agriculture) was 260 ha (640 acres). Low-density 
residential and urban areas could be any size, but had to 
have at least nine houses in a clumped or dense pattern. 
The term “house” is meant to represent individual 
dwellings, thus multiple associated buildings (e.g., 
barns and sheds) would all count as a single house.

Aerial photographic imagery was used for this study, 
which was either captured digitally or digitized 
and georeferenced. The most recent imagery was 
obtained from USDA’s National Agricultural Imagery 
Program (NAIP), which is collecting data across the 
conterminous US on a 3-year cycle. Land use class 
polygons were delineated in a GIS over displayed 
imagery for different dates. Land use calls were assigned 
to a systematic-random grid of photointerpretation 
points with a density of one point per 187 ha. Structures 

were counted in 32-ha circles around each nonurban 
grid point, in effect sampling 17 percent of the nonurban 
classes. Houses were individually recorded in a GIS. 
These photo interpretation procedures were repeated for 
several dates of imagery.

RESULTS & DISCUSSION
Nonfederal land in resource land uses (forestry, 
range, and agriculture) declined by 249,000 ha in 
Oregon (2%), and by 470,000 ha in Washington (4%) 
from 1976 to 2006. Losses were greatest on the west 
sides of each state, and the proportional losses of 
agricultural and mixed forest/agriculture land uses 
were greater than those of wildland forest (Fig. 1). As 
might be expected, areas that were converted to urban 
and residential uses tended to be at lower elevations 
and more moderate slopes than average (Gray et al. 
2013), reflecting that a significant portion of forestland 
is simply not readily developable.

Land use change in the West is driven by population 
increases, largely from migration from other areas. 
While the loss of forestland in western Washington has 
been greater than that of western Oregon, the number 
of new residents has been greater as well. Over the 
30-year period of the study, the area of development 
per new resident has been lower in western Washington 
than in western Oregon (Table 1). In Oregon the rate 
(area per person) changed dramatically before and after 
the 1990s from 0.37 to 0.10 ha per new resident, while 
in Washington, the loss remained at 0.18 ha per new 
resident (Lettman et al. 2013). Most of the development 
occurred on the west sides of each state, where the rate 
over the full 30-year period was remarkably similar 
at 0.14 ha per new resident (Table 1). It’s not clear 
whether a big pulse of development occurred in Oregon 
in anticipation of the new laws, or if the geography 
and economy were more conducive to dispersed 
development prior to implementation of land-use laws.

Land classified as wildland forest does contain 
dispersed housing at low densities. The mean 
density of dispersed housing on forestland increased 
significantly in both states. The greatest increases were 
found in eastern Oregon, although overall densities 
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were still relatively low (Table 2). Rates of increase 
were comparable in the other portions of the two 
states, but the highest house densities throughout the 
study were found in western Washington. Dispersed 
development can have important implications for land 
management. For example, it becomes more difficult 
and more expensive to try to protect houses from forest 
fires (Stein et al. 2013). A study of the metropolitan 
area around Portland (1 county in Washington 
and 3 in Oregon) found that state-mandated urban 
growth boundaries did have an effect at constraining 
development, but the amount of dispersed development 
varied considerably among counties (Kline et al. 2014).

Federal and state land management can also be 
affected by development on private lands, because 
people are often attracted to the amenity values of 
public lands (Azuma et al. 2013). Over the 30 year 
period, the density of houses within 1 km of public 
lands increased in both states, with the greatest 
increases found near Washington state lands (Fig. 2). 
State lands in Washington tend to be more dispersed 
and intermingled with other ownership classes than the 
other public ownerships are.
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Figure 1—Net loss in area in resource land uses in Oregon and Washington from 1976 to 2006, by East and West side of state.

Table 1—Change in area in resource land uses 
(forest and agriculture) and change in population, 
1976-2006, western Oregon and Washington.

WOR WWA
Change in resource land use (ha) -158,238 -306,389
Change in number of people (N) 1,148,631 2,193,304
Area of change in resource land 
per new person in state (ha/N)

-0.14 -0.14

Table 2—Change in density of houses in 32-ha 
circles around points in wildland forest use on 
nonfederal land in Oregon and Washington, by East 
and West side of state.

Number per km2 Change
Area 1976 1994 2006 1976-2006

EOR 0.08 0.19 0.23 300%

WOR 0.39 0.66 0.89 230%

EWA 0.40 0.63 0.83 208%

WWA 1.37 1.93 2.59   189%
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EXAMINING PSEUDOTSUGA MENZIESII BIOMASS CHANGE 
DYNAMICS THROUGH SUCCESSION  

USING A REGIONAL FOREST INVENTORY SYSTEM

David M. Bell1, Andrew N. Gray2, 

Abstract—Models of forest succession provide an appealing conceptual framework 
for understanding forest dynamics, but uncertainty in the degree to which patterns 
are regionally consistent might limit the application of successional theory in forest 
management. Remeasurements of forest inventory networks provide an opportunity 
to assess this consistency, improving our understanding of forest dynamics through 
succession at regional scales. In this study, we examined the responses of proportional 
Pseudotsuga menziesii biomass change to successional status, relative abundance, 
resource availability, and canopy cover change across an elevational and longitudinal 
gradient in the Cascade Mountains of Oregon and Washington, USA. Our objective 
was to assess the consistency (i.e., equivalence between climax vegetation types) of 
proportional biomass change responses in the dominant species, P. menziesii, across the 
region using repeated measurements of 9700 Current Vegetation Survey (CVS) forest 
inventory plots. Our results indicated that proportional biomass change for P. menziesii 
responses to successional status (i.e., stand age, mean tree biomass, and canopy cover), 
canopy cover change, and abiotic environmental conditions varied regionally. Biomass 
losses associated with reductions in canopy cover were mostly observed in drier regions. 
These results imply that individual mortality may be a particularly important driver of 
biomass loss in dry ecosystems while P. menziesii in wetter ecosystems may be more 
capable of taking advantage a competitor’s death, offsetting ecosystem level biomass 
losses. Our analysis of proportional biomass change in a regionally dominant conifer tree 
species (P. menziesii) emphasizes the importance of forest successional status and small-
scale changes in forest structure on ecosystem productivity.

1 David M. Bell; Research Forester, USDA Forest Service Pacific 
Northwest Research Station, Corvallis, OR; dmbell@fs.fed.us; 
(541) 750-7298
2 Andrew N. Gray; Research Ecologist, USDA Forest Service 
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REMEASURED FIA PLOTS REVEAL TREE-LEVEL DIAMETER 
GROWTH AND TREE MORTALITY IMPACTS OF NITROGEN 

DEPOSITION ON CALIFORNIA’S FORESTS

Mark E. Fenn, Jeremy S. Fried, Haiganoush K. Preisler, Andrzej Bytnerowicz,  
Susan Schilling, Sarah Jovan, and Olaf Kuegler1 

Abstract—The air in California’s forests spans a broad range of purity, from virtually 
no locally generated pollutants to highly elevated levels of pollutants in forests 
downwind of urban and agricultural source areas. Ten-year remeasurement data from 
Forest Inventory and Analysis (FIA) plots in California were used in combination with 
modelled atmospheric nitrogen (N) deposition to evaluate tree diameter growth and 
mortality responses across the state. After controlling for tree size, site productivity, 
climate attributes, stand density, and competition experienced by each tallied tree, we 
found significant N deposition effects on tree bole growth when N deposition exceeded 
a threshold of approximately 15 kg/ha/yr. Increased tree mortality for all 14 species 
combined appears to increase when N deposition exceeds 10 kg/ha/yr, although the 
confidence intervals on the response curve are large. Preliminary analyses suggest ozone 
modifies the growth response, particularly at lower N deposition levels.

Long term N deposition and ambient ozone are the two 
major pollutants impacting forests in California, USA. 
Little is known of the dose-response relationships for tree 
growth and mortality to the combined exposure to these 
two pollutants in the Mediterranean climate of California. 
In contrast to the spatially extensive field survey on 
which this study is based, controlled experiments with N 
generally involve N fertilization additions which cannot 
replicate the chronic atmospheric inputs of N to forest 
canopies as deposition in dry (gaseous and particulate), 
cloud-water, and wet forms. Likewise, many ozone 
studies are based on fumigation chamber experiments 
with seedlings or saplings or Free-Air Controlled 
Exposure studies using a limited number of tree species. 
We present a preliminary analysis of tree basal area 

growth and mortality in response to these pollutants for 
14 major tree species, most of them widely distributed 
across California, using data from the US Forest Service, 
Forest Inventory and Analysis (FIA) program.

METHODS
A statewide growth, removals, and mortality dataset 
containing ten-year remeasurement data from 1706 
FIA plots (33,091 trees) in California forests provided 
the basis for evaluating the growth and mortality 
implications of atmospheric nitrogen deposition 
and ozone exposure for 14 tree species commonly 
encountered in California’s forests. Nitrogen deposition 
ranges were limited for individual tree species so we 
analyzed N deposition effects for two broad species 
groups---conifers and hardwoods. We relied on 
measurements in the FIA dataset of trees, greater than 
12.7 cm diameter breast height (d.b.h.) at the initial 
visit, conducted between 1/16/2001 and 10/26/2004 
(Time 1) and that were remeasured approximately 10 
years later, between 4/6/2011 – 11/12/2013 (Time 2). 
Relative basal area increment (BAIrel) was calculated as 
the mean annual change in tree basal area between time 
1 and time 2, scaled by the basal area at time 1:  

1 Research Plant Pathologist (MEF), PSW Research Station, 
USDA Forest Service, 4955 Canyon Crest Dr, Riverside, CA 
92507; Research Forester (JSF), PNW Research Station, USDA 
Forest Service; Statistical Scientist (HKP), PSW Research Station, 
USDA Forest Service; Senior Scientist (AB), PSW Research 
Station, USDA Forest Service; IT Specialist (SS), PSW Research 
Station, USDA Forest Service; Research Ecologist (SJ), PNW 
Research Station, USDA Forest Service; Mathematical Statisti-
cian (OK), PNW Research Station, USDA Forest Service. MEF is 
corresponding author: to contact, call (951) 680-1565 or e-mail at 
mfenn@fs.fed.us.
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Y = BAIrel = 100*(BA2 – BA1)/(BA1xDt)

Where BA1 and BA2 are, respectively, tree basal area 
at time 1 and 2, and Dt is the remeasurement interval 
in years.

In order to estimate effects of various factors on BAIrel 
we used the following Generalized Additive Model 
(GAM) with a multiplicative log-normal error term: 
Y = Site effect x Tree effect x Climate x Nitrogen x error

Variables [and variable type] included in these model 
terms are as follows:

Site Effect:
•	 Crown ratio (cr1 and cr2), [continuous]
•	 mean annual increment (derived from site index), 

[continuous] 
•	 basal area of trees larger than the subject tree, 

[continuous]
•	 BurnCode, (5 levels of effect of fire during the 

remeasurement interval on stand basal area) 
[categorical]

•	 Harvest, (5 levels of effect of harvest during 
the remeasurement interval on stand basal area) 
[categorical]                      

•	 Other disturbance, insect, disease [categorical]

Tree Effect:
•	 Diameter at time 1 [continuous]; tree species 

[categorical]

Climate Effect:
•	 Mean annual temperature & precipitation 

[continuous] 
•	 moisture deficit [continuous] 
•	 frost-free days [continuous]

Nitrogen:
•	 Total N based on the EPA CMAQ model with 

output adjusted based on throughfall N deposition 
data (Fig. 1; Fenn et al. 2010) [continuous].

Tree mortality response was evaluated with a logistic 
model. We have plans to more fully utilize two-
week average ozone concentration data from passive 
sampler networks after developing a more biologically 
relevant ozone exposure index from the data. As 

supportive information, soil C and N data from the 
FIA P3 plots were also used to evaluate relationships 
between N deposition and N fertility of the soils in the 
P3 plots. 

RESULTS
Above an N deposition threshold of ca. 15 kg/hr/yr, 
tree diameter growth appears to increase in response to 
increasing atmospheric N deposition. This is true for 
conifers and hardwoods, although we were not able 
to test the growth or mortality responses of individual 
species. In a model with no species effect other than 
diameter, growth also increased with increasing N 
deposition (Fig. 2). When a model with two species 
categories (conifer and hardwood) was employed, 
growth for the conifer species increased above N 
deposition of ca. 15 kg/ha/yr (Fig. 3a). However, at 
N deposition rates below this threshold, a bimodal 
response was evident, with potentially reduced growth 

Figure 1—Modeled, annual N Deposition in California and locations 
of FIA plots used to estimate N deposition effects on tree growth. 
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at low N deposition, followed by an increase over 
the range of 3-9 kg/ha/yr, and then another reduction, 
over the range 9-15, before steadily increasing at N 
deposition values greater than 15 kg/ha/yr. Similarly, 
with the lumped hardwood species, growth appears 
to decrease as N deposition goes from 1-10 kg/ha/yr, 
before increasing (Fig. 3b). 

Tree mortality did not increase in response to N 
deposition until a threshold of ca. 10 kg/ha/yr at which 
point it steadily increased (Fig. 4). The probability of a 
tree dying over the ten-year period increased from 11 
percent at the average level of N deposition (4.3 kg N/
ha/yr) to 14 percent at 20 kg/ha/yr and 17 percent at 28 
kg N/ha/yr. 

Evidence of soil enrichment with N was seen in data 
on C:N ratios of the forest floor and mineral soil 
horizons (0-10 and 10-20 cm depths). Correlation 
coefficients were low (0.06 – 0.09) because of scatter 
in the data at the many sites where N deposition was 

low. C:N in the forest floor decreased from 45 to 25 as 
N deposition increased from 1 to 35 kg/ha/yr (data not 
shown). Over the same range of N deposition, C:N in 
mineral soil decreased from 24 to 10 and from 22 to 10 
in the top two layers of the mineral soil. 

Figure 2—Estimated effect of total N deposition on relative basal 
area increment (BAIrel) relative to BAIrel at average N deposition, 
over full range of N deposition, for all 14 species combined. Values 
on the y-axis represent multiplicative change in BAIrel  relative to 
BAIrel at average Ndep, which is ca. 4 kg/ha/yr. Dashed lines are 95 
percent confidence bounds.

Figure 3—Estimated effect of total N deposition on relative basal 
area increment (BAIrel) relative to BAIrel at average N deposition, 
for a) conifers, and b) hardwoods, excluding the few plots where 
modeled N deposition exceeds 40. 

A

B
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DISCUSSION
Many studies have shown increased forest growth 
with increasing N deposition. In Italy, diameter growth 
increased steadily as N deposition levels increased 
beyond the lowest level of ca. 7 kg N/ha/yr (Ferretti et 
al. 2014). While it isn’t entirely clear why we did not 
see an increase in growth until N deposition exceeded 
15 kg/ha/yr, preliminary analyses suggest exposure to 
ozone may be muting the N deposition response at low 
N deposition in California. Above 15 kg N/ha/yr, we 
found consistent growth increases whether hardwoods 
and conifers were considered separately, or together. 
This does not mean that the growth response of every 
species will be positive, given that species responses to 
N deposition can differ greatly (Thomas et al. 2010).

Although tree growth appears to increase with N 
deposition, tree mortality also showed an increase with 
a threshold of ca. 10 kg/ha/yr. Future analysis plans 
include estimating effects of N deposition on stand level 
C increment  and consideration of more biologically 
relevant ozone exposure indices (e.g., W126) and 
possible responses to N dep. of pests and diseases.
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Figure 4—Estimated effect of total N deposition on tree mortality 
(odds relative to the odds at the average value of N deposition), for 
all 14 species combined.
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US FORESTS ARE SHOWING INCREASED RATES OF DECLINE  
IN RESPONSE TO A CHANGING CLIMATE

Warren B. Cohen1, Zhiqiang Yang2, David M. Bell1, Stephen V. Stehman3

Abstract—How vulnerable are US forest to a changing climate? We answer this question 
using Landsat time series data and a unique interpretation approach, TimeSync, a plot-
based Landsat visualization and data collection tool. Original analyses were based on a 
stratified two-stage cluster sample design that included interpretation of 3858 forested 
plots. From these data, we derived annual plot-based estimates (with uncertainties) of 
rates of forest decline from 1985-2012. Noted was a dramatic national-level increase in 
rates from the mid-90s (<1% of total forest per year) to 2000 (nearly 3% per year), with 
these elevated rates persisting for most of the past decade. Although forest decline was 
observed in eastern forests, the overwhelming proportion was in western forests, where 
rates reached as high as 8% per year. Increases in observed rates of decline exhibited a 
strong statistical relationship with the coupling of increasing summertime temperatures 
and decreasing precipitation beginning in the mid-90s. Using a statistical model, we 
developed a predictive relationship between forest decline and climate that allowed 
us to project the likelihood of forest decline forward to 2100 using expected climate 
projections. This analysis revealed that, even under reduced carbon emission scenarios, 
US forests are likely to be increasingly vulnerable to climate change. We are currently 
collecting more TimeSync interpretations (~10,000) and developing improved modeling 
strategies, and will present results from this more recent analysis.

 1 USDA Forest Service, Corvallis, OR, USA (wcohen@fs.fed.us)
 2 Oregon State University, Corvallis, OR, USA
 3 State Universities of New York, Syracuse, NY, USA
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A SPACE-TIME LOOK AT TWO-PHASE ESTIMATION  
FOR IMPROVED ANNUAL INVENTORY ESTIMATES

Jay Breidt1, Jean Opsomer2, Xiyue Liao3, Gretchen Moisen4

Abstract—Over the past several years, three sets of new temporal remote sensing data 
have become available improving FIA’s ability to detect, characterize and forecast land 
cover changes. First, historic Landsat data has been processed for the conterminous US 
to provide disturbance history, agents of change, and fitted spectral trajectories annually 
over the last 30+ years at 30 m resolution. Second, the collection of TimeSync data is 
becoming more widespread and allows image interpreters to capture three decades of 
forest disturbance and recovery on FIA plots in a consistent and repeatable fashion. 
Third, the Image-based Change Estimation (ICE) project is gaining momentum and 
involves collecting detailed land-use land-cover change information on FIA plots using 
two or more dates of NAIP imagery. Here we present a two-phase estimation approach 
to combine wall-to-wall landsat-based products, TimeSync observations, and FIA plot 
data in space and time, improving annual estimates of forest attributes. We illustrate 
this approach using data collected in the state of Utah. We also discuss potential for 
integrating ICE data under this framework.

1 Professor, Colorado State University, Statistics Department, 102 
Statistics Building, Fort Collins, CO 80523-1877, (970) 491-5269, 
jbreidt@stat.colostate.edu. 
2 Professor and Department Chair, Colorado State University, 
Statistics Department, 102 Statistics Building, Fort Collins, CO 
80523-1877, (970) 491-5269, jopsomer@stat.colostate.edu. 
3 PhD Candidate, Colorado State University, Statistics Department, 
102 Statistics Building, Fort Collins, CO 80523-1877, (970) 491-
5269, liaoxiyue2011@gmail.com. 
4 Research Forester, US Forest Service, Rocky Mountain Research 
Station, 507 25th Street, Ogden, UT 84401, (801) 625-5384.
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REPEATED MEASURES FROM FIA DATA FACILITATES  
ANALYSIS ACROSS SPATIAL SCALES OF  

TREE GROWTH RESPONSES TO NITROGEN DEPOSITION  
FROM INDIVIDUAL TREES TO WHOLE ECOREGIONS

Charles H. Perry1*, Kevin J. Horn2, R. Quinn Thomas2, Linda H. Pardo3, Erica A.H. Smithwick4,  
Doug Baldwin4, Gregory B. Lawrence5, Scott W. Bailey6, Sabine Braun7, Christopher M. Clark8,  

Mark Fenn9, Annika Nordin10, Jennifer N. Phelan11, Paul G. Schaberg2, Sam St. Clair12,  
Richard Warby13, Shaun Watmough14 and Steven S. Perakis15 

Abstract—The abundance of temporally and spatially consistent Forest Inventory 
and Analysis data facilitates hierarchical/multilevel analysis to investigate factors 
affecting tree growth, scaling from plot-level to continental scales. Herein we use FIA 
tree and soil inventories in conjunction with various spatial climate and soils data to 
estimate species-specific responses of tree growth to nitrogen (N) deposition across the 
contiguous United States. Plot-level analyses have shown that N deposition affects tree 
growth but not uniformly. Increases in bio-available N can stimulate tree growth rates 
but also impair soil fertility, increase plant susceptibility to pathogen infection, and 
alter competition between plant species. How these effects scale to regional landscapes 
will in part determine the trajectory of forest composition and health. We use the 
repeated measures in FIA data to calculate growth rates of thousands of individual trees 
nationwide and then compare them to other available spatial data for climate and soil 
and deposition chemistry. Specifically, we address the following questions: 1) What are 
the species-specific growth responses to N deposition? and 2) What are the variances 
of these responses with respect to scales of individual tree, FIA plot, and ecoregion? 
Tree growth responses were nonuniform across the more than 100 species examined. 
Growth rates varied across the range of N deposition to include continuous increases 
in growth, continuous decreases in growth and threshold responses among the different 
species. Important covariates affecting tree growth in addition to N deposition from 
FIA data include canopy position and various soil characteristics. We hypothesize that 
large variances across individual tree, FIA plot, and ecoregion scales will indicate scale-
dependent covariates and regional sensitivity of forests to N deposition.

1 USDA Forest Service, St. Paul, MN; 
2 Virginia Polytechnic Institute and State University, Blacksburg, VA; 
3 USDA Forest Service, Burlington, VT; 
4 Pennsylvania State University, University Park, PA; 
5 US Geological Survey, Troy, NY; 
6 USDA Forest Service, North Woodstock, NH; 
7 Institute for Applied Plant Biology, Schönenbuch, BL, Switzerland; 
8 US Environmental Protection Agency, Washington, DC; 
9 USDA Forest Service, Riverside, CA; 

10 Umeå Plant Science Center, Umeå, Sweden; 
11 Research Triangle Institute (RTI) International,  
Research Triangle Park, NC; 
12 Brigham Young University, Provo, UT; 
13 Assumption College, Worcester, MA; 
14 Trent University, Peterborough, ON, Canada; 
15 US Geological Survey, Corvallis, OR.
* Corresponding author: Research Soil Scientist;  
charleshperry@fs.fed.us; 651-649-5191
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BRIDGING THE GAP BETWEEN DATA ANALYSIS AND DATA 
COLLECTION IN FIA AND FOREST MONITORING GLOBALLY: 

SUCCESSES, RESEARCH FINDINGS, AND LESSONS LEARNED  
FROM THE WESTERN US AND SOUTHEAST ASIA 

Leif Mortenson1

Abstract—Globally, national forest inventories (NFI) require a large work force typically 
consisting of multiple teams spread across multiple locations in order to successfully 
capture a given nation’s forest resources. This is true of the Forest Inventory and 
Analysis (FIA) program in the US and in many inventories in developing countries 
that are supported by USFS International Programs.  As such, communication between 
teams, especially analytical staff in central offices and “boots on the ground” field staff 
collecting the data in dispersed locations is paramount to a robust data set. This inter-
team communication and collaboration is also crucial for generating key scientific 
findings from FIA/NFI data sets. This is because there is often not the luxury of a 
single scientist, or team being able to make observations and generate findings based 
both from data analysis and significant time in the field, that there are in smaller scale 
research projects. Fortunately, in FIA, the quality assurance/quality control program 
helps keep data quality at targeted levels, fosters inter-team communication and offers a 
great framework for similar programs in developing countries. Additional collaborations 
between data collection and data analysis occur in FIA and successful examples are 
presented.  Additionally, several specific forest health research findings and lessons 
learned from working with both data collection and data analysis in forest monitoring 
systems are presented from the western U.S. and Southeast Asia.

1 USFS, PNW-FIA Data Collection, 63095 Deschutes Market, Rd. 
Bend, OR 97701, USA; 503-901-5666 leifmortenson@fs.fed.us
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CENTRAL AFRICAN DETAIL EXPERIENCE: 
 WHAT US FIA FIELD STAFF CAN TEACH AND LEARN  

THROUGH SHORT TERM ASSIGNMENTS – DEMOCRATIC REPUBLIC 
OF CONGO AND CAMEROON

Josh Feinberg1 

Abstract—REDD+, Reduction of Emissions from Deforestation and Forest Degradation 
is a United Nations initiative targeted to combat atmospheric carbon dioxide and global 
warming by providing monetary incentives to developing countries to preserve their 
forested land as effective carbon sinks.  In order for these countries to receive this 
monetary benefit, they must develop and implement forest monitoring, reporting and 
validation (MRV) programs that effectively quantify the amount and change of “forested” 
land, the “health” of the forests, and estimate the amount of carbon in these forests. 
The USFS International Programs is involved in REDD+ by assisting these developing 
countries in the development of these MRV programs by facilitating technical exchanges 
with experts from the United States.  Not only do countries benefit from this technical 
expertise, but awareness within all parties being part of a global community is raised, 
as well as the importance of effective across border communication.  Despite vast 
personal differences, cultural differences, differences in governments and how policies 
are made and implemented, relationships are built around a shared human commonality.  
Central Africa is home to some of the most significant forests in the world both in terms 
of biodiversity and carbon sequestration.  Democratic Republic of Congo (DRC) and 
Cameroon are two countries that are presently engaged in the REDD+ process and are 
in varying stages of MRV development.  I’ve had the opportunity to be involved in two 
different short-term assignments first to DRC and then to Cameroon over the past two 
years. While I was able to share some of what I have learned from my years working for 
FIA, I gained a greater appreciation for the global importance of our work, and a greater 
appreciation for the importance of open communication, cultural sensitivity, and patience.     

1 USFS, PNW-FIA Data Collection, 2520 Main St. Mammoth 
Lakes, CA, 93546, USA; 503-329-4253 jfeinberg@fs.fed.us
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FOREST INVENTORY AND ANALYSIS PROGRAM  
IN THE WESTERN U.S. AFFILIATED PACIFIC ISLANDS: 

PERSPECTIVES FROM WORKING IN ISLAND ECOSYSTEMS AND 
BUILDING CROSS CULTURAL PARTNERSHIPS 

Ashley Lehman1

Abstract—The Pacific Northwest (PNW) Research Station’s Forest Inventory and 
Analysis (FIA) program of the USDA Forest Service monitors and reports on the status 
and trends of the Pacific Island’s forest resources and ecosystem services.  Since 2001 
the FIA program has partnered with State and Private Forestry’s, Region 5 and the local 
governments in the U.S. Affiliated Western Pacific Islands to implement a nationally-
standardized plot sampling design on a periodic basis. Permanent monitoring plots are 
measured on a 10 year periodic cycle across the island nations of American Samoa, 
Guam, Palau, The Commonwealth of the Northern Mariana Islands, The Federated States 
of Micronesia and The Republic of the Marshall Islands. To date we are conducting 
our second measurement of the region and have successfully completed two thirds 
of the inventory. Forest health changes over 10 years have been drastic on some 
island ecosystems. Further, collaboration with other agencies, NGO’s and other state 
governments has been a successful approach to build local partnerships and maximize 
data use.  Monitoring efforts are important for local land managers and communities 
because inventories provide detailed information on forest health issues and provide 
insights to long term trends in forest change. 

1 FIA Pacific Island Coordinator, Pacific Northwest Research 
Station Forest Inventory and Analysis Program, USDA Forest 
Service, Anchorage Forestry Sciences Lab,  161 E 1st Ave., Door 
8, Anchorage, AK 99501,  907-743-9415, adlehman@fs.fed.us
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LAVA, VOG, AND TROPICAL FORESTS:  
WORKING WITH THE FIA PROGRAM IN HAWAII

Thomas McGinley1, Ashley Lehman2

Abstract—In the winter of 2009, the Pacific Northwest Research Station initiated the 
ground implementation of their Forest Inventory and Analysis (FIA) program on the 
Hawaiian Islands.  In the Pacific, people from the indigenous to the transplanted, hold 
intrinsic and utilitarian values of their forests that often differ considerably from values 
of mainstream mainland USA. These values need to be thoroughly respected in order to 
obtain the trust needed to collect forestry data in these regions, and the Hawaiian Islands 
proved to be a challenging place to earn sufficient trust to establish permanent research 
plots.   Establishing partnerships with local land management entities such as state land 
management departments and non-governmental organizations was vital. Additionally, 
the ability of FIA field crews to fit the measurement anomalies and unconventional 
growth habits of tropical trees and understory vegetation to standard FIA protocols 
was paramount to successful FIA implementation. As such, local crews from Hawaii 
were assembled and trained by mainland FIA crews from the PNW Research Station.  
Hawaiian crews provided local knowledge of local flora identification, access to remote 
and rugged areas, and remaining safe by avoiding locations that shouldn’t be accessed 
due to unknown lava tubes and potential SO2 exposure. Unconventional vegetative 
growth common to the tropics, in combination with new field hazards including wild 
pigs, VOG (volcanic air pollution consisting primarily of SO2), and lava tubes were the 
norm and not the exception in Hawaii FIA plots.

1 USFS, PNW FIA Data Collection, 810 State Route 20 Sedro-
Woolley, WA 98284, USA; 360-333-5639 tmcginley@fs.fed.us
2 USFS, PNW FIA Data Collection, Pacific Islands Inventory, 
Anchorage Forestry Sciences Lab, 161 E 1st Ave., Door 8,  
Anchorage, AK 99501, USA; adlehman@fs.fed.us
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COLLABORATING FOR SUCCESS: 
IMPLEMENTATION OF THE INTERIOR ALASKA INVENTORY

Brendt Mueller1, Dan Irvine2

Abstract—Interior Alaska’s boreal forests are approximately 112 million acres in size, 
or 15 percent of the United States forest land.  This is currently a very dynamic region 
with rising temperatures, melting permafrost, changes in vegetation, fire, carbon, and 
water cycles due to a warming climate.  This is the last forested area in the United 
States where the national Forest Inventory and Analysis (FIA) program has not been 
implemented largely due to its remoteness, size, lack of infrastructure, complex logistics, 
and cost.  A pilot study was conducted in the Tanana Valley in 2014 aimed at testing a 
cost-effective inventory design that utilized a combination of field plots containing new 
protocols in conjunction with the latest airborne, remote sensing technology.  In addition 
to the national FIA protocols, some interior specific variables tested were:  a modified 
P3 soils protocol (carbon, permafrost), ground cover (mosses and lichens), tree cores 
(ring analysis), a modified P3 down wood protocol (carbon), and a second microplot (to 
better characterize small diameter trees). The success of the pilot can be attributed to 
developing cooperative partnerships between the US Forest Service (USFS), NASA, US 
Fish and Wildlife Service, State of Alaska-Division of Forestry (DOF), and the University 
of Alaska-Fairbanks (UAF).  Plans for initial phases of implementation beginning in 2016 
are moving forward with joint venture agreements between the USFS, DOF, and UAF to 
continue installing FIA plots in the Tanana Valley.  Developing additional partnerships 
with organizations like the National Park Service, Bureau of Land Management and 
Native Corporations will be critical for implementation of the interior Alaska inventory.   
The long term goal is full implementation with a 1/5 intensity FIA grid, approximately 
4600 plots over 10-12 years, divided into five inventory units, including a large aviation 
component, with an estimated average annual budget of $2.5 million per year.    

1 Brendt Mueller, USFS, PNW-FIA Interior Field Coordinator, 
Anchorage Forestry Sciences Lab, 161 E 1st Ave., Door 8, Anchor-
age, AK 99501, USA; 907-748-1838 bmueller@fs.fed.us 
2 Dan Irvine, USFS, PNW-FIA Coastal Alaska Field Coordinator, 
Anchorage Forestry Sciences Lab,  161 E 1st Ave., Door 8, Anchor-
age, AK 99501, USA; 907-748-2096, danielirvine@fs.fed.us 
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REGIONAL BIOMASS STORES AND DYNAMICS IN FORESTS OF 
COASTAL ALASKA

Mikhaill A. Yatskov, Mark E. Harmon2, Olga N. Krankina3, Tara M. Barrett4, Kevin R. Dobelbower5,  
Andrew N. Gray6, Becky Fasth7, Lori Trummer8, Toni L. Hoyman9, Chana M. Dudoit10

Abstract—Coastal Alaska is a vast forested region (6.2 million ha) with the potential 
to store large amounts of carbon in live and dead biomass thus influencing continental 
and global carbon dynamics. The main objectives of this study were to assess regional 
biomass stores, examine the biomass partitioning between live and dead pools, and 
evaluate the effect of disturbance on live and dead biomass pools. Data collected by the 
Forest Inventory and Analysis program between 1995 and 2003 across all ownerships 
in Coastal Alaska were used to estimate live tree, snag, and log biomass pools in forest 
types, and ecoregions (Boreal versus Temperate). The regional average combined (live 
and dead) biomass was 76.7±3.8 Mg/ha in the Boreal ecoregion and 277.5±5.4 Mg/
ha in the Temperate ecoregion. Biomass of snags and logs comprising Coarse Woody 
Debris (CWD) pool was 35.1±3.1 Mg/ha in the Boreal ecoregion and 58.6±2.1 Mg/ha 
in the Temperate ecoregion. Total regional biomass was 45.4±3.0 Tg and 1001.9±20.6 
Tg, whereas CWD biomass was 20.8±2.1 Tg and 211.4±7.7 Tg for the Boreal and 
the Temperate ecoregions, respectively. In the Boreal ecoregion, the recent spruce 
bark beetle outbreaks greatly increased CWD stores, with damaged stands containing 
82% of total CWD biomass. Decomposition rate-constants for beetle-killed spruce 
in the Boreal ecoregion were 0.02 yr-1 (from chronosequence) and 0.04 yr-1 (from 
decomposition-vectors) for logs and 0.001 yr-1 for snags. The complexity of temporal 
pattern of C stores and fluxes was influenced by the form of mortality (snags vs. logs).  
In the Temperate ecoregion, undisturbed stands contained 76% of total CWD, indicating 
disturbance had less impact on CWD stores. In Coastal Alaska, average live biomass 
(194.0±4.1 Mg/ha) was 4-23 percent higher and average snag biomass (29.5±1.0 Mg/
ha) was approximately twice as high as that found in Washington and Oregon, states 
considered to have high biomass stores.

1 Mikhaill A. Yatskov, USFS, PNW-FIA Data Collection, Anchor-
age Forestry Sciences Lab, 161 E 1st Ave., Door 8, Anchorage, AK 
99501,USA; 907-743-9428 myatskov@fs.fed.us
2 Mark E. Harmon, Department of Forest Ecosystems and Society, 
Oregon State University, 321 Richardson Hall, Corvallis, OR 97331, 
USA; mark.harmon@oregonstate.edu
3 Olga N. Krankina, Department of Forest Ecosystems and Society, 
Oregon State University, 321 Richardson Hall, Corvallis, OR 97331, 
USA; olga.krankina@oregonstate.edu
4 Tara M. Barrett, USFS, Wenatchee Forestry Sciences Lab, 1133 N. 
Western Ave., Wenatchee, WA 98801, USA; tbarrett@fs.fed.us
5 Kevin R. Dobelbower, USFS, PNW, Anchorage Forestry Sci-
ences Lab, 161 East 1st Ave., Door 8, Anchorage, AK 99501, USA; 
kdobelbower@fs.fed.us 
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9 Toni L. Hoyman, Oregon State University, Corvallis, OR, 97331 
10 Chana M. Dudoit, Konohiki Consulting, Wailuku, HI, 96793, USA 



LANDSCAPE CHANGE  
MONITORING



New Directions in Inventory Techniques & Applications Forest Inventory & Analysis (FIA) Symposium 2015 200PNW-GTR-931

HARMONIC ANALYSIS OF DENSE TIME SERIES OF LANDSAT 
IMAGERY FOR MODELING CHANGE IN FOREST CONDITIONS

Barry Tyler Wilson1

Abstract—This study examined the utility of dense time series of Landsat imagery for 
small area estimation and mapping of change in forest conditions over time. The study 
area was a region in north central Wisconsin for which Landsat 7 ETM+ imagery and 
field measurements from the Forest Inventory and Analysis program are available for the 
decade of 2003 to 2012. For the periods 2003-2007 and 2008-2012, the monthly imagery 
was processed using harmonic analysis in order to capture seasonal trends in reflectance 
across spectral bands. A nonparametric modeling approach was used with predictor 
variables and field measurements at two points in time to predict change in live tree basal 
area. Predictions for individual plots poorly matched observations of change, however the 
resultant maps of change compared favorably to a purposive sample of locations of high 
predicted relative change, based on multi-date, high-resolution aerial photography. This 
suggests the need for a larger sample of plots or further tuning of the model.

INTRODUCTION
While the national forest inventory (NFI) conducted 
by the USDA Forest Service, Forest Inventory and 
Analysis (FIA) program is intended to address 
strategic-level questions about the forest resources 
across large geographic areas under a design-based 
mode of inference (Bechtold and Patterson 2005), 
there is increasing interest in using this information for 
reporting on and monitoring change in forest conditions 
over time for smaller areas within the population 
(McRoberts et al. 2010). By using auxiliary variables 
from data collected for all population units, such as 
those obtained from remote sensors, and shifting to a 
model-based mode of inference, dramatic gains in the 
precision of estimates can be achieved, though possibly 
at the expense of the unbiasedness assumption for the 
estimators (Gregoire 1998). Here we evaluate the use 
of dense time series of satellite imagery for predicting 
change in forest conditions by an examination of the 
linear regression of observed versus predicted values 
and a comparison of a purposive sample of areas on the 
map of predicted change to multi-date aerial photos.

STUDY AREA
The study area was approximately 5.56 million 
acres in north central Wisconsin, corresponding to 
Web-enabled Landsat Data (WELD) tile H20V05 
and described in the next section (Roy et al. 2010). 
The landscape includes a variety of land covers and 
uses, from agriculture in the south and southwest, 
deciduous and evergreen forest in the north and 
northeast, developed land around the city of Wausau 
in the central portion, as well as scattered wetlands, 
lakes, and rivers. The study area experienced a severe 
weather-related disturbance event in June of 2007, 
when a tornado traced a ½ mile-wide swath through 
part of Menominee County.

METHODS
The auxiliary data used in the study were dense 
Landsat time series images from the WELD project. 
WELD imagery are composites of the highest fidelity 
data, determined on a pixel-by-pixel basis, from all 
Landsat 7 ETM+ scenes collected over a compositing 
period. These composite images have been processed 
for the contiguous United States and Alaska over 

1 Research Forester (BTW), Northern Research Station, USDA For-
est Service, 1992 Folwell Avenue, St. Paul, MN 55108. To contact 
BTW, call (651) 649-5189 or e-mail at barrywilson@fs.fed.us.
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the decade of 2003-2012. The composite scenes 
have been orthorectified, transformed to top-of-
atmosphere reflectance, and mosaicked into 5,000-
by-5,000 pixel tiles. 

NFI data from 1,446 plots were used in the study, 
including both forested and nonforested plots. Each of 
these plots was measured and then remeasured during 
the decade of 2003-2012, spanning two 5-year FIA 
measurement cycles in Wisconsin, a state that has a 
sampling intensity twice the base level of roughly 1 
plot per 6,000 acres. Remeasurement of sample plots 
provides information about change in forest conditions 
in the population over the remeasurement period. 

Since satellite-based sensors, such as Landsat 7’s 
ETM+ instrument, detect reflectance from the 
Earth’s surface, these data are expected to be closely 
correlated with land cover. Of the attributes measured 
on NFI plots, live tree basal area is considered to be 
one of those most correlated with tree canopy cover 
(Jennings et al. 1999). Therefore, the live tree basal 
area condition-level attribute was used as the attribute 
of interest. These summary values were calculated on 
all plots for both 5-year periods: measurements during 
2003-2007 and remeasurements during 2008-2012. 
Nonforested conditions were assigned a value of 0. 
The plot-level data were calculated by multiplying 
each condition’s plot proportion by its corresponding 
basal area value, then summing across all conditions. 
Differences in live tree basal area were computed for 
each plot by subtracting the summary value at the 
earlier time period from the summary value at the later 
time period.  

The WELD monthly composites for the entire decade 
of 2003-2012 for tile H20V05 were used for the 
study. For each monthly composite, the reflectance 
values from ETM+ were transformed to the first three 
Tasseled Cap (TC) components: brightness, greenness, 
and wetness (Huang et al. 2002). The monthly TC 
components were then compiled into individual stacks, 
by TC component and time period, resulting in six 
separate stacks. To account for the seasonality of the 
TC components, harmonic analysis was conducted 

separately on each stack fitting a Fourier series with 
two harmonics individually to each pixel in the stack 
via least squares regression (Sellers et al. 1996). To 
compensate for missing data in the time series due 
to clouds or the scan line corrector (SLC) failure, 
weighted regression was used, with the weight for 
each observation calculated as the inverse of the total 
number of observations over each respective 5-year 
period for the month of the given observation. 

The Fourier coefficients calculated for each of the TC 
components for each of the time periods were bundled 
together to form a 30-layer stack of auxiliary variables 
for each pixel in the tile. To reduce dimensionality, 
principal components analysis (PCA) was conducted 
on the stack. Only the first eight principal components 
(PCs) were kept, accounting for roughly 93 percent 
of the original variance. Finally, because of the 
spatial mismatch in the size of the FIA plot relative 
to the size of the ETM+ pixel, a 3-by-3 pixel moving 
window was used to compute the focal mean for each 
of the PCs.

The 8-layer stack of focal means was used as the 
feature space with the k-nearest neighbors (kNN) 
estimator. The kNN estimator has been widely used 
with NFI and remote sensing data (Eskelson et al. 
2009). It provides an estimate for each unsampled 
unit in the population as a weighted average of the 
observed response variable for the k-nearest sample 
units in the feature space.

Because the focus of this study was the utility of dense 
time series of satellite imagery for modeling change in 
forest conditions, the only tuning of the kNN estimator 
was to objectively determine the optimal value of k to 
minimize the root mean square error (RMSE) using 
the 1,446 observations of change. For this optimization 
a leave-one-out procedure was used, whereby the 
k-nearest neighbors for a given plot were found 
by holding the given plot out of the list of possible 
neighbors. Using this criterion, the optimal value of k 
was determined to be 9, resulting in a minimum RMSE 
of approximately 19.2 square feet per acre.
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RESULTS
Scatterplots of observed versus predicted live tree 
basal area for all 1,446 remeasured plots show strong 
agreement for both time periods. Figure 1 depicts the 
results for period 2, with similar results for period 1 
(not shown). However, a scatterplot of observed versus 
predicted change indicates poor agreement, as shown 
in Figure 2 (Piñeiro et al. 2008).

After masking out areas that were nonforested in the 
first time period (less than 10 square feet per acre 
of live tree basal area), comparisons of the map of 
relative change in live tree basal area (i.e., relative 
to the basal area in the first time period), shown in 
Figure 3, to multi-date aerial photography collected 
over the same period indicate strong agreement for a 
purposive sample of areas of high predicted relative 
change, an example of which is shown in Figure 4. 
The multi-date aerial photography was collected 
from online property tax information systems for two 
counties in the study area: Langlade County (2003, 
2008, and 2010) and Price County (2005, 2006, 2008, 
2010, and 2011).

DISCUSSION
The uncertainty in the individual estimates of live 
tree basal area for each period results in even greater 
uncertainty in their difference. Furthermore, the 
results shown in the scatterplots, combined with 
the strong agreement between the predicted map 
and aerial photography for the purposive sample, 
suggest that the issue may be related to the size 
and frequency of areas of change. Small relative 
increases in live tree basal are commonplace across 
the study area, corresponding to forest growth. Large 
relative decreases are much less common and are 
highly localized in extent, corresponding to forest 
disturbance events such as harvests, wildfires, and 
blow-down due to weather events. 

This suggests that the sample of 1,446 remeasured 
plots may not be large enough to adequately 
characterize such rare disturbance events. One possible 
solution is to use a larger sample of plots, perhaps 
by including sample units from neighboring WELD 
tiles in the kNN estimation. Another option would be 
to adjust the value of k according to the unsampled 
target unit’s location in feature space, with units in the 
interior having a larger value of k than those closer to 
the convex hull enclosing all sample units. 

Figure 1—Scatterplot of observed vs. predicted live tree basal 
area for 1,446 plots in the second time period. The solid line is the 
linear regression of the data. The dashed line is the line y=x.

Figure 2—Scatterplot of observed vs. predicted difference in live 
tree basal area between time periods, for 1,446 remeasured plots. 
The solid line is the linear regression of the data. The dashed line is 
the line y=x.
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Figure 3—Map of the study area of predicted relative difference in live tree basal area, in percent of the 
predicted total for the first time period. Nonforest land (less than 10 square feet per acre of live tree basal 
area in the first time period) is gray, relative gain is green, relative loss is red, and no change is yellow. 
Darker shades of green and red indicate larger relative gains or losses than lighter tints.
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MAPPING TIMING, EXTENT, TYPE AND MAGNITUDE OF 
DISTURBANCES ACROSS THE NATIONAL FOREST SYSTEM,  

1990 - 2011

Alexander Hernandez1, Sean P. Healey2, Chenquan Huang3, R. Douglas Ramsey1

Abstract—As part of the U.S. Forest Service (USFS), National Forest System (NFS) 
comprehensive plan for carbon monitoring, a detailed temporal mapping of forest 
disturbances across all National Forests in the United States has been conducted. A long-
term annual time series of data layers that show the timing, extent, type, and magnitude 
of disturbance beginning in 1990 and ending in 2011 is available for all the USFS 
Regions. Our mapping approach starts with an automated initial detection of annual 
disturbances using imagery captured within the growing season from the Landsat archive. 
Through a meticulous process, the initial detections were visually inspected, manually 
corrected and labeled using various USFS ancillary datasets (Monitoring Trends in Burn 
Severity (MTBS), Aerial Detection Surveys (ADS), and Forest Activities (FACTS), and 
Google Earth high-resolution historic imagery. For each National Forest we produced 
disturbance history composites containing all the possible disturbance pathways that a 
single pixel can have. We have mapped how many years a pixel was undisturbed, and 
also in what years and what type of disturbance (i.e. fires, harvest, insects) said pixel 
was affected. The magnitude of change was obtained by fitting multitemporal models of 
percent canopy cover that were calibrated with extensive field data from the USFS Forest 
Inventory and Analysis Program (FIA). By applying these models to pre- and post-event 
Landsat images at the site of known disturbances, we develop maps showing first-order 
estimates of disturbance magnitude on the basis of cover removal. This effort provides a 
universally-interpretable, biophysically- based estimate of disturbance effects across all 
of the nation’s national forests with an unprecedented detail. Major trends are highlighted 
by USFS region, and by major forest ecosystem. The local-scale interpretability that 
can be extracted out of these data improves our understanding of disturbance processes 
affecting US forests over the last two decades. 

1 Utah State University  (contact: alex.hernandez@usu.edu,  
435-797-2572)
2 US Forest Service 
3 University of Maryland, College Park, Maryland
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SHAPESELECTFOREST:  
A NEW R PACKAGE FOR MODELING LANDSAT TIME SERIES

Mary Meyer1, Xiyue Liao2, Gretchen Moisen3, Elizabeth Freeman4

Abstract—We present a new R package called ShapeSelectForest recently posted to the 
Comprehensive R Archival Network. The package was developed to fit nonparametric 
shape-restricted regression splines to time series of Landsat imagery for the purpose 
of modeling, mapping, and monitoring annual forest disturbance dynamics over nearly 
three decades. For each pixel and spectral band or index of choice in temporal Landsat 
data, the package delivers an optimally smoothed rendition of the trajectory constrained 
to behave in an ecologically sensible manner, assuming one of seven possible “shapes”. 
It also provides parameters summarizing the temporal pattern including year(s) of 
inflection, magnitude of change, and pre- and post- inflection rates of growth or recovery. 
In addition, the package contains functions for deriving annual predictions of forest 
disturbance, as well as graphical displays of the shape fits.

1 Mary C Meyer, Professor, Colorado State University, 212 
Statistics Building, Fort Collins, CO, 80523-1887, meyer@stat.
colostate.edu
2 Xiyue Liao, Ph.D. Candidate, Colorado State University, 302 
Statistics Building, Fort Collins, CO, 80523-1887, liaoxiyue2011@
gmail.com
3 Gretchen G. Moisen, Research Forester, US Forest Service, 
Rocky Mountain Research Station, 507 25th St, Ogden, UT 84401, 
gmoisen@fs.fed.us
4 Elizabeth A. Freeman, Ecologist, US Forest Service, Rocky Moun-
tain Research Station, 507 25th St, Ogden, UT 84401, eafreeman@
fs.fed.us
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A NOVEL STATISTICAL METHODOLOGY TO OVERCOME SAMPLING 
IRREGULARITIES IN THE FOREST INVENTORY DATA AND TO MODEL 

FOREST CHANGES UNDER DYNAMIC DISTURBANCE REGIMES

Nikolay Strigul, Jean Lienard1

Abstract— Forest inventory datasets offer unprecedented opportunities to model forest 
dynamics under evolving environmental conditions but they are analytically challenging 
due to irregular sampling time intervals of the same plot, across the years. We propose 
here a novel method to model dynamic changes in forest biomass and basal area using 
forest inventory data. Our methodology involves the following steps: 1) parameterize 
transition matrices for biomass using Gibbs sampling, 2) incorporate dynamic disturbance 
and forest growth scenarios and 3) simulate transient dynamics and stationary states 
using Markov chain model. We extend this method to further include changes in natural 
disturbance regimes and land-use practices, to predict the impact of changing climate 
and forest management practices. We apply this methodology on North American forests. 
We first assess the predictive power of the methodology, without including changing 
disturbance regimes, in two independent ways: (a) the first years of the dataset are used 
to predict the later years, and (b) the long-term predictions of two random partitions 
are compared. The model predicts consistent short-term increases in biomass. We then 
investigate the consequences of global warming scenarios including changes in forest 
fire rate in hardwood forests as well as possible growth enhancements due to increasing 
CO2 and temperature. We conclude that ongoing increasing biomass trends are relatively 
unaffected in the short term by changing disturbances regimes. Overall, our original data-
intensive methodology provides both descriptions of the short-term dynamics as well as 
predictions of forest development on a longer timescale. 

INTRODUCTION
Existing national forest inventory programs collect 
a large number of individual tree records on 
permanent plots and sample forested ecosystems 
uniformly across the landscape. These databases 
provide unique opportunities to quantify and examine 
forest disturbances using a data intensive approach 
that involves data mining and the development of 
stochastic models (Lienard et al., 2015a, 2015b). In 
particular, one approach relying on Markov chain 
models has recently been developed to capture stand 

level dynamics from forest inventories (Strigul et 
al., 2012). These models operate with probabilities 
of forest state transitions. Markov chain models 
can be naturally linked with forest inventory data 
by considering every forest permanent plot as an 
independent realization of the underlying Markov 
chain process. 

We propose here a novel approach to model stand 
biomass based on forest inventory data using 
inhomogeneous Markov Chain processes. We first 
develop a methodology to estimate the transition 
matrices based on survey data collected at irregular 
intervals. We then study how progressive dynamic 
changes in forest biomass resulting from variations in 
natural disturbance regimes and land-use practices.

1 Assistant Professor (NS), Department of Mathematics & School 
of Art and Sciences, Washington State University Vancouver, 
14204 NE Salmon Creek Ave, Vancouver, WA 98686; and Post-
doctoral Researcher (JL), Department of Mathematics & School of 
Art and Sciences, Washington State University Vancouver. NS is 
corresponding author: to contact, call (360) 546-9655 or e-mail at 
nick.strigul@wsu.edu
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METHODS
Transition matrix estimation
We consider here an estimated 3-year transition matrix 
obtained using Gibbs sampling. This matrix is entirely 
deduced from empirical data and its shape is not 
constrained by any prior knowledge. Specifically, the 
matrix is estimated using the following methodology 
(explained in details in Lienard et al., 2015b):

1.	Construct temporal sequences of uncorrelated 
characteristics depending on forest survey dates.

2.	Use Gibbs sampling to infer the transition matrix. 
This algorithm consists of random initialization of 
missing values followed by iteration of parameter 
estimation (a) and data augmentation (b):
a.	 Parameter estimation: Compute the transition 

matrix using the (augmented) sequences of plot 
transitions.

b.	Data augmentation: Draw new sequences 
conditional on the new transition matrix.

Dynamic changes of growth and 
disturbance
We further model hypothetical, dynamic changes of 
growth and disturbance probabilities with the inclusion 
of time-dependent terms within the biomass transition 
matrix (inhomogeneous Markov Chain model). We 
employ these terms to model forecasted changes 
in forest fire frequency caused by global warming, 
and the possible enhanced growth effect resulting 
from the greater temperature and greater availability 
of atmospheric. Specifically, we derive lower and 
upper bounds among the published predictions 
of forest from the study of Bergeron et al. (2005) 
and Drever et al. (2009). In accordance with meta-
analyses of data gathered in Free-Air CO2 Enrichment 
(FACE) experiments and to avoid over-estimation of 
boosted growth, we settled for a rather conservative 
growth enhancement of 20 percents until the 3xCO2 
concentration is reached, around 2090. Figure 2a 
summarizes the scenarios used in this study.

RESULTS
Estimation of transition matrices
The methodology is able to estimate transition 
matrices even with irregular survey intervals 
(e.g. when the time between two successive 
measurements varies along the years due). In the 
biomass transition matrix shown in Figure 1, each 
value at row i and column j corresponds to the 
probability of transition from state i into state j 
after 3 years. By definition, rows sum to 100%. 
This transition matrix is dominated by its diagonal 
elements, which is expected because few plots show 
large changes in a given 3-year period. The values 
below the diagonal correspond to transitions to a 
lower state (hence, they can be interpreted as the 
probabilities of disturbance), while values above the 
diagonal correspond to transitions to a higher state 
(i.e., growth). The transitions in the first column 
of the matrix correspond to major disturbances, 
where the stand transitions to a very low biomass 
condition. As the probabilities above the diagonal 
are larger than below the diagonal, the overall 
3-year prediction is of an increase in biomass. This 
matrix also shows that plots with a biomass larger 
than 40,000 kg/ha have a roughly uniform 10% 
probability of ending with a biomass of less than 
20,000 kg/ha 3 years later, which is interpreted as 
the probability of high-biomass stand to go through a 
moderate to high disturbance.

We performed a cross-validations of our methodology 
by estimating the transition matrix with data from 
1970 to 1988, and then used the model to predict 
forest for the period corresponding to 1989 to 
2007. The comparison of the predicted dynamics 
with the aggregated distribution of the second 
half of the dataset shows accurate predictions, 
with R² coefficients ranging from 0.8 to 0.95. This 
indicates that the second half of the dataset is overall 
predictable with a Markov chain model based solely 
on the first half. 
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Figure 1—3-year transition matrix for the biomass. The states are the biomass ranges in 10³ kg/ha, spanning from 0-2 to 48-50 10³ kg/ha, and 
represented here on the left and on top of the matrix. The values M(i,j) inside the matrix correspond to the rounded probability of transition from 
state i to state j, in percents. The color represents the relative standard error of the mean and indicates the uncertainty in the matrix coefficients. 

Figure 2—climate-change scenarios and predicted average biomass changes. Panel a: forest fires scenarios (black, left y-axis) and possible 
growth enhancement (green, right y-axis) in hardwood forests. The two burn rate scenarios were derived from Bergeron et al. (2006); 
Drever et al. (2009) (see methods for details). Panel b: average biomass predicted with no change in current disturbance regime (solid line) 
and in the two future burn rate scenarios computed with or without the addition of enhanced growth. Historical biomass records from the 
forest inventory are displayed in 10-year bins with standard error of the mean.
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Climate change scenarios
The average biomass in Quebec hardwood forests 
displays distinct trajectories and dynamics under 
the different scenarios (Figure 1b). The unaltered 
projections show a continuous increase of biomass 
until 2050, consistent with the trend observed in the 
database (historical records in Figure 1b). In the “low 
burn rate” scenario, the average biomass is almost not 
discernible from the unaltered predictions; the slight 
decrease of burn rate considered in this scenario does 
not significantly affect the average biomass dynamics. 
In the “high burn rate” scenario, a departing from the 
unaltered predictions is apparent after reaching the 
2xCO2 threshold. The addition of the “higher growth” 
condition changed substantially the dynamics with a 
marked increase in both scenarios. In the “low burn 
rate” scenario the boosted growth is able to sustain an 
increasing trend until 2090, while in the “high burn 
rate” scenario the boosted growth negates the effects 
of increased burn rate for the average biomass.

DISCUSSION
In this work we have developed an inhomogeneous 
Markov chain approach to model forest changes 
under nonstationary environmental conditions. This 
approach integrates mechanistic models of growth 
and disturbance into empirically-derived transition 
models. Its practical realization involves three 
consecutive steps: 1) biomass transition matrices 
are estimated from forest inventory data using data 
mining and Bayesian methods, 2) different scenarios 
of disturbance and forest growth are formulated 
according to climate change projections, 3) biomass 
forecasts are obtained via time-dependent alterations 
of the transition matrices according to these scenarios. 

Markov chain models have a rich history of 
application in ecology, and, in particular, in forest 
modeling. This modeling framework has been 
employed in particular to describe forest transitions 
at different scales with various focal variables, for 
example, succession models defined on the species 
and forest type level, gap mosaic transition models, or 

biomass transition models. The Bayesian methodology 
proposed in this study allows to extend the scope of 
transition matrices by allowing their computation 
directly from forest inventory data.

On well-known limitation of Markov chain models 
is the time-homogeneity (stationarity) assumption, 
meaning that transitional probabilities remain the same 
over the focal time horizon (Usher, 1979, Waggoner 
and Stephens, 1980). While this assumption is often 
justified on small and intermediate time scales that 
span from years to decades, time-homogeneous 
Markov chains will likely provide unrealistic 
predictions in case disturbance or growth regimes 
change substantially over longer time horizons 
(decades to centuries). With the inclusion of time-
dependent growth and mortality terms in the transition 
matrices, we relax this assumption and extend the 
scope of application of Markov chain biomass models. 
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EXTRAPOLATING INTENSIFIED FOREST INVENTORY DATA TO THE 
SURROUNDING LANDSCAPE USING LANDSAT

Evan B. Brooks, John W. Coulston, Valerie A. Thomas, and Randolph H. Wynne1 

Abstract—In 2011, a collection of spatially intensified plots was established on three 
of the Experimental Forests and Ranges (EFRs) sites with the intent of facilitating FIA 
program objectives for regional extrapolation.  Characteristic coefficients from harmonic 
regression (HR) analysis of associated Landsat stacks are used as inputs into a conditional 
random forests model to form predictive models of key forest biophysical parameters for 
use in making wall-to-wall maps.  

In 2011, the FIA program established intensified plots 
in several of the Experimental Forests and Ranges 
(EFRs).  These plots resemble standard FIA phase 2 
plots as described in Bechtold et al. (2005), but they 
are much denser per unit area, with roughly 50 plots 
in each EFR.  The motivation behind the intensified 
sampling was to facilitate the FIA mission by having a 
large number of plots on representative sections of the 
nation’s forests, enabling the extrapolation of forest 
biophysical parameter estimates into the areas around 
the forests.  

The Landsat collection of satellite imagery is a 
common choice for regional extrapolation of point 
forest data, primarily because it has the spatial 
resolution to monitor individual stands and has a 
decades-long record to compare with historical FIA 
plot measurements. Multitemporal approaches are not 
subject to issues resulting from the choice of a single 
image for analysis, but they must contend with missing 
or poor-quality data due to striping from the scan 
line corrector failure on Landsat 7 in 2003, as well as 
clouds, shadows, and other obscuring factors.  

Harmonic regression (HR; Brooks et al., 2012) is an 
algorithm designed to interpolate missing data in large 
multitemporal image stacks. HR fits curves based on 
the superposition of sinusoidal curves of different 

frequencies (harmonics), independently to each pixel.  
Each HR curve is characterized by a collection of 
data-driven coefficients.  While these coefficients are 
generally used to generate simulated Landsat-scale 
images, they have value in their own right.  In addition 
to straightforward applications like land cover/land use 
classification, the coefficients have also been used to 
improve the precision of forest parameter estimation 
(Brooks et al., 2015).  Thus, given training data in 
the form of spatially explicit FIA plot measurements, 
it is our contention that they may also be used as 
predictors in a model for forest biophysical variables.  
Additionally, because the coefficients are not specific 
to any one image, we expect that once trained, models 
based on them may be applied to Landsat data from 
other years as well.

STUDY AREA
Our study focused on three EFRs which formed 
an approximate line, covering roughly the range 
of elevation in the southeastern US. (Fig. 1) 
Specifically, we looked at the Coweeta Hydrologic 
Laboratory in southwestern North Carolina, the 
Calhoun Experimental Forest in north-central South 
Carolina, and the Santee Experimental Forest in 
South Carolina, near the Atlantic coast. Each of these 
EFRs has approximately 50 intensified FIA plots, all 
established so as to avoid overlapping other ongoing 
experiments in the EFRs. The plots were measured 
in 2011, the measurements being a slight subset of 
the biophysical metrics commonly found in FIA 

1 Department of Forest Resources and Environmental Conserva-
tion, 310 West Campus Drive, Virginia Tech, Blacksburg, VA, 
24061; and Supervisory Research Forester, USDA Forest Service, 
1710 Research Center Drive, Blacksburg, VA, 24060.
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phase 2 plots.  Note that the term “intensified” refers 
to the increased spatial density of the plots, not to 
the degree of measurements taken within the plots. 
Table 1 lists some of the variables measured in the 
intensified plots.  

In order to extrapolate the information contained 
within the EFRs’ intensified plots to the broader 
landscape, we used Landsat thematic mapper (TM) 
and enhanced thematic mapper plus (ETM+) images, 
covering the transect with data from WRS-2 path/
row combinations 18/36, 17/36, 17/37, and 16/37.  We 
acquired every available image from 2010 and 2011, 
regardless of image quality, choosing images that were 
already processed to L1T standards and also corrected 
to surface reflectance via the Landsat Ecosystem 
Disturbance Adaptive Processing System. (LEDAPS, 
Masek et al. 2006)  

We then obtained spatial subsets corresponding to the 
three EFR boundaries for model training, using FMask 
(Zhu and Woodcock, 2012) from the post-LEDAPS 
product to filter out the majority of cloud and shadow-

related pixels.  Subsequently, we filled in the missing 
data gaps within the resulting images with window 
regression. (WR, de Oliveira et al., 2014)

Because the spatial size of the FIA plots is larger than 
a single 30m Landsat pixel, we took the additional 
step of computing 3x3 pixel window averages, 
by layer, to ensure that each pixel reflected the 
immediate neighborhood that would comprise an FIA 
plot.  We then used these stacks as inputs into HR, 
thus obtaining characteristic coefficient rasters for 
each subset. 

We treated each of the seven spectral bands separately, 
obtaining a collection of coefficient rasters for each 
band in addition to a raster for normalized difference 
vegetation index. (NDVI, Tucker, 1979) For each 
band and index, we fitted the data to a two-harmonic 
curve, obtaining five coefficients (constant, sin(t), 
sin(2t), cos(t), and cos(2t)) in each case, resulting in 40 
coefficient layers total for each EFR.  Preprocessing 
was done using R (R Core Team, 2014), with emphasis 
on the spatial.tools package and its dependencies. 
(Greenberg, 2014)

METHODS
We treated the HR coefficients as predictors of the 
measured values from the intensified plots in the 
EFRs boundaries.  Thus, we first joined the plot 
measurements to the associated pixels in the HR 
coefficient stacks by the spatial location of the plot, 

Figure 1—Overall study area, representing a rough transect from the Piedmont to the Atlantic coast.  The three experimental forests are 
named and circled.

Table 1—Selected biophysical variables and 
parameters in the intensified FIA plot data.

Condition table variables Tree table variables
Owner, forest type, stand 
age, site index, stocking, 
disturbance type

Species, species group, 
DBH, height, age, volume, 
biomass
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in each case using the pixel which corresponded to 
the recorded location.  Due to the correlated nature 
of many of the original Landsat spectral bands and 
the inclusion of NDVI-based coefficients as potential 
predictors, we used conditional random forests from 
the party package as the basis for our model-fitting. 
(Strobl et al., 2008)

After a final predictive model is derived, we will apply 
that model to the HR coefficients obtained by applying 
HR across the full extent of the study area. Where 
possible, the resulting predictions will be compared 
with FIA Phase 2 plot data from the study area.

RESULTS
Currently, processing and preliminary model-fitting 
are complete for the EFRs subset stacks. These results 
show R2 values for quantitative variables such as 
height, Carbon above ground, and age on the order of 
55 to 64 percent. Similarly, the misclassification rate for 
the species group is 22.3 percent. These values seem 
promising when one considers that the only predictors 
used were products derived from multitemporal satellite 
data. Further comparison with FIA Phase 2 plots across 
the study area is planned, pending calculation of HR 
coefficients across the region.

DISCUSSION
The spatially dense nature of the intensified plots made 
computation of the HR coefficients simpler.  While 
we will utilize broad coverage from all four input 
scenes, the ability to crop out the subsets around the 
EFRs made the processing and model training much 
more efficient.  This in its own right is computationally 
valuable, and when coupling this fact with the public 
availability of the exact spatial coordinates of the 
plots, it makes the intensified plots in the EFRs 
convenient for this sort of extrapolation effort.

While the HR coefficients were trained on the 2010-
2011 period, the coefficients themselves are simply 
characteristic of the corresponding curves.  If such 
curves represent commonly occurring phenologies, 
then it reasonable to assume that one may use the 
models from this study with HR coefficients from 
different years.  This possibility makes the intensified 
plots that much more potentially valuable.  

Complications may arise, however, from the choice 
of intensified plot locations within the EFRs. The 
locations of intensified plots were chosen to avoid 
intersecting with other experiments currently being 
conducted in the EFRs. As a result, the models we 
built were fitted to forests that were undisturbed after 
the establishment of the EFRs.  Accordingly, we 
expect comparisons of model predictions with the 
more general Phase 2 plots to have a considerable 
amount of disagreement. In order to extend the 
effectiveness of the models, additional intensified 
plots, covering a broader range of treatments, would 
be helpful.  
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NEXT-GENERATION FOREST CHANGE MAPPING ACROSS THE 
UNITED STATES: THE LANDSCAPE CHANGE MONITORING SYSTEM 

(LCMS)

Sean P. Healey1, Warren B. Cohen1, Yang Zhiqiang2, Ken Brewer1, Evan Brooks3, Noel Gorelick4, Mathew 
Gregory2, Alexander Hernandez5, Chengquan Huang6, Joseph Hughes2, Robert Kennedy2, Thomas 

Loveland7, Kevin Megown1, Gretchen Moisen1, Todd Schroeder1, Brian Schwind1, Stephen Stehman8, 
Daniel Steinwand7, James Vogelmann7, Curtis Woodcock9, Limin Yang7, Zhe Zhu7

Abstract—Forest change information is critical in forest planning, ecosystem modeling, 
and in updating forest condition maps.  The Landsat satellite platform has provided 
consistent observations of the world’s ecosystems since 1972. A number of innovative 
change detection algorithms have been developed to use the Landsat archive to identify 
and characterize forest change.  The inter-agency Landscape Change Monitoring System 
(LCMS) has been launched to engage these cutting edge methodologies in a national-
scale, sustained change monitoring operation.  A Science Team supporting LCMS has 
evaluated the relative strengths of several leading algorithms in identifying different 
types of forest change across a variety of ecosystems.  Additionally, a machine-learning 
approach has been developed that uses an ensemble of algorithm outputs to predict a 
surface which best matches independently collected reference data.  This ensemble 
technique integrates the strengths of each individual algorithm in different situations, 
and has been shown to reduce overall error in LCMS trials.  The LCMS Science Team 
has also, in collaboration with Google, overcome significant data processing hurdles 
associated with analyzing tens of thousands of large images.  Following Science Team 
recommendations, LCMS is quickly moving toward production and maintenance of 
validated, nationally consistent maps of the causes and timing of historical forest change.
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IMAGE-BASED CHANGE ESTIMATION (ICE):  
MONITORING LAND USE, LAND COVER AND  

AGENT OF CHANGE INFORMATION FOR ALL LANDS

Kevin Megown1, Andy Lister2, Paul Patterson3, Tracey Frescino4,  
Dennis Jacobs5, Jeremy Webb6, Nicholas Daniels7, Mark Finco8

Abstract—The Image-based Change Estimation (ICE) protocols have been designed 
to respond to several  Agency and Department information requirements. These include 
provisions set forth by the 2014 Farm Bill, the Forest Service Action Plan and Strategic 
Plan, the 2012 Planning Rule, and the 2015 Planning Directives. ICE outputs support the 
information needs by providing estimates of land use and land cover area and change, 
together with agent of change.  

ICE data is collected by interpreting two years of NAIP imagery and identifying areas 
of land cover and land use change (LCLUC).  Forest Inventory and Analysis (FIA) plot 
locations are used for the sample design, and LCLUC is quantified using dot grids over 
each FIA plot. When no change occurs on a plot, land cover and land use are attributed on 
a subset of the dot grid. When change occurs, however, a denser grid of dots is attributed 
and agent of change is also interpreted. Currently, the states of Colorado, Georgia, 
Washington, Texas, Utah, Nebraska, Maryland, Vermont and New Hampshire are being 
interpreted to support ICE objectives. 

Estimation procedures have been developed to analyze the ICE data. These statistical 
summaries result in tables, graphs, or matrices to support State and National Forest land 
area and change estimates. This presentation will provide information about the ICE data 
collection and estimation methods, and a sample of estimation outputs.
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LCMS LANDSCAPE CHANGE MONITORING SYSTEM – RESULTS 
FROM AN INFORMATION NEEDS ASSESSMENT

Kevin Megown1, Brian Schwind2, Don Evans3, Mark Finco3

Abstract—Understanding changes in land use and land cover over space and time 
provides an important means to evaluate complex interactions between human and 
biophysical systems, to project future conditions, and to design mitigation and adaptive 
management strategies.  Assessing and monitoring landscape change is evolving into a 
foundational element of climate change adaptation, ecological restoration, and resource 
sustainability.  Landscape change data are core to Forest Service functions including: land 
management planning, restoration analysis, carbon accounting, greenhouse gas emission 
reporting, biomass and bioenergy assessments, hydrologic function assessments, fire and 
fuels planning and management, and forest and rangeland health assessments.

The Forest Service is collaborating with federal and academic scientists to evaluate the 
status of existing landscape change information systems, assess gaps in information 
content, and implement science and information system efforts aimed at improving our 
ability to understand and monitor landscape changes through time.  Promising research 
for enhanced landscape change detection techniques will enable resource managers to 
attain a more complete and precise understanding of how, why, and to what extent the 
landscape is changing.

In order to support strategic investment decisions on information resources, the 
Forest Service Geospatial Management Office has distributed a voluntary information 
needs survey to a broad audience of Agency resource and information management 
professionals to assess current and projected requirements for landscape change 
information.  The survey, in conjunction with a technical assessment of existing landscape 
change information products, will enable the Agency and our partners to prioritize efforts 
that develop and maintain needed information assets, and results from the survey will be 
used to help define requirements for future landscape level change products. 
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LAND COVER CHANGE MAP COMPARISONS USING OPEN SOURCE 
WEB MAPPING TECHNOLOGIES

Erik Lindblom1, Ian Housman2, Tony Guay3, Mark Finco4, Kevin Megown5

Abstract—The USDA Forest Service is evaluating the status of current landscape 
change maps and assessing gaps in their information content. These activities have 
been occurring under the auspices of the Landscape Change Monitoring System 
(LCMS) project, which is a joint effort between USFS Research, USFS Remote Sensing 
Applications Center (RSAC), USGS Earth Resources Observation and Science (EROS) 
Center, and academic partners. One of the early needs identified was a system that 
facilitated the visual comparison of several change maps in a common visualization 
framework. The application presented here is the result of this need.

The LCMS landscape change viewer is a web-based platform that allows users to interact 
with the various change data layers and visually identify areas of overlap and uniqueness.  
In addition to the zoom and pan functions that are expected in a web map, features of the 
application include user configurable: 

•	 Order of comparison in the map table of contents

•	 Turning on and off individual years for each of the change data sources

•	 Year selection based on a user defined range of years 

•	 Adjusting the transparency for each change data source

•	 Selection of color for each of the change data sources

These functions are made possible through the following technologies:

•	 Tilemill that produces static data tiles for viewing on a web map

•	 Leaflet.js to render the maps

•	 A custom Leaflet layer developed at RSAC that allows the browser to render tiles 
in a color and opacity as specified by a user

Together, these technologies eliminate the need for a GIS server and allow most basic 
GIS viewing operations to occur on the client’s browser. 

1 Erik Lindblom, Application Developer, RedCastle Resources, 
Inc. working onsite at the Remote Sensing Applications Center, 
Salt Lake City, UT, 801.975.3832 elindblom@fs.fed.us
2 Ian Housman, Remote Sensing Analyst, RedCastle Resources, 
Inc. working onsite at the Remote Sensing Applications Center, Salt 
Lake City, UT, 801.975.3366 ihousman@fs.fed.us
3 Tony Guay, Remote Sensing Analyst, RedCastle Resources, Inc. 
working onsite at the Remote Sensing Applications Center, Salt 
Lake City, UT, 801.975.3763 tguay@fs.fed.us

4 Mark Finco, Principal Investigator, RedCastle Resources, Inc. 
working onsite at the Remote Sensing Applications Center, Salt 
Lake City, UT, 801.975.3767 mfinco@fs.fed.us
5 Kevin Megown, Program Leader, Remote Sensing Applications 
Center, USDA Forest Service, Salt Lake City, UT, 801.975.3826 
kamegown@fs.fed.us
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FOREST DYNAMICS IN THE TEMPERATE RAINFORESTS OF ALASKA: 
FROM INDIVIDUAL TREE TO REGIONAL SCALES

Tara M. Barrett

Abstract—Analysis of remeasurement data from 1079 Forest Inventory and Analysis 
(FIA) plots revealed multi-scale change occurring in the temperate rainforests of 
southeast Alaska.  In the western half of the region, including Prince William Sound, 
aboveground live tree biomass and carbon are increasing at a rate of 8 ( ± 2 ) percent per 
decade, driven by an increase in Sitka spruce.  In the Alexander Archipelago, western red 
cedar is increasing, as is overall biomass on gentler slopes and in higher latitudes.  These 
increases, which occurred during a warmer period of the Pacific Decadal Oscillation, 
correspond well with regional predictions of forest change in a warming climate.  In 
the 180 thousand ha of managed forests on the Tongass National Forest, aboveground 
live tree carbon was found to be stable between the two inventory periods.  And at the 
regional level, analysis of FIA data showed no significant change in the yellow-cedar 
population, despite widespread publicity for a ‘decline’ in this species.  While FIA 
remeasurement data provides insight at a variety of scales, alterations in forest definition 
and other inventory methods complicated analysis.

Northern latitudes are expected to have the largest 
temperature increases from global climate change 
(IPCC 2014).  With fire absent or extremely rare, fire 
suppression has had almost no impact on the forests of 
southeast Alaska, and timber harvesting or other forms 
of vegetation manipulation have also been absent from 
large expanses of the forest. Thus these forests provide 
an ideal environment for monitoring early detection of 
change associated with climate. 

To examine whether changes were occurring, a 
combination of forest inventory and remote sensing 
data was used to examine growth, mortality, and net 
change in southeast Alaska’s temperate rainforest.

METHODS
The study area included the whole temperate rainforest 
region of Alaska (figure 1), with the exception of 
national forest wilderness and Glacier Bay National 
Park.  Plots were initially installed between 1995 
and 2003, and then remeasured between 2004 and 
2010.  Stratification with remote sensing data (NLCD) 
and other spatial information was used to account 
for different sampling intensity on Kodiak Island, 

population boundaries that varied between inventories, 
and missing data (inaccessible plots) that occurred 
primarily on forested land. Individual tree data were 
reconciled to Time 1 measurements, with analysis 
limited to subplots that were fully forested at both 
measurements due to a change in definition of ‘forest’ 
that occurred between inventories.  Growth and 
mortality were converted to average annual values 
and then compiled to population level estimates using 
standard national methods (Bechtold and Patterson 
2005).  Detailed description of methods can be found 
in Barrett (2014).

RESULTS
Within-forest live tree biomass is increasing in the 
western portion of the Alaska temperate rainforest, 
where the Chugach National Forest is found.  
Estimated rate of change was an average annual 
increase of 0.8 ± 0.2 percent (p-value < 0.001).  This 
change is primarily driven by an average annual 
increase in Sitka spruce live tree biomass of 0.9 ± 0.3 
percent.  Increases also occurred in paper birch and 
cottonwood in that region.
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In the eastern region of the temperate rainforest, 
including the Alexander Archipelago, western redcedar 
is increasing in biomass (average annual increase of 
0.6 ± 0.1 percent) and there is some evidence for a 
decrease in shore pine live tree biomass (-0.31 ± 0.19 
percent).  Although substantial research has focused 
on yellow cedar decline, the population outside of 
wilderness areas appears to be stable overall; the 
95 percent confidence interval for live yellow-cedar 
average annual biomass change was from -0.04 
percent to +0.29 percent of initial biomass.

Shifts in species composition and carbon storage and 
flux differed between managed and unmanaged forest.  
Areas of the Tongass National Forest that had past 
silvicultural treatments (“managed” forest) had higher 

log density and lower live tree and snag density than 
unmanaged forest (Figure 2a).  Managed forest also 
had greater carbon turnover (Figure 2b) than did areas 
of unmanaged forest.  

DISCUSSION
Procedural changes between the two inventories 
greatly complicated analysis.  Procedural changes 
included a shift in forest definition from tree cover 
to tree stocking, alterations in which species were 
considered trees, the exclusion of Krumholtz forest in 
the first inventory, altered rules used to decide whether 
a tree was in or out of a subplot, shifting boundaries 
for the non-inventoried national forest wilderness, 
different sampling intensities, altered interpretation 

Figure 1—The study area included the temperate rainforest region of Alaska.
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Figure 2—Aboveground tree carbon (a) density and (b) flux in managed (180,000 ha) and unmanaged 
(2,547,000 ha) forest of the Tongass National Forest.  (Does not include forest in wilderness areas.)

of decay classes and crown classes, and a variety of 
other changes.  The impact of the procedural changes 
is greater than actual change in many cases, with the 
result that unsuspecting users of the two data sets from 
the national web site are likely to make erroneous 
conclusions from a prima facie comparison.   

While the change in forest definition prevented reliable 
estimates of deforestation or afforestation, using 
an approach based on remote sensing data suggests 
gains are outpacing losses, with forest increasing 
in northerly aspects, lower elevations, and higher 
latitudes (Buma and Barrett 2015).

Given the absence of fire and other large disturbances, 
the changes observed in the unmanaged portions of the 

temperate rainforest seem likely to be associated with 
climate or atmospheric changes.  The remeasurement 
period largely coincided with a warmer period of the 
Pacific Decadal Oscilliation, and so may be an earlier 
indicator of trends under climate change. Future 
monitoring will help to detect whether the observed 
changes continue into the future.
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OBSERVED AND PROJECTED C CHANGE  
IN THE SOUTHEASTERN US

John Coulston1, David Wear2, and Jim Vose3

Abstract—Over the past century forest regrowth in Europe and North America expanded 
forest carbon (C) sinks and offset C emissions but future C accumulation is uncertain due 
to the effects of land use changes, management, disturbance, and climate change. Policy 
makers need insights into forest C dynamics as they anticipate emissions futures and 
goals. Using a completely remeasured land use and forest inventory we show that forests 
in the southeastern United States yielded a net sink of C over a 5 year period (2007-
2012) because of net land use change (+6.48 TgC yr-1) and net forest accumulation 
(+75.4 TgC yr-1).  Forests disturbed by weather, insect/disease, and fire show positive 
forest C changes (+1.56, +1.4, +5.48 TgC yr-1, respectively).  Forest cutting was the 
only disturbance causing net decreases in C (-76.7 TgC yr-1) but was offset by forest 
accumulation (+143.77 TgC yr-1).  Projected C stock changes indicate a gradual slowing 
of carbon accumulation with forest aging (a reduction of 9.5% over the next five years) 
but was highly sensitive to land use.

1 Research Forester, USDA Forest Service, Southern Research 
Station, Knoxville TN, 865-862-2008, jcoulston@fs.fed.us 
2 Project Leader, USDA Forest Service, Southern Research Station, 
Raleigh NC, 919-523-5035, dwear@fs.fed.us 
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MODELING POST-FIRE WOODY CARBON DYNAMICS  
WITH DATA FROM REMEASURED INVENTORY PLOTS

Bianca N.I. Eskelson1, J.S. Fried2, and V.J. Monleon3.

Abstract—In California, the Forest Inventory and Analysis (FIA) plots within 
large fires were visited one year after the fire occurred resulting in a time series of 
measurements before and after fire. During this additional plot visit, the standard 
inventory measurements were augmented for these burned plots to assess fire effects. 
One example of the additional measurements is the post fire index (PFI), which is a fire 
severity classification based on post-fire crown observations. Stands that showed presence 
or no evidence of residual green crowns were assigned to PFI classes Alive and Dead 
respectively. The repeated measurements of 109 burned FIA plots allowed us to quantify 
gains and losses in dead and life woody carbon pools in the first five years following a 
wildfire. We used a mixed model to estimate the change in each woody carbon pool as 
a function of PFI, years since fire, and pre-fire woody carbon. Most of the 109 plots in 
this study burned with low to moderate severity and the post-fire carbon trajectories by 
pool differed from those observed for the stands that burned with high severity. This 
study showcases how large-scale inventory data can be supplemented with additional re-
measurements to answer disturbance related research questions and hypotheses.
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ment, The University of British Columbia, Vancouver, BC, 
604-827-0629, bianca.eskelson@ubc.ca 
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3 Research Mathematical Statistician, USDA Forest Service, PNW 
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REDRAWING THE BASELINE: A METHOD FOR ADJUSTING 
BIASED HISTORICAL FOREST ESTIMATES USING A SPATIAL AND 

TEMPORALLY REPRESENTATIVE PLOT NETWORK

Sara A. Goeking and Paul L. Patterson1

Abstract—Users of Forest Inventory and Analysis (FIA) data sometimes compare 
historic and current forest inventory estimates, despite warnings that such comparisons 
may be tenuous. The purpose of this study was to demonstrate a method for obtaining 
a more accurate and representative reference dataset using data collected at co-located 
plots (i.e., plots that were measured during both periodic and annual inventories). The 
approach described here uses co-located plot-level data to build linear regression models 
that relate annual inventory measurements to periodic inventory measurements. Separate 
models were constructed within each state, and wherever possible, for domains defined 
by factors that may affect forest attributes over time and that also affected the intensity 
of the periodic inventories (i.e., timber versus woodland forest types). We used these 
regressions to simulate periodic-era, plot-level response variables, on a per-acre basis, for 
annual plot locations that were not sampled during the periodic inventories. Because the 
extent of the resulting dataset coincides with the annual plot grid, the post-stratification 
procedures used to produce broad-scale annual inventory estimates can be applied to 
the simulated periodic dataset to produce periodic-era estimates of forest attributes. 
Construction of this simulated periodic-era dataset allows investigation of broad-scale 
trends in forest attributes, particularly as they vary across ownership group, reserved 
status, and forest type group due to disturbance and land management history.

In the eastern U.S., the Forest Inventory and Analysis 
(FIA) program has completed multiple inventory 
cycles and therefore provides assessments of trends 
in forest attributes such as volume, growth, mortality, 
biomass, and carbon over time. However, in the 
western U.S., the 10-year cycle length precludes long-
term evaluations in states where only one cycle of data 
has been collected. In these areas, many users of FIA 
data rely on historical, periodic inventory estimates 
to serve as temporal reference conditions, and then 
directly compare them to annual estimates to quantify 
forest trends. Because the periodic plots did not 
representatively sample all forested locations, directly 
comparing the periodic and annual estimates can 

lead to erroneous conclusions (Goeking 2015). The 
purpose of this paper is to describe a methodological 
framework for obtaining a more accurate and 
representative reference dataset using data collected 
at co-located plots, or plots that were measured during 
both periodic and annual inventories, in states where 
direct comparisons of multiple inventories over time 
are tenuous.

STUDY AREA
The methods described below were applied to the 
eight states within the Interior West FIA region: 
Arizona, Colorado, Idaho, Montana, Nevada, New 
Mexico, Utah, and Wyoming. The analysis was 
restricted to periodic plot measurements collected 
from 1993-2002 and annual plot measurements 
collected from 2004-2013. 

1 Biological Scientist (SAG), Rocky Mountain Research Station, 
USDA Forest Service, 507 25th Street, Ogden, UT 84401; and 
Statistician (PLP), Rocky Mountain Research Station, 2150-A 
Centre Ave, Suite 350, Fort Collins, CO 80526-8121. SAG is 
corresponding author: to contact, call (801) 625-5193 or e-mail at 
sgoeking@fs.fed.us.
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METHODS
The response variables presented here include net 
volume of live trees, net volume of dead trees, 
and above-ground tree biomass at time 1 (periodic 
inventory), where the predictors are the values of 
these variables at time 2 (annual inventory). Tree-level 
volumes were obtained as the variable VOLCFNET 
in FIADB (O’Connell et al. 2015) and related to tree 
status (live or dead) to permit separate calculations of 
live and dead net volume. Biomass was queried from 
several variables that constitute the component ratio 
method, as described in O’Connell et al. (2015), and 
summed to a single above-ground metric. Because 
differences in periodic versus annual inventory plot 
designs preclude direct comparisons of total plot-level 
tree volume, these variables were calculated on a per-
acre basis as described by Goeking (2015).

Based on the linear relationships evident between time 
1 and time 2 plot-level volumes (Fig. 1), we adopted 
the approach of developing linear regression models 
where time 1 values were predicted based on time 2 
values. Although this is contrary to typical regression 
modeling that seeks to predict future values based on 
current or previous measurements, in this situation 
the time 2 dataset is more complete and representative 
than any of the time 1 datasets.

Prior to building regression models, we identified 
domains for the purpose of developing separate 
regression models. Individual states formed the 
primary division into domains. Within each state, we 
considered that timber and woodland forest types 
might require separate regression models because their 
attributes may experience different rates of change, and 
also because this distinction undoubtedly affected the 
intensity of the periodic inventories (Goeking 2015). 
Thus, within each state, we tested whether timber and 
woodland forest types qualified as separate domains 
versus a single domain for the state. To qualify as a 
single domain, the regression models for timber and 
woodland plots within each state had to have slopes 
and intercepts that were not statistically different. We 
followed the procedure described by Zar (1996) for 
comparing two or more regression equations, which 

first tests for equal slopes and then if the slopes are 
not statistically different, tests for equal intercepts. 
Each response variable was considered separately, so 
the tests for equal slopes and intercepts were repeated 
for live and dead volume. An alpha of 0.05 was used 
to reject the null hypotheses that slopes and intercepts 
were equal between timber and woodland models.

Based on the results of the comparisons of slopes and 
intercepts in each state, we established domain-specific 
linear regression models relating the estimates made 
with the annual and periodic data at co-located plots. We 
used these relationships to estimate periodic-era, plot-
level response variables for annual plot locations that 
were not sampled during the periodic inventory. Using 
plot-specific expansion factors obtained from the annual 
post-stratification estimation process, we then produced 
estimates of live volume, dead volume, and biomass. 

RESULTS
Table 1 presents the results of tests for equal slopes 
and intercepts between regression models for timber 
and woodland plots within each state. Based on 
these results, timber and woodland domains were 
modeled separately in most states. Exceptions included 
Colorado, where a single model was used for each 
response variable (live volume, dead volume, and 
biomass); and Arizona and Wyoming, where each state 
had one model for biomass. 

The relationships between above-ground biomass 
per acre at co-located plots, as measured at time 1 
and time 2, for each modeling domain are shown in 
Figure 1. Adjusted r2 values were generally lower for 
woodland models than for timber models.

Ongoing research and future papers will present the 
detailed calculation of statewide estimates based on 
the modeling approach described here and investigate 
trends in forest attributes such as volume, biomass, 
growth and mortality, particularly as they vary across 
ownership group, reserved status, and forest type 
group due to potential differences in disturbance and 
land management history. This plot-based approach 
will allow evaluation of changes in volume and 
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Figure 1—Scatter plots of time 1 (periodic) versus time 2 (annual) above-ground tree biomass, in dry tons per 
acre, by state. Within each state, each line represents a domain, where a regression model was developed for 
each domain. Five of the 8 states had separate domains for timber (blue markers) and woodland (red markers). 
In Arizona, Colorado, and Wyoming, timber and woodland were grouped into a single domain. Domains were 
defined based on the results of tests for equal slopes and intercepts of the timber and woodland regressions. 
Adjusted r2 values are shown for each modeling domain, where t indicates timber domains and w indicates 
woodland domains.
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biomass by categories such as ownership group and 
reserved status, and the estimated variance of our 
volume and biomass estimates; the estimated variance 
will need to include the error associated with the 
simulated periodic dataset.

DISCUSSION
The modeling approach described here generates a 
spatially balanced dataset of periodic-era plot-level 
variables, to which the annual inventory’s post-
stratification estimation process can be applied to 
produce broad-scale periodic-era estimates. The 

fundamental advantage of FIA’s annual inventory 
design over previous periodic inventories is that it 
provides spatially and temporally representative 
estimates of forest attributes (Bechtold and Patterson 
2005). This advantage is especially pronounced in 
regions such as the Interior West, where periodic 
inventories were decidedly non-representative not only 
throughout space and time, but also relative to tabular 
attributes such as ownership and forest type. This paper 
describes an approach for using co-located plot data 
to produce more representative baseline estimates for 
the periodic inventories of the 1990s. Although the 

Table 1—Results of tests used for identifying domains for regression models, by state. Tests for equal slopes 
and equal intercepts follow Zar’s (1996) methods for comparing two or more regression equations. Where 
“Number of domains”=2, timber and woodland domains were modeled separately.

Test for equal slopes Test for equal intercepts Number of 
domainsState Variable p-valuea tb dfb t*

Arizona Live volume 0.003 3.064 1635 1.962 2

Dead volume <.0001 4.606 1635 1.962 2

Biomass 0.169 0.373 1635 1.962 1

Colorado Live volume 0.365 1.589 333 1.968 1

Dead volume 0.105 1.159 333 1.968 1

Biomass 0.337 1.445 333 1.968 1

Idaho Live volume 0.197 4.889 1760 1.962 2

Dead volume 0.037 1.755 1760 1.962 2

Biomass 0.008 4.109 1760 1.962 2

Montana Live volume 0.437 2.264 2118 1.962 2

Dead volume 0.665 2.068 2118 1.962 2

Biomass 0.195 2.389 2118 1.962 2

Nevada Live volume <.0001 4.777 449 1.962 2

Dead volume 0.073 2.791 449 1.962 2

Biomass <.0001 3.925 449 1.962 2

New Mexico Live volume 0.015 1.420 1372 1.966 2

Dead volume 0.732 4.438 1372 1.966 2

Biomass 0.034 1.276 1372 1.966 2

Utah Live volume 0.042 9.421 1218 1.962 2
Dead volume 0.001 7.388 1218 1.962 2

Biomass 0.258 6.037 1218 1.962 2

Wyoming Live volume 0.383 3.302 509 1.965 2

Dead volume 0.017 1.938 509 1.965 2

Biomass 0.303 1.359 509 1.965 1
aP-values for tests of equal slopes were produced using a contrast statement in Proc GLM (SAS Institute, Inc. 2009).
bValues of t-statistics and df (degrees of freedom) were calculated as prescribed by Zar (1996) for testing equal elevations of regression models, and 
compared to critical values (t*). Where values of t are greater than t*, the null hypothesis that the intercepts are equal was rejected.
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development of this approach is focused on the Interior 
West, it could be applied to other states or regions 
where (a) periodic datasets are known to be incongruous 
with annual inventory datasets, and (b) sufficient co-
located plots exist to build regression models that allow 
prediction of time 1 (periodic inventory) values based 
on time 2 (annual inventory) values.
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A REGIONAL ASSESSMENT OF EMERALD ASH BORER IMPACTS  
IN THE EASTERN UNITED STATES:  

ASH MORTALITY AND ABUNDANCE TRENDS IN TIME AND SPACE

Randall S. Morin, Scott A. Pugh, Andrew M. Liebhold, and Susan J. Crocker1

Abstract—The nonnative insect, emerald ash borer (Agrilus plannipennis Fairmaire), 
has caused extensive mortality of ash tree species (Fraxinus spp.) in the eastern United 
States. As of 2012, the pest had been detected in about 15 percent of the counties in 
the 37 states that comprise the natural range of ash in forests of the eastern United 
States. Here we use regional forest inventory data from the USDA Forest Service Forest 
Inventory and Analysis program to quantify ash mortality, volume, and standing dead 
tree abundance relative to the year of initial emerald ash borer detection. Results from 
remeasured plots indicate that the annual ash mortality rate increases dramatically over 
the background level several years after initial invasion of the pest into a county. The 
corresponding decrease in ash volume and increase in standing dead trees continues for 
several more years until the live ash resource is reduced to very low levels in local areas.

INTRODUCTION
The nonnative insect, emerald ash borer (EAB; Agrilus 
plannipennis Fairmaire), was initially detected in 
Michigan and Ontario in 2002 although it had probably 
established in the early 1990s (Siegert et al. 2014). As 
of 2012, EAB had been discovered in about 15 percent 
of the counties in the 37 states that comprise the natural 
range of ash species (Fraxinus spp.) in forests of the 
eastern United States (Figs. 1,2). As it continues to 
spread, EAB has the potential to functionally extirpate 
ash with extensive economic and ecological impacts. 
An essential part of the management for any invasive 
pest is measuring the extent of its impacts over time 
and space (Parker et al. 1999). Here, we use remeasured 
regional forest conditions using inventory data from the 
USDA Forest Service Forest Inventory and Analysis 
(FIA) program to quantify changes in live ash volume, 
ash mortality, and ratio of standing dead to live tree 
abundance, relative to the historical spread of EAB.

METHODS
The study area includes counties in the 14 states where 
EAB had been detected as of 2012. This area includes: 
Illinois, Indiana, Kentucky, Maryland, Michigan, 
Minnesota, Missouri, New York, Ohio, Pennsylvania, 
Tennessee, Virginia, West Virginia, and Wisconsin 
(Fig. 1). Forest conditions of grouped counties were 
estimated from the 2005 to 2012 inventory years by 
the year of first EAB detection.

Two metrics were employed to assess the impact of 
EAB on regional dynamics of all ash species in the 
study area: annual mortality rate and annual volume 
change.  Annual mortality rate was computed as 
the proportion of annual mortality to initial live 
volume. Annual volume change was calculated as 
the difference between annual volume estimates as a 
percentage of the first estimate.

RESULTS
The background annual mortality, computed as annual 
mortality as a fraction of initial volume, for ash species 
across all counties (invaded and non-invaded) in the 
14-state study area as computed for 2005 was 0.5 
percent. Results from remeasured plots indicate that 
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est Service, 11 Campus Blvd., Ste. 200, Newtown Square, PA 19073; 
Forester (SAP), Northern Research Station, U.S. Forest Service; 
Research Entomologist (AML), Northern Research Station, U.S. 
Forest Service; and Research Forester (SJC), Northern Research 
Station, U.S. Forest Service. RSM is corresponding author: to 
contact, call (610) 557-4054 or e-mail at rsmorin@fs.fed.us.



New Directions in Inventory Techniques & Applications Forest Inventory & Analysis (FIA) Symposium 2015 234PNW-GTR-931

2002

2003 - 2004

2005 - 2006

2007 - 2008

2009 - 2010

2011 - 2012

Year of Initial EAB Detection

Figure 1—Year of initial EAB detection by county, 2013.
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Figure 2—Spatial distribution of ash basal area per acre in the eastern United States, 2009.
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annual ash mortality rates increase dramatically over 
the background level in the fourth to seventh inventory 
year after initial invasion of the pest into a county 
(Table 1). The exception is the 2002 invasion category 
where EAB has likely been present since the early to 
mid-1990s (Siegert et al. 2014).

This lag between initial invasion and mortality is also 
reflected in the change in ash volume over time. Volume 
generally continues to increase after EAB invasion for 3 
to 4 inventory years before beginning to decrease (Table 
1). Large decreases in volume of 5 percent or more 
appear to have a longer lag period of nearly a decade.

Some of the areas with the highest ash density 
have yet to be invaded by EAB. For example, 
northern Minnesota, northern Wisconsin, northern 
Pennsylvania, and southern New York (Fig. 2).

DISCUSSION
The impact of EAB on ash mortality has been 
demonstrated in localized (Ghandi et al. 2008) as 
well as regional studies (Pugh et al. 2011). As EAB 
continues to spread across the range of ash in the 
United States, FIA data can be used to quantify 

subsequent mortality across time and space. The annual 
mortality rate has been used in pest impact assessments 
with FIA data (Morin and Liebhold 2015) because 
it can be compared to background mortality levels 
to quantify the level of increase due to a particular 
disturbance agent. This metric is most useful for 
understanding the ecological impacts of pest invasion 
because it quantifies mortality as a function of the 
resource that was present prior to establishment. Our 
analyses indicate that the annual mortality rate doubles 
after approximately 4 to 7 years and then continues to 
rise. The rate is as high as 20 percent in the areas that 
have been invaded the longest (Fig. 1; Table 1).

Similarly, annual volume change is valuable for 
assessing resource loss over time. Although volume 
generally continues to increase for 3 to 4 inventory 
years after invasion by EAB, once volumes begin 
to decrease the losses can be dramatic because the 
amount of live volume available is further reduced 
over time. For example, the areas invaded by EAB 
since 2003-2004 were gaining ash volume at 3 to 
4 percent annually before and immediately after 
invasion, but 5 to 6 years after invasion, volume began 
to decrease. By 2012, ash volume was decreasing 

Table 1—Regional trends in annual mortality rate and annual volume change by inventory year and EAB 
invasion year for the county groups shown in Figure 1A.

Inventory year

EAB invasion year 2005 2006 2007 2008 2009 2010 2011 2012

  Annual mortality rate (%)

2002 19.7 11.5 8.3 8.2 9.6 9.9 14.8 19.7

2003-2004 1.2 1.0 1.0 1.3 1.3 2.3 3.1 4.7

2005-2006 0.6 0.6 1.3 1.5 1.3 1.7 2.1 3.4

2007-2008 1.4 1.5 1.0 1.4 1.6 1.6 1.6 2.2

2009-2010 1.7 0.9 1.0 1.3 1.0 1.0 1.3 1.6

2011-2012 1.0 1.4 1.4 1.3 1.2 1.1 1.1 1.2

  Annual volume change (%)

2002 - -2.4 -13.2 -13.1 -22.7 -2.1 -41.9 -77.7

2003-2004 - 3.0 3.0 3.8 -2.6 0.0 -2.2 -7.5

2005-2006 - 4.9 1.6 1.9 -0.5 1.8 1.7 -4.3

2007-2008 - 4.8 1.5 3.0 -2.3 2.9 -0.4 2.7

2009-2010 - 3.7 1.3 2.1 0.7 1.6 2.7 -0.9

2011-2012 - 1.2 6.7 2.2 2.6 1.1 2.6 2.2
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at nearly 8 percent per year. The lag period between 
initial invasion and the onset of ash volume decrease 
can be attributed in part to the nature of the scale 
of historical invasion data; a county is considered 
invaded once EAB is found reproducing in any 
location but it may take several years for the insect to 
invade the entire county.

Two factors that complicate the interpretation of the 
results of these analyses are the 5-year remeasurement 
period for plots and the annual comparison of full-cycle 
estimates. For example, the lag for all the metrics in this 
analysis is likely to be highly correlated with the 5-year 
cycle of remeasurements. Additionally, each estimate 
shares approximately 80 percent of observations with 
previous and subsequent estimates so a full set of new 
observations is only available after 5 years.

CONCLUSIONS
FIA remeasurement data can provide powerful 
information to quantify the impacts of an invasive 
pest by estimating mortality rates and volume trends 
across time and space. However, due to confounding 
factors addressed above, an analysis of estimates by 
measurement year may provide more information 
about the timing of impacts after invasion providing 
enough samples are available annually.

The increase in ash mortality and the corresponding 
decrease in ash volume typically begin 3 to 7 years 
after a county is designated as EAB invaded and 
continues for several more years until the live ash 
resource is reduced to very low levels in local areas. 
As EAB continues to spread, it has the potential 
to functionally extirpate a large fraction of the ash 
component with potentially devastating economic and 
ecological impacts. Further monitoring and analysis 
will be needed to quantify the timing and magnitude 
of EAB impacts as its range expands across the eastern 
United States. 
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ON THE ROAD TO NATIONAL MAPPING AND ATTRIBUTION OF THE 
PROCESSES UNDERLYING U.S. FOREST CHANGES

Karen Schleeweis1, Gretchen G. Moisen1, Todd A. Schroeder1, Chris Toney2, and Elizabeth A. Freeman1

Abstract—Questions regarding the impact of natural and anthropogenic forest 
change events (temporary and persisting) on energy, water and nutrient cycling, forest 
sustainability and resilience, and ecosystem services call for a full suite of information 
on the spatial and temporal trends of forest dynamics.  Temporal and spatial patterns of 
change along with their magnitude and cause are all equally important when weaving 
together the full story of our forests’ history.  National statistical estimation and mapping 
of land use and cover changes have been progressing for decades.  However, especially 
in the case of forest cover changes, attributing the magnitude and underlying causal 
processes to areas of change are newly developing endeavors. The NASA/NACP funded 
North American Forest Dynamics (NAFD) project has conducted nearly a decade of 
research in mapping U.S. forest dynamics using Landsat imagery.   One part of this 
research is an empirical and rule-based modeling approach to attribute the casual 
processes underlying temporary forest changes from wind, fire, insects/stress, harvest 
and persisting change from land cover conversion. In this presentation we address model 
matters including the utility of using the outputs (temporal, spatial and magnitude) 
from multiple forest disturbance algorithms as predictors to reduce commission and 
omission among response classes, insufficient and imbalanced training data, model and 
map accuracy, as well as initial results from these maps of CONUS forest change causal 
processes over two and a half decades.
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USING AN EMPIRICAL AND RULE-BASED MODELING APPROACH TO 
MAP CAUSE OF DISTURBANCE IN U.S. FORESTS:  

RESULTS AND INSIGHTS FROM THE  
NORTH AMERICAN FOREST DYNAMICS (NAFD) PROJECT

Todd A. Schroeder1, Gretchen G. Moisen1, Karen Schleeweis1, Chris Toney2,  
Warren B. Cohen3, Zhiqiang Yang4, and Elizabeth A. Freeman1

Abstract—Recently completing over a decade of research, the NASA/NACP funded 
North American Forest Dynamics (NAFD) project has led to several important 
advancements in the way U.S. forest disturbance dynamics are mapped at regional and 
continental scales. One major contribution has been the development of an empirical and 
rule-based modeling approach which addresses two of the major challenges associated 
with mapping forest disturbance. The first challenge is that no single spectral band or 
index responds consistently to all disturbance types. To overcome this challenge we use a 
new, non-parametric shape-fitting algorithm to derive pixel-level temporal change metrics 
(e.g. timing, magnitude, duration) from four different types of Landsat trajectories. By 
incorporating both shortwave-infrared data (e.g. Landsat band 5) and near-infrared-based 
vegetation indices (e.g. NDVI, NBR) we increase capture of subtle changes which alter 
forest structure and/or canopy leaf area. The second challenge is that certain types of 
disturbance are influenced by topographic and biophysical factors which are not inherently 
captured by optical remote sensing data. To overcome this challenge we use Random 
Forest models to integrate multiple spectral and non-spectral predictor variables to map 
fires, harvests, wind damage, as well as stress brought on by insect/disease outbreaks and 
land use conversion resulting in permanent forest cover loss. In this presentation we show 
results from 10 Landsat scenes representing a diverse array of causal agents, forest types, 
and forest prevalence levels found across the country. Using these example scenes we 
discuss the construction and importance of various predictor variables, as well as examine 
how model prediction accuracy varies as a function of geographic location, forest type 
and input training data. Lastly, we discuss how these initial results are being used to guide 
development of a nationwide map aimed at improving quantification of continental scale 
disturbance rates occurring over the last two decades. 
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NATIONWIDE DISTURBANCE ATTRIBUTION  
ON NASA’S EARTH EXCHANGE:  

EXPERIENCES IN A HIGH-END COMPUTING ENVIRONMENT

J. Chris Toney1, Karen G. Schleeweis2, Jennifer Dungan3, Andrew Michaelis3, Todd Schroeder2, Gretchen 
G. Moisen2

Abstract—The North American Forest Dynamics (NAFD) project’s Attribution Team is 
completing nationwide processing of historic Landsat data to provide a comprehensive 
annual, wall-to-wall analysis of US disturbance history, with attribution, over the last 
25+ years. Per-pixel time series analysis based on a new nonparametric curve fitting 
algorithm yields several metrics useful for elucidating causal processes underlying forest 
disturbance dynamics but requires CPU-intensive computation across large data sets 
(>4 billion pixels classified as forest in 434 Landsat scenes covering the conterminous 
US). FIA has worked collaboratively with NASA to conduct all processing for this 
project in NASA’s Earth Exchange (NEX) which includes the Pleiades supercomputer 
providing 210,336 CPU cores, 719 TB total memory, and 15 PB of disk storage. In this 
presentation, we describe the NEX computing environment, outline our processing steps 
for the NAFD attribution work, identify computing needs for this application, and present 
results from efficiency trials under different parallel processing strategies.
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FOREST SERVICE CONTRIBUTIONS TO THE NATIONAL LAND COVER 
DATABASE (NLCD): TREE CANOPY COVER PRODUCTION

Bonnie Ruefenacht, Robert Benton, Vicky Johnson, Tanushree Biswas, Craig Baker,  
Mark Finco, Kevin Megown, John Coulston, Ken Winterberger, Mark Riley1

Abstract—A tree canopy cover (TCC) layer is one of three elements in the National 
Land Cover Database (NLCD) 2011 suite of nationwide geospatial data layers. In 2010, 
the USDA Forest Service (USFS) committed to creating the TCC layer as a member 
of the Multi-Resolution Land Cover (MRLC) consortium. A general methodology for 
creating the TCC layer was reported at the 2012 FIA Symposium in Knoxville, Tennessee 
by several USFS researchers. Since that time, remote sensing specialists at the USFS 
Remote Sensing Applications Center (RSAC) have translated those methods into a 
process capable of being implemented over the Contiguous United States, Coastal Alaska, 
Hawaii, Puerto Rico, and the US Virgin Islands. 

This paper describes the products produced by the NLCD 2011 TCC team, the challenges 
encountered, and the solutions devised while creating this Landsat grained map over the 
entire nation. The NLCD TCC 2011 was produced in two forms. The first is called the 
analytical dataset and is intended primarily for purposes of research and analysis. This 
dataset has two data layers, which are a per pixel estimate of tree canopy cover and a 
per pixel estimate of standard error. The second form of NCLD TCC 2011 is called the 
cartographic dataset and is intended primarily as an image backdrop or map display. 
This dataset consists of a single layer – tree canopy cover – that is a statistically masked 
version of the analytical dataset. Both versions of the NLCD TCC dataset are distributed 
through the MRLC NLCD website (http://www.mrlc.gov).

INTRODUCTION
The first NLCD products were prepared by the Earth 
Observation and Science (EROS) Center. The latest 
version of the NLCD percent canopy cover dataset 
was prepared by the USDA Forest Service (USFS) 
and the Remote Sensing Applications Center (RSAC). 
The NLCD products are available for free at http://
www.mrlc.gov/ (last accessed 6 Jul 2015) and are 
downloaded more than 400 times per month.

METHODS
There are 456 Landsat WRS2 path/rows for the 
conterminous United States (CONUS), 51 for coastal 
Alaska (AK), 10 for Hawaii (HI), and 6 for Puerto Rico 
(PR) and the United States Virgin Islands (USVI). For all 
these path/rows except for HI, PR, and USVI, all Landsat 
5 images with less than 70 percent cloud cover acquired 
during the growing season for the years 2009-2011 were 
downloaded from glovis.usgs.gov (last accessed: 6 Jul 
2015). For HI, PR, and USVI, Landsat 8 images for the 
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2013-2015 growing season were used. The individual 
Landsat scenes for each path/row were combined into a 
single median composite for each path/row. 

For each of the Landsat median composites, NDMI 
(normalized difference moisture index), NDVI 
(normalized difference vegetation index), and Tassel 
Cap (Baig and others 2014, Crist and Cicone 1984) 
images were created to use as explanatory variables. 
Other explanatory variables available for modeling 
but not necessarily used included elevation data, 
elevation derivatives, ecoregions, NLCD 2001 land 
cover, NLCD 2001 TCC, pixel coordinates, soils data, 
climate data, and geology data. Using 3 by 3 windows, 
focal standard deviation images were created for the 
Landsat data, Landsat derivatives, elevation data, and 
elevation derivatives.

There were 63,010 (CONUS), 1,884 (coastal AK), 
737 (PR and USVI), and 1,385 (HI) USDA Forest 
Service Inventory and Analysis (FIA) plot locations 
used to collect the response data. A circle with a radius 
of 43.9 m was placed over each FIA plot center. Each 
circle contained a 109-dot grid, which was oriented 
15 degrees east of true north, with each dot separated 
by 8 m. Photo-interpreters evaluated each dot as being 
either tree or not tree. For each plot, percent TCC was 
calculated from these dot counts.

Because the spatial resolution of the response data 
was approximately 90 m, focal means using 3 by 3 
windows were created for all of the 30 m explanatory 
variables except for the focal standard deviation 
images, large-scale images, and thematic datasets, 
which included ecoregions, NLCD 2001 land cover, 
pixel coordinates, soils data, climate data, and geology 
data. For thematic datasets that were not large-scale 
such as NLCD 2001 land cover, focal majority 
algorithms using 3 by 3 windows were used. 

The algorithm used to model TCC was random forest 
as implemented in R 3.02 (Liaw and Wiener 2002, 
R Core Team 2013). Selected explanatory variables 
along with the response data were used to train the 
random forest model. The random forest model was 
applied to the original datasets. 

The number of trees used in the random forest 
algorithm was 500, which means for every pixel, 
500 TCC predictions were generated. The final TCC 
estimate for each pixel was the mean of these 500 
predictions. Standard errors for each pixel were 
derived from these 500 predictions. 

To create the cartographic NLCD 2011 TCC dataset, 
500 random forest models were created using a 
portion of the data that was used to create the TCC 
dataset. The portion of the data not used was applied 
to the random forest models to obtained predicted 
TCC values, which were used to derive t-values: 
(predicted TCC – observed TCC)/standard error. 
The derived t-values were multiplied by the standard 
errors of the NLCD 2011 TCC dataset. If the TCC 
value was less than this product, the TCC value was 
forced to 0.

RESULTS AND DISCUSSION
There were many challenges and learning 
experiences encountered while creating the NLCD 
2011 TCC product. One of the first challenges was 
to efficiently process over 7,000 Landsat scenes. 
Elements of this challenge included how to remove 
clouds and shadows, how to deal with banding 
effects caused by Landsat 7 SLC-off gaps, and how 
to condense individual Landsat scenes for a path/
row into a single image for a path/row. FMASK 
(Zhu and Woodcock 2012), a cloud and shadow 
masking program for Landsat, was released in 
January 2012, which helped with the cloud and 
shadow removal problem. FMASK, is not perfect 
and there were occasions when manual editing 
of clouds and shadows was necessary especially 
in coastal Alaska and the mountain regions of 
the southwest US. The Landsat 7 SLC-off gap 
banding problem was solved by not using Landsat 
7. We developed a median composite technique 
(Ruefenacht in review) to condense the individual 
Landsat scenes into a single image. Additionally, 
an automatic processing system was developed, 
which was instrumental in being able to process the 
volume of data in a timely manner.
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Another challenge was the shifting of Landsat scenes 
between path/rows. We built a national grid system 
based upon the NLCD 2001 TCC layer and anchored 
all Landsat scenes to this national grid.

Originally, all of the explanatory data were used for 
the TCC modeling. However, some of the explanatory 
data, such as ecoregions and the focal standard 
deviation images, caused artificial boundaries in the 
TCC product. Thus, we carefully selected a subset of 
the explanatory variables for use in the TCC modeling.

There were other challenges encountered in creating 
the NLCD 2011 TCC dataset that were not solvable. 
For instance, we did our best to select and process 
Landsat scenes to avoid visible boundaries or seamlines 
between overlapping Landsat path/rows. Some 
seamlines are visible in the TCC data, but they are not 
prevalent. The influence of terrain shadowing can also 
be observed in the TCC data. Finally, in Alaska, clear-
cut areas quickly regenerate into extremely thick stands 
of trees with 100 percent canopy cover. These areas 
were difficult to represent accurately. 
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RESEARCH ACTIVITIES IN SUPPORT OF HIGH-RESOLUTION LAND 
COVER MAPPING IN THE NORTH CENTRAL UNITED STATES

Dacia M. Meneguzzo1 and Greg C. Liknes2

Abstract—The USDA Agroforestry Strategic Framework and the 2014 Farm Bill call for 
inventory and monitoring of agroforestry practices; however, collecting such data over 
very large non-forested areas is costly. The Forest Inventory and Analysis (FIA) program 
at the Northern Research Station has addressed this challenge by forming a targeted task 
team whose primary purpose is to conduct an image-based inventory of tree cover in the 
heavily agricultural north central United States. The team conducts applied research and 
performs operational mapping of treed lands and other land cover using high-resolution 
imagery from the National Agriculture Imagery Program (NAIP). The imagery is 
available at no cost to the user and acquired at a spatial resolution capable of locating 
individual trees. Spatial pattern analysis is then applied to the resulting high-resolution 
maps to discern forest from other wooded lands, including agroforestry practices. We 
present a variety of applied research activities that have supported this effort including, 1) 
advancements in object-based image analysis, 2) implementation of shape-based thematic 
classification to distinguish other wooded lands from traditional forest land, and 3) the 
creation of value-added geospatial products describing functions provided by nonforest 
trees. We discuss challenges associated with mapping over large areas including imagery, 
software, and hardware considerations. Finally, we present high-resolution maps of tree 
cover and their functions, examples of summary statistics derived from those maps, and a 
proposal for reporting tree resources in these expansive landscapes.
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GLOBAL ECOSYSTEM DYNAMICS INVESTIGATION (GEDI)  
LIDAR SAMPLING STRATEGY

Paul L. Patterson1, Sean Healey2

Abstract—Global Ecosystem Dynamics Investigation (GEDI) Lidar was selected by 
NASA for funding under its Earth Venture Instrument-2 program. A full-waveform lidar 
instrument will be attached to the International Space Station (ISS) and will provide 
unprecedented detail about the structure of the world’s forest between 52°S and 52°N 
(the area covered by the ISS ground track). One of GEDI’s science objectives is to 
quantify the distribution of above-ground forest biomass at fine spatial resolution, i.e., 
at the 500x500 meter pixel level. We will present the sampling design and estimators for 
average above ground live tree biomass (tons per ha), along with uncertainty, for each 
500x500 meter pixel. The GEDI data is collected in linear tracks of lidar “shots”, or plots 
with a 25m footprint and 60m posting. The first step is to build a model for predicting 
biomass for a single GEDI lidar shot. The estimate for each 500x500 pixel is a design 
based estimate, where the sample locations are the location of the GEDI lidar shots and 
the “observed” quantities are the predicted biomass. We propose to treat the tracks of 
lidar as clusters and treat the sample design as a combination of two single stage cluster 
samples. The estimated variance will take into account the uncertainty in the biomass 
prediction as well as uncertainty due to the sample design. Where auxiliary data is 
available, e.g., Landsat, we extend the methods to a model-assisted regression estimator 
to reduce the uncertainty in the estimated average biomass in theses near- global 
500x500 meter pixels.

1 Paul L. Patterson, Interior West – Forest Inventory and Analysis, 
2150 Centre Ave, Fort Collins, CO 80526, (970)-295-5966, PLPat-
terson@fs.fed.us
2 Sean Healey, Interior West – Forest Inventory and Analysis, 
Ogden, UT
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DEVELOPMENT OF A REGIONAL LIDAR FIELD PLOT STRATEGY  
FOR OREGON AND WASHINGTON

Dr. Arvind Bhuta and Dr. Leah Rathbun1

Abstract—The National Forest System (NFS) Pacific Northwest Region (R6) has 
been flying LiDAR on a per project basis.  Additional field data was also collected in 
situ to many of these LiDAR projects to aid in the development of predictive models 
and estimate values which are unattainable through LiDAR data alone (e.g. species 
composition, tree volume, and downed woody material).  Until now, the protocols for 
collecting vegetation field data within LiDAR project areas have varied from project to 
project, leading to the inability to share, use, or analyze data across multiple project areas. 
The R6 Regional Office in conjunction with staff from the National Forests, the Pacific 
Northwest and Southwest Research Stations, and other collaborators, has developed 
a regional strategy for standardized field data collection in LiDAR project areas.  The 
strategy includes the modification of Forest Inventory and Analysis (FIA) plots for 
field data collection.  This allows for the opportunity to maintain consistency across 
the region and to leverage information from the existing FIA and Regional Monitoring 
data at no additional costs.  This presentation will outline the strategy and discuss its 
implementation within a pilot project area located in the Blue Mountains.  

1 Pacific Northwest Regional Office, USDA Forest Service, 1220 
SW 3rd Ave, Portland OR 97211.
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REFINING FIA PLOT LOCATIONS USING LIDAR POINT CLOUDS

Charlie Schrader-Patton, Greg C. Liknes, Demetrios Gatziolis, Brian M. Wing, Mark D. Nelson,  
Patrick D. Miles, Josh Bixby, Daniel G. Wendt, Dennis Kepler and Abbey Schaaf1

Abstract—Forest Inventory and Analysis (FIA) plot location coordinate precision is 
often insufficient for use with high resolution remotely sensed data, thereby limiting the 
use of these plots for geospatial applications and reducing the validity of models that 
assume the locations are precise. A practical and efficient method is needed to improve 
coordinate precision. To address this need, the USDA Forest Service’s Remote Sensing 
Steering Committee has funded an applied research project to evaluate alternative 
methods that capitalize on lidar data availability to improve plot location precision. We 
are exploring two methods to improve plot location precision—a manual interpretation 
technique and a 3D surface model matching routine using FIA tree data and lidar 
collected in northeastern Minnesota.

The Forest Inventory and Analysis (FIA) program 
of the USDA Forest Service maintains an extensive 
network of field plots. Data collected on these plots 
at regular time intervals are used to provide unbiased 
statistical estimates of forest resources across the USA 
and US territories. The established sample plot density 
was designed to produce estimates for county- or 
multi-county areas, and to support informed decision-
making at the strategic level with prescribed levels of 
precision. Tactical decision-making by forest managers 
and ecological analyses by landscape scientists 
necessitate that plot-level data be combined with 
high-resolution ancillary data in support of small-area 
estimation techniques (e.g., Goerndt and others 2013). 

However, creating accurate linkages between plot-
level data and high-resolution data requires precise 
plot locations, or, minimally, accurate co-registration 
between datasets.

FIA plot coordinates have been obtained using several 
methods depending upon the technology available 
at the time of the field visit and available funding. 
Methods have evolved over time, including location of 
plots by pin-pricking aerial photos and transferring to 
corresponding digital ortho quads, use of early GPS units 
with “Selective Availability” (intentional degradation of 
public GPS signals by the U.S. Department of Defense), 
and, lately, recreation grade and survey grade GPS 
units. These coordinates have been used primarily to 
efficiently relocate plots during return visits. 

Recreational grade equipment has been deemed 
sufficient for navigational purposes to and from plots. 
GPS methods vary substantially in their horizontal 
(locational) precision and also vary with location, 
terrain, and canopy cover conditions. In many states 
(e.g., Minnesota), recreation grade GPS receivers are 
believed to produce horizontal accuracies within 8–10 
m RMSE in medium to heavy canopy (USDA Forest 
Service 2015), which are inadequate for co-registration 
with high resolution imagery.  

1 Geospatial Analyst (CSP), RedCastle Resources, Inc. under 
contract with USDA Forest Service Remote Sensing Applica-
tions Center, 2222 West 2300 South, Salt Lake City, UT 84119; 
Research Physical Scientist (GCL), USDA Forest Service, 
Northern Research Station; Research Forester (DG), USDA Forest 
Service, Pacific Northwest Research Station; Research Forester 
(BMW), USDA Forest Service Pacific Southwest Research 
Station; Research Forester (MDN), U.S. Forest Service, Northern 
Research Station; Research Forester (PDM), USDA Forest Service, 
Northern Research Station; Resource Information Manager(JB), 
USDA Forest Service, Superior National Forest; Remote Sensing 
Coordinator (DGW), USDA Forest Service, Eastern Region; 
Supervisor (DK), Resource Assessment, Division of Forestry, 
Minnesota Department of Natural Resources; Sponsored Projects 
Group Leader (AS), RedCastle Resources Inc. under contract with 
USDA Forest Service, Remote Sensing Applications Center. CSP 
is corresponding author: to contact, call (541) 312-4291 or e-mail 
at cschrader@fs.fed.us.

mailto:cschrader@fs.fed.us
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In the absence of highly precise (i.e., survey grade 
GPS) coordinates, there is a need to enhance the 
precision of existing forest inventory plot location 
coordinates to better correlate with digital imagery and 
other geospatial data (Gobakken and Nasset 2009). 

Although efforts are underway to upgrade plot 
coordinates to survey grade precision for selected 
states and special study areas, a nationwide 
implementation is not under consideration. Except 
for the Pacific Northwest FIA region, acquiring plot 
coordinates with survey- or even mapping-grade 
receivers has not been made a priority for the FIA 
program. To address the need for higher precision 
FIA plot locations, the Forest Service’s Remote 
Sensing Steering Committee has funded an applied 
research project in which lidar (light detection and 
ranging) point clouds will be used in an attempt 
to enhance the precision of FIA plot locations in 
northeastern Minnesota.

The State of Minnesota has complete statewide lidar 
coverage with acquisition dates ranging from 2008 
to 2012. The primary use of these data is terrain 
mapping with a focus on hydrologic applications. 
Considering that lidar point clouds have planar 
coordinate registration errors consistently below 
1 m, the coordinates of landscape objects, such 
as dominant trees identified from the lidar data 
are more precise than those calculated by the 
aforementioned methods. 

We are evaluating two methods for improving FIA 
plot location coordinate precision—a manual approach 
based on human cognition, and a 3D surface matching 
process developed by Gatziolis (2012)—using 
Minnesota’s statewide low density (approximately 
1 return per m2) lidar data.  Additionally we are 
testing these methods using a moderate density 
(approximately 4 returns per m2) lidar dataset collected 
in support of the NASA Carbon Monitoring System 
(CMS; Cohen and others 2013).

METHODS
Our study area extends north of Duluth and is roughly 
coincident with the boundary of St. Louis County. 
This area was selected because it is also the lidar 
data acquisition area for the NASA CMS study. The 
methods are as follows:

1.	Surface model matching method (Gatziolis 2012). 
This method was developed using FIA data and 
high density lidar data with a return density of 
approximately 9 returns per m2 in forests of the 
Pacific Northwest, USA. This project will assess 
the feasibility of and results obtained from using 
FIA plot data and lower density lidar data in 
Minnesota, USA.

2.	Manual interpretation of FIA plot stem maps 
and corresponding lidar point data. Brian Wing 
Research Forester, U.S. Forest Service Pacific 
Southwest Research Station) has developed a 
method of repositioning a plot’s location by 
manually interpreting tree locations from the lidar 
point clouds and shifting the location of the plot to 
match the field stem map data. 

The surface model matching method compares 3D 
canopy surface models derived from the lidar data 
and the FIA plot data (Fig. 1). The lidar surface 
model is held stationary while the FIA model is 
iteratively shifted in two horizontal dimensions. For 
each shift a weighted correlation between the two 
surfaces is calculated, with weight values determined 
dynamically from the vegetation structure present on 
the plot. A pronounced maximum in the correlation 
raster indicates that the actual plot location has been 
determined. Multiple weak correlation maxima 
suggest that the precise plot location remains elusive 
(Gatziolis 2012). The inputs required by the surface 
matching model include FIA-collected tree location 
and dimensionality (e.g., crown size and shape) data, 
either field-measured or model-derived, and lidar data 
and derivatives (Table 1). 
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Tree crowns that intersect a subplot but do not have 
a stem inside the subplot must be accounted for in 
the surface model matching method. This required 
delineation of tree crown boundaries in an area slightly 
larger than each subplot via a process called image 
segmentation. Using canopy height surface models 
derived from the lidar point cloud we compared 
segmentation results from eCognition software 
(Trimble Corporation; Sunnyvale, CA) and a tree 
crown segmentation program in FUSION (McGaughey 
and Carson 2003) called TreeSeg. TreeSeg is currently 
in development and is expected to be released in 
January 2016. The input canopy models were built 
using CanopyModel in FUSION with a 3x3 smoothing 
filter, with no preservation of minimum and maximum, 
at a 1 m cell output and with a normalized lidar LAS 
file as the input. The LAS files were normalized 
using the vendor-supplied digital elevation model 
(DEM). After several iterations of adjusting program 
settings to achieve suitable segments, both approaches 
produced comparable results and we elected to use 
segments produced by TreeSeg. The output from 
TreeSeg provides both a raster segmentation file and a 
maximum height point shapefile for each segment.

The manual interpretation method involves generating 
a tree stem map from the plot data using ArcMap 
v. 10.2.2 software (ESRI; Redlands, CA) and then 
overlaying the uncorrected position of the plot center 
with the lidar point cloud. Point clouds are visualized 
in the FUSION or other point cloud visualization 
software package. The interpreter then matches the tree 
stem map pattern with the trees identified in the lidar 
point cloud returns representing trees and shifts the plot 
location accordingly (Fig. 2). Manual interpretation 
focuses on visual cues such as the relative positioning 
of trees, tree heights, species-specific crown sizes and 
shapes, and the presence of snags.

This method was developed using a larger plot size 
(16.9 m radius) than the FIA subplots (7.3 m radius) 
and with all stems mapped, whereas in FIA subplots 
only trees larger than 12.7 cm d.b.h were tallied. 
Additionally this method has been used with higher 
density lidar (8–12 returns per m2) than the data in this 

Figure 1—Conceptual representation of surface model matching 
method (Gatziolis 2012). A field-derived canopy height model 
(CHM) (1a) is iteratively shifted relative to a lidar-derived canopy 
surface height model (1b) until a satisfactory fit is achieved (1c). 
After fitting, new plot center coordinates are recorded from the 
shifted CHM.

A

B

C
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study (0.5–1 returns per m2 for the statewide MN data, 
4 returns per m2 for the NASA CMS data). Identifying 
trees on this lower density data may be problematic. 
Using all FIA subplots in the interpretive process may 
compensate to a degree for the lower lidar data density. 

Relative precision of plot location coordinates 
resulting from the two methods will be determined by 
comparing locations to survey- or mapping-grade GPS 
locations. In addition, we will evaluate the impact of 
refined locations on models of biomass created from 
FIA plot data and derivatives modeled from the lidar 
data. The goal is <=3 m RMSE horizontal precision 
for at least 80 percent of the sample plots assessed 
using survey-grade GPS data, and an improvement in 
biomass model fit using a plot-based response variable 
and lidar-derived predictor variables. We recognize 
that the success of these methods may be dependent on 
the canopy structure characteristics present in the plot. 
To help define the relationship between plot canopy 
structure and successful interpolation of new plot 

coordinates, precision metrics are being calculated for 
multiple plot stand structure and composition strata.

DISCUSSION
A number of challenges need to be overcome in order 
to generate required input data for the surface model 
matching program. Many tree inputs are not directly 
collected by FIA but can be derived from FIA data 
(Table 1). This requires a mix of approaches. For 
example, crown shapes were assigned to the species 
present in the study area by field foresters with 
regional knowledge using a combination of experience 
and consultation with silvicultural reference materials. 
FIA does not measure crown width or crown base 
height in the study area, but these were modeled using 
existing equations or by approximating from another 
FIA variable (e.g., using compacted crown ratio).

Statewide lidar collections are becoming more 
common (US IEI: http://coast.noaa.gov/inventory/#) 
but many are collected using pulse density that is 

Table 1—Inputs that are required by a program that attempts to match lidar point clouds to field-collected 
stem map data (Gatziolis 2012). An explanation of each input and how it was collected or derived is provided.

Data source Input Description and source
FIA tree data Tree diameter d.b.h. directly from FIA database

Tree height FIA variable ‘actual height’ which is a measure of a tree’s length. The length and height 
differ depending on the amount of tree lean.

Crown diameter Modeled from tree diameter, crown ratio, and Hopkins Index using Forest Vegetation 
Simulator (FVS) Lakes States Variant equations (Dixon and Keyser 2008).

x,y Location of tree base relative to subplot center. 
Calculated from FIA measurements of distance and azimuth and corrected for 
declination using an online web application from NOAA’s National Centers for 
Environmental Information.

Crown shape Shape on an ellipsoidal to conical gradient by tree species. Assignments of shapes 
were based on a majority opinion of three field-experienced foresters with regional 
knowledge.

Crown base 
height

Height to bottom of crown. Approximated using Height – (Compacted Crown Ratio x Height). 
Uncompacted crown ratio would be a more appropriate choice, but it is only available on a 
subset of plots. As with tree heights, crown base will be impacted by tree lean.

Lidar/lidar 
derivatives

Lidar point 
cloud 

LAS file containing lidar point data.

Bare earth 
elevation 

Vendor-delivered digital elevation model.

Crown 
segments

2-D delineation of individual crown segments for each plot including some buffer space 
around the plot footprint. This is used to identify stems that fall outside the plot but that 
have crowns that would intersect the plot area. Segmentation rasters were produced by 
the TreeSeg function in FUSION software. 

http://coast.noaa.gov/inventory/
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less than optimal for forestry applications (Gatziolis 
and Andersen 2008). This project seeks to determine 
whether lower pulse density lidar (i.e. 1-2 returns per 
m2) has utility for improving coordinate precision 
of FIA plots. The lessons learned in working with 
lower pulse density lidar data have implications for 
future FIA projects that may require lidar coverage 
over broad-scale areas. In the case of the Minnesota 
statewide lidar collection, we discovered some 
additional challenges, such as highly variable pulse 
density and high variability in sidelap between 

adjacent flight lines. The implications of these 
irregularities for this project are still being explored.  

The ability of these methods to improve plot locations 
will undoubtedly vary with canopy heterogeneity and 
perhaps composition. Improved precision on a subset 
of plots would still be valuable for remote sensing-
based operation and analyses, especially if that subset 
is representative of the larger forest population or for 
plots with heterogeneous composition or structure for 
which improvement in location coordinates provides 
more benefit.

Figure 2—Methodology of repositioning plot center location using lidar point cloud data and a field derived plot stem map.
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In summary, we are providing a status report on 
an applied project that is exploring one automated 
and one manual method for co-registering field plot 
locations with lidar data. Finding good matches 
between in situ and lidar data holds promise for 
improving the precision of field plot locations—if 
technical limitations can be overcome. In addition to 
testing two methods, we will be replicating the study 
with a higher-pulse density lidar collection and then 
validating the results against high-precision GPS 
coordinates and exploring the impact of improved 
co-registration on biophysical models. We aspire to 
provide recommendations for future lidar acquisitions 
and GPS coordinate data collection to improve the 
precision of FIA plot locations.
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FOREST INVENTORY WITH LIDAR AND STEREO DSM ON 
WASHINGTON DEPARTMENT OF NATURAL RESOURCES LANDS

Jacob L Strunk1 and Peter J Gould2

Abstract—DNR’s forest inventory group has completed its first version of a new remote-
sensing based forest inventory system covering 1.4 million acres of DNR forest lands. We 
use a combination of field plots, lidar, NAIP, and a NAIP-derived canopy surface DSM. 
Given that height drives many key inventory variables (e.g. height, volume, biomass, 
carbon), remote-sensing derived height information provides a powerful tool to make fine 
scale inference about height related forest attributes. Predictions can also be aggregated 
to sub-stand, stand, or strata levels. Remote-sensing derived forest attributes can also be 
used to automate stand delineation, a capability that we incorporated into our inventory 
system following object-oriented segmentation with eCognition software.

Our sampling design is closely related to the FIA plot design (paneled hexagonal grid), 
with slight modifications to the plot and grid layouts to accommodate remote sensing 
auxiliary variables, and to provide greater flexibility in adapting to changes in funding for 
field measurements. Modifications include (e.g.) using 1/5 acre fixed plots, survey-grade 
plot positioning with Javad GNNS units, and providing extra panels in each hex grid cell.

Our presentation will provide greater detail about our new inventory system, while 
describing key technical hurdles we overcame in moving a technology out of a (mostly) 
research mode and into an operational framework. Examples include merging a 
patchwork of remote sensing data, processing and managing tens of terabytes of point 
clouds, and distributing final products to our users. We also discuss hurdles that we have 
not yet overcome in an effort to motivate discussions which will benefit us and others 
who work to operationalize remote-sensing based methods. 

1 Forest Inventory Remote Sensing Specialist, Washington State 
Department of Natural Resources, PO Box 47000, 1111 Wash-
ington Street SE, Olympia, WA 98504-7000 Jacob.Strunk@dnr.
wa.gov 360-902-1653
2 Forest Inventory Lead, Washington State Department of Natural 
Resources, PO Box 47000, 1111 Washington Street SE, Olympia, 
WA 98504-7000 Peter.Gould@dnr.wa.gov 360-902-1369
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ANALYSIS OF THE U.S. FOREST TOLERANCE PATTERNS 
DEPENDING ON CURRENT AND FUTURE TEMPERATURE  

AND PRECIPITATION

Jean Lienard, John Harrison, Nikolay Strigul1

Abstract— Forested ecosystems are shaped by climate, soil and biotic interactions, 
resulting in constrained spatial distribution of species and biomes.  Tolerance traits of 
species determine their fundamental ecological niche, while biotic interactions narrow 
tree distributions to the realized niche. In particular, shade, drought and waterlogging 
tolerances have been well-characterized at the species level in the Northern hemisphere 
tree species. Species distribution models explore fundamental niches and current 
geographic distributions with respect to environmental factors, but their ability to 
capture and predict the community-level patterns is limited. Here, we analyze the Forest 
Inventory and Analysis Database and show that the tolerances of forest stands are directly 
linked with annual temperature, precipitations, and soil features in mainland USA. Using 
temperature and precipitation as two major predictors, we developed a model of tolerance 
distributions at forest patch-mosaic level, that we call the Tolerance Distribution Model 
(TDM).  Using 17 climate change models from CMIP5, we delineate forested ecosystems 
vulnerable to drought, and we show that high elevation areas, and Midwest as well as 
Northeast US are at a high risk under future climate. We also predict changes of forest 
type over much of the land surface along the Southern and Western borders of the 
conterminous US. Our TDM provides a scaling of species tolerances to the community 
level and improves our understanding of how terrestrial ecosystems develop over large 
spatial scales shaped by climate. In particular, the direct connection we elucidate between 
temperature, precipitation and stand-level tolerances provides a new tool to quantitatively 
assess the impact of climatic changes in forested ecosystems.

INTRODUCTION
Understanding and predicting how forest distributions 
will respond to ongoing and anticipated climate 
change is a challenge with great ecological, economic, 
and cultural implications (Levin, 1999). It is well 
established that environmental stressors increase 
mortality of intolerant trees (e.g. Hanson and Weltzin, 
2000, Lienard et al. 2015a). However, our ability to 
scale up individual plant traits such as growth/mortality 

characteristics to the ecosystem level has been limited 
due to ecosystem biocomplexity, including numerous 
non-linear functional relationships and feedback loops 
between different organisms (Strigul, 2012). 

Although it is widely recognized that climate change 
will require a major spatial reorganization of forests on 
the landscape, our ability to predict what this will look 
like has been quite limited. Current modeling efforts to 
predict future distribution of forested ecosystems as a 
function of climate include species distribution models 
(for precise, local scale predictions) and potential 
vegetation climate envelope models (for coarse-
grained, large scale predictions). In this work we 
bridge these approaches by considering an intermediate 
level of complexity, using stand-level tolerances. 

1 Postdoctoral Researcher (JL), Department of Mathematics & 
School of Art and Sciences, Washington State University Vancou-
ver, 14204 NE Salmon Creek Ave, Vancouver, WA 98686; Associ-
ate Professor (JH), School of the Environment, Washington State 
University Vancouver; and Assistant Professor (NS), Department 
of Mathematics & School of Art and Sciences, Washington State 
University Vancouver. JL is corresponding author: to contact, 
e-mail at jean.lienard@wsu.edu
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METHODS
The USDA Forest Inventory and Analysis database 
was used to compute the tolerance indices of current 
US forests. The connection between soil moisture 
and waterlogging tolerance was investigated using 
the FIADB and USFWS National Wetlands Database. 
Two independent databases were employed to link 
vegetation patterns and climate: Worldclim (using a 
spatial resolution of 30 seconds) and PRISM (using 
a spatial resolution of 800 meters). The 17 climate 
change models from CMIP5 were bias-corrected with 
a baseline extracted from the Worldclim dataset. 

To establish the drought tolerance model, annual 
temperatures and precipitations occurring in forested 
plots were gridded into cells of 0.5 °C and 60 mm/
month. To validate the model, we compared the 
drought tolerance index computed from the FIADB 
(i.e. current forest) with the model’s predictions 
based on current temperature and precipitations. To 
extrapolate expected values of drought tolerance index 
to future climate, we computed the model’s prediction 
over the conterminous US, with a spatial resolution 
of 30 seconds. We relied on projected climatic data 
using two representative concentration pathways 
adopted on the Fifth Assessment Report from the 
Intergovernmental Panel on Climate Change: moderate 
forcing (RCP4.5) and severe forcing (RCP8.5).

RESULTS
Shade, drought and waterlogging tolerance indices 
show distinct landscape level patterns (Fig. 1A), 
demonstrating that these stand-level indicators 
can effectively describe forests in the US (Lienard 
et al, 2015a, 2015b, Lienard and Strigul, 2015). 
Waterlogging tolerant plots are located mainly on 
hydric soils (Fig. 1B), along the Mississippi river or 
its tributaries, and along the Southwestern US coast 
(Fig. 1A). Spatial distributions of shade and drought 
tolerance were strongly correlated with mean annual 
temperature and precipitation (Fig. 1C-D), while 
waterlogging tolerance displayed no clear relationship 
with climate parameters except for demonstrating 
very low values when the mean annual temperature 

was higher than 20°C (Fig. 1E). The shade tolerance 
index demonstrated fully opposite climate response 
to the drought tolerance index (Fig. 1C-D), and good 
correlation with basal area (Fig. 1C,F). 

We focused our modeling efforts on drought tolerance, 
for which the link with global warming impacts 
is straightforward and develop the drought TDM 
for the continental US. The TDM predicts forest 
drought tolerance as a function of temperature and 
precipitation (Fig. 1C). The drought TDM is able 
to reproduce the current overall drought tolerance 
patterns in the continental US (excluding wetland 
areas). In particular, a detailed inspection of drought 
tolerance patterns across geographical features shows 
that the model has a high accuracy, with the exception 
of the lower Mississippi river, which is the most 
noticeable wetland area. The TDM ignores history of 
stochastic disturbances associated with plots as it takes 
only climate variables as input. This results throughout 
the US in the prediction of smooth patterns compared 
to the realized drought tolerance. An analysis of errors 
further reveal a symmetric, non-skewed profile that 
follows an exponential decrease around the mean, 
consistent with a high predictive power of the TDM. 

Because annual precipitation and the mean annual 
temperature are both expected to change over the 
coming century, we anticipate that the geographic 
distribution of drought tolerance will need to shift 
to accommodate this change. Projected climate 
trajectories for forested plots in climate space can 
be coupled with the drought tolerance model to 
provide the drought tolerance expected to be resilient 
to future projected conditions. Extrapolation of the 
model to future conditions using an ensemble of 
17 climate models revealed a progression toward 
greater required drought tolerance. This progression 
was geographically ubiquitous and consistent 
across forcing scenarios (from RCP4.5 to RCP8.5). 
Furthermore, we identify a number of regions where 
major shifts in drought tolerance will be required. 
Northeastern US and Northern Great Plains are at high 
risk, as well as, to a lower extent, higher elevation 
areas in the Rocky mountains. Vulnerable forests are 
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Figure 1—Overview of the tolerance indices in the conterminous US. A. Visualization of the tolerance index values in the US mapped 
onto the hue-saturation-value color space. In the color triangle key, plots where the shade tolerance (respectively drought tolerance and 
waterlogging tolerance) is high while all other tolerances are low are shown in green (respectively red and blue). Intermediate colors 
indicate plots with mixed tolerances (for example, yellow indicate plots resilient to both shade and drought). B. Waterlogging tolerance 
index as a function of soil moisture (boxplot widths are proportional to the number of plots, overall n=61,3275 total different locations are 
considered, two-tailed t-test is significant with p<0.001). C. to F., macroscopic variables describing forest stands plotted in the climatic 
system of mean annual temperature (x axis) and mean annual precipitation (y axis). The 5% high outliers for waterlogging tolerance index 
are represented by purple crosses. 
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overall evenly distributed in private, corporate, federal 
and state ownership. In the northeastern US, where 
the risks are the most pronounced, at-risk forest types 
include Maple/Beech/Birch, Spruce/Fir and White/
Red/Jack Pine combination. Red pines (Pinus resinosa) 
and trembling aspens (Populus tremuloides), which 
are species with low to medium resistance to drought, 
have distributions overlapping the most vulnerable 
areas identified and are already considered to be 
endangered species. The predictions are robust with 
respect to the source of current climatic data (two 
databases used, Worldclim and PRISM) and to the 
climate change model choice (17 models considered).

DISCUSSION
One approach to predicting how vegetation 
distributions will change with climate is to associate 
certain biomes with certain climate envelopes (Olson 
et al., 2001) and assume that vegetation will migrate 
to fill potential vegetation niches.  To a degree this 
approach is appealing as biome spatial distributions are 
strongly correlated with climatic variables, particularly 
temperature and precipitation (Olson et al., 2001). 
However, the discrete biome approach defines biomes 
into discrete entities at the landscape scale, which 
limits its ability to represent ecosystem transitions 
across space and time (Moncrieff et al., 2015). 
Alternatively, Species Distribution Models, SDMs also 
have been employed to study how plant communities 
respond to climate, albeit generally to examine plant 
presence or absence across environmental gradients, 
most often at small scales (Elith and Graham, 2009). 
The well-known shortcoming of SDMs is that 
they ignore biocomplexity and species interaction 
effects. In fact, species distributions depend not only 
on climatic factors, but also on biotic interactions 
within plant communities, disturbances and dispersal 
(Elith and Graham, 2009). Furthermore, upscaling 
the SDM approach is not possible as it requires 
too many predictors to model the large number of 
species present at continental or global scales (e.g. 
38 environmental variables are used to predict the 
distribution of 134 tree species across Eastern USA 

in Iverson et al., 2008). Although the TDM approach 
provides a new insight over climate envelope models 
and SDMs, it shares a limitation with those models, 
which is an inability to predict rate of vegetation 
changes. Despite this limitation, the presented work 
substantially extends available tools for potential 
vegetation mapping as it offers a simple mechanistic 
explanation on how climatic variables affect landscape 
scale vegetation patterns.
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APPLYING MANAGEMENT MODELING  
TO ASSESS THE FEASIBILITY OF ACCELERATING LANDSCAPE 
RESTORATION ON FEDERAL FORESTS IN EASTERN OREGON

Sara Loreno, Jeremy S. Fried, and Andrew Yost1

Abstract—The state of Oregon recently invested in exploring options for increasing the 
extent of forest restoration activity. This initiative aims to reduce the incidence, effects, 
and expense of catastrophic fire events and restore economic stability to rural communities 
by enhancing the supply of raw materials for wood processing facilities and wood-based, 
renewable energy producers, particularly in the comparatively xeric, eastern two-thirds 
of the State. Collaborating with PNW-FIA and Portland State University, the Oregon 
Department of Forestry evaluated current levels of fire hazard as embodied in multiple 
metrics, assessed the effectiveness of a broad suite of fuel treatment-focused silvicultural 
prescriptions in achieving resilient forest stands, assessed the wood production potential 
of landscape restoration, and assessed treatment longevity for northeast Oregon, especially 
on federal forests. We developed a four-decade simulation, using BioSum 5 (dynamic), 
with 1,365 forested FIA plots in the northeastern corner of the state and 32 multi-decade 
sequences of silvicultural prescriptions applied, via FVS-FFE, to all plots where applicable. 
We estimated treatment costs using the R-based OpCost model, and treatment effectiveness 
based on multiple stand metrics selected to represent different dimensions of forest 
resilience, including crown fire potential, predicted mortality and fire intensity. The policy-
relevant findings and technical insights developed via this modeling effort are presented. 

The Oregon Department of Forestry sought a better 
understanding of the potential for increased forest 
restoration activity in eastern Oregon, and the impacts 
of such efforts on fire hazard, stand resilience, and 
economic benefits to rural communities that have 
traditionally relied on economic activity generated by 
timber production. A combination of active management 
via appropriate thinning and prescribed fire, if applied 
across the forested landscape, offers the potential 
to increase the prevalence of open, resilient stands, 
and to decrease the incidence of catastrophic fires 
resulting from an abundance of overly dense forests. 
We applied a modeling framework to evaluate current 

fire hazard in the Blue Mountain region of eastern 
Oregon, and to understand the effectiveness of several 
kinds of commonly applied silvicultural treatments for 
fire hazard reduction.  We estimated treatment costs, 
including both the on-site costs of harvest and surface 
fuel reduction and the costs of hauling harvested wood 
for milling and energy generation, and the potential 
revenue from sales of such wood.  

STUDY AREA
In a previous study by the Federal Forest Advisory 
Committee, an economic assessment of increased 
restoration activity on Oregon’s eastern National 
Forests was conducted with the intent of accelerating 
restoration on federal forestlands (Federal Forest 
Advisory Committee 2012).  We analyzed the 
effectiveness and feasibility of alternative silvicultural 
prescriptions in the Blue Mountains region, where 
a mix of private and public land ownership exists 
among three of eastern Oregon’s national forests. 

1 Researcher, Dynamic Ecosystems and Landscapes Lab, Portland 
State University, Portland, OR, 97207. 
2 Research Forester, Pacific Northwest Research Station, USDA 
Forest Service 620 SW main St., Ste. 400, Portland, OR 97205.
3 Forest Ecologist, Oregon Dept. of Forestry, Salem, OR. J. Fried is 
corresponding author: to contact, call (503) 808-2058 or e-mail at 
jsfried@fs.fed.us.
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Stretching from east of Pendleton to the Snake River 
on the Oregon-Idaho border, the Blue Mountains 
comprise 21 percent of eastern Oregon’s land area, 
containing over 2.8 million acres. (Campbell and 
others 2003).  Many forests in the Blue Mountains are 
overstocked, resulting from an extended period of fire 
suppression and a history of harvests that primarily 
removed large trees.

FIA plots within the Blue Mountain region provide a 
representative sample of this forested landscape.  We 
selected a subset of these plots to include only those 
containing forests classified as Doug fir, Grand Fir, 
Ponderosa Pine, or Lodgepole pine – the dominant 
forest types in this region (Fig.1).  Plots on reserved 
lands were excluded from this analysis, leaving a total 
of 1,085 plots (full or partial), referenced hereafter 

Figure1—Location of FIA plots and processing facilities within the Blue Mountain study area.
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as stands, that represent 2.19 million forested acres.  
Most stands are located on national forest system land 
(NFS), with nearly all of the remainder on private land 
(Table 1). Due to the limited sample size of stands on 
state and other federal lands, we only discuss results 
for NFS and private lands. 

METHODS
We used the Forest Inventory and Analysis (FIA) 
BIOSUM 5 analysis framework to assess the 
effectiveness, costs, and potential revenue resulting 
from implementing 32 generic fuel treatment-driven 
silvicultural sequences that reflect management 
prescriptions common in this region. Over the past 
decade, the PNW FIA Program developed BIOSUM 
(Fried et al. 2004) for bioregional inventory-oriented 
management simulation. BIOSUM integrates FIA 
data, wood processing facility locations, and GIS 
representations of transportation infrastructure with a 
workflow management system that: 

1.	Organizes data flow to and from multiple 
computer programs that are components of the 
analysis framework. 

2.	Audits inputs and outputs. 
3.	Evaluates alternative landscape-scale silvicultural 

treatments in terms of user-defined indicators of 
effectiveness and management objectives.  

BIOSUM 5 integrates the following specific components: 

1.	Systematic forest inventory (FIA) data. 
2.	A dynamic forest stand model (FVS) for 

summarizing current conditions and predicting 
potential stand conditions at decadal intervals 
under various management alternatives (Dixon 
2002). 

3.	An R-based treatment cost model (Bell and Keefe 
2014). 

4.	A haul cost estimation model. 
5.	User-guided effectiveness heuristics for selecting 

the best silvicultural sequence of decadal treatment 
activities for each stand. 

Table 1—Area of forest and number of stands modeled by owner group and forest type. 

Owner Forest Type Area (1000 acres) Area (percent of total) Stands
National Forest Douglas fir 316 14.4 200

ponderosa pine 585 26.7 368

grand fir 327 14.9 208

lodgepole pine 231 10.5 160
  total 1459 66.6 936
Other Federal Douglas fir 7 0.3 3

ponderosa pine 22 1.0 4
  total 29 1.3 7
State and Local Douglas fir 7 0.3 1

ponderosa pine 16 0.7 3

grand fir 2 0.1 2
  total 25 0.8 6
Private Douglas fir 143 6.5 28

lodgepole pine 379 17.3 78

grand fir 113 5.1 19

lodgepole pine 43 2.0 11

  total 679 31.0 136

Total   2192 100 1085
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We devised 32 silvicultural sequences in 
consultation with specialists from the Oregon 
Department of Forestry, representing the full 
spectrum of treatments commonly implemented on 
federal lands in the study area.  

To evaluate current levels of fire hazard and to assess 
the effectiveness of the selected silvicultural sequences 
in reducing fire hazard over time, we relied on four 
descriptors of stand-level fire hazard at a point in time 
(Jain and others 2012). These thresholds, which when 
exceeded indicate hazard, are: probability of torching 
(Ptorch) >20 percent, Torching Index (TI) <20 mph, 
Surface Flame Length (SFL) >4 feet, and Mortality 
Volume as a Percent (of pre-treatment stand volume) 
(MVP) >30 percent. A stand’s hazard score, at a point in 
time such as before, or after, initiating a treatment activity 
at the beginning, or at any decadal interval within, a 
silviculural sequence, is calculated as the number of 
descriptors for which the threshold is exceeded.  Thus, 
hazard score has a maximum value of 4, which occurs 
when all descriptor thresholds are exceeded. We defined 
effective treatments as those that reduce initial hazard 
score when assessed one year post treatment. The costs 
and revenues from wood production determined the 
economic feasibility of each silvicultural sequence.

When applied to a given stand, any one of the 32 
silvicultral sequences may result in treatment activity 
occurring as often as every decade. Treatments were 
designed to follow one of two styles: thin from below 
or thin across diameter classes, and had residual 
basal area targets of 25 to 135 ft2/acre.  Many of the 
silvicultural sequences included reduction of surface 
fuels following thinning, via prescribed fire or lopping 
and scattering all harvested wood below merchantable 
size. Silvicultural sequences simulated harvest via 
either cut-to-length or whole tree logging systems. 

RESULTS
Current Conditions
None of the 2.19 million forested acres represented 
by the FIA plot data are currently rated resilient 
with respect to all aspects of fire hazard considered 

in this study.  All stands have at least one hazard 
element—the hazard indicator for MVP was present 
in all but 1 percent of the represented acres—and 32 
percent have all four (Table 2).  More than half, 66 
percent, of the represented acres have a hazard score 
of 3 or greater. 

Treatment Effectiveness
In our simulations, over 35 percent of stands, 
representing 775,000 acres, were effectively treated at 
first entry, i.e., their hazard score was reduced when 
evaluated one year post-treatment, by one or more 
of the 32 silvicultural sequences. For most stands, 
BIOSUM selected sequences composed of thin-from-
below style treatments as the most effective, and 
more frequently selected those with lower residual 
basal area targets. Of the 775,000 treatable acres, 52 
percent achieved a post-treatment hazard score of 
zero and 42 percent, a hazard score of one; 17 percent 
remained fully resilient (hazard score=0) at the end of 
40 years (Fig.2). 

Table 2—Area and area fraction (percent) of forest, 
before any simulated treatment activities, rated 
hazardous (+) or not hazardous (-) by combination 
of hazard descriptors. A “+” indicates as follows, 
for each hazard descriptor: Probability of Torching 
(PTorch) > 20 percent, Torching Index (TI) <20 mph, 
Surface Flame Length (SFL) >4 feet, and Mortality 
Volume Percent (MVP) > 30 percent.  

Ptorch TI SFL MVP
Area (1000 

acres)

Area 
(percent 
of total)

+ + + + 711 32.4

+ + - + 437 19.9

- + - + 410 18.7

- + + + 252 11.5

- - - + 171 7.8

+ - - + 157 7.2

+ - + + 28 1.3

+ - + - 10 0.4

+ + + - 10 0.4

- - + + 7 0.3

- - - - 0 0



New Directions in Inventory Techniques & Applications Forest Inventory & Analysis (FIA) Symposium 2015 264PNW-GTR-931

Costs and Revenues
On most (85 percent) of the treatable acres, treatment 
costs could be fully financed by sales of merchantable 
wood and bioenergy feedstock. Private lands had the 
highest average dollar per acre net revenue, netting 
over five times more revenue per acre than National 
Forest land (Table 3). In all cases, the collection, 
transport, and sale of wood for bioenergy (collectable 
harvest residues such as sub-merchantable trees and 
the tops and limbs of merchantable trees) increased 

the overall maximum net revenue compared to on-site 
disposal of such residues in an air-curtain destructor.  

Wood products obtained during harvest would 
notably increase the flow of wood to eastern Oregon 
processing facilities. By directing woody materials to 
a facility based on proximity to harvest site, centrally 
located facilities with bioenergy capabilities—Elgin, 
Prairie City, and Haines—would see a potential 
increase in merchantable wood exceeding 300 million 
cubic feet a year (Table 4). The increased yield of 

Table 3—Predicted average, per acre yields of merchantable and energy wood and associated value, costs, 
net revenue and landscape-wide net revenue, by owner group with application of the most effective treatment 
for acres where effective treatment is possible.  

Owner
Area 

(1000)

Merch 
Yield 

tons/ac

Chip 
Yield 

tons/ac
Merch  
$/ac

Chip  
$/ac

Harvest 
Cost  
$/ac

Haul 
$/ac

Merch /
Chip Net 

$/ac
Total Net $ 

(1000)
National Forest 618 31 14 3,238 299 2,719 286 531 328,633
Other Federal 6 18 14 1,587 309 1,583 332 -20 -109
State and Local 14 24 12 2,511 273 1,014 349 1,420 19,583
Private 146 28 14 2,910 303 1,149 251 1,813 265,254
All 196 25 13 2561 296 1616 305 936 613,361

Figure 2— Distribution of area by hazard score for stands amenable to effective treatment (1) before treatment, (2) one year after treatment, 
and (3) 40 years after treatment.
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energy wood harvested via thin-from-below treatments 
would also send over 3 million green tons of bioenergy 
feedstock to each of these three sites. 

DISCUSSION
Our analysis of forest inventory plot data suggests 
that forests in the Blue Mountain Region are at high 
risk of experiencing stand-replacing fire and that 
implementing a silvicultural sequence of restoration 
treatments aimed at fire hazard reduction would 
reduce hazard on over a third of the forested area. 
Results of the simulation analysis support the 
assertion that increased forest restoration can reduce 
fire hazard through the harvest and processing of 
merchantable and energy wood while generating 
revenue sufficient to offset the costs of implementing 
treatments in most forests in this study area. 
Naturally, these conclusions are contingent on the 
hazard criteria devised for this study, the assumptions 
and parameters relied upon to estimate harvest and 
haul costs, and the value of harvested wood. These 
findings support the assertion that increased forest 
restoration can reduce fire hazard and stimulate 
market development through the harvest and 
processing of merchantable and energy wood. 
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Table 4—Predicted mean annual quantities of 
merchantable wood and bioenergy feedstock that 
fuel treatment could make available to processing 
facilities in the Blue Mountains region. 

Processing 
Facility

Merchantable 
wood

Bioenergy 
feedstock

  MCF(mil)/yr gt (1000)/yr
Elgin                         378 3,405
Prairie City                  358 3,639
Haines                        321 3,360
Joseph                        194 2,040
La Grande                     193 2,076
Monument                      152 1,625
Pilot Rock                    119 1,261
Adams                         41 395
Dayville                      19 205
Mount Vernon                  15 146
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LARGE-AREA FOREST INVENTORY REGRESSION MODELING: 
SPATIAL SCALE CONSIDERATIONS

James A. Westfall1 

Abstract—In many forest inventories, statistical models are employed to predict values 
for attributes that are difficult and/or time-consuming to measure. In some applications, 
models are applied across a large geographic area, which assumes the relationship 
between the response variable and predictors is ubiquitously invariable within the 
area. The extent to which this assumption holds for a tree height prediction model was 
evaluated at regional, ecoprovince, and ecosection spatial scales in the Northeastern 
United States. Two nonlinear regression models were tested, a spatially-ambiguous 
model that utilized tree and stand-level predictors, and a spatially-explicit model that 
incorporated latitude, longitude, and elevation as predictors. Regional-scale models 
evaluated at the state level showed considerable bias for some states, which suggests 
the statistical significance of spatial predictor variables does not translate into effective 
accounting for spatial variability. Similar results were obtained when fitting the models 
to an ecoprovince and evaluating bias within ecosections. Finally, fitting the models to 
ecosections within the ecoprovince provided a moderate level of local robustness as 
assessed by Moran’s I statistic; however there are cases where local biases may still exist. 
The results suggest that models should be developed and applied at small spatial scales to 
reduce local biases when model predictions are aggregated to larger geographic domains. 
However, small spatial scales often equate to relatively small sample sizes that can 
present problems in model fitting and result in increased model uncertainty. Therefore, 
modelers need to carefully balance the minimizing of spatial extent and obtaining 
acceptable sample size.

1 Research Forester, U.S. Forest Service, Northern Research 
Station, Newtown Square, PA. Phone: 610-557-4043; Email: 
jameswestfall@fs.fed.us
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AN APPRAISAL OF THE CLASSIC FOREST SUCCESSION PARADIGM 
WITH THE SHADE TOLERANCE INDEX

Jean Lienard, Ionut Florescu, Nikolay Strigul1

Abstract— We revisit the classic theory of forest succession that relates shade tolerance and 
species replacement and assess its validity to understand patch-mosaic patterns of forested 
ecosystems of the USA. We introduce a macroscopic parameter called the “shade tolerance 
index” and compare it to the classic continuum index in southern Wisconsin forests. We 
exemplify shade tolerance driven succession in White Pine–Eastern Hemlock forests using 
computer simulations and analyzing approximated chronosequence data from the USDA 
FIA forest inventory. We describe this parameter across the last 50 years in the ecoregions 
of mainland USA, and demonstrate that it does not correlate with the usual macroscopic 
characteristics of stand age, biomass, basal area, and biodiversity measures. We characterize 
the dynamics of shade tolerance index using transition matrices and delimit geographical 
areas based on the relevance of shade tolerance to explain forest succession. We conclude that 
shade tolerance driven succession is linked to climatic variables and can be considered as a 
primary driving factor of forest dynamics mostly in central-north and northeastern areas in the 
USA. Overall, the shade tolerance index constitutes a new quantitative approach that can be 
used to understand and predict succession of forested ecosystems and biogeographic patterns.

INTRODUCTION
The classic succession paradigm has been formulated 
based on observations of temperate forest patterns 
in Wisconsin, Michigan and New England (e.g., 
Cowles, 1911, Curtis and McIntosh, 1951) and in 
northern and Central Europe. In this type of forest the 
gap dynamics and shade tolerance driven succession 
are most noticeable and easy to observe. In a broad 
range of plant ecology literature, including in major 
textbooks, shade tolerance is considered as a primary 
factor underlying forest successional dynamics. 
North-American tree species can also independently 
be classified as early and late successional species 
based on their life history and physiological traits 
(Niinemets and Valladares, 2006). In the classic shade 

tolerance succession paradigm, species that are shade 
intolerant and tolerant are analogous to early and late 
successional species, respectively. The goal of our 
research is to develop a quantitative approach that can 
be used to appraise succession of forested ecosystems. 

METHODS
According to the classic paradigm, the proportion of 
shade tolerant versus intolerant trees is linked to the 
forest succession stage. We propose a quantitative 
parameter, the shade tolerance index, δ , to 
characterize stand successional stages as follows:

1.	The shade tolerance of every tree species is 
quantified by a number from an interval ρ in [0,1] 
where the range spans very intolerant to tolerant 
species. We will call the number ρ the shade 
tolerance rank of a tree species. Specifically, we 
quantify the species as following: very intolerant 
= 0, intolerant = 0.25, intermediate = 0.5, 
tolerant = 0.75, and very tolerant = 1, according 
to [29, 36, 50].
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& School of Art and Sciences, Washington State University 
Vancouver, 14204 NE Salmon Creek Ave, Vancouver, WA 
98686; Research Associate Professor (IF), Financial Engineering 
Division and the Hanlon Financial Systems Lab, Stevens Institute 
of Technology, 1 Castle Point Terrace, Hoboken, NJ 07030; and 
Assistant Professor (NS), Department of Mathematics & School of 
Art and Sciences, Washington State University Vancouver. JL is 
corresponding author: to contact, e-mail at jean.lienard@wsu.edu
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2.	The shade tolerance index of the stand, δ, is defined 
as a weighted sum of the species abundance on 
their shade tolerance ranks defined as:

In this formula αj is a measure of relative abundance of 
a species j in the stand,  is a shade tolerance rank of the 
species j, and the index j runs through all k tree species 
present in the stand. The relative abundance parameter 
αj is estimated using the formula:

where Ωj is a measure of abundance of the tree species 
in the stand. The shade tolerance index δ, is a number 
from [0, 1]. Specifically, δ is equal to 0 if all the trees 
in the stand are very shade intolerant and equal to 1 if 
all trees are shade tolerant.

RESULTS
Comparison with the forest continuum 
index
The classic forest succession paradigm was 
historically developed under a strong influence of 
the studies conducted in the Lake States (MI, WI 
and MN). In particular, Curtis and McIntosh (1951) 
have developed the classic continuum index to 
describe successional patterns in southern Wisconsin, 
in a collection of 95 forest stands. Using tree 
dominance data, these stands were positioned along 
the continuum line representing a forest succession 
sequence. According to this continuum index axis, 
Curtis and McIntosh (1951) assigned numerical values 
to the tree species within the stands called the climax 
adaptation numbers.

The original data used in this classic study is not 
available, and we reproduced a similar analysis using 
the FIA data. We have calculated the same statistical 
characteristics using a sample of 7017 FIA plots on 
mesic soils corresponding to the same geographic area 

as the original article. Our extension of the analysis of 
Curtis and McIntosh (1951) to a wider range of plots 
resulted in a much more diverse species composition. 
Despite this, our results are in good agreement with 
the original results (Figure 1 here vs Figures 5, 6, 7 
in Curtis in McIntosh, 1951). Our results are also in 
agreement with the work of Rogers et al. (2008) who 
re-sampled the same sites as Curtis and McIntosh 
(1951) some 50 years later. In particular, we notice 
that the relative importance value of red oak (Quercus 
rubra), black oak (Quercus velutina) and secondarily 
white oak (Quercus alba) have decreased compared to 
sugar maple (Acer saccharum). Overall, our analysis 
shows that the successional pattern observed in 
Southern Wisconsin can be measured with the shade 
tolerance index. In addition, our study shows that 
these patterns did not change substantially over the 
several decades, and that the original plot sampling 
restrictions did not affect them substantially (Lienard 
et al., 2015a). 

Successional dynamics
The forest stand dynamics theory states that after 
a major disturbance stand development follows 
four consecutive stages: initiation, stem exclusion, 
understory reinitiation, and old-growth. The stand 
initiation stage marks the onset of succession by 
regeneration of open space from seed, sprouts and 
advance regeneration, and lasts until the canopy 
closes. Different disturbances leave various types of 
biological legacies providing highly variable initial 
species composition. In the second stage of stem 
exclusion, the light-driven competition becomes 
the major determinant of survival, resulting in a 
domination of fast-growing early successional 
species. The third stage, understory reinitiation, 
is characterized by the selective recruitment of 
understory trees in the canopy through gap-dynamics. 
The final stage, the old-growth corresponds to 
the climax state of the forest, where the species 
composition is stable.

We compared the results of computer simulations 
with the statistical analysis of White Pine – Eastern 
Hemlock forest stands from the FIA database, 
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using the shade tolerance index. We consider here 
approximate chronosequences, as the plots are 
ordinated relatively to the average age of trees, 
the time since last disturbance being not available 
(Strigul et al., 2012). The stands are observed 
throughout northeastern parts of the US. We 
isolated all plots in the database with more than 
75% of cumulative basal area composed by these 
two species, resulting in a pool of 1375 plots. The 
comparison of these with computer simulations 
reveal striking qualitative similarities. Specifically, 
the initial distribution of seedling shade tolerance 
index decreases in the early years as the faster 
growing pioneering species start to dominate the 
canopy. The shade tolerance index then reaches high 

values as shade tolerant species eventually dominate 
the early successional species. These trends 
observed both in FIA database and in the computer 
simulations demonstrate the capacity of the shade 
tolerance index to model temporal dynamics of 
forest succession.

Spatiotemporal patterns of US forests
We analyzed forest stand mosaic in the whole 
mainland US, using the FIA dataset. Our goal is to 
understand statistical relationships between forest 
characteristics and patch mosaic patterns related to 
shade tolerance. The analysis of correlation patterns 
indicates that the shade tolerance index displays 
weak correlations in the range of 0.12—0.26 with 
the other macroscopic characteristics studied: 

Figure 1—Comparison of the continuum index (left) and shade tolerance index (right) in southern Wisconsin.  Similarly to the original 
study of Curtis and McIntosh (1951), the species were split in two groups: major (top) and lesser (bottom) species. Bars indicate the 
standard error of the mean.
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biomass, basal area, Gini-Simpson diversity index, 
species richness and average age of trees (Figure 
2). However, some of the other measures are 
correlated: biomass with basal area (confirming 
the previous study by Strigul et al., 2012), and 
Gini-Simpson diversity with species richness. 
Correlation matrices have been further calculated 
separately for all provinces in mainland USA 
and all inventory years with more than 500 plots 
recorded from 1968 to 2012. Correlations between 
different variables were virtually identical for all 
the inventory years and different ecoregions. This 
result is similar to what we obtained by analyzing 
another dataset for Eastern Canada forests (Lienard 
et al., 2015b). The fact that shade tolerance index 
has been repeatedly shown to be uncorrelated with 
other macroscopic characteristics demonstrates 
its usefulness in the statistical description of the 
mosaic of forest patches.

DISCUSSION
The shade tolerance index introduced in this work is 
designed as a quantitative measure of forest succession 
according to the classic theory based on gap dynamics 
and replacement of shade intolerant by shade tolerant 
species. This study shows that this index can be utilized 
to understand the forest stand dynamics in ecoregions 
where the classic theory is validated, as it represents 
forest succession scale. In particular, our results 
demonstrate that this index is in agreement with the 
continuum index developed by Curtis and McIntosh 
(1951) as well as with gap model simulation (Strigul et 
al., 2008).  Applications of the shade tolerance index 
include statistical analyses of the relationship between 
shade tolerance and soil moisture (Lienard and Strigul, 
2015), data-intensive modeling of forested ecosystems 
(Lienard et al., 2015b), and the classification of U.S. 
ecoregions with respect to the temporal dynamics of 
their shade tolerance index (Lienard et al., 2015a). 

Figure 2—The stand-level characteristics of plots for all years demonstrate very heterogeneous forest types in the US, with no obvious 
common distribution pattern between indicators. 
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PRIVATE FOREST LANDOWNERS’  
HARVEST AND REGENERATION DECISIONS-  

EFFECT OF PROXIMITY TO PRIMARY WOOD-USING MILLS

Consuelo Brandeis1

Abstract—Ownership of the U.S. southern timberland rests largely on private forest 
landowners’ hands. As such, their harvest and regeneration choices can significantly impact 
the region’s roundwood supply. In most cases, private forest landowners do not consider 
timber production among the top reasons for holding their lands. However, most research 
indicates that favorable timber markets (high demand of wood reflecting in high stumpage 
prices) can motivate landowners’ participation. It follows then that landowners with 
access to strong timber markets (strength indicated by the number of primary mills and the 
volume consumed) will be more likely to engage in harvest and regeneration. To examine 
this assumption we develop an econometric analysis of the supply behavior of timberland 
owners given proximity to primary mills. We use FIA forest inventory and primary mill 
survey time-series data for the state of South Carolina, covering 1999 to 2011. Results 
reveal a weak response to mill proximity, particularly for regeneration, suggesting the need 
for tools other than timber markets to ensure continued regeneration efforts.

1 Research Forester, USDA Forest Service, Southern Research 
Station, Forest Inventory and Analysis, 4700 Old Kingston Pike, 
Knoxville, TN 37919, cbrandeis@fs.fed.us; phone: 865-862-2028

mailto:cbrandeis@fs.fed.us
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2 Live trees ≥ 5 inches diameter breast height [d.b.h.]; 4.5 feet 
above ground on the uphill side,  measured from a 1-foot stump 
height to a 4 inch diameter top outside bark [dob].

1 Director, Forest Industry Research Group (FIRP), Bureau of 
Business and Economic Research (BBER), University of Montana 
(NNC), Missoula, MT 59812; Research Associate, FIRP, BBER; 
Research Forester, FIRP, BBER; and Research Statistician, South-
ern Research Station, USDA Forest Service, Clemson, SC.  ECB is 
corresponding author: to contact, call (406) 243-5113 or e-mail at 
erik.berg@business.umt.edu.
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Figure 1—Individual tree growing stock. Growing stock includes 
live tree sections from the one-foot stump to the 4 inch outside 
bark top diameter.

LOGGING UTILIZATION RESEARCH IN THE PACIFIC NORTHWEST: 
RESIDUE PREDICTION AND UNIQUE RESEARCH CHALLENGES

Erik C. Berg, Todd A. Morgan, Eric A. Simmons, Stanley J. Zarnoch1

Abstract—Logging utilization research results have informed land managers of changes 
in utilization of forest growing stock for more than 40 years. The logging utilization 
residue ratio- growing stock residue volume/mill delivered volume- can be applied to 
historic or projected timber harvest volumes to predict woody residue volumes at varied 
spatial scales. Researchers at the University of Montana’s Bureau of Business and 
Economic Research and USFS Southern Research Station are investigating variability 
in residue ratios across Montana, Idaho, Oregon, and Washington. This project has 
presented unique sample design challenges. The primary sampling unit is the logging site 
where trees are felled and removed from the forest. However, it is not possible to know 
in advance the total population of logging sites and it is therefore impossible to identify 
the sampling frame and conduct probabilistic design-based sampling. To meet this 
challenge, the authors designed a model-based sampling protocol that is yielding regional 
predictions of the residue ratio. 

INTRODUCTION
The U.S.D.A. Forest Service’s Forest Inventory and 
Analysis (FIA) Program provides information on 
the condition and changes in the timber resource 
throughout the western United States. The components 
of forest inventory change (i.e., growth, mortality, 
and removals) are captured by the FIA plot network. 
However, only through timber product output 
(TPO) mill surveys and logging utilization studies 
can removals for timber products be quantified and 
distinguished from inventory removals that are left 
in the forest or at the landing as logging residue (i.e., 
material that is cut or killed during commercial harvest 
but not utilized). TPO logging utilization studies are an 
effective and relatively simple way to make estimates 
of logging residue whether for potential biomass 
supply or as a component of removals.



New Directions in Inventory Techniques & Applications Forest Inventory & Analysis (FIA) Symposium 2015 275PNW-GTR-931

Table 1—Number of logging sites and trees sampled; 5 year timber harvest volume by region (BBER 2015); 
and sample weighting factors by region.

Region
Number of logging 

sites sampled
Number of trees 

sampled
5 year timber harvest volume 

-Scribner board foot 
Weighting 

factors

Blue Mountains 7 173 2,855,205 0.087

Inland Empire 53 1324 6,400,383 0.194

Western Oregon 21 519 12,638,795 0.384

Western Washington 20 486 11,060,569 0.336

TOTAL 101 2502 32,954,952

Logging utilization studies provide estimates of tree 
bole residue volumes without the need for detailed 
tree-level inventories (Morgan and Spoelma 2008). 
Study results include calculation of the growing-stock1 
(Fig. 1) residue ratio -- growing-stock logging residue 
volume divided by mill-delivered timber volume. The 
residue ratio can be used to quickly estimate growing-
stock residue volumes by applying timber harvest 
volumes at stand, landscape, or state-levels (Morgan 
and Spoelma 2008). Bole, branch, and foliar biomass 
(i.e., non-growing stock portions of logging residue) 
can then be estimated with allometric equations. The 
residue ratio is used in the calculation of logging 
residue volumes published in the Timber Products 
Output (RPA-TPO) database (USDA FS 2015). 

To answer land manager needs for updated information 
on logging residue production the authors investigated 
logging utilization in Montana, Idaho, Washington, and 
Oregon from 2008 through 2013. The study objective 
was to calculate the growing-stock logging residue 
factor as the ratio of means (Zarnoch et al. 2004) for 
the 4-state project area. Ratio values could be used to 
update county-level residue information in the RPA-
TPO database.

METHODS
The authors sought a sample protocol that would 
provide data needed to estimate the growing stock 
residue ratio for major Pacific Northwest regions. 
Because lists of all active logging sites (the primary 
sampling unit) did not exist researchers could not 

identify the sampling frame and compute regional 
values of the residue ratio with probabilistic design-
based sampling (Lohr 2009). Model-based sampling 
offered alternative means of obtaining parameter 
estimates in lieu of design-based sampling and was 
used in the current study (Chambers and Clark 2012). 
The authors also compared design (without the use of 
a comprehensive list of logging sites) and model-based 
sampling outcomes.

Sterba (2009) outlined the need to stratify the population 
and adjust for disproportionate sample selection when 
conducting model-based sampling. These provisions 
were accounted for in the current study:

1.	Stratification. The project area was stratified into 4 
regions.
a.	Inland Empire. Northeastern Washington, 

northern Idaho, and western Montana. 
b.	Blue Mountains. South-central Idaho, eastern 

Oregon, and southeastern Washington.
c.	Western Washington (west of the Cascade crest). 
d.	Western Oregon (west of the Cascade crest). 

2.	Disproportionate sample selection. The authors 
corrected for over and under-sampling within 
strata by weighting the sample.

Stratified sampling, specifically sites stratified 
by region, was adopted as the sampling protocol. 
Numbers of sample logging sites per region were 
selected proportional to the 5-year timber harvest 
volume of each region (Table 1) (BBER 2015). 
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Researchers asked timberland managers to identify 
logging sites where live (i.e., growing-stock) trees 
were being harvested for commercial products 
and field crews could safely measure felled trees. 
Sample sites were selected without regard for logging 
systems employed, topography, tree species, or other 
attributes. Twenty to 32 live felled sample trees were 
measured at each of 101 logging sites. Field crews 
selected felled trees with a systematic sampling 
grid using randomized starting points. Species was 
recorded, outside bark diameter and section length 
measurements were taken at the cut stump height, 
at one foot above ground level (uphill side of the 
tree), at DBH, at the 4.0-inch diameter outside bark 
(DOB) point, and at the end-of-utilization. Each 
tree had diameter outside bark and section length 
measurements taken along the bole at intervals 
corresponding to the appropriate log lengths with 
a maximum section length of 16 feet. The percent 
cubic cull for each section was recorded and each 
bole section was identified as utilized (delivered to 
the mill) or unutilized (logging residue). Individual 
tree section cubic foot volumes were calculated using 
Smalian’s formula and section volumes were summed 
for each tree by category (e.g., utilized vs. unutilized 
stump, bole, and upper stem sections of the trees); the 
residue ratio was calculated for each site as the sum of 
all growing stock residue cubic foot volume divided 
by total mill-delivered cubic foot volume for that site.  

Design-based residue ratios of means and 
standard errors were computed using SAS PROC 
SURVEYMEANS (SAS 2013) (Table 2). Sample 
weights were derived from the five-year timber 

harvest volumes (Table 1). Ratios of means were also 
computed with SAS PROC GENMOD (SAS 2013) in 
a multilevel linear mixed model incorporating sample 
weights. Logging sites were nested within regions. 

Because sample logging sites were not chosen 
at random from a comprehensive list of sites for 
design-based computations, a true “head to head” 
comparison of sampling methods was not possible. 
The authors created a simulated residue ratio of 
means population (1,000 replications using a mixed 
binomial and exponential distribution) to analyze 
potential bias created by not randomly selecting 
sample logging sites from a comprehensive list. 
Samples of 100 sites were repeatedly drawn from this 
simulated pseudo-population and analyzed with PROC 
SURVEYMEANS and GENMOD. 

RESULTS
Residue ratios of means and standard errors were 
essentially identical for SURVEYMEANS and 
GENMOD using either simulated or real data. Bias 
(the project as a whole “true” simulated parameter 
estimate minus the “real” data parameter estimate) was 
less than 0.5 percent for both methods. The real data 
residue ratio distribution was skewed to the right with 
many observations less than 0.010 (Fig. 2). The project 
as a whole residue ratio of means equaled 0.027 or 27 
cubic feet of growing stock residue per 1,000 cubic 
feet of mill-delivered volume (Table 2). Residue 
ratios of means varied little across regions with Blue 
Mountain (ratio = 0.032) and western Oregon (ratio = 
0.030) sites exhibiting slightly higher values (Table 2). 

Table 2—Design-based and model-based ratios of means and standard errors by region. 

Region
Design-based  F3 

ratio of means

Design-based  F3 
ratio of means 
standard error

Model-based F3 ratio 
of means

Model-based F3 ratio 
of means standard 

error

Blue Mountains 0.032 0.005 0.032 0.004

Inland Empire 0.024 0.003 0.025 0.003

Western Oregon 0.029 0.005 0.030 0.005

Western Washington 0.029 0.003 0.027 0.004

Total project area 0.029 0.003 0.027 0.002
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DISCUSSION AND CONCLUSIONS
Study findings concurred with other contemporary 
logging utilization research results: the residue ratio is 
now less than 4 percent of mill delivered volume. For 
example, Simmons et al. (2014) found that Idaho state 
(represented by the Inland Empire and Blue Mountain 
regions) ratio declined from 0.123 in 1965 to 0.024 in 
2011. Because no similar Oregon or Washington pre-
yarding (felled-trees measured before logs were yarded 
to a landing) studies were found, direct comparisons of 
this study’s results to previous research in those states 
were not possible.

The lack of variability in residue ratios among Pacific 
Northwest regions (Table 2) was surprising. This 
finding likely stemmed from loggers employing 
similar utilization standards and harvesting systems 
within most logging sites regardless of location. Also, 
felled trees sampled in this study were consistently 
second or third growth timber with little defect.

Design and model-based sampling differ in statistical 
underpinnings and mathematical computation. 
However, design and model-based residue ratios and 
standard errors were found to be essentially identical. 
The authors suggest that researchers of future logging 
utilization studies could judiciously use either method 
to obtain estimates of the residue ratio. But statisticians 
disagree on the validity of model-based sampling 
(Lohr 2009). Having comprehensive lists of logging 
sites is clearly desirable, and if they are available 
scientists should use them in design-based sampling.

ACKNOWLEDGMENTS
The authors gratefully acknowledge the financial support 
of: USDA Forest Service, Rocky Mountain Research 
Station, Forest Inventory Analysis Program, Ogden, 
UT; and the Northwest Advanced Renewables Alliance 
(NARA) supported by the Agriculture and Food Research 
Initiative Competitive Grant no. 2011-68005-30416 from 
the USDA National Institute of Food and Agriculture. 

C
ou

nt
Histogram of logging site residue ratios

Residue ratio

0.00 0.02 0.04 0.06 0.08 0.10
0

5

10

15

20

25

30
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USING TPO DATA TO ESTIMATE TIMBER DEMAND  
IN SUPPORT OF PLANNING ON THE TONGASS NATIONAL FOREST  

Jean M. Daniels1, Michael D. Paruszkiewicz2, Susan J. Alexander3

Abstract—Projections of Alaska timber products output, the derived demand for logs, 
lumber, residues, and niche products, and timber harvest by owner are developed by 
using a trend-based analysis. This is the fifth such analysis performed since 1990 to 
assist planners in meeting statutory requirements for estimating planning cycle demand 
for timber from the Tongass National Forest. Results reflect the consequences of recent 
changes in the Alaska forest sector and trends in markets for Alaska products. Demand 
for Alaska national forest timber currently depends on markets for sawn wood and 
exports of softwood logs. Three scenarios are presented that display a range of possible 
future market conditions. The model was most sensitive to changes in Pacific Rim log 
demand. Areas of uncertainty include the prospect of continuing changes in markets and 
competition, the impact of the young growth transition, and the rates of investment in 
manufacturing in Alaska.

INTRODUCTION
The Tongass Timber Reform Act (TTRA, 1990) 
states that the Secretary of Agriculture will “…
seek to provide a supply of timber from the Tongass 
National Forest which (1) meets the annual market 
demand for timber from such forest and (2) meets the 
market demand for timber from such forest for each 
planning cycle.” Although all national forests are 
required to estimate demand for timber during forest 
planning efforts, the “seek to meet” requirement is 
unique to the Tongass. The Pacific Northwest Research 
Station has been asked to assist planners in meeting 
the TTRA requirement for estimating planning cycle 
demand for timber from the Tongass National Forest. 
Current efforts were initiated by evolving USDA 
policy encouraging the harvest of younger second-
growth forest stands. The Pacific Northwest Research 

Station has published four previous studies in support 
of Tongass Land Management planning efforts. 
Brooks and Haynes (1990), Brooks and Haynes 
(1994), Brooks and Haynes (1997), and Brackley et 
al. (2006) all estimated demand for forest products 
from Southeast Alaska and projected the volume of 
timber required to satisfy that demand given harvest 
by other owners and assumptions about future 
market conditions. In the past, a dearth of reliable 
published data for the forest sector in Alaska meant 
that results were highly uncertain. However, two FIA 
Timber Products Output reports for the Alaska wood 
processing industry have been published since the last 
analysis (Halbrook et al. 2005, Berg et al. 2014). These 
provided data on the relationship between timber 
harvest and end markets not available for previous 
studies. Results will be used by the Alaska Region 
(R10) as an input in calculations of annual demand 
for Tongass timber, and to inform efforts to amend the 
Tongass Land Management Plan. 

1 Jean M. Daniels is a research forester; U.S. Department of 
Agriculture, Forest Service, Pacific Northwest Research Station, 
Portland Forestry Sciences Laboratory, 620 SW Main St., Suite 
400, Portland, OR 97205; jdaniels@fs.fed.us; 503-808-2004 
2 Michael D. Paruszkiewicz is an economist, Northwest Economic 
Research Center; 
3 Susan J. Alexander is a program manager; U.S. Department of 
Agriculture, Forest Service, Pacific Northwest Research Station.

mailto:jdaniels@fs.fed.us
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STUDY AREA
The study area is Southeast Alaska, defined as the 
boroughs of Haines, Skagway-Hoonah-Angoon, 
Juneau, Sitka, Wrangell-Petersburg, Ketchikan 
Gateway, and Prince of Wales-Outer Ketchikan.

METHODS
Estimates of derived demand for Tongass National 
Forest timber were developed in four stages: (1) 
historic estimates of Southeast Alaska timber products 
output (by product market and destination) are 
gathered and projected to the year 2030; (2) the raw 
material requirements necessary to support this output 
are calculated by using explicit product recovery and 
conversion factors; (3) the timber harvest equivalent is 
calculated and allocated by timber owner; and (4) the 
analysis is repeated to estimate the impact on harvest 
from a baseline and three hypothesized alternative 
management scenarios. 

After assembling the historic data sets necessary to 
represent SE AK timber markets, we developed a 

baseline model based on projections and market shares 
for each market served by SEAK producers for the 
period 2015-2030. The baseline model was used to 
construct three management scenarios representing 
alternative futures for timber harvest in Southeast 
Alaska. The first scenario (S1) establishes a timeline 
for the young growth transition that reflects the current 
state of knowledge of regional forest managers. The 
second scenario retains the assumptions from S1, but 
builds in an expansion of demand for mill residue and 
utility logs for growing wood energy markets. Scenario 
3 also retains the young growth transition assumptions 
from S1, but adds the recovery of the housing industry 
in the United States with corresponding increased 
demand for logs and lumber for construction. 

RESULTS
Table 1 shows the timber harvest volume from the 
Tongass National Forest necessary to meet projected 
demand for each management scenario. Incorporating 
the young growth transition caused harvest to decline in 
2025 in all scenarios. Scenario 2, which calls for a rapid 

Table 1—Projected harvest from the Tongass National Forest, 2015 to 2030, for three potential management 
scenarios (mbf, log scale).

Year Baseline scenario
Scenario 1: young growth 
transition (YGT)

Scenario 2: YGT + wood 
energy expansion

Scenario 3: YGT + US 
housing expansion

2015 40,858 40,858 40,858 40,784

2016 41,592 41,592 41,592 41,625

2017 42,325 42,325 43,382 42,466

2018 43,059 43,059 46,301 43,308

2019 43,792 43,792 49,220 44,149

2020 44,526 44,526 52,138 44,990

2021 45,259 45,259 55,057 45,831

2022 45,993 45,993 57,976 46,673

2023 46,726 46,726 60,894 47,514

2024 47,460 47,460 63,813 48,355

2025 48,193 44,034 62,980 45,037

2026 48,927 44,508 65,665 45,619

2027 49,661 44,983 68,350 46,201

2028 50,394 45,457 71,035 46,784

2029 51,128 45,932 73,720 47,366

2030 51,861 46,406 76,405 47,948
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expansion of wood energy demand for space heating, 
results in the greatest increase in harvest, reaching 
almost 25 million board feet over the baseline. Scenarios 
1 and 3 have nearly the same impact on harvest, 
suggesting that demand from expanding housing 
markets in the US may not offset the losses from the 
young growth transition relative to the baseline.

DISCUSSION
Three different scenarios display alternative futures 
for Southeast Alaska and all incorporated the young 
growth transition on the Tongass National Forest. 
Taking these changes into account, our projections of 
the average demand for Tongass timber over the next 
15 years (2015 to 2030) range from 46 to 76 million 
board feet. Whether Alaskan products will remain 
competitive during the young growth transition will 
depend on a variety of factors. The emergence of 
bioenergy markets could increase the profitability 
of operations owing to increased utilization of low 
quality material, especially utility grade logs and 
mill residues. Although economic feasibility will 
depend on capital investment and product prices, 
Southeast Alaska producers may find it difficult 
to compete with British Columbia in international 
markets. In addition, transportation challenges 
make it difficult for Southeast producers to ship 
material within Alaska itself. There is tremendous 
interest in developing markets for value added niche 
products. Whether demand for these products could 
be sufficient to sustain a timber industry in Southeast 
Alaska will likely be the subject of debate for many 
years to come. 

The greatest challenge to this analysis was locating 
data on the Alaska forest products sector. In 
many cases, the most recent data were from 2011. 
Disclosure and confidentiality issues abound, owing to 
an industry structure characterized by a small number 
of producers. Traditional sources of international 
trade data were of little use because of confounding 

problems with transshipments, conversion factors, and 
that trade data showed that export volume exceeded 
reported harvest volume by a significant amount. 
TPO reports are invaluable to understanding trends in 
forest industry across the western United States and 
were crucial to completing the 2015 Tongass timber 
demand analysis.
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ECOSYSTEM SERVICES:  
A NEW NRS-FIA ANALYTICAL SCIENCE INITIATIVE

Brian G. Tavernia1, Mark D. Nelson2, James D. Garner3 

Abstract—Forest ecosystem services (ES) are linked to sustaining human well-being. 
Recognizing an inappropriate economic valuation of ecosystem properties and processes, 
many ecologists, economists, and political scientists have pushed for an increasing 
awareness and appreciation of ES. Many definitions of ES include both direct and 
indirect benefits humans derive from ecosystem properties or processes. The Millennium 
Ecosystem Assessment (MA) typology classifies ES into four categories: provisioning, 
regulating, cultural, and supporting services; this framework enables linkages between 
Northern Research Station Forest Inventory and Analysis (NRS-FIA) research activities 
and specific services within MA categories.. A subset of those ES for which additional 
information is needed will be addressed in a proposed NRS-FIA ES science team.

Forest ecosystem services (ES) are linked to sustaining 
human well-being (Bonan 2008, Millennium Ecosystem 
Assessment 2005). By the mid to late 1990s, many 
lines of evidence suggested that the scope of human 
enterprise had grown large enough to begin seriously 
impairing ecological processes crucial to human 
existence.  Acknowledged problems ranged from 
depleted fisheries to large-scale changes in climate 
due to the burning of fossil fuels.  Many ecologists, 
economists, and political scientists recognized that these 
problems resulted from an inappropriate economic 
valuation of ecosystem properties and processes 
(Costanza and others 1997, Daily 1997).  Consequently, 
researchers from across these fields pushed for an 
increasing awareness and appreciation of ES.  They 
also called for development of valuation techniques that 
would better account for ES in economic decisions.

The phrase “ecosystem services” (or a variation 
thereof) has been independently defined several times 

(see definitions below) by ecological researchers and 
economists.  From the perspective of raising public 
awareness, early and still widely cited definitions 
effectively capture the importance and pervasiveness 
of ES (Costanza and others 1997, Daily 1997, 
Millennium Ecosystem Assessment 2005).  Broadly, 
these definitions characterize ES as the direct and 
indirect benefits humans derive from ecosystem 
properties or processes. This definition encompasses 
such widely varying phenomena as the aesthetic 
experiences natural areas provide to the importance 
of forest in acting as carbon sinks to buffer against 
climate change.  Stated simply, ecosystem services are 
the benefits people obtain from ecosystems. 

Given the wide variety of ecosystem properties 
and processes that qualify as ES, this definition is 
accompanied by a classification framework that helps 
clarify and highlight the types of benefits humans 
derive from ecosystems (de Groot and others 2002, 
Ekins 2003, Millennium Ecosystem Assessment 
2005).  One commonly cited typology was provided 
by the Millennium Ecosystem Assessment (MA).  
The MA recognized four types of ES: provisioning, 
regulating, cultural, and supporting (Table 1).  
Provisioning services refer to products (or “goods”) 
people acquire from ecosystems, such as fiber and 
food.  Regulating services stem from the regulation of 

1 Spatial Analyst Geospatial Science Application Center, The Nature 
Conservancy, Colorado Field Office, 2424 Spruce Street, Boulder, 
CO 80302, phone (720) 974 7014, e-mail brian.tavernia@tnc.org
2 Research Forester, U.S. Department of Agriculture, Forest Service, 
Northern Research Station, 1992 Folwell Avenue, St. Paul, MN 
55108, phone (651) 649-5104, e-mail mdnelson@fs.fed.us 
3 Wildlife Biologist U.S. Department of Agriculture, Forest Service, 
Northern Research Station, 1992 Folwell Avenue, St. Paul, MN 
55108, phone (651) 649-5107, e-mail jamesdgarner@fs.fed.us
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Table 1.—Ecosystem services (ES) associated with forest ecosystems, adapted from a figure in Vernegaard 
and others (2010).  Each service is assigned to a category in the ecosystem services classification framework 
presented in the Millennium Ecosystem Assessment (2005); see text for definitions of categories.  Citations 
associating each service with forested ecosystems are numbered, with full references listed in the Literature 
Cited section. [1,2,3,4,5,6,7,8,9,10,11,12]One or more NRS-FIA product lines are associated with each ES.

ES category Ecosystem services Relevant citations FIA product lines
Provisioning wood products – timber, biomass/

biofuel, fuelwood
[1-10] timber products output (TPO), biomass, economics

biodiversity – genetic information, 
pharmaceuticals

[1-5, 8, 10-12] Criteria & indicators (C&I) – biodiversity, Northern 
Forest Futures Project (NFFP), National 
Sustainability Report

food – wildlife, nuts, berries, etc. [1-4, 6, 8, 9] nontimber forest products (NTFP)
clean air [2-5, 8] ozone, lichens
clean water [1-3, 5-12] water quality – Great Lakes Restoration Initiative 

(GLRI), NFFP
Regulating climate regulation – carbon 

sequestration
[1-4, 6, 7, 9-12] carbon

air quality regulation – sequestration of 
pollutants

[2-5, 8] ozone

water regulation – flood control, 
erosion control, maintenance of water 
quality

[1-12] water quantity – NFFP

regulation of disease and pests [2, 6, 12] forest health
Cultural aesthetic [2-4, 6, 8, 10] National Woodland Owner Survey (NWOS), urban

spiritual/religious [1-4, 10] tribal
recreational [1-8, 11] NWOS, NFFP
educational [2, 5] NRS-FIA Techniques Team 1,

New York Research Map (RMAP) of tree species 
distribution  (Riemann et al. 2014)

historical [1, 2] Trend analyses, historical map of woodland density 
(Liknes et al. 2013)

Supporting biodiversity maintenance – promotes 
ecosystem resistance, resilience, 
productivity

[1-5, 8, 10, 12] Wildlife and fish habitats, landscape structure and 
function, fragmentation

nutrient cycling [2, 3, 8] soils, carbon, down woody
soil formation [2-5] soils
primary production [2, 4] soils, forest site productivity

1 Millennium Ecosystem Assessment 2005
2 Vernegaard and others 2010
3 Chiabai and others 2011
4 Cóndor and others 2008
5 Gaodi and others 2010
6 Nasi and others 2002
7 Notman and others 2006
8 Pattanayak and Butry 2003
9 Smail and Lewis 2009
10 Watson 2008
11 Ghani, n.d.
12 Myers 1997



New Directions in Inventory Techniques & Applications Forest Inventory & Analysis (FIA) Symposium 2015 285PNW-GTR-931

ecological processes and include, for example, climate 
regulation and disease control.  Cultural services refer 
to intangible benefits people derive from their natural 
surroundings, e.g., spiritual experiences and aesthetic 
vistas.  Supporting ecosystems services make all other 
types of services possible.  They are fundamental 
processes, such as primary productivity, that allow for 
the existence and persistence of ecosystems.

ASSESSING FOREST ES WITH FIA
A complex combination of factors affects the extent 
to which forest ES are realized; some of these factors 
include the forest characteristics of composition, 
structure, spatial pattern, and cultural context (Matthews 
and others 2014). The Forest Inventory and Analysis 
(FIA) program produces and distributes a wealth of 
data, information, and knowledge on these forest 
characteristics. FIA has evolved from a timber survey 
to a forest inventory and is moving toward a treed-lands 
inventory that can address a broad array of forest ES.

Each forest resource can be associated with one or 
more ES. Consider the ES associated with wildlife, for 
example. One could make a strong case for including 
wildlife in all four of the ES categories listed in Table 
1: (1) Provisioning – food/meat; (2) Regulating - 
regulation of disease and pests, e.g., bird controls on 
forest insect pests; (3) Cultural Services – recreation: 
birding, hunting, etc.; and (4) Supporting Services – 
maintenance of biodiversity. And, additional wildlife 
supporting services could be added to this list: 
pollination, seed dispersal, and scavenging.

FIA provides indicators or proxies for important 
ecosystem processes or end products.  For example, 
with regards to sustaining wildlife populations, the end 
product could be viewed as the number of individuals 
of a particular wildlife species supported within a 
given forest.  Using only forest inventory data sets and 
habitat models, we cannot estimate actual populations 
of wildlife. However, such data sets can be used to 
assess the suitability of wildlife habitat and estimate 
trends in suitable habitat abundance, thereby defining 
the upper potential for wildlife population numbers 
(i.e., carrying capacity).

NORTHERN RESEARCH 
STATIONFIA ES SCIENCE TEAM
ES provides a framework or structure for 
understanding and linking Northern Research Station 
(NRS) FIA activities. The authors adopted the ES 
classification system outlined by the MA for use by 
the NRS-FIA Ecosystem Services Science Team. The 
mission statement proposed for this Science Team 
is to: use scientific methods and research to produce 
data, information, and knowledge that informs wise 
management decisions about forest ecosystem services 
in the midwestern and northeastern United States of 
the Northern Research Station. 

The NRS-FIA ES Science Team – established by 
the authors of this paper, is intended to facilitate 
collaboration and product delivery of forest ES 
research and reporting. The ES Science Team would 
leverage existing experience and expertise of NRS-
FIA staff and would include cooperators from other 
Forest Service research units and other agencies 
and organizations. This team is prioritizing research 
projects and products, based on the following context.

The definition of ES is comprehensive, and includes 
many disciplines, existing efforts, and topics already 
covered by major research initiatives: i.e., timber, 
biomass/biofuel, fuelwood (provisioning service), 
and carbon accounting (regulating service). Table 1 
includes a crosswalk between ES and FIA research 
activities. This framework reveals that the full breadth 
of NRS-FIA research activities is included within 
ES, including the traditional notion of both “goods” 
and “services.” The framework highlights current 
successes in addressing some ES via well-established 
FIA “product lines”, while revealing emerging 
opportunities for better serving other ES.  We 
emphasize ES topics that are less well represented by 
existing FIA research efforts, e.g., water, wildlife, fish, 
nontimber forest products, and those ES associated 
with landscape pattern (fragmentation) and land use/
land cover dynamics. Examples from two specific 
projects are described below.
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Example of Potential ES Study – “Monitoring Past 
Trends, Current Conditions, and Future Projections of 
Habitats for Forest-associated Wildlife Species”

The goal of this project is to integrate wildlife species-
habitat relationships with forest inventory data and 
geospatial data sets to inventory, monitor, and manage 
forest wildlife habitat condition across northeastern 
and midwestern forests of NRS. We presume that 1) 
the FIA database (FIADB; http://apps.fs.fed.us/fiadb-
downloads/datamart.html) provides a wealth of data, 
information, and knowledge that can be used to inform 
estimates of habitat abundance; 2) species-habitat 
relationships, like those provided by U.S. Geological 
Survey  (USGS) Gap Analysis Program (GAP) 
provide a means for associating many wildlife species 
with specific habitat characteristics; 3) the national 
vegetation classification (NVC) system provides a 
consistent system for GAP and other species-habitat 
relationships, such as NatureServe Explorer and the 
NatureServe Northeastern Terrestrial Wildlife Habitat 
Classification; 4) the addition of NVC attributes to 
FIADB will enable consistent linkage between FIA 
and databases such as GAP; and 5) new attributes and 
techniques are needed to establish such linkages and 
producing estimates of habitat abundance. This ES 
project is designed to address these needs.

Example of Potential ES Study – “Estimating and 
mapping change in both land use and land cover.”

The objective of this study is to develop and 
implement tabular and geospatial products that include 
attributes of both forest cover and forest use. Land use 
and land cover are terms often used interchangeably. 
Although they may be identical in some places 
and at some times, they differ substantially in 
others. Remote sensing-based maps, like the USGS 
National Land Cover Database (NLCD), typically 
are considered to portray land cover, while FIA data 
typically are described as representing land use. Both 
characterizations are oversimplifications—representing 
a false dichotomy—of actual definitions, thereby 
discouraging more comprehensive understanding 
and integration of various information products. The 
FIA image-based change estimation (ICE) project, 

conducted in partnership with the Forest Service 
Remote Sensing Applications Center (RSAC), is 
designed to produce statistical estimates of change 
in both land use and land cover. ICE requires manual 
photo-interpretation of aerial imagery (NAIP) in the 
vicinity of FIA plot locations. Concurrently, FIA 
and RSAC are collaborating on a project to model 
geospatial data sets of 1) tree canopy cover, 2) forest 
cover, 3) forest use, and 4) subcategories of FIA forest 
land (timberland, reserved forest, other forest).

CONCLUSION
The FIA program already assesses many benefits 
that people obtain from forest ecosystems, including 
provisioning, regulating, cultural, and supporting 
services. The MA ES framework provides a 
comprehensive approach for describing FIA research 
activities and product lines; these relationships are 
presented in Table 1. The NRS-FIA’s proposed ES 
Science Team is poised to better understand those ES 
that have been so far inadequately studied.
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REACHING USERS AT LOCAL SCALES: INSIGHTS INTO THE VALUE 
OF FOREST INVENTORY INFORMATION FOR EDUCATION AND 

OUTREACH AND THE POTENTIAL FOR AN EFFECTIVE PARTNERSHIP 
BETWEEN FIA, COOPERATIVE EXTENSION, AND STATE AND 

NATIONAL CONSERVATION EDUCATION PARTNERS

Rachel Riemann1

Abstract—Forest information is desired for broader applications than we typically 
serve.  Among those underserved users are the education and outreach communities.  
These groups are actively trying to engage and teach both youth and adults in areas 
such as GIS/spatial analysis, natural resource education, general math/science, invasive 
species, climate change, water quality, and forest management, via a variety of venues 
including classroom instruction, Master Forester workshops, Woods walks, specific 
issue-based workshops, and citizen science training sessions.  The advent of modeled 
geospatial datasets of forest characteristics makes FIA data accessible to these users in a 
way that it wasn’t before.  And for most of these users, there usually isn’t another source 
of current information about our forestlands, and certainly not one of similar quality 
and consistency.  Reaching these users would increase awareness of forests in general, 
and of the USFS and FIA as a good source of information about those forests, amongst 
a large new eager, and often young, user group, and would improve the effectiveness 
of their work.  We (FIA) cannot effectively reach all these users ourselves (individual 
schools, local forest landowner groups, conservation educators, Master Foresters 
and Gardeners).  Fortunately several potential partners exist who serve those users – 
Cooperative Extension, and specific user-group partners such as State Conservation 
Education Departments and National Project Learning Tree – partners who could provide 
the essential bridging role necessary for FIA to reach them.    A good webpage with 
readily accessible and downloadable geospatial datasets will definitely take us part of 
the way, but combining that critical online accessibility with direct outreach to these 
more local partners (e.g. Cooperative Extension) and/or specific user-group partners 
(State Conservation Education, National Project Learning Tree) will increase the 
effectiveness and use of both.  In this paper we will describe our experience accessing 
these communities in New York, and share some recommendations for reaching these 
communities in other areas.  

1 Research Forester/Geographer, Northern Research Station, Troy, 
NY, 518-285-5607, rriemann@fs.fed.us
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THE NEW FACE OF AMERICA’S FAMILY FOREST OWNERS: RESULTS 
FROM THE 2011-2013 USDA FOREST SERVICE,  

NATIONAL WOODLAND OWNER SURVEY

Brett J. Butler1, Jake H. Hewes2, Sarah M. Butler3, Marla Lindsay4, and David B. Kittredge5

Abstract—Family forest owners rule!  Across the United States, no other groups owns 
more forestland than families, individuals, trusts, and estates – collectively referred to as 
family forest owners.  In total this group owns 117 million hectares of forestland, or 36% 
of the US forestland.  Understanding the attitudes, behaviors, and general characteristics 
of this group of owners is necessary for understanding not just the current state of the 
forests, but also its future. This information is also important for designing effective 
programs and programs to meet the need of current and future owners.  Data from the 
latest (2011-2013) iteration of the USDA Forest Service’s National Woodland Owner 
Survey (NWOS; www.fia.fs.fed.us/nwos) will be used to explore differences between 
new and established forest ownerships in the US. Nearly 20% of America’s forest owners 
have acquired their land within the past 10 years.  These new owners have a number of 
factors that are similar to the more established owners, but also a number of factors that 
are different and these will be explored during this presentation. 

1 Brett J. Butler, USDA Forest Service, Northern Research Station 
2 Jake H. Hewes, USDA Forest Service-University of Massachusetts 
Amherst Family Forest Research Center 
3 Sarah M. Butler, USDA Forest Service-University of Massachu-
setts Amherst Family Forest Research Center
4 Marla Lindsay, USDA Forest Service-University of Massachusetts 
Amherst Family Forest Research Center
5 David B. Kittredge, University of Massachusetts Amherst, Depart-
ment of Environmental Conservation 

http://www.fia.fs.fed.us/nwos
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AMERICA’S FEMALE FAMILY FOREST OWNERS

Emily Silver1, Sarah M. Butler2, Brett J. Butler3

Abstract—According to the latest data from the US Forest Service National Woodland 
Owner Survey, there are an estimated 4 million family forest ownerships (with 10+ acres) 
across the U.S.  Approximately 20% of these ownerships have a woman as the primary 
owner.  A great percentage of the other ownerships are owned by a couple where the 
second owner is a woman and, given normal mortality patterns with woman outliving 
men, many more women will eventually become the primary decision makers.  There 
has been increasing interest in establishing programs aimed specifically at female forest 
owners, but there has been relatively few studies looking at this important group.  This 
presentation will explore the characteristics of female forest ownerships in the U.S. and 
highlight differences (and similarities) as compared to their male counterparts using data 
from the National Woodland Owner Survey. 

1 Emily Silver, USDA Forest Service, Northern Research Station 
3 Sarah M. Butler, USDA Forest Service-University of Massachu-
setts Amherst Family Forest Research Center
3 Brett J. Butler, USDA Forest Service, Northern Research Station
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MOSS AS BIO-INDICATORS OF HUMAN EXPOSURE TO  
POLYCYCLIC AROMATIC HYDROCARBONS IN PORTLAND, OR

Geoffrey H. Donovan1, Sarah E. Jovan2, Demetrios Gatziolis3, Vicente J. Monleon4

Abstract—Polycyclic aromatic hydrocarbons (PAHs) are a class of air pollutants linked 
to a wide range of adverse health outcomes, including asthma, cancers, cardiovascular 
disease, and fetal growth impairment. PAHs are emitted by combustion of organic 
matter (e.g. fossil fuels, plant biomass) and can accumulate in plant and animal 
tissues over time. Compared to criteria pollutants, such as O3 or NO2, less is known 
about PAHs in air inhaled by the general population because PAH monitoring is more 
technically challenging and costly (in Portland, for example, PAHs are measured by 
only one monitor). One cost-effective alternative is including bio-indicators in urban 
forest inventories to estimate how human exposure to PAHs varies across an area. Bio-
indicators are less costly to collect and can integrate air pollutants over a long period 
of time, making them well suited to measuring chronic low-levels of air pollution that 
aren’t detected by conventional air-quality monitors. We collected 347 moss samples 
(Orthotrichum spp.) across Portland, Oregon in December 2013 and tested each sample 
for the 16 PAHs identified by EPA as priority pollutants. For pyrene, benzo[a]pyrene, 
and naphthalene, we estimated regression models of moss PAH controlling for road 
density, vegetation, elevation, residential wood combustion, and weather that accounted 
for spatial autocorrelation among residuals. In addition, we used Bayesian multiple 
imputation to address non-detects. Road density and secondary wood burning (fireplaces) 
were associated with higher PAH levels, whereas tree cover and grass-and-shrubs were 
associated with lower PAH levels. Vegetation cover appears to be at least as important as 
road density in determining PAH concentrations. Other factors associated with PAHs in 
moss include elevation, daily temperature, humidity, and whether the sampled tree was 
in a tree genus with narrow crowns. We used the regression models to make fine-scaled 
maps of PAH concentrations across Portland. 

1 Geoffrey H. Donovan, Research Forester, PNW Research Station, 
Portland, OR, 503-808-2043, gdonovan@fs.fed.us
2 Sarah E. Jovan, Research Ecologist, PNW Research Station, 
Portland, OR, 503-808-2070, sjovan@fs.fed.us
3 Demetrios Gatziolis, Research Forester, PNW Research Station, 
Portland, OR, 503-808-2038, dgatziolis@fs.fed.us
4 Vicente J. Monleon, Mathematical Statistician, PNW Research 
Station, Corvallis, OR, 541-750-7299, vjmonleon@fs.fed.us
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“LICHENS LITE?”  
CHEMICAL ANALYSIS OF LICHENS FOR TRACKING 26 POLLUTANTS 

Sarah Jovan1, Susan Will-Wolf2, Michael Amacher3

Abstract—Lichen chemistry can be used to estimate concentrations of environmental 
contaminants, ranging from heavy metals and fertilizers to polycyclic aromatic 
hydrocarbons, dioxins, pesticides, herbicides, and flame retardants. We conducted a pilot 
looking at 26 metals and nutrient anions in 5 widespread lichen species across the upper 
Midwest, including:  As, Al, Ba, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Mg, Mn, Mo, N, Na, 
Ni, P, Pb, S, Se, Si, Sr, and Zn. FIA crews collected 135 lichen samples from 75 plots 
across IL, IN, IA, MI, MN, WI and an expert collected 128 additional samples near 11 
air monitors. Elements were measured in lichens using C, N, S, and Hg combustion 
analyzers and ICP-AES. Crews trained for 6 hours. Field time required per lichen sample 
ranged from 0.5 to 2 hrs, depending on target species. Contractors prepped samples for 
chemical analysis for an average of 30 to 45 minutes. The small but widespread species, 
Physcia aipolia/stellaris, took 1.5 hr/sample.  Lichen concentrations of only 6 elements 
were below the detection limit or considered too variable to be of use (CV > 25%; Mo, 
B, Ba, Si, As, Se). No lichen species is found everywhere and species may accumulate 
pollutants at different rates. We used regression or univariate GLM between some species 
pairs to create conversion factors for some elements. Compared to the Phase3 Lichen 
Communities Indicator (LCI), advantages of chemical analysis are lower costs, less field 
time, and ability to map a broader range of pollutants. However, a key benefit of LCI is 
that it quantifies species gains and losses, which is an ecosystem response to air quality. 
Chemical content of lichens is not ecologically meaningful on its own, serving more as 
a mapping tool. Nonetheless, critical loads (pollutant thresholds known to be associated 
with ecosystem responses) may be used as reference points in lichen maps. 

1 Sarah Jovan, Research Ecologist, USDA Forest Service, Portland 
Forestry Sciences Lab, 620 SW Main, Suite 400, Portland, OR 
97205-1381 , 503-808-2070, sjovan@fs.fed.us.
2 Susan Will-Wolf, Senior Scientist emerita, Department of Botany, 
University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 
53706-1381, 608-262-2754, swwolf@wisc.edu.
3 Michael Amacher, Research Soil Scientist, USDA Forest Service, 
Rocky Mountain Research Station, Logan Forestry Sciences Lab, 860 
N 1200 E, Logan, UT 84321, 435-755-3569, mamacher@fs.fed.us.
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EXPANDING THE FIA INVENTORY  
TO UNDERSTAND PLANT DIVERSITY  
IN PALAU’S CONSERVATION AREAS

Matthew O’Driscoll1, Ashley Lehman2, Mikhail Yatskov3

Abstract—Palau is well known as an area of high plant diversity; indeed, it is considered 
the most species rich island group within Micronesia (Kitalong et al., 2008).  The Palauan 
archipelago covers only about 535 km² of land area and yet contains an estimated 730 
native plants, including 151 endemic species (Kitalong et al., 2008).  Broader scientific 
interest in Palauan forest health and biodiversity is mirrored locally by residents and 
land managers who seek baseline information to inform resource management decisions.  
With these concerns in mind, the Data Collection Team at the Pacific Northwest Research 
Station proposed a small pilot project to assess the feasibility of conducting more detailed 
vegetation surveys in Palau as well as the value of the information gained by more 
intensive sampling.  In this survey we documented about 25% of the known plant species 
of Palau on the 15 subplots sampled, a total area of about 0.0025 km2 or 0.62 acre.  In 
summary, this pilot work demonstrates that detailed vegetation sampling (i.e., censuses) 
on FIA plots in the Pacific Islands is technically feasible, yields a wealth of information 
on plant diversity, and is potentially interesting on many levels to local communities, land 
managers, and the broader scientific community.  

1 Matthew O’Driscoll, Ecologist, FIA Data Collection, Pacific North-
west Research Station, Anchorage, AK, mattod80@gmail.com, 
2 Ashley Lehman, Supervisory Biologist, FIA Data Collection, 
Pacific Northwest Research Station, Anchorage, AK, adlehman@
fs.fed.us, 907-743-9415
3 Mikhail Yatskov, Forester, FIA Data Collection, Pacific Northwest 
Research Station, Anchorage, AK, yatskovm@yahoo.com 

mailto:mattod80@gmail.com
mailto:adlehman@fs.fed.us
mailto:adlehman@fs.fed.us


New Directions in Inventory Techniques & Applications Forest Inventory & Analysis (FIA) Symposium 2015 296PNW-GTR-931

USING LANDSCAPE-LEVEL FOREST MONITORING DATA  
TO DRAW A REPRESENTATIVE PICTURE  

OF AN ICONIC SUBALPINE TREE SPECIES 

Sara A. Goeking and Deborah K. Izlar1

Abstract—Whitebark pine (Pinus albicaulis) is an ecologically important species 
in high-altitude, mid-latitude areas of western North America due to the habitat and 
food source it provides for many wildlife species. Recent concerns about the long-
term viability of whitebark pine stands have arisen in the face of high mortality due 
to a combination of fire suppression, white pine blister rust, and mountain pine beetle 
outbreaks. Most previous studies of whitebark pine have focused on pure stands, yet 
the spatially representative Forest Inventory and Analysis (FIA) dataset shows that 
whitebark pine is more widespread in other forest types than in pure stands. Because 
previous studies have focused on iconic, pure whitebark pine stands, managers may 
not be aware of the potential for ecological restoration of whitebark pine in other forest 
types. The purpose of this study was to use FIA’s spatially representative sample grid to 
assess whitebark pine stands in a variety of environments in the Rocky Mountains, and 
to compare the structure and composition of pure versus mixed-species stands where 
whitebark pine is present. The results illustrate that metrics of whitebark pine viability, 
namely regeneration and mortality, may be comparable in the understory of other forest 
types to those observed within pure stands. Finally, this study demonstrates that the FIA 
dataset permits spatially representative evaluations of populations that tend to be studied 
purposively rather than strategically.

Whitebark pine (Pinus albicaulis) is a keystone 
species found in high-elevation ecosystems of western 
North America. It is specialized for dispersal by the 
Clark’s nutcracker (Hutchins and Lanner 1982) and 
serves as a food source for many species of birds 
and small mammals, as well as black bears (Ursus 
Americanus) and threatened grizzly bears (Ursus 
arctos horribilis) (Keane and Arno 1993). Whitebark 
pine is frequently considered to be a pioneer species 
that is maintained on more productive sites by stand 
replacing fire (Keane et al. 2012).

Whitebark populations are declining range-wide 
and in 2011 whitebark pine was found scientifically 
warranted for protection under the Endangered 

Species Act due to a combination of mortality-causing 
factors (United States Fish and Wildlife Service 
2011). Recent large-scale outbreaks of mountain 
pine beetle (Dendroctonus ponderosae) have caused 
mortality of mature whitebark pine trees at higher 
rates and over larger areas than has been historically 
observed (Keane et al. 2012; Raffa et al. 2008). 
Ongoing infection by the exotic white pine blister 
rust (Cronartium ribicola) has impacted whitebark 
pine’s regeneration strategy at all life stages, causing 
rapid mortality in young seedlings, nearly eliminating 
cone production in mature trees, and causing mature 
tree mortality (McKinney and Tomback 2007). 
Following a severe mortality event, seed sources for 
post-outbreak recruitment of whitebark pine may be 
limited, and as a consequence, survivorship patterns of 
mature trees, saplings and seedlings may be the most 
important determinants of future forest development 
(McCaughey et al. 2009). 

1 Biological Scientist (SAG), Rocky Mountain Research Station, 
USDA Forest Service, 507 25th Street, Ogden, UT 84401; and 
Statistician (PLP), Rocky Mountain Research Station, 2150-A 
Centre Ave, Suite 350, Fort Collins, CO 80526-8121. SAG is 
corresponding author: to contact, call (801) 625-5193 or e-mail at 
sgoeking@fs.fed.us.
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To assess the outlook for whitebark populations, it 
is of primary importance to establish the extent and 
amount of whitebark pine regeneration and mortality 
across the landscape. The specific objectives of this 
project were to: (1) characterize whitebark pine 
seedling density at all plots in the Rocky Mountains 
with a whitebark pine component, and (2) compare the 
distribution of whitebark pine size classes, for both 
live and mortality trees, in the forest types that most 
commonly contain whitebark pine. 

METHODS
The study area for this project is the range of 
whitebark pine in the U.S. Rocky Mountains. The 
analysis was constrained to all FIA plots in the states 
of Idaho, Montana, and Wyoming that contained at 
least one of the following: a live or dead whitebark 
pine tree (diameter at breast height, or d.b.h., of 
5.0 inches or larger); a live whitebark pine sapling 
(d.b.h. between 1.0 and 4.9 inches); or a whitebark 
pine seedling (d.b.h. less than 1.0 inch and length 
of at least 6 inches). For all plots that met at least 
one of these criteria, data were obtained from 
the seedling, tree, and condition tables in FIADB 
(O’Connell et al. 2013).

Density of whitebark pine seedlings was queried 
directly from the variable TPA_UNADJ in the seedling 
table in the FIA database (FIADB), where TPA_
UNADJ for seedlings of each species on each subplot 
is equal to the number of seedlings tallied times the 
seedling expansion factor (O’Connell et al. 2013); this 
variable was then summed to the plot level. Density of 
mortality trees and density of live trees and saplings 
were calculated by summing tree-level expansion 
factors for each condition and then for each plot, by 
2-inch diameter class. The intermediate condition-
level step was used to identify forest types that most 
frequently contained a whitebark pine component. 
Plot-level stem densities were adjusted by the 
proportion of the plot that was forested, as described in 
O’Connell et al. (2013).

RESULTS
In the Rocky Mountains, 1,036 FIA plots surveyed 
between 2003 and 2012 contained a component of 
whitebark pine (Fig. 1). Seedling density at these plots 
ranged from zero to over 6,000 seedlings per acre, 
with a mean density of 312 seedlings per acre and a 
median density of 150 seedlings per acre. Whitebark 
pine seedlings were present on 719 plots; about 18 
percent of these plots occurred within the whitebark 
pine forest type (Table 1). Similarly, about 18 percent 
of the 938 plots with whitebark pine trees or saplings 
occurred in the whitebark pine forest type (Table 
1). Both lodgepole pine and spruce-fir forest types 
contained more plots with whitebark pine components 
than pure whitebark pine stands. 

Figure 2 shows the size-class distribution of live 
whitebark pine stems and whitebark pine mortality 
trees by forest type. Live whitebark pine densities 
in all diameter classes are highest in pure whitebark 
stands (Fig. 2a). The density of seedlings in the 
lodgepole pine forest type is nearly as high as that 
within pure whitebark pine stands, but in larger 
diameter classes there is a greater disparity between 
lodgepole pine and pure whitebark pine stands. 
However, the presence of whitebark pines in all 
diameter classes in lodgepole pine and spruce-
fir forest types may represent a much larger areal 
distribution of whitebark pine than acknowledged in 
previous studies.

The whitebark pine forest type exhibited not only 
higher densities of live stems but also higher densities 
of whitebark pine mortality trees, in all size classes 
(Fig. 2b). Qualitative comparison of the densities of 
mortality trees (Fig. 2b) to live trees (Fig. 2a) in each 
size class suggests that lodgepole pine and spruce-fir 
forest types that contain whitebark pine components 
did not experience mortality any more severe, and 
possibly less severe, than the mortality observed in 
pure whitebark pine stands.
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Figure 1—Map showing 1,036 FIA plots in the northern Rocky Mountains with a whitebark pine component, 2003-
2012, by forest type and whitebark pine seedling density class. Plot locations are approximate.

Table 1—Number of plots, by forest type, that contain whitebark pine (WBP) trees (d.b.h. at least 5.0 inches) 
or saplings (d.b.h. 1.0 to 4.9) and number of conditions that contain WBP seedlings. Total are less than the 
total number of plots with a WBP component because some plots contain only seedlings and no trees or 
saplings, and others contain trees or saplings but no seedlings.

Forest type Number of plots with WBP trees or saplings Number of plots with WBP seedlings

Whitebark pine 172 131

Lodgepole pine 188 243

Spruce-fir types1 451 282

Douglas-fir 87 50

Other types 40 13

All types 938 719
1 FIA’s forest type classification includes several individual spruce-fir forest types, with four different spruce-fir types represented in this dataset. Because 
more than 95 percent of the plots in this dataset occur within the Engelmann spruce/subalpine fir type and the subalpine fir type, and because both types 
were present in nearly equal proportions and showed very similar densities of whitebark pine stems at all size classes, all spruce-fir types are aggregated 
here for simplicity.
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Figure 2—Mean density of live whitebark pines (A) and mean density of whitebark pine mortality trees (B), by diameter class, for the three 
forest types where whitebark pine is most abundant in the Rocky Mountains, 2003-2012. Estimates of mortality trees per acre were not 
available for trees smaller than 5.0 inches d.b.h.
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DISCUSSION
The advantage of using FIA data for this type of analysis is 
that the FIA plot grid represents a spatially representative 
sample (Bechtold and Patterson 2005) across the 
landscape, rather than a purposive or targeted sample 
of sites with specific intrinsic characteristics, such as an 
overstory predominated by whitebark pine and/or signs of 
recent severe mortality. This analysis found that although 
the whitebark pine forest type contains the highest 
densities of seedlings, saplings, and trees, other forest types 
also have appreciable densities of whitebark pine stems 
in all diameter classes. Similarly, densities of whitebark 
pine mortality trees were higher in pure whitebark pine 
stands than in other forest types. However, other forest 
types occupy far more area than the pure whitebark pine 
forest type, as represented by the number of FIA plots that 
met the criteria for inclusion in this analysis. In particular, 
whitebark pine stems of all size classes occurred within 
lodgepole pine and spruce-fir forest types more frequently, 
although at lower densities, than in pure whitebark pine 
forests. Seedling densities in lodgepole pine forests were 
almost as high as those in pure whitebark pine forests, so 
further study is needed to identify the factors that affect 
recruitment into larger size classes.

To make this information useful to managers, future 
research should identify site factors that differentiate 
lodgepole pine and spruce-fir stands that contain a 
whitebark pine component from those that do not. 
Sites with a whitebark pine component may represent 
potential recruitment sites, either via future recruitment 
or competitive release of understory trees following 
overstory disturbances such as the mountain pine beetle 
epidemic. Campbell and Antos (2003) found that even 
small whitebark pine trees and saplings can respond 
favorably to disturbance-induced canopy gaps, and 
exhibit competitive release after growing slowly for 
150-200 years. Although ecological succession from 
whitebark pine to subalpine fir is thought to be one cause 
of whitebark pine’s decline (Keane and Arno 1993), it 
is possible that whitebark pine is not entirely seral in 
other forest types, and some spruce-fir and lodgepole 
pine stands may offer opportunities for managing for 
competitive release of whitebark pines in the understory. 
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USING ADJUNCT FOREST INVENTORY METHODOLOGY TO 
QUANTIFY PINYON JAY HABITAT IN THE GREAT BASIN

Chris Witt1

Abstract—Pinyon jays (Gymnorhinus cyanocephalus) are the principal dispersal agent 
for pinyon pine seeds in the Great Basin region of the Intermountain West. However, 
Pinyon jays have exhibited significant population declines over much their range in 
recent decades, even as pinyon-juniper woodlands appear to have been expanding over 
the past 150 years. In order to identify and quantify habitat preferences for nesting, seed 
caching, and general foraging within the woodlands of the Great Basin, we measured 
stand and tree parameters of Pinyon jay nest, forage and cache sites in Idaho and Nevada 
using U.S. Forest Service Forest Inventory and Analysis (FIA) survey methodology. We 
then compared mean values of site characteristics to data collected from standard Forest 
Inventory plots in order to quantify habitat across Nevada, which contains most of the 
Great Basin land area. Sites differed in physical structure, with caching sites having lower 
canopy cover and higher snag basal area than other sites, and foraging sites having higher 
shrub cover than other sites. About 26 percent of Nevada’s pinyon-juniper woodlands 
resemble the caching habitat preferences of the birds in our study, and about 32 percent 
resemble nest site preferences. However, only about seven percent of the woodlands meet 
general foraging habitat used in our study. This research identifies a potential limiting 
resource for pinyon jays in the Great Basin while also showing the utility of adjunct 
inventory using FIA methodology.

1 U.S. Forest Service, Rocky Mountain Research Station, Forest 
Inventory and Analysis program. 322 East Front Street Suite 401, 
Boise, Idaho 83702. (208) 373-4370, chriswitt@fs.fed.us

mailto:chriswitt@fs.fed.us


New Directions in Inventory Techniques & Applications Forest Inventory & Analysis (FIA) Symposium 2015 303PNW-GTR-931

ESTIMATING MANGROVE IN FLORIDA:  
TRIALS MONITORING RARE ECOSYSTEMS

Mark J. Brown1

Abstract—Mangrove species are keystone components in coastal ecosystems and are the 
interface between forest land and sea. Yet, estimates of their area have varied widely. Forest 
Inventory and Analysis (FIA) data from ground-based sample plots provide one estimate of 
the resource. Initial FIA estimates of the mangrove resource in Florida varied dramatically 
from those compiled by other sources. Estimates of mangrove forest in Florida ranged from 
FIA’s less than 100,000 acres to nearly 600,000 acres elsewhere. FIA discovered inherent 
measurement difficulties, accessibility constraints, and adverse working conditions affecting 
accurate sampling and estimation of the resource. Reconciliation of these issues produced 
improved estimates. However, disparity with other estimates remains. FIA concluded that 
accurate assessment of peripheral margin-like resources, such as mangrove, must include 
methods used to sample any spatially limited resource of interest. Current FIA estimates show 
238,000 acres of mangrove forest type in Florida with a sampling error of 15.48 percent. 

Since Forest Inventory and Analysis (FIA) first 
inventoried the forests of Florida in 1936, mangroves 
were treated as noncommercial species and considered 
unproductive forest land. This designation carried 
through the 1949, 1959, 1970, 1980, 1987, and 1995 
inventories of the State. However, FIA revised the 
inventory for the new millennium and switched from 
periodic inventory measurement to collecting field data 
on an annualized basis. In Florida, this process began 
in 2001. One important aspect of the new inventory 
was that mangrove species were now tallied as trees 
and incorporated into the inventory data. Thus, for 
the first time, as the inventory progressed, data were 
available to describe Florida’s mangrove resource. 
In Florida, four species of mangrove were measured: 
red mangrove (Rhizophora mangle), black mangrove 
(Avicennia germinans), white mangrove (Laguncularia 
racemosa), and buttonwood mangrove (Conocarpus 
erectus). Many differences between the individual 
mangrove species exist; for example, the reds are 
generally most seaward and the buttonwoods most 
landward. However, for the purposes of this research, 
they are considered collectively. 

Analysis of early mangrove data revealed dramatic 
disparities with estimates from other sources. The 2004 
and 2007 (Fig. 1) FIA estimates of less than 100,000 
acres statewide versus other estimates approaching 
600,000 acres (Florida Fish and Wildlife Conservation 
Commission Fish and Wildlife Research Institute 
2009, Department of Environmental Protection 
Florida Marine Research Institute 2002, Johnston and 
others 1995) prompted questions regarding potential 
differences in sampling methods as well as forest type 
definition. The 2004 estimates were based on 60 percent 
of the sample design plots being captured and, despite 
algorithmic expansions, produced the lowest mangrove 
estimates. By 2007, the entire plot sample had been 
measured, but the improved estimates were still far 
below those from other sources. Evidently, the high 
proportion of probable mangrove samples not visited 
due to access denial and adverse condition field calls 
were not represented in the data output. FIA methods 
were largely ground-based samples with expansion 
factors, whereas other sources were largely aerial 
photography and satellite imagery based. Furthermore, 
the FIA forest land definition required a minimum of 1 
acre in size with a minimum width of 120 feet to meet 
the threshold to be classified as forest, precluding small 
pockets or narrow strips of trees from the estimate.

1 Resource Analyst, USDA Forest Service, Southern Research 
Station, 4700 Old Kingston Pike, Knoxville, TN 37919. To contact, 
call (865) 862-2033 or e-mail at mbrown03@fs.fed.us.
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However, these explanations were insufficient to 
resolve the entire gap in mangrove area estimates. 
Subsequent internal investigation discovered 
shortcomings in the FIA sampling methods. Since the 
mangrove forest type typically occurs at sea level and 
within tidal zones, the resulting peripheral distribution 
along coastlines and tidally influenced drainages 
presented inherent difficulties to accurate sampling and 
estimation of the resource. Issues involving accessibility 
and adverse conditions encountered actually inhibited 
and prevented measuring many of the sample plots. 
Many were reported as hazardous or access denied. 
Having a large percentage of nonsampled plots is 
known to potentially lead to underestimation of forest 
attributes (Patterson and others 2012). 

FIA evaluated the equipment used by field personnel 
to access mangrove forests and found the traditional 
watercraft used to be inadequate to reach these 
shallow, tidal influenced zones. Acquisition of a kayak 
for these purposes immediately improved accessibility 

and permitted the measurement of additional samples 
previously unmeasured. 

Since many of the mangrove forests exist on public 
lands classified as reserved, reinforced memorandums 
of understanding (MOUs) were acquired to permit 
access across sensitive lands administered by other 
agencies. This added cooperation permitted the 
measurement of additional samples as well. 

Although addressing these issues remains a work in 
progress, partial reconciliation of the unmeasured 
samples produced increased estimates of the mangrove 
resource evident beginning with year 2009 and 
forward (Fig. 1). Also evident is the increase in the 
mangrove estimate each year as additional annual 
inventories remeasured the 2007 plot design and 
eventually recaptured the full sample by 2013. Since 
2007, the FIA estimate of mangrove in Florida has 
more than doubled. Mangroves can be a fragile 
resource regarding impacts from hurricanes and 
coastal urbanization, and they are not known for rapid 

0

50,000

100,000

150,000

200,000

250,000

2004 2007 2009 2010 2011 2012 2013

A
cr

es

Year  

Private
Public

Figure 1—Area of mangrove forest type on forest land in Florida by major ownership group and year.
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growth or colonization; therefore, most of the increase 
in the FIA estimates can be attributed to the changes 
in sampling methods and reduction of the nonsampled 
rate. In 2013, 80 percent of the mangrove area existed 
on publicly owned lands. Although the mangrove area 
estimate was enhanced on both public and private 
lands between 2007 and 2013, it is clear that most of 
the apparent gain was accomplished on public land, 
where efforts to improve cooperation through MOUs 
with other agencies contributed. 

The subtropical trait of the mangrove forests generally 
restricts their occurrence to the southern end of the 
Florida peninsula. Table 1 shows the distribution of 
the mangrove forest type by survey unit. This table 
corroborates that 85 percent of Florida’s mangrove 
forest type does exist in the South survey unit 
of the State. Enhancements in the FIA sampling 
methods improved estimates to the largest extent in 
the South survey unit, where large public holdings 
exist. Noteworthy is the 2010 and onward capture 

of mangrove forest in the Northeast survey unit. If 
this measurement were for a more prevalent tree 
species, this could be construed as evidence of species 
range extension. However, it is most likely evidence 
of results from improvements to the FIA sampling 
methods for mangrove. 

Estimating the population of mangrove trees 
independently of area estimates was done to gain 
another perspective on the mangrove resource. 
Population estimates capture mangroves from all 
forest conditions, including those not classified as 
mangrove forest type (Fig. 2). The changes in the 
population of mangrove trees actually emulated 
those of the area of mangrove forest type. Again, the 
estimates more than doubled from 2007 to 2013. The 
tracking similarity of the population estimates with 
that of the area estimates stems from the tendency of 
mangroves to occur in homogenous stands due to the 
wet and brackish to saline conditions not tolerated by 
many other tree species. 

Table 1—Area of mangrove forest-type on forest land in Florida by survey unit, major ownership group, and year

Survey unit and major 
ownership group 2004 2007 2009 2010 2011 2012 2013

acres
Northwest

Public 0 0 0 0 0 0 0
Private 0 0 0 0 0 0 0
All 0 0 0 0

Northeast
Public 0 0 0 9,118 9,118 9,406 9,453
Private 0 0 0 0 0 0 0
All 0 0 0 9,118 9,118 9,406 9,453

Central
Public 19,018 13,109 20,146 20,088 19,922 19,572 19,656
Private 0 0 0 0 6,169 5,989 6,019
All 19,018 13,109 20,146 20,088 26,091 25,561 25,675

South
Public 16,270 59,050 104,756 116,430 146,398 152,725 160,893
Private 11,568 17,700 24,109 31,246 36,911 42,095 42,161
All 27,838 76,750 128,865 147,676 183,309 194,820 203,054

State
Public 35,288 72,159 124,902 145,636 175,438 181,703 190,002
Private 11,568 17700 24,109 31,246 43,080 48,084 48,180
All 46,856 89,859 149,011 176,882 218,518 229,787 238,182
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The population of mangrove trees by survey unit 
closely tracks that of the forest type distribution (Table 
2). In 2013, the South survey unit accounted for 83 
percent of the State’s mangrove trees. Similar to forest 
type, mangrove trees were measured in the Northeast 
survey unit beginning in 2010 and onward. 

Figure 3 reveals the weaknesses and the progress FIA 
has made in improving estimates of the occurrence 
and distribution of mangrove trees in Florida. The map 
shows the location of samples that recorded one or 
more mangrove trees present. From the 2001 inception 
of mangroves recorded as trees, the 2004 map (Fig. 
3A) shows the weakness of a partial sample and the 
flaws in accessibility issues affecting the data. The 
2007 map (Fig. 3B) shows the full sample measured, 
but accessibility issues left the estimate inadequate. By 
2010 (Fig. 3C), the map shows the impact of improved 
access methods and a better picture of the mangrove 
resource. By the full remeasurement of the 2007 
sample in 2013 (Fig. 3D), the map shows an improved 
distribution. However, some gaps still appear in 
known areas of mangrove, such as those around Cape 

Canaveral and within Everglades National Park. The 
fact that these areas appear to remain undersampled 
indicates that mangroves are still being underestimated. 

The gains in achieving a more accurate estimation 
of the mangrove resource in Florida have primarily 
resulted from improved access methods. The 
percentage increases between survey years shown in 
both figures and both tables appear to be diminishing. 
Considering the remaining disparity with other 
estimates leads to the premise that either other sources 
have overestimated the mangrove resource or FIA 
has to further refine the sampling method for this rare 
ecosystem. Ultimately, FIA has learned that other 
issues regarding spatially restricted resources need 
to be addressed to further improve its estimation. 
Solutions identified involve sample intensification and 
strata development for mangrove. FIA has concluded 
that more accurate assessment of the mangrove 
resource must include sampling methods like those 
employed for estimates of individual islands, singular 
ownerships like national forest, inclusions, and any 
spatially limited resource of interest. 

Figure 2—Number of live mangrove trees at least 1 inch d.b.h. on forest land in Florida by major ownership group and year.
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Table 2—Number of live mangrove trees at least 1 inch d.b.h. on forest land in Florida by survey unit, major 
ownership group, and year.

Survey unit  
and major 
ownership 
group 2004 2007 2009 2010 2011 2012 2013

number

Northwest

Public 0 0 0 0 0 0 0

Private 0 0 0 0 0 0 0

All 0 0 0 0 0 0 0

Northeast

Public 0 0 0 11,391,626 11,391,626 11,751,546 11,810,674

Private 0 0 0 0 0 0 0

All 0 0 0 11,391,626 11,391,626 11,751,546 11,810,674

Central

Public 17,995,717 13,425,064 24,967,830 23,083,166 22,825,838 22,301,343 22,046,632

Private 0 0 0 0 10,284,787 9,984,987 10,036,005

All 17,995,717 13,425,064 24,967,830 23,083,166 33,110,625 32,286,330 32,082,637

South

Public 24,369,169 56,099,499 92,832,692 111,036,320 130,110,212 151,918,301 166,330,362

Private 69,617 19,457,355 15,796,261 34,752,196 33,343,348 33,655,103 40,784,461

All 24,438,786 75,556,854 108,628,953 145,788,516 163,453,560 185,573,404 207,114,823

State

Public 42,364,886 69,524,563 117,800,522 145,511,112 164,327,676 185,971,190 200,187,668

Private 69,617 19,457,355 15,796,261 34,752,196 43,628,135 43,640,090 50,820,466

All 42,434,503 88,981,918 133,596,783 180,263,308 207,955,811 229,611,280 251,008,134
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Figure 3—Mangrove sample locations and year (A) 2004, (B) 2007, (C) 2010, (D) 2013, Florida.
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A BASELINE ASSESSMENT OF FOREST COMPOSITION, STRUCTURE, 
AND HEALTH IN THE HAWAI’I EXPERIMENTAL TROPICAL FORESTS

Robert R. Pattison, Andrew N. Gray, and Lori Tango1

Abstract—The US Forest Service’s Forest Inventory and Analysis (FIA) Program of the 
Pacific Northwest (PNW) Research Station has been working in the Hawaiian islands 
since 2010.  During this time they have installed a base grid of field plots across all of the 
Hawaiian Islands and an intensified sample of two experimental forests, the Laupāhoehoe 
and Pu‘u Wa‘awa‘a units of the Hawaii Experimental Tropical Forests (HETF). 
These intensified plots used the standard P3 FIA plot design but included a number of 
additional measurements that were designed to address forest health issues specific to 
Hawai›i›s forests. Preliminary analysis of all of the data provides important insights 
into the structure and composition of the forests including tree damages, regeneration 
(seedling recruitment), understory composition, and the presence of invasive species. 
Results of this initial inventory effort and a preliminary analysis will be presented. 
Highlights include key differences in the extent of invasive species and ungulate damage 
across plots in these different forests.   

INTRODUCTION
In 2010 the FIA program of the Pacific Northwest 
Research Station started the first inventory of the state 
of Hawai’i. This inventory is set to be completed in the 
fall of 2015. In addition to the establishment of a 1x 
grid, the FIA program installed two panels of 2x plots 
on Hawaii Island and installed an intensified grid on 
the experimental forest units of Laupāhoehoe and Pu‘u 
Wa‘awa‘a.  The results of these initial insights into 
the forested conditions on the experimental forests of 
Hawaii will be discussed.  

STUDY AREA
The Laupāhoehoe experimental forest is located 
on the northern end of the island of Hawaii. The 
forest is 12,387 acres in size and ranges from 1,700 
feet elevation to 6,100 feet.  The average annual 

precipitation in this forest is 160 inches per year in 
the lower regions of the forest and 60 to 100 inches at 
higher elevations. The Pu‘u Wa‘awa‘a experimental 
forest unit is located on the leeward side of Hawaii 
island and is 38,885 acres in size. The average annual 
precipitation is near sea level is 10 inches increasing 
to 47 inches at higher elevations. This experimental 
forest unit ranges from sea level feet to 6,100 feet.    

METHODS
An intensified sampling of the two experimental forest 
units was conducted with a total of 69 plots proposed 
to be visited - 32 plots in the Laupāhoehoe Unit and 
37 plots in the Pu‘u Wa‘awa‘a Unit. All installed 
plots had standard P3 protocols with modifications 
made to include a macro plot for trees > 24”, a 
comprehensive tree species list, additional branching, 
rooting, and crown measurements, and the inclusion of 
special interest species ranging from invasive plants, 
pathogens, and feral pig damage.

1 Research Ecologist (RRP), Pacific Northwest Research Station 
USDA Forest Service, 161 East 1st Ave, Door 8, Anchorage, AK, 
9950; and Research Ecologist (ANG), Pacific Northwest Research 
Station USDA Forest Service, 3200 SW Jefferson Way, Corvallis, 
OR, 97331. Hawaii Coordinator (LT) Institute of Pacific Islands 
Forestry, 60 Nowelo Street, Hilo, HI, 96720. RRP is correspond-
ing author: to contact, call (907) 743-9414 or e-mail at rrpattison@
fs.fed.us

mailto:rrpattison@fs.fed.us
mailto:rrpattison@fs.fed.us
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RESULTS AND DISCUSSION
Of the 69 planned plots, a combined total of 66 plots 
were installed. Three plots in the Laupāhoehoe HETF 
were not measured due to remoteness (i.e., crew was 
unable to safely access plots). All of the proposed 
37 plots at Pu‘u Wa‘awa‘a HETF were installed and 
measured. Twenty of the 37 plots were considered 
accessible forest land, and the remaining 17 plots were 
considered non-forest.

A total of 4,082 and 1,764 live and dead trees 
and saplings were measured on FIA plots in the 
Laupāhoehoe and Pu‘u Wa‘awa‘a HETF units, 
respectively.  The native species ‘ōhi‘a (Metrosideros 
polymorpha) was the most abundant species on both of 
these forest units.

Forests at the Laupāhoehoe HETF tended to be 
dominated by moderate-sized trees with approximately 
54% of all trees ranging in DBH from 5.0 to 9.9 
inches. The average sapling height was 23 ft, the 
average tree heights from subplot trees was 34 feet. 
The tallest tree on an FIA plot in this Unit was a 131 
ft tall ‘ōhi‘a (M. polymorpha) with a DBH of 72.3 
inches. Forest stands at the Pu‘u Wa‘awa‘a HETF were 
dominated by moderate-sized trees with approximately 
63% of all trees measured on plots falling into the 
5.0 to 9.9 inches in diameter size class. There were 
no trees with diameters larger than 40.0 inches in the 
Pu‘u Wa‘awa‘a Unit. For the Pu‘u Wa‘awa‘a Unit the 
average sapling and tree heights were 15 ft, and 35 ft 
respectively. The tallest tree on an FIA plot in this unit 
was a 95 ft tall ‘ōhi‘a (M. polymorpha) with a DBH of 
21.1 inches. 

Most live tress in the Laupāhoehoe HETF supported 
light to heavy epiphyte loading, while only a few 
species of live trees in the Pu‘u Wa‘awa‘a HETF 
supported epiphytes. Light epiphyte loading included 
trees that had epiphytes present but occupied less than 
50 percent of branches or bole and heavy epiphyte 
loading included trees that had greater than 50 percent 
of the branches or bole loaded with epiphytes. 

Approximately nine percent of trees measured in the 
Laupāhoehoe HETF had some form of visible damage. 
The primary damage types observed here were broken 
branches, dead tops, and open wounds. At the Pu‘u 
Wa‘awa‘a HETF approximately 18 percent of trees 
measured had some form of visible damage. The 
primary damage types reported here were broken or 
dead branches, dead tops, and vines in the crown. 

In the Laupāhoehoe HETF, 19 different seedling 
species were tallied on plots. The invasive strawberry 
guava (Psidium cattleianum) was by far the most 
abundant seedling tallied in the Laupāhoehoe HETF 
with four low elevation (2100 to 2800 ft) FIA plots 
in the Natural Area Reserve containing at least 50 
seedlings on each plot.  In the Pu‘u Wa‘awa‘a HETF, 
six different seedling species were tallied on plots. The 
native ‘ōhi‘a (M. polymorpha) and māmane (Sophora 
chrysophylla) were the most abundant seedlings in the 
Pu‘u Wa‘awa‘a HETF.

Common understory seedling and sapling sized 
tree species by estimated cover were the native 
tree fern hāpu‘u pulu (Cibotium glaucum), ‘ōhi‘a 
(M. polymorpha), ‘ōlapa (C. trigynum), kolokolo 
mokihana (Melicope clusiifolia), and the non-native 
shamel ash (Fraxinus uhdei). There were 19 different 
fern, forb, graminoid, shrub, and vine species in the 
understory on plots in the Laupāhoehoe HETF. In 
the Pu‘u Wa‘awa‘a HETF, six species of seedling 
and sapling sized trees (excluding invasive species) 
were tallied. The common understory seedling and 
sapling sized tree species by estimated cover area in 
the Pu‘u Wa‘awa‘a HETF were all native: ‘ōhi‘a (M. 
polymorpha), māmane (S. chrysophylla), and koa 
(Acacia koa). naio (Myoporum sandwicense), and 
lama (Diospyros sandwicensis). Twenty one fern, 
forb, graminoid, and shrub species were found in the 
Pu‘u Wa‘awa‘a HETF. Common non-tree understory 
species included non-native grasses: meadow rice 
grass (E. stipoides), kikuyu grass (Pennisetum 
clandestinum), and velvet grass (Holcus lanatus). 
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A list of priority invasive species for Hawai’i was 
generated through consultations with local experts. 
The percent cover of these species on each subplot was 
tallied separately. There were eight priority invasive 
species tallied on the Laupāhoehoe HETF. Strawberry 
guava (P. cattleianum), Koster’s curse (Clidemia 
hirta), and kahili ginger (Hedychium gardnerianum) 
were among the most common species. There were 
five priority invasive species tallied on Pu‘u Wa‘awa‘a 
HETF.  Fountain grass (Pennisetum setaceum), lantana 
(Lantana camara), and banana poka (Passiflora 
mollissima) were the most common invasive species 
on the Pu‘u Wa‘awa‘a HETF. 

Noticeable pig damage to the ground (wallows) and/
or ground vegetation (rubbing) on plot was estimated 
as a percent of each subplot. Pig damage was observed 
on 29 plots in the Laupāhoehoe HETF with an average 
area of impact of 8%. Pig damage was observed on 
19 plots in the Pu‘u Wa‘awa‘a HETF; with an average 
area of impact of only 1-2%.



STATE-OF-THE-ART  
VISUALIZATIONS  

AND STORYTELLING  
USING FIA DATA



New Directions in Inventory Techniques & Applications Forest Inventory & Analysis (FIA) Symposium 2015 314PNW-GTR-931

DIY VISUALIZATIONS:  
OPPORTUNITIES FOR STORY-TELLING WITH ESRI TOOLS

Charles H. Perry1* and Barry T. Wilson1

Abstarct—The Forest Service and Esri recently entered into a partnership: (1) to 
distribute FIA and other Forest Service data with the public and stakeholders through 
ArcGIS Online, and (2) to facilitate the application of the ArcGIS platform within the 
Forest Service to develop forest management and landscape management plans, and 
support their scientific research activities. This partnership (in combination with the 
Agency’s master agreement with Esri) includes access to ArcGIS Online, the GeoPlanner, 
story maps, map journals, and business intelligence tools. In this presentation, we review 
the vision developed collaboratively by the Forest service and Esri to implement these 
tools more widely in analysis and reporting, discuss the development of appropriate digital 
infrastructure to support these activities, and highlight straight-forward applications of 
several Esri tools for digital story-telling. Additionally, we demonstrate how application of 
these tools fulfill aspects of FIA’s mission while simultaneously accomplishing the Obama 
Administration’s goal of sharing geospatial data with the public.

1 USDA Forest Service, Saint Paul, MN 55108
* Corresponding author: Research Soil Scientist; charleshperry@
fs.fed.us; 651-649-5191.
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VISUAL ANALYSIS OF FOREST HEALTH USING STORY MAPS:  
A TALE OF TWO FOREST INSECT PESTS

Susan J. Crocker1, Brian F. Walters2, Randall S. Morin3

Abstract—Historically, results of surveys conducted by the Forest Inventory and 
Analysis (FIA) program of the USDA Forest Service were conveyed in printed 
reports, featuring text, tables and static figures. Since the advent of the Internet and 
with the ubiquity of mobile smart devices, technology has changed how people 
consume information, as well as how they experience and interact with the world. 
Web applications, such as the ESRI Story Map Journal© which serves as a confluence 
for embedded text, maps, images and other dynamic content, provide a platform from 
which a user can point and click to interact and engage in in-depth analysis. Here, forest 
inventory data is used to assess landscape-scale risks and impacts resulting from the 
outbreaks of two North American insect pests, the native eastern larch beetle and the 
exotic emerald ash borer, using the ESRI Story Map Journal© builder. A series of journal 
entries, or sections linking maps, interactive graphics, and other content with text was 
built to enhance the storytelling ability of these two pest outbreaks and the science behind 
it. Exploring new ways to visualize and convey forest resource information in a technical 
world will ensure that we continue to meet the needs of current FIA data consumers for 
years to come and attract new audiences and users.

1 Research Forester, USDA Forest Service, Northern Research 
Station, Forest Inventory and Analysis, 1992 Folwell Avenue, St. 
Paul, MN 55108, 651-649-5136, scrocker@fs.fed.us
2 Forester, USDA Forest Service, Northern Research Station, Forest 
Inventory and Analysis, 1992 Folwell Avenue, St. Paul, MN 55108
3 Research Forester, USDA Forest Service, Northern Research 
Station, Forest Inventory and Analysis, 11 Campus Blvd, Suite 200, 
Newtown Square, PA 19073
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UTILIZING ONLINE TECHNOLOGY TO INCREASE THE DATA REACH 
OF THE FOREST INVENTORY AND ANALYSIS PROGRAM;  

EXAMPLES FROM THE SOUTHERN UNITED STATES 

Christopher M. Oswalt1 and Ted R. Ridley2

Abstract—Benjamin Franklin once said “Tell me and I forget. Teach me and I remember. 
Involve me and I learn.” It is with that in mind that the Southern Research Station 
(SRS) Forest Inventory and Analysis (FIA) Program jumps feet first into exploring 
alternative methods of communicating the knowledge that is discovered through broad-
scale data collection of the forest resources of the Unite States. One major aspect of 
our current explorations is the utilization of the esri ArcGIS Online (AGOL) platform 
and the numerous tools found therein. We describe the efforts of the SRS-FIA program 
to generate added-value from AGOL by based on the forest products industry of the 
southern United States and invasive plant data collected across southern forests. In 
addition, using the AGOL Operations Dashboard, we have developed a pilot project that 
could prove useful in helping manage our collection of quality assurance (QA) plots as 
part of a recently updated QA protocol in the SRS-FIA program.  As the national FIA 
program moves forward, our attempts to reach new audiences must include new methods 
of communication. The FIA program stands to broaden the reach of the data it collects 
with these new easy-to-use methods, while maintaining the strong support that has been 
developed over many years of cooperation. 

1 Research Forester, USDA Forest Service, Southern Research 
Station, Knoxville, TN.
2 IT Specialist, USDA Forest Service, Southern Research Station, 
Knoxville, TN.
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IMPLEMENTING DASHBOARDS AS A BUSINESS INTELLIGENCE 
TOOL IN THE FOREST INVENTORY AND ANALYSIS PROGRAM

Scott A. Pugh, Randall S. Morin, and Barb A. Johnson1

Abstract—Today is the era of “big data” where businesses have access to enormous 
amounts of often complex and sometimes unwieldy data. Businesses are using business 
intelligence (BI) systems to transform this data into useful information for management 
decisions. BI systems integrate applications, processes, data, and people to deliver prompt 
and robust analyses. A number of successful organizations such the New England Patriots 
and Google are capitalizing on BI systems. Prototype dashboards have been developed by 
the Forest Inventory and Analysis program of the Northern Research Station (NRS-FIA) to 
facilitate delivery of data, mining for trends, and an analysis of a particular natural resource 
issue. Further development of FIA analytical applications tied to data visualization tools 
should increase the speed and ability to identify emerging and monitor existing natural 
resource trends. Though BI systems of many organizations are often internal, FIA has 
the potential to offer these powerful tools to the public. With an ever-growing demand 
from users to access information through digital media, BI tools can provide the public 
with natural resource information via a variety of digital devices in simple, dynamic, and 
interactive graphical user interfaces. As we explore these opportunities we need to address 
the unique challenges posed when catering to various clients.

Today is the era of “big data” where businesses have 
access to enormous amounts of often complex and 
sometimes unwieldy data (e.g., petabytes of data 
often streaming in real time) resulting from advances 
in technology and the increase in mobile and online 
computing. Businesses are using business intelligence 
(BI) systems to transform this data into useful 
information for management decisions.

BI systems integrate applications, processes, data, 
and people to deliver prompt and robust analyses. 
In a simple scenario, data residing in tools from 
spreadsheets to transactional databases are extracted, 
transformed, and loaded into a repository such as a 
data warehouse. Next, data are accessed by analytical 
and presentation tools such as dashboards with 
interactive graphs, tables, and maps. This scenario 
is guided by a defined set of processes and rules. 

Powerful analytics including statistics and online 
analytical processors that optimize queries are one 
major advantage offered by BI systems. Furthermore, 
advancements in hardware and presentation tools assist 
in relatively quick analyses of large and complex data 
sets. A number of successful organizations such the 
New England Patriots and Google are capitalizing on 
BI systems (Davenport and Harris 2007).

Precursors to BI systems focused on monitoring 
inventory and transactions in business (e.g., enterprise 
resource planning and point-of-sale systems) and 
lacked many of the visual and statistical analytical 
tools for making management decisions (Davenport 
and Harris 2007). Today’s systems offer information to 
a wide range of users through dashboards with simple, 
dynamic, and interactive graphical user interfaces.

With an ever-growing demand from the public to 
access information through digital media, FIA has 
the potential to provide natural resource information 
through user-friendly dashboards. FIA has hundreds of 
gigabytes of complex forest inventory data requiring 

1 Forester (SAP), Northern Research Station, USDA Forest 
Service, 410 MacInnes Drive, Houghton, MI 49931; Research 
Forester (RSM), Northern Research Station, USDA Forest Service; 
and Information Technology Specialist (BAJ), Northern Research 
Station, USDA Forest Service. SAP is corresponding author: to 
contact, call 906-482-6303 ext. 17 or e-mail at spugh@fs.fed.us.

file:///C:\Users\spugh\Documents\FIA_Analyst\FIA_Symposium\2014\spugh@fs.fed.us
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analysis and periodic dissemination to the public. 
Furthermore, 46 percent of USDA Forest Service 
Research and Development customers are requesting 
more and improved access to data and information via 
the Internet (CFI Group 2015). 

Implementing BI tools in a public agency poses 
unique challenges. Most BI systems are developed 
by private businesses and used internally by specific 
clients with known devices. In contrast, FIA has a 
variety of public and private clients using an array 
of digital devices. FIA is thus confronted with many 
options. In general, it can produce multiple tools 
optimized by device or produce a less optimized tool 
that works on all or most devices. 

In addition, public agencies can have data governance 
and information technology constraints not present 
within private agencies. For example, USDA Forest 
Service applications must be compliant with Section 
508 of the Rehabilitation Act (29 U.S.C. 794d), 
as amended by the Workforce Investment Act of 
1998 (P.L. 105-220), August 7, 1998 (http://www.
section508.gov/Section-508-Of-The-Rehabilitation-
Act). Every feature in a compliant application 
must be accessible using a keyboard. To date, we 
have found no off-the-shelf BI tool that meets this 
requirement without applying custom programming. 
Oracle®, Tableau Software®, Microsoft®, 
QlikTech®, Logi Analytics®, Pentaho®, Targit®, 
Birst®, Bitam®, IBM®, SAS®, MicroStrategy®, 
Tibco®, GoodData®, Information Builders®, SAP®, 
Actuate®, and ESRI® are a sample of companies 
offering off-the-shelf BI solutions.

As a program within a public agency, the primary 
focus of FIA is providing user-friendly BI tools 
such as dashboards for public consumption but 
analysts within FIA will also benefit from BI 
implementation. Similar to methods employed 
in many other organizations, FIA analysts use 
spreadsheets, custom computer code, structured 
query language, and statistical packages for analysis 
and decision-making. Applying these tools, often on 
an ad hoc basis, can result in errors (Panko 1998) 
and can require days of custom programming or 

spreadsheet development. Interactive dashboards 
connected directly to the data and integrated with 
off-the-shelf and/or custom analytical tools afford a 
more robust environment while also increasing the 
speed and ability to identify emerging and monitor 
existing trends.

METHODS
We extracted, transformed, and loaded public FIA 
data from Oracle into Tableau Software tools (http://
www.tableau.com/) creating dashboards. The data was 
from the most recent and select previous inventories 
of the FIA Northern Research Station (NRS-FIA, 
http://www.nrs.fs.fed.us/fia/). Prior to loading data 
into Tableau Software, the data were summarized in 
Oracle as new summary tables and views optimized 
for performance in dashboards. Oracle has been the 
standard transactional database used to store and 
maintain FIA data for decades. 

In the fall of 2013, several BI tools and vendors were 
investigated to facilitate development of dashboards. 
In 2014, Tableau Desktop Professional (http://www.
tableau.com/products/desktop) and Tableau Public 
(http://www.tableau.com/products/public) were 
chosen for developing and hosting dashboards. As an 
alternative to Tableau Software, investigations into 
IBM Cognos (http://www.ndm.net/bi/ibm-cognos?g
clid=CIXumdCfusUCFQqDfgodSKgAig) and ESRI 
Maps for IBM Cognos (http://www.ndm.net/bi/ibm-co
gnos?gclid=CIXumdCfusUCFQqDfgodSKgAig) have 
been ongoing since early 2015.

RESULTS
Three dashboards were developed and have been 
maintained as new data become available. The 
dashboards allow users to create custom summaries 
in interactive tables, graphs, and maps and also offer 
downloads of the underlying data. Figure 1 shows page 
one of “Forests of the Northern Forest Inventory & 
Analysis Program,” which focuses on data mining for 
trends and delivery of the latest information from the 
broad state to detailed condition-species level (https://
public.tableau.com/views/NRS-FIAAnnualReport/

http://www.section508.gov/Section-508-Of-The-Rehabilitation-Act
http://www.section508.gov/Section-508-Of-The-Rehabilitation-Act
http://www.section508.gov/Section-508-Of-The-Rehabilitation-Act
http://www.tableau.com/
http://www.tableau.com/
http://www.nrs.fs.fed.us/fia/
http://www.tableau.com/products/desktop
http://www.tableau.com/products/desktop
http://www.tableau.com/products/public
http://www.ndm.net/bi/ibm-cognos?gclid=CIXumdCfusUCFQqDfgodSKgAig
http://www.ndm.net/bi/ibm-cognos?gclid=CIXumdCfusUCFQqDfgodSKgAig
http://www.ndm.net/bi/ibm-cognos?gclid=CIXumdCfusUCFQqDfgodSKgAig
http://www.ndm.net/bi/ibm-cognos?gclid=CIXumdCfusUCFQqDfgodSKgAig
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Story1?:showVizHome=no#1). “FIA Emerald Ash 
Borer Impacts Explorer” is an interactive story 
exploring the status of ash tree species (Fraxinus spp.) 
in the eastern United States in relation to the spread of 
the non-native insect emerald ash borer (EAB), Agrilus 
planipennis Fairmaire (https://public.tableau.com/
views/eab_story/eab_story?:showVizHome=no#1). 
The story answers a number of questions using 
interactive graphs and maps.

•	 Where is EAB in relation to the ash resource?
•	 How is ash fairing in the non-infested area?
•	 How much live ash remains after mortality 

increases?
•	 How long does it take for mortality to increase 

substantially?
•	 Where are hot spots for future EAB infestations?

Figure 1.—Dashboard view of Forests of the Northern Forest Inventory and Analysis Program.
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“Invasive Species Distribution” focuses on data 
mining and delivery of the latest information for 
invasive plant species at the county level (https://
public.tableau.com/views/InvasivePlantSpecies-
revised/Invasive?:showVizHome=no#1).

DISCUSSION
The dashboards created in this study are working 
examples of online interactive tools used for delivery 
of data, mining for trends, and analysis of natural 
resource issues. These examples are a step forward 
offering more and improved access to FIA information 
via the Internet. Story-telling dashboards have been 
popular for a number of years and are increasingly 
expected by FIA users. Moreover, dashboards can offer 
more engaging, robust, and up-to-date information at 
less cost than static reports. Traditionally, NRS-FIA 
has created static annual reports for each State often 
requiring 3 or more days of composition per report. At 
this time using a dashboard, one person can update all 
24 state annual reports for NRS-FIA in 2 days.

Much has been accomplished with the relatively 
easy-to-use Tableau Software but the BI system and 
dashboards require further development. The future 
dashboards require integration of more diverse spatial 
information and compliance with Section 508. At this 
time, the dashboards are limited to using counties as 
a spatial unit and are not fully compliant. Continued 
training in dashboard development and advances 
in BI systems will help us meet these challenges. 
In addition, the user experience will improve as 
dashboard design advances. Currently, pop-up 
messages and video tutorials are being added as built-
in help. As we move forward, many important stories 
will be pulled from FIA data and communicated 
through dashboards.
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TELLING THE STORY OF TREE SPECIES’ RANGE SHIFTS  
IN A COMPLEX LANDSCAPE

Sharon M. Stanton1, Vicente J. Monleon2, Heather E. Lintz3, Joel Thompson4

Abstract – The Forest Inventory and Analysis Program is the unrivaled source for long-
term, spatially balanced, publicly available data.  FIA will continue to be providers of 
data, but the program is growing and adapting, including a shift in how we communicate 
information and knowledge derived from those data.  Online applications, interactive 
mapping, and infographics provide broader appeal to a wider audience compared to 
state reports or peer-reviewed journal articles. This presentation uses ArcGIS Online 
applications to tell the story of how tree species distributions are shifting in response to 
climate change,.  Evidence supports that species are changing in latitude and elevation, 
but estimating the magnitude of the change and attributing cause can be difficult.  The 
strength of evidence increases as the geographic area, number of species, and length of 
time examined increases.  This study took advantage of the large geographic scale of FIA 
data collection to compare the distribution of seedlings and mature trees for all but the 
rarest tree species in California, Oregon, and Washington.  Across all species and despite 
individual species idiosyncratic responses, there is a significant shift in the distributions 
of seedlings towards colder environments, relative to the distribution of mature trees.  
The broad geographic scale and environmental diversity of the study area, the large 
number of systematically sampled trees, and the direct causal relationship between the 
response the hypothesized cause provide strong evidence to attribute those shifts to 
climate change.  The research was published recently - Monleon and Lintz, PLoS ONE 
10(1), 2015 – and now we are exploring ways to share that story with a wider audience 
through different visualization applications.

1 Analyst, USDA Forest Service, Portland, OR
2 Research Statistician, USDA Forest Service, Corvallis, OR
3 Assistant Professor, Oregon Climate Change Research Institute, 
College of Earth, Ocean, and Atmospheric Science, Oregon State 
University, Corvallis, OR
4 Analyst, USDA Forest Service, Portland, OR
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THE VOLUMES AND VALUE OF NON-TIMBER FOREST PRODUCTS 
HARVESTED IN THE UNITED STATES

James L. Chamberlain1

Abstract—Non-timber forest products [NTFPs] originate from plants and fungi that 
are harvested from natural, manipulated or disturbed forests. NTFPs may include 
fungi, moss, lichen, herbs, vines, shrubs, or trees. People harvest the products for many 
reasons, including personal, recreational and spiritual uses, as well as commercial gain. 
The assessment of volumes and values is based on reports of permitted harvests of 
NTFPs by the US Forest Service and the Bureau of Land Management. These “sales” 
are assumed to be for commercial use but stating definitively that they are is speculative 
at best. The annual harvest of non-timber forest products is estimated for a number of 
product categories over five regions of the United States. The total value of the receipts 
from the issuance of permits to harvest non-timber forest products from federal lands 
is estimated. The wholesale value of these products is extrapolated, as well. The data 
presented illustrates that non-timber forest products represent significant contribution to 
the country’s economy. Challenges with reporting the full volumes and value of non-
timber forest products are identified and a role for FIA to improve the reporting of this 
information is discussed.

Non-timber forest products (NTFPs) come from plant 
material and fungi harvested from forests and may 
include wood-based products that are not of timber size. 
The products are collected for personal and commercial 
use, and from public and private lands. Determining 
how much is harvested for personal use versus 
commercial gain, is speculative at best. Determining 
how much is harvested from private lands is next to 
impossible. The US Forest Service (National Forests) 
and the Bureau of Land Management issue permits 
for the harvest of NTFPs, which are ‘assumed to be 
for commercial use” though they are likely to include 
personal consumption, as well (Alexander et al. 2011).

The 2010 National Report on Sustainable Forests 
(USDA FS 2011) and supporting documentation 
(Alexander et al. 2011) provides evidence of the 
volume and value of NTFP harvest in the United States. 
In developing the supporting documentation, Alexander 
et al. (2011) crafted an approach to analyze the volume 

of NTFPs harvested from US forests and estimate 
the overall value of these products to the Nation. The 
analysis presented here follows that approach and 
provides further evidence of a vibrant industry. This 
analysis focuses on the entire US that is covered by 
national forests and Bureau of Land Management.

METHODS
The primary sources of data for this analysis were 
the ‘cut and sold’ reports of the US Forest Service 
(National Forests) and the Timber Sale Information 
System and Special Forest Products databases of the 
Bureau of Land Management (BLM). The National 
Forests report cut and sold data for convertible and 
non-convertible products (USDA Forest Service 
2014). Non-convertible products are those products 
(i.e., NTFPs) whose units of measure (e.g., gallons, 
pounds, linear feet) cannot be converted to units 
consistent with timber products. Data from each 
agency was collected independently and then 
combined to report amounts and values for the 
different categories of NTFPs.

1 Forest Product Technologist, Forest Inventory & Analysis, South-
ern Research Station, USDA Forest Service, 1710 Research Center 
Drive, Blacksburg, VA 24060: (540) 231-3611 or jchamberlain@
fs.fed.us
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USFS and BLM data are ‘permitted’ harvest amounts 
which may differ from actual harvest quantities. 
Regular monitoring of actual harvest volumes is 
lacking in most location on public lands, and there are 
no records of harvest volumes from private lands. The 
permitted harvest volumes are the best available data 
of the amount of NTFPs being removed from federal 
forest lands. 

Value estimations are based on the approach used 
by Alexander et al. (2011) in reporting for the 2010 
National Report on Sustainable Forests (USDA FS 
2011). Estimates of the first point-of-sale values are 
based on assumptions that receipts are 10 percent of 
first point-of-sales, and that FS sales represent 20-30 
percent of total supply, while BLM receipts are 2-15 
percent of total supply. The estimated wholesale value 
of wild-harvested non-timber forest products is based 
on assumptions that USFS and BLM receipts are 
10 percent of first point-of-sale, and that first point-
of-sale value is 40 percent of wholesale price. The 
assumptions also imply that USFS harvest volumes are 
20-30 percent of the total, while BLM harvest volumes 
at 2-15 percent of the total supply.

RESULTS
Table 1 summarizes the volumes of products permitted 
harvest from National Forests and BLM lands in 
2013. The two agencies report harvest volumes for 
ten categories of non-timber forest products. Non-
convertible products are reported in more than a dozen 
units of measure. All regions report the permitted 
harvest of NTFPs, although the products and volumes 
vary among regions. The West and Rocky Mountain 
regions have by far the most amount of product 
harvested, across all categories. The West had the 
vast majority of products harvested in 12 of the 29 
line items. Federal forests in Alaska reported very 
little permitted harvest, although the state embraces 
subsistence collection of NTFPs. The Northern region 
reported the most taps of trees for sap, while the South 
reported the most permitted harvest of nursery and 
landscape products. 

The US Forest Service and BLM generated close to 
$79 million from NTFPs for the ten years covering 
2004 through 2013 (Table 2). Overall receipts 
increased on average about 2 percent per annum. Total 
annual fluctuations in receipts varied significantly 
from the mean (µ = $7.79 million, σ = $630 thousand) 
in three years. In the years 2004 through 2007, 
reporting of grass and forage production may have 
included beargrass, a plant harvested for the floral and 
craft industries. Receipts for the harvest of fuelwood 
accounted for more than half of all NTFP revenues. 

The estimated average annual wholesale value 
of NTFPs harvested in the United States was 
approximately $900 million, based on data from the 
National Forests and Bureau of Land Management 
(Table 3). In 2013, almost 85 percent of the wholesale 
value of NTFPs came from crafts and floral products 
(18%), Christmas trees (12%) and fuelwood (54%). 
Edible and medicinal forest products comprised 
approximately 8 percent of total wholesale value. 

DISCUSSION
There are large volumes of plants and fungi harvested 
from US forests that contribute substantial value to 
the economy of this country. There are challenges 
that need to be addressed to fully account for the 
volumes of materials being harvested. From a demand 
perspective (i.e., harvest volumes), the lack of standard 
units of measure makes summarizing data and regional 
comparisons difficult. For example, products collected 
for the use in ‘arts and crafts’ are recorded with seven 
units of measure. Some units of measure could easily 
be combined; the units of measure for Christmas trees 
could be consolidated into one unit (e.g., pieces) which 
would simplify the reporting of this product. 

Determining which “product category” to place 
products is challenging, though not overwhelming. For 
example, beargrass harvests may have been reported 
as ‘grass and forage’ although they should have been 
reported under ‘arts, crafts, and floral’ category. 
Misplacing product volumes does not impact estimates 
of total volumes or values, but does misrepresent 
assessments of specific segments.   
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Table 1—Permitted Harvest Volumes of Non-Timber Forest Products from Forest Service and Bureau of Land 
Management Forests in 2013. 

Product category Unit of 
Measure

Alaska North Rocky Mt. South West All United 
States

Arts, crafts, and 
floral

Bunches 0 0 100 0 0 100
Bushel 0 180 450 100 71,093 71,823
Cords 0 0 5 0 93 98
Feet3 0 75 220 348 22 665
Number 0 0 1,000 0 0 1,000
Pounds 150 5,630 116,743 201,506 5,321,503 5,645,532
Ton 0 663 281 65 6,716 7,725

Christmas trees Each 0 7,277 128,978 249 76,240 212,744
Linear Feet 0 0 1,566 0 175 1,741

Edible fruits, nuts, 
berries, and sap

Gallon 0 0 890 0 302,858 303,748
Pounds1 200 400 226,868 30 443,228 670,726
Taps 0 18,430 0 0 0 18,430

Grass and forage Pounds 0 104 10 0 4,120,869 4,120,983
Ton 0 295 3 8 830 1,136

Fuelwood CCF 244 23,659 349,436 18,397 219,759 611,496

Medicinal Pounds 0 856 12,148 14,936 14,710 42,650

Non-convertible Acre 0 0 0 28 0 28
Bushel 0 0 6 100 0 106
Feet3 0 0 500 750 450 1,700
Each 0 1,104 50 1,829 2,772 5,755
Piece 0 2,500 200 640 3,357 6,697
Pounds 3,000 0 0 4,320 56,776 64,096
Ton 0 0 43 0 1 44

Nursery and 
landscape

Each 600 852 9,179 24,942 10,926 46,499
Ton 0 0 1 0 0 1

Posts and poles CCF 0 12,367 6,570 97 16,369 35,403
Linear Feet 0 0 0 0 2,140 2,140
Number 0 100 22,253 0 6,547 28,900

Regeneration and 
silviculture

Bushel 0 10 2,183 0 3,513 5,706
Pounds 0 0 316,744 0 17,037 333,781

* Units were maintained for all categories except Fuelwood, and Posts and Poles. These categories were converted to ccf (100 cubic feet) when possible.
1 A large portion of the pounds listed as Grass and Forage is Beargrass (Xerophyllum tenax), a plant harvested to make baskets and other crafts, and in fact 
isn’t an actual grass. The USFS categorized it as grass due to its misleading common name.
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Table 2—Receipts for non-timber forest products from U.S. Forest Service and Bureau of Land Management, 
2004 through 2013.

Product category 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
Thousand 2013 U.S. Dollars

Landscaping 257 226 225 220 177 41 84 72 59 61
Crafts and floral 1,091 907 1,759 2,059 817 785 1,166 1,141 1,134 1,518
Regeneration and seed 26 48 37 25 80 96 40 82 52 108
Edible / Culinary 629 327 415 428 733 397 626 489 546 676
Grass and forage 257 330 288 270 217 67 221 185 196 237
Herbs and medicinals 22 17 16 27 53 27 38 44 46 37
Posts and Poles 435 301 331 268 212 203 186 184 252 206
Christmas Trees 1,655 1,727 321 1,344 1,175 376 1,519 1,113 1,090 1,049
Fuelwood 3,449 3,263 3,681 3,879 4,388 4,964 5,030 4,924 4,553 4,579
Other Non-convertible 105 214 272 159 64 23 41 70 7 7
Totala 7,926 7,362 7,346 8,679 7,918 6,979 8,951 8,303 7,935 8,477

a Totals may be off due to rounding

Table 3—Estimated wholesale values of permitted NTFP harvests from Forest Service and Bureau of 
Land Management forests, in 2013 dollars.

Product category 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
Million 2013 U.S. Dollars

Landscaping 29.2 25.7 25.6 25.0 20.1 4.7 9.6 8.2 6.7 6.9
Crafts and floral 124.0 103.1 199.9 234.0 92.8 89.2 132.5 129.6 128.9 172.5
Regeneration and seed 3.0 5.4 4.2 2.8 9.1 11.0 4.5 9.3 5.9 12.3
Edible / Culinary 71.4 37.2 47.2 48.7 83.3 45.1 71.1 55.5 62.1 76.8
Grass and forage 29.2 37.5 32.8 30.7 24.7 7.7 25.1 21.0 22.3 26.9
Herbs and medicinals 2.5 1.9 1.9 3.0 6.0 3.0 4.3 5.0 5.2 4.2
Posts and Poles 49.5 34.3 37.6 30.5 24.1 23.1 21.2 20.9 28.6 23.4
Christmas Trees 188.1 196.3 36.5 152.8 133.5 42.7 172.6 126.5 123.9 119.2
Fuelwood 391.9 370.8 418.3 440.7 498.7 564.1 571.6 559.5 517.4 520.3
Other Non-convertible 11.9 24.4 30.9 18.1 7.3 2.7 4.7 8.0 0.8 0.8
Totala 900.6 836.6 834.8 986.2 899.7 793.1 1,017.1 943.5 901.7 963.3

a Totals may be off due to rounding
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The estimated values of NTFPs are based on permitted 
harvest volumes from Forest Service and BLM 
lands. In western US this may not present a serious 
challenge, as these two agencies manage a large 
proportion of the forest lands. But, in eastern US, 
private forest lands dominate, and much of the harvest 
of NTFPs may be coming from non-federal forests. 
As example, Chamberlain et al (2013) reported the 
value of American ginseng as $27 million, while 
receipts and estimated wholesale value of ‘herbs 
and medicinals’ are much less, 37 thousand and $4.2 
million, respectively. American ginseng and many 
other medicinal forest products are harvested primarily 
from eastern US hardwood forests. The overall value 
of NTFPs would be much larger if the volumes of 
private forest lands were determined. 

The values would be much greater if other non-timber 
forest products were included, as well. Fuelwood, 
which is integral to the definition of non-timber forest 
products, dominates the value estimates. These values 
would increase considerably if bioenergy fuels were 
included. These products originate from wood that is 
not timber-based, which is consistent with the accepted 
definition of non-timber forest products. 

These and other challenges could be addressed 
through processes similar to the FIA timber products 
output assessments. By building partnerships with 
NTFP industry representatives, FIA could streamline 
and improve the reporting of harvest volumes from 
all forests. Through collaborative dialogue such 
partnerships could advance the valuation estimates 
of NTFPs and provide better insights into the 
total valuation of our forests. Such efforts would 
have serious implications for the management and 
policies that affect non-timber forest resources and 
concomitant products. 
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NON-TIMBER FOREST PRODUCTS IN HAWAII

Katie Kamelamela1, James B. Friday2, Tamara Ticktin3, Ashley Lehman4

Abstract—Hawaiian forests provide a wide array of non-timber forest products for 
both traditional and modern uses. Flowers, vines, and ferns are collected for creating 
garlands or lei for hula dances and parades. Lei made from materials gathered in the 
forest are made for personal use and sold, especially during graduation times. Bamboo 
is harvested for structures and for making traditional Japanese New Year’s ornaments or 
kadomatsu. Firewood is collected for traditional earth ovens. While some local gathering 
might impact local resources, little is known about amounts of non-timber forest products 
collected or locations where NTFPs are harvested. We will survey sellers and users of 
non-timber products at cultural festivals and analyze state collection permit records to 
assess amounts, economic and cultural value, and locations for non-timber products 
collected in Hawaii. Our data will shed light in importance of NTFPs in Hawaii and 
highlight management needs. 

1 Katie Kamelamela, PhD Candidate, University of Hawaii Manoa, 
Student, Botany Department, kkamelam@hawaii.edu
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USING FIA INVENTORY PLOT DATA  
TO ASSESS NTFP PRODUCTION POSSIBILITIES

Jobriath Kauffman1, James Chamberlain2, and Stephen Prisley3

Abstract—The US Forest Service, Forest Inventory and Analysis (FIA) program collects 
data on a wealth of variables related to trees and understory species in forests.  Some of 
these trees and plants produce non-timber forest products (NTFPs; e.g., seeds, fruit, bark, 
sap, roots) that are harvested for their culinary and medicinal values. As example, the 
cones of Pinus edulis and P. monophylla are collected for the edible pine nuts. The bark 
of more than a dozen tree species that are inventoried by FIA is collected for medicinal, 
decorative, and construction purposes. Slippery elm (Ulmus rubra) bark has been used for 
its medicinal values for more than a generation.  However, despite widespread use of non-
timber forest products, little quantitative information about abundance, distribution, and 
harvest is available to support sustainable management of NTFPs.  This project examines 
the use of the FIA inventory database to assess the effectiveness of plot data to monitor 
and explain the situation regarding selected non-timber forest products. The focus is 
on using FIA data to assess for: (1) geographic distribution, (2) abundance (numbers 
of live trees), (3) applicable metrics (e.g., square feet of bark for trees from which bark 
is harvested), and (4) trends in abundance and spatial distribution over time.  An in-
depth analysis of slippery elm bark will be presented along with examples of metrics for 
quantifying other types of products including sap, nuts/fruit, and understory species.
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Resources Assessment and Decision Support, Blacksburg, VA 
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2 James Chamberlain, Forest Products Technologist, USDA FS, 
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NEW METHODS FOR ESTIMATING NON-TIMBER FOREST PRODUCT 
OUTPUT: AN APPALACHIAN CASE STUDY

Steve Kruger and James Chamberlain1

Abstract—Assessing the size and structure of non-timber forest product (NTFP) 
markets is difficult due to a lack of knowledge about NTFP supply chains. Harvesting 
ginseng and other wild medicinal plants has long provided a source of income and 
cultural identity in Appalachian communities in the eastern United States. With the 
exception of ginseng, the extent of the harvest of medicinal forest products is unknown. 
Surveys with ginseng dealers about other NTFPs generate data on the trade volume 
for a variety of other products, and the geographic distribution of their harvest. A 
multi-method approach is required to fully utilize and contextualize these data. Socio-
economic data on the study area integrated with FIA data can help explain harvest 
distribution. Interviews with buyers put the data in the context of the practice of the 
trade and a complex fluctuating market. 

INTRODUCTION
Ginseng (Panax quinquefolius) is the most iconic 
and valuable Appalachian non-timber forest product 
(NTFP) but dozens of other medicinal plant species 
are commercially harvested in the region, entering a 
global supply chain dating to at least the middle of 
the 19th century. Traditionally, harvesting medicinal 
forest products has helped generate supplemental 
income for agricultural workers in the offseason and 
in unstable economies reliant on coal and timber. 
Harvesters sell to local buyers who often operate other 
associated businesses such as fur buying, scrap metal/
recycling, sporting goods, and convenience stores.  
Regional aggregators purchase from local buyers and 
sell to manufacturers. Most of the products leave the 
region as raw commodities and are manufactured into 
supplements, tinctures, teas and other consumer goods 
elsewhere. Today harvesting these other roots, barks 
and foliage continues to be an important resource in 
economically marginalized communities (Newfont 

2012). It is also a meaningful practice that transmits 
values, and helps form cultural and family identity. 

Ginseng has a limited harvest season and mandated 
reporting of volume and origin due to its inclusion 
in the 1973 Council on the International Trade in 
Endangered Species (CITES) treaty. Other more 
common medicinal plants collected in the region are 
not tracked, and are harvested throughout the year. 
Apart from industry estimates for a few species, 
there is no periodic estimate for regional output that 
includes where plants are harvested. This lack of 
reliable data on product output is a problem in most 
NTFP economies. It leads to increased instability and 
risk for people who trade them. It creates a barrier for 
private and public landholders interested in managing 
for or cultivating them, and is one reason the effect of 
harvesting on wild populations is not well understood 
(Vaughan and others 2013).

METHODS
This ongoing study seeks to create a voluntary, 
replicable mechanism for assessing the variety, volume 
and origin of commercially traded Appalachian NTFP 
species. The models for the study include other NTFP 
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surveys (Schlosser and Blatner 1995), the US Forest 
Service’s Timber Product Output Program (TPO), 
qualitative surveys of non-timber forest product 
markets (Greenfield and Davis 2003) and ethnographic 
work with NTFP harvesters and buyers (Emery and 
others 2003). A multi-method approach is used to 
gather data. Using the “Tailored Design Method 
(Dillman 2000),” surveys are distributed to ginseng 
buyers, who are required by law to be registered. 
Ginseng buyers were asked about the volume and 
origin of 12 other forest products purchased from 
harvesters. Data on harvest location were reported by 
FIA zone rather than county to preserve confidentiality 
and enable correlation with other inventory programs. 
In addition to the surveys, interviews are being 
conducted with medicinal forest product buyers to 
contextualize the data, get feedback on the project, 
improve response rates and identify trends, challenges 
and opportunities in the regional NTFP market. 

STUDY AREA
The study area comprises states that permit ginseng 
harvest with territory falling within the Appalachian 
Regional Commission’s definition of Appalachia 
(Appalachian Regional Commission 2015). In 2013 
Virginia and North Carolina were surveyed for the 
2012 harvest year. The 2014 survey included all 
Appalachian states in the USFS Southern Region with 
ginseng programs: Alabama, Georgia, North Carolina, 
Tennessee and Virginia. In the summer of 2015 the 
survey is extended to include Maryland, Ohio, New York, 
Pennsylvania and West Virginia for the 2014 harvest year. 

RESULTS
The Products
In 2013, 61 percent of the Southeastern ginseng 
buyers who responded reported purchasing 
other products. Of the 12 species surveyed, the 
most commonly purchased were goldenseal 
(Hydrastis canadensis), purchased by 50 percent of 
respondents, bloodroot (Sanguinaria canadensis) 
purchased by 36 percent and black cohosh (Acteae 
racemosa), purchased by 31 percent. While the 

survey asked for total weight purchased for each 
product, uncertainty about nonresponse bias and 
the amount of horizontal trading prevented a total 
estimate of output for 2013. It was possible to 
determine relative harvest volume by comparing 
each species to the total adjusted dry weight (Fig 
1). Black cohosh, slippery elm bark (Ulmus rubra) 
and goldenseal had the highest volume of trade at 
47 percent, 34 percent and 8 percent respectively. 
Data collection is still ongoing for the 2014 harvest 
year.  Aided by respondent input, this year’s data 
collection will account for horizontal trading, and 
will also include product value.  

Harvest Distribution
In 2013 harvests occurred throughout the products’ 
ranges in the Southern region, but were concentrated 
in eastern Kentucky and southwest Virginia. For 
example, see the distribution of the harvest for black 
cohosh (Fig. 2).  Preliminary results indicate that West 
Virginia is also an important source, and is included in 
the next round of data collection.

Percent of total volume by product 2013

All others 2%
Mayapple 2%
Wild Yam 7%

Goldenseal 8%

Slippery Elm 34%Black Cohosh 47%

Figure 1—Percent of total reported 2013 medicinal forest product 
harvest in Southern Region by adjusted dry pounds.  
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DISCUSSION
Ginseng buyers are purchasing other medicinal forest 
products and can serve as a sample frame for assessing 
those product’s harvest. Generating an estimate for 
total regional output is not possible at present while 
data collection is ongoing, but using this method 
provides new data on which medicinal plants are most 
commonly traded, the percentage of total trade volume 
by species and where the products are harvested. A 
knowledge of the products is necessary to interpret 
these numbers, as the plants vary in size, abundance 
and value. The study is designed to be replicated, 
which is necessary to due to yearly fluctuations in 
value and output evidenced seen in some previous 
industry surveys (AHPA 2012). 

In interviews, participants gave a number of 
explanations for the reported geographic distribution 
including presence of plant habitat, access to forests, a 
stronger tradition of wildcrafting and socioeconomic 
factors such as higher unemployment. Past NTFP 
Studies use socioeconomic data (Bailey 1999) and 
FIA data on forest composition and timber harvest 
(Chamberlain and others 2013) to analyze NTFP 
harvests. After an additional year of data collection, 
it will be possible to incorporate both FIA and 
socioeconomic data to test these explanations by 

ranking zones by forest cover and composition, 
presence of ideal site conditions, land ownership 
(public, private, absentee), population distribution, 
and socioeconomic indicators like unemployment 
and income.  While FIA does not currently include 
understory plants in monitoring programs, the 
potential to correlate harvest and market data collected 
using these methods with data on plant populations 
is possible, and presents an opportunity to better 
understand the effect of NTFP harvesting and other 
human and environmental factors on plant populations. 
This integration of data sources and methods and 
engaging NTFP stakeholders directly is key to 
improved estimates for non-timber forest product 
output in Appalachia and beyond.  
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HOW MIGHT FIA DELIVER MORE INFORMATION  
ON STATUS AND TRENDS OF NON-TIMBER FOREST PRODUCTS?

Stephen P. Prisley1

Abstract—Data from the Forest Inventory and Analysis program (including the Timber 
Products Output portion) are critical for assessing the sustainability of US timber 
production.  Private sector users of this information rely on it for strategic planning, 
and their strong support of the FIA program has helped to ensure funding and program 
viability. Non-timber forest products harvested from US forests also play a critical 
economic and social role, yet much less is known about their abundance, spatial 
distribution, and trends.  Recent research has demonstrated that FIA data can provide 
important insights into the status of NTFPs from trees measured in Phase II plots.  
However, there are several shortcomings that prevent the widespread use of FIA data 
for evaluation of many other NTFPs.  These shortcomings include: (1) lack of data on 
non-tree (typically understory) species of importance, (2) traditional forest inventory 
measurements that are unrelated to non-timber products (roots, sap, seeds and cones, 
bark, boughs, etc.), (3) lack of data on harvest and trade of non-timber forest products. 
Efforts to overcome these challenges in order to enhance the value of information for 
NTFP assessment might include: (1) identifying minor alterations to data collection 
protocols (perhaps on phase III plots), (2) conduct research that relates production of 
NTFPs to tree/plant measurements (e.g., estimation of bark or nut yield based on tree or 
plot measurements), (3) collecting data on NTFP abundance and distribution that would 
support modeling of likely occurrence, (4) extending the TPO data collection to survey 
non-timber forest product markets.  We suggest that considering the costs and benefits 
of these and other options is the first step in expanding the value of the FIA program for 
NTFP assessment.
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SPATIOTEMPORAL PATTERNS OF RING-WIDTH VARIABILITY  
IN THE NORTHERN INTERIOR WEST

R. Justin DeRose, John D. Shaw and James N. Long1

Abstract—A fundamental goal of forest biogeography is to understand the factors that 
drive spatiotemporal variability in forest growth across large areas (e.g., states or regions). 
The ancillary collection of increment cores as part of the IW FIA Program represents an 
important non-traditional role for the development of unprecedented data sets. Individual-tree 
growth data from increment cores were paired with plot-level variables from the inventory 
to investigate the spatiotemporal growth patterns for Douglas-fir, ponderosa pine, common 
pinyon, and limber pine over the northern portion of the Interior West (Idaho, Montana, 
Wyoming, Utah, and Colorado). Based on dendrochronological theory proposed over 50 
years ago, we tested three hypotheses that variability in ring-width increment (calculated 
as the Gini Coefficient): 1) would decrease as latitude increased; 2) would increase as 
continentality increases (i.e., west to east); and would decrease as elevation increased. The 
large range of observations (from 37° to 49° latitude, and from -117° to -104° longitude) were 
sufficient to test the first two hypotheses, but made it difficult to directly test hypothesis three 
(elevation). Generally, we did not confirm hypothesis one, except for common pinyon, which 
inhabits only a portion of the area examined. Hypothesis two was confirmed for the entire 
dataset, and the results were clearly driven by Douglas-fir and ponderosa pine. Hypothesis 
three was not supported for Douglas-fir or ponderosa pine, but was supported for common 
pinyon and limber pine. However, because the sample area encompasses such a huge range of 
latitude and longitude, which covary with elevation, we developed a corrected elevation. No 
significant relationships were found between ring-width variability and corrected elevation. 

INTRODUCTION
A fundamental goal of forest biogeography is to 
understand the factors that drive spatiotemporal 
variability in forest growth across large areas (e.g., 
states or regions). The ancillary collection of increment 
cores as part of the IW FIA Program represents an 
important non-traditional dataset that can be used 
to ask general biogeography questions. Individual-
tree growth data from increment cores were paired 
with plot-level location variables from the inventory 
to investigate the spatiotemporal growth patterns 
for interior Douglas-fir (Pseudotsuga menziessii), 

ponderosa pine (Pinus ponderosa), limber pine (Pinus 
flexilis), and common pinyon (Pinus edulis).

Historically, the most common way to measure variability 
in tree-ring growth is referred to as ‘mean sensitivity’ 
(Holmes 1983). Unfortunately, mean sensitivity covaries 
with first-order autoregressive properties and the coefficient 
of variation, making it undesirable for comparison between 
species and sites (Bunn et al. 2013). To avoid these issues 
we elected to use the Gini coefficient (G) to evaluate 
variability. The original use for G was as a statistic to 
compare the difference between samples without using the 
mean (Biondi and Quedan 2008).  The Gini coefficient is 
robust to time-series that have variability in autoregressive 
properties or changes in mean values over time (i.e., 
nonstationarity) (Biondi and Quedan 2008). Therefore, we 
assumed that G would be appropriate to compare between 
increment cores collected across a large region. 
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We chose Douglas-fir, ponderosa pine, limber 
pine, and common pinyon because these species 
generally exhibited a strong relationship to water-year 
precipitation, and typically occur in relatively lower 
elevation forests across the West. We examine a wide 
geographic gradient, the northern portion of the Interior 
West (Idaho, Montana, Wyoming, Utah, and Colorado). 
Based on dendrochronological theory proposed over 50 
years ago (Schulman 1956), we tested three hypotheses 
related to the variability in ring-width increment: 1) 
it would decrease as latitude increased; 2) it would 
increase with longitude (i.e., west to east); and that it 
would decrease as elevation increased. 

METHODS
Measurements of annual ring width variability used in 
this study came from individual tree increment cores 
collected from Interior West FIA phase 2 plots during 
both the periodic and annual inventories (Table 1). All 
increment cores were mounted, sanded, polished before 
viewing under a microscope. Increment cores were 
crossdated to ensure calendar year resolution, measured 
on a sliding stage to 1 or 10 micron. Digital ring 
width data were verified using program COFECHA 
and locally available chronologies available from the 
International Tree-Ring Data Bank or unpublished 
chronologies available from individual researchers. 

Once digitized, the tree-ring data were paired with 
plot-level data from the database (e.g., latitude, 
longitude, elevation). Trends of sensitivity over 
latitude, longitude, and elevation were examined 
graphically and with Pearson’s correlations for the 
entire dataset and as species-specific groups. 

RESULTS
Over the entire dataset (n=2,949, Fig. 1), and contrary 
to our hypothesis, there was no relationship between G 
and latitude (r=-0.01) or elevation (r=-0.05). However, 
the relationship between G and longitude was 
significant (r=0.27, p<0.001), occurred in the predicted 
direction (west to east). Because of strong inherent 
relationships between latitude and longitude (r=-0.37), 
latitude and elevation (r=-0.77), and longitude and 
elevation (r=0.28), we calculated a corrected elevation. 
Multiple linear regression using latitude and longitude 
and a polynomial term for each was fitted (R2=0.61). 
The relationship between G and corrected elevation 
was not significant (r=0.001).   

Species-specific relationships between G and latitude 
were variable, with a negative relationship for common 
pinyon (r=-0.13, p<0.001), and Douglas-fir (Fig. 1a). 
Positive, but not significant relationships were found 
for limber pine (r=0.10) and ponderosa pine (r=0.07). 
The relationship between G and longitude was positive 
for all species but limber pine (r=-0.05). Ponderosa 
pine had the strongest relationship to longitude 
(r=0.32, p<0.001), followed by Douglas-fir (r=0.21, 
p<0.001). The relationship for common pinyon was 
not significant (r=0.08). The relationships between G 
and elevation were negative, as hypothesized, for all 
species except Douglas-fir (r=0.06). Common pinyon 
(r=-0.30, p<0.001), limber pine (r=-0.32, p<0.001), 
and ponderosa pine (r=-0.11, p<0.001) all exhibited 
significant relationships. When evaluated over 
corrected elevation, no significant patterns were found 
(common pinyon: r=-0.04, Douglas-fir: r=0.07, limber 
pine: r=-0.09, ponderosa pine: r=-0.07). 

Table 1—Sample size, mean ring width (mm) and standard deviation, mean number of rings, mean Gini 
coefficient, and range (minimum to maximum) of Gini coefficient by species for the study data

Species Common pinyon Limber pine Ponderosa pine Douglas-fir
Sample size (n) 413 53 972 1511
Mean ring width (SD) 0.828 (0.345) 1.375 (0.538) 1.884 (0.836) 1.821 (0.722)
Mean number rings 107 67 73 84
Mean Gini coefficient 0.234 0.222 0.253 0.230
Range of Gini coefficient (0.08 – 0.48) (0.12 – 0.34) (0.10 - 0.53) (0.06 – 0.56)
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DISCUSSION
The large range of observations (from 37° to 
49° latitude, and from -117° to -104° longitude) 
of independently sampled tree-ring series were 
appropriate to test patterns in G long thought to vary 
in space and elevation (i.e., western North America) 
presumably due to climate variation and relative 
availability of water prior to and during the growing 
season (Schulman 1956, Fritts 1976). 

Generally, we failed to confirm hypothesis one that 
G decreases with latitude. The negative relationship 
found for common pinyon might indicate a more 
regional affect, given that the species is limited 

to the Colorado Plateau (Fig. 1a). A great deal of 
dendroclimatological research relies on the desirable 
water-year signal inherent to common pinyon, and a 
relatively narrow focus on it might be at least partially 
a basis for the original hypothesis. It is also possible 
that the relationship between G and latitude become 
more pronounced once trees from lower latitudes (i.e., 
Arizona and New Mexico) are included. 

Interestingly, hypothesis two has no basis in the 
published literature, therefore we can only speculate 
as to why we found such a strong relationship 
from west to east in ring-width variability (i.e., 
longitude). Common pinyon and limber pine were 
represented by fewer samples, and also covered 

Figure 1—(a) Northern Interior West map with tree-ring locations by species, (b) relationship between Gini coefficient and latitude by 
species, (c) relationship between Gini coefficient and longitude, (d) relationship between Gini coefficient and elevation. Lines are linear 
regression models. Colors match species-specific designations.

(a) (b) 

(c) 

(d) 
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a smaller portion of the study area, which might 
explain why their relationship with longitude was 
not significant. Douglas-fir and ponderosa pine were 
the most widespread of the species examined, and 
they likely drove the relationship for the dataset 
overall. We speculate that the increase in G (west to 
east) might indicate a general decrease in moisture, 
at the continental scale, from the prevailing westerly 
Pacific storms, likely indicating continentality. 
Further explanation of the relationship between G 
and longitude could be bolstered if tree-ring data 
from the Pacific Northwest were available, allowing 
examination of the full longitudinal range of many 
western tree species. 

The hypothesis that ring-width variability ought to 
decrease with increasing elevation is based on the 
observation that lower elevation trees receive less 
growing season moisture compared to high elevation 
trees and, as a result, have higher G. Because the 
elevation range suitable for tree species occurrence 
changes markedly over the range of latitude 
examined here, the hypothesized relationship is not 
straightforward. Regardless, we failed to confirm 
hypothesis three for the two most widespread species, 
Douglas-fir and ponderosa pine. Interestingly, 
the relationships for elevation held for common 
pinyon and limber pine. We suspect the relatively 
narrow region in which common pinyon occurs help 
accentuate that relationship. Limber pine, on the other 
hand, had limited observations (n = 53), so further 
analysis is necessary before confirming such a strong 
pattern across the considerable range of limber pine.  
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ESTIMATING FIA PLOT CHARACTERISTICS  
USING NAIP IMAGERY, FUNCTION MODELING,  

AND THE RMRS RASTER UTILITY CODING LIBRARY 

John S. Hogland & Nathaniel M. Anderson1

Abstract—Raster modeling is an integral component of spatial analysis. However, 
conventional raster modeling techniques can require a substantial amount of processing 
time and storage space, often limiting the types of analyses that can be performed. To 
address this issue, we have developed Function Modeling. Function Modeling is a new 
modeling framework that streamlines the raster modeling process by utilizing delayed 
reading methods. Using this approach, we have successfully characterized the impacts 
of fuel treatments on soil erosion, estimated basal area, trees, and tons of above ground 
biomass per acre, identified locations in need of forest management, calculated forest 
residuals given multiple management prescriptions, and developed forest residual 
delivery cost models all in a fraction of the time and storage space it would take to 
perform similar analysis using conventional methods. To facilitate the use of Function 
Modeling, we have built an object oriented .NET library called RMRS Raster Utility. 
RMRS Raster Utility is free, readily available, and has an intuitive user interface that 
directly plugs into Environmental Science Research Institute (ESRI)’s software. In this 
paper we will discuss the basic concepts behind Function Modeling and present some our 
recent findings related to using this technique to estimate FIA plot characteristics from 
NAIP imagery. 

INTRODUCTION
Raster modeling is vital to performing remote sensing 
and spatial analysis. Combined with classical statistic 
and machine learning algorithms, it has been used to 
address a wide range of questions in a broad array 
of disciplines (e.g. Patenaude et al. 2005; Reynolds-
Hogland et al. 2006). However, the traditional 
workflow used to integrate statistical and machine 
learning algorithms and process raster models within 
a geographic information system (GIS) can limit the 
types of analyses performed and outputs created. 
In a recent study, Hogland and Anderson (2014) 
demonstrated that Function Modeling (Hogland et al. 
2013) can streamline manipulating raster surfaces, 
building predictive models, and creating predictive 

raster outputs while substantially reducing processing 
time and digital storage requirements. Using the 
concept of Function Modeling (FM), they built a 
publicly available coding library that facilitates a 
wide range of tabular, spatial, statistical, and machine 
learning analyses (RMRS 2012a). To simplify the use 
of these procedures and concepts, they built an intuitive 
user interface packaged as an Environmental Systems 
Research Institute (ESRI) toolbar add-in called RMRS 
Raster Utility that works directly with ESRI’s ArcMap 
versions 10.0 through 10.3 (RMRS 2012b).

One of the key benefits of FM is a reduction in the 
number of input/output operations performed within 
complex spatial modeling tasks. From a programming 
perspective, this can be achieved using strategies such 
as delayed reading and overloading the functionality 
of existing classes that support reading data from disk 
(Van Roy and Haridi 2004). In practice, these coding 

1 Biological Scientist (JSH) and Research Forester Nathaniel 
M. Anderson (NMA), USDA Forest Service, Rocky Mountain 
Research Station, 800 E Beckwith Missoula, MT 59801. JSH is 
corresponding author: to contact, call (406) 239-2138 or e-mail at 
jshogland@fs.fed.us.  
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techniques take advantage of the fact that we rarely 
need to view, process, or use all spatial data at once 
and that the speed of computer processing units are 
significantly faster than the transfer speeds of data from 
disk to computer memory. Taking advantage of these 
types of efficiencies, we have successfully related Forest 
Inventory Analysis (FIA) program plot information to 
fine grained National Agriculture Imagery Program 
(NAIP) imagery and have built predictive surfaces for 
the extent of a national forest in Colorado (Hogland et 
al., 2014) and are now in the process of expanding these 
types of analyses across multiple forests that include 
both public and private lands in Montana. 

METHODS
The study area is a 100 mile radius around Helena, 
MT. Within this area, forest community characteristics 
are estimated by creating statistical and machine 
learning relationships between FIA plot summaries (the 
response) and fine grained NAIP imagery, National 
Elevation Dataset (NED) digital elevation models 
(DEM), and textural and topographical derivative of 
those dataset (explanatory variables). Using the spatial 
locations of the FIA plot, explanatory variable values 
are extracted and related to the response to create a 
predictive model. The resulting predictive model is then 
applied to the explanatory variable values to produce a 
surface of forest characteristics across the landscape.

We used this approach to estimate basal area per acre 
(BAA), trees per acre (TPA), and tons of above ground 

biomass per acre (AGB) based on commonly used 
allometric equations (Jenkins et. al. 2003) for all tree 
species. The sample included 1652 FIA field plots, of 
which 1097 plots were randomly chosen to calibrate 
each model and the remaining 555 plots were used to 
independently evaluate each model. Imagery for the 
area surrounding Helena was collected, preprocessed, 
and mosaicked by NAIP at a spatial resolution of 10.76 
feet and a geometric accuracy of + 3 pixels (McGlone 
et al. 2006).  FIA plot summaries were related to 
visually interpreted patterns of 2013 NAIP color 
infrared imagery (CIR) using a two stage classification 
and estimation approach (Hogland et al., 2014). 

The first stage of this approach results in a 
probabilistic classification of visually identifiable 
patterns (Table 1) such as live and dead tree crowns 
using RMRS Raster Utility’s Soft-max neural network 
algorithm, derivatives of NAIP spectral reflectance, 
and second order Gray Level Co-occurrence 
Matrix (GLCM; Haralick 1973) texture values of 
those spectral derivatives. Training samples for the 
probabilistic classification consisted of 1000 random 
locations across the study area. Outputs from the first 
stage classification were summarized using the focal 
mean function within the RMRS Raster Utility toolbar 
for the approximate extent of a 1/10 acre field plot 
(window size of 21 x 21 NAIP pixels). Raster cells 
with mean percent tree canopy cover greater than 10 
percent were classified as Forested. Forested areas 
were then used to partition FIA training plots and mask 
BAA, TPA, and AGB outputs.

Table 1—Visually identifiable patterns and associated labels used to estimate Forested areas. 

Name Description Label
Green Grass Vigorously growing grass that has a strong green spectral signature. GG
Brown Grass Sensed grass that does not have a strong green spectral signature. BG
Green Crown Live crowns for needle leaf tree species GC
Brown Crown Dead crowns for needle leaf tree species BC
Tree Shadow Shadows created by trees TS
Green Deciduous Live crowns for broad leaf tree species GD
Bare Soil Bare ground with no vegetation. BS
Rock Pavement Building Rock, Pavement, and Buildings RPB
Snow Bright Snow highly reflective materials SB
Water Water W
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The second stage of our estimation procedure relates 
FIA plot summaries to spectral, textural, elevation, and 
topographical derivatives using the spatial coordinates 
of each FIA plot, a focal window of 78 x 70 cells, and 
the random forest regression tree tool within the RMRS 
Raster Utility toolbar. Spectral, textural, elevation, 
and topographic variables include first order mean 
and standard deviation textural metrics of NAIP CIR, 
natural difference vegetation index (NDVI) derived 
from NAIP imagery, and elevation and topographic 
derivatives, along with second order horizontal contrast 
GLCM metrics values of NAIP CIR spectral bands.   

RESULTS
The first stage of our approach had a maximum 
likelihood classification accuracy of 65 percent and 
accounted for 84.56 percent of the information in the 
data ().  Using the extent of a FIA plot, the focal mean 
function within RMRS Raster Utility toolbar, and the 

probability surfaces of live and dead crowns, we created 
a Forested mask and attributed each FIA plot as either 
forested or non-forested (Fig. 1). In all, 660 and 992 
FIA plots were located within and outside of Forested 
areas, respectively, and were used to train or validate the 
second stage of our classification and estimation process. 

The second stage of our procedure generated a series 
of regression tree models that had a mean out of bag 
(OOB) root mean square error (RMSE) of 47.26 for 
BAA, TPA, and AGB (Table 2). Comparing observed 
plot summaries to estimated BAA, TPA, and AGB 
for our independent validation sample, we found 
that RMSE calculated from the independent sample 
was similar to OOB RMSE of our models. Using our 
regression tree models, the RMRS Raster Utility tool 
“Build Raster from Models”, and the explanatory 
variable surfaces, we created a series of raster surfaces 
that predicted FIA plot BAA, TPA, and AGB summaries 
for every 32.81 ft across the study area (Fig. 2).

Figure 1—A close up illustration of the outputs from the first stage of our classification and estimation methodology. The extent of the close 
up covers 2,200 square miles around Helena, Montana and is denoted by the yellow square in the lower left Location map. Most Likely 
Class (MLC), Green Crown, Brown Crown, and Green Deciduous probabilistic outputs, and Forested Areas raster surfaces were derived 
from visually identified point locations, a Soft-max Neural Network, and NAIP CIR spectral and textural metrics. 
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DISCUSSION
Our two stage classification and estimation 
approach successfully depicts mean forest 
characteristics for every 32.81 ft within 100 mile 
radius of Helena, MT. The relationships in these 
models are derived in explanatory variable space, 
as opposed to being spatial aggregations of plot 
characteristics, and are based on the correlative 
strength between the explanatory variables and 
FIA plot characteristics. Given that explanatory 
variables have been inventoried across the study 

area, we can use these relationships to depict forest 
characteristics at the resolution of each raster cell 
(Fig. 2).  These types of outputs are extremely 
useful and can be aggregated across multiple 
geographic boundaries at many different spatial 
scales without losing accuracy or precision. Using 
our newly developed RMRS Raster Utility toolbar 
and coding libraries, these depictions can be easily 
manipulated within a GIS to address a wide range 
of management related questions at regional, 
landscape, and project extents.

Figure 2—A close up illustration of the outputs from the second stage of our classification and estimation methodology. The extent of the 
close up covers 2,200 square miles around Helena, Montana and is denoted by the yellow square in the lower left Location map. Basal area 
per acres (BAA), trees per acre (TPA), and tons of above ground biomass per acre (AGB) were derived from FIA plot data, NAIP imagery, 
NED DEM, and multiple random forest algorithms. The right portion of the figure depicts the independently assessed relationships between 
response and explanatory variables and spatially illustrates increases in BAA, TPA, and AGB as color transitions from purple to green. 

Table 2—Fit statistics for BAA, TPA, and AGB models. 

Characteristic OOB RMSE OOB R Validated RMSE Validated R
BAA 37.23 0.66 36.82 0.71
TPA 82.13 0.68 94.58 0.68
AGB 22.43 0.60 21.07 0.65
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EVALUATING THE POTENTIAL OF STRUCTURE FROM MOTION 
TECHNOLOGY FOR FOREST INVENTORY DATA COLLECTION

Demetrios Gatziolis1

Abstract—Since the inception of its annual plot design, the Forest Inventory and 
Analysis (FIA) Program of the USDA Forest Service has integrated into its data 
collection operations elements of digital technology, including data loggers, laser distance 
recorders and clinometers, and GPS devices. Data collected with the assistance of this 
technology during a typical plot visit comprise measurements of object dimensionality 
and location, as well as ocular assessments of inventory parameters of interest, all 
organized in a tabular form. Unlike the wealth of tabular data collected every year on FIA 
plots, digital images have been acquired only in the course of special projects (e.g. fire 
plots). Although small in number and acquired usually only along the cardinal directions, 
these images are nevertheless regarded as snapshots of plot conditions in time, and well-
suited to retrospective resolution of an occasional ambiguity present in the tabular data. 
Owing to recent advancements in digital imagery technology and the field of computer 
vision, sets of numerous images acquired on an FIA plot with large spatial overlap among 
successive frames can be used to initially generate three-dimensional representations of 
structural plot elements in the form of a point cloud. Further processing of the cloud with 
algorithms originally developed for terrestrial LiDAR data leads to the identification of 
individual objects and quantification of their dimensionality. Variants of this process, 
usually known as vision structure from motion, have been used for digital reconstructions 
of man-made objects in urban settings. The adaptation of the process to on-plot settings 
and ground-based, under canopy imagery, presented with substantial challenges due to the 
intense variability in solar illumination conditions within a plot and the absence of planar 
surfaces separated by distinct edges. Algorithmic customizations have resolved many of 
these limitations. The modified process has been tested with inexpensive, off-the-shelf, 
all-weather, pinhole motion cameras weighing less than 150 grams, secured on the helmet 
of a field crew member. Initial results underline the method’s potential for automated tree 
stem mapping, derivation of ground surfaces, comprehensive assessment of coarse woody 
debris volume and distribution, tree-specific measurements of crown base and ladder 
fuels, as well as for counting and assessing the height of seedlings in microplots.

1 Demetrios Gatziolis, USDA Forest Service, Pacific Northwest 
Research Station, Portland, Oregon 503-808-2038 dgatziolis@
fs.fed.us
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COMPLEMENTING FOREST INVENTORY DATA WITH 
INFORMATION FROM UNMANNED AERIAL VEHICLE IMAGERY AND 

PHOTOGRAMMETRY

Nikolay S. Strigul, Demetrios Gatziolis, Jean F. Liénard, Andre Vogs1

Abstract—Although a prerequisite for an accurate assessment of tree competition, 
growth, and morphological plasticity, measurements conducive to three-dimensional 
(3D) representations of individual trees are seldom part of forest inventory operations. 
This is in part because until recently our ability to measure the dimensionality, spatial 
arrangement, and shape of trees and tree components precisely has been constrained by 
technological and logistical limitations and cost. Active remote sensing technologies such 
as airborne LiDAR provide only partial crown reconstructions, while the use of terrestrial 
LiDAR is laborious and has portability limitations and high cost. In this work we 
capitalized on recent improvements in the capabilities and availability of small unmanned 
aerial vehicles (UAVs) and light and inexpensive cameras, and developed an affordable 
method for obtaining precise and comprehensive 3D models of trees and small groups 
of trees. The method employs slow-moving UAVs that acquire images along predefined 
trajectories near and around targeted trees and computer vision-based approaches that 
process the images to obtain detailed tree reconstructions. We present a step-by-step 
workflow which utilizes open source programs and original software. We anticipate that 
further refinement and development of our method can render it a valuable source of 
tree dimensionality information, complementary to the data recorded in traditional forest 
inventory field operations.

INTRODUCTION
To date, precise tree crown dimensionality and 
location data supportive of a rigorous modeling 
of individual tree growth has been inhibited by 
feasibility, logistics, and cost. Measuring crown 
characteristics by using established inventory 
methods is very time consuming and hardly 
affordable outside special projects. Existing remote 
sensing methods of measuring tree crowns provide 
only partial crown reconstructions. Airborne LiDAR 

data acquisitions require prolonged planning and 
are costly. Recently, unmanned aerial vehicles 
(UAVs) equipped with inexpensive, off-the-shelf 
panchromatic cameras have emerged as a flexible, 
economic alternative data source that supports 
the retrieval of tree dimensionality and location 
information. Flying at low altitude above the trees 
and with the camera oriented at a nadir view, UAVs 
acquire high-resolution images with a high degree 
of spatial overlap. In such conditions, a point on 
the surface of a tree crown or a small object on 
exposed ground is visible from many positions 
along the UAV trajectory and is depicted in multiple 
images. Automated photogrammetric systems 
based on computer Vision Structure from Motion 
(VSfM) algorithms (Snavely et al., 2008) explore 
this redundancy to retrieve the camera location 
the moment an image was acquired, calculate an 
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orthographic rendition of each original image, and 
ultimately produce a precise 3D point cloud that 
represents objects. These acquisitions with nadir-
oriented cameras onboard UAVs, however, face the 
same issues as airborne imagery; the great majority 
of points in derived clouds are positioned near or at 
the very top of tree crowns. The representation of 
crown sides tends to be sparse and contains sizeable 
gaps, especially lower in the crown, a potentially 
serious limitation in efforts to quantify lateral 
crown competition for space and resources, as in the 
periphery of canopy openings.

In this study, we extend UAV-based image acquisition 
configurations to include oblique and horizontal 
camera views and UAV trajectories around trees 
or tree groups at variable above-ground heights to 
achieve comprehensive, gap-free representations 
of trees. To overcome the challenges imposed by 
these alternative UAV/camera configurations, we 
evaluated many UAV platforms and open-source 
VSfM software options, and developed original, 
supplementary programs.

METHODS
UAV Platform
After a preliminary evaluation of several commercially 
available UAV platforms, we focused on an 
APM:Copter, a hexacopter rotorcraft, because of 
its easily modifiable  architecture and open source 
software for flight control. We also used a commercial 
IRIS quadcopter developed by 3DRobotics. The 
components of the customized hexacopter sum to 
a total cost of approximately 1,000$. Both systems 
feature gyroscopes and GPS receivers. Compared 
to systems available in the market, our hexacopter 
is an inexpensive but versatile configuration whose 
component acquisition cost is expected to drop 
substantially in the future as UAV technology evolves 
and its popularity continues to increase.

Both UAVs used in this study can be operated 
either autonomously along a predefined trajectory 
or manually. The manual flight control requires 
expertise and continuous line of sight between the 

system and the operator. Maintaining nearly constant 
planar and vertical speed and orientation of the 
onboard camera towards the target is challenging, 
even for operators with years of experience. 
Experimentation confirmed that imagery acquired 
with manual flight control exhibits variable rates 
of overlap between frames captured sequentially. 
Smaller components of the targets are sometimes 
depicted in too few frames or are missing completely, 
while others appear in an excessive number of 
frames. For these reasons, it was decided to rely 
on autonomous flights configured by prior mission 
planning, and reserve the manual mode only for 
intervention in the event of an emergency.

We conducted extended trials with several cameras, 
including the sport GOPRO 3+ Black Edition, Ilook 
Walkera and Canon PowerShot. The evaluations 
involved all operating modes offered by each camera, 
including normal, wide, and wide zoom settings, as 
well as acquiring video and then extracting individual 
frames with post-processing.

3D reconstruction procedure
The procedure that uses a set of images exhibiting 
substantial spatial overlap to obtain a point cloud 
representing the objects present in the images contains 
three main steps: feature detection, bundle adjustment, 
and dense reconstruction. To implement this 
procedure, we have carefully examined a variety of 
software available for image processing. The workflow 
presented below was found by experimentation to 
be the most efficient for our project. We employed 
a sequence of computer programs, most of which 
are available as freeware or provide free licenses to 
academic institutions. The software used includes 
OpenCV libraries, VisualSFM, CMVS, SURE, 
OpenGL, and Mission Planner.

The sparse and dense reconstructions obtained 
from a set of overlapping images are configured 
in the same internal coordinate system and 
scale. Conversion to real-world orientation and 
coordinate system is a prerequisite for meaningful 
measurements of reconstructed objects or for 
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comparisons with ancillary spatial data. Such 
conversions can be performed manually on the 
reconstructed scene, assuming reference in-situ 
measurements of object dimensionality are available. 
In this study, we used an alternative, automated 
approach. The latitude, longitude, and elevation of 
camera locations recorded by a recreational-grade 
GPS device onboard the UAV were converted to 
orthographic Universal Transverse Mercator (UTM) 
coordinates using a GDAL reprojection function. 
The rotation/ translation matrix linking the UTM and 
sparse model coordinates of the camera positions 
was then calculated via maximum likelihood, and 
applied to convert the sparse model coordinates 
system to UTM.  All subsequent processing by 
CMVS and SURE were performed on the UTM 
version of the sparse model.

RESULTS
We used simulation and synthetic images to evaluate 
the robustness of our standard workflow to the 
idiosyncrasies of lateral tree imagery described above. 
We relied on terrestrial LiDAR data representing 
a collection of free-standing trees, each scanned 
from multiple near-ground locations. The scanning 
was performed in high-density mode with the laser 
beams distributed in fine horizontal and vertical 
angular increments (0.4 mrad). Details on the data 
acquisition are available in Gatziolis et al. (2010). The 
original Terrestrial LiDAR and dense reconstruction 
point clouds for each tree were compared in voxel 
space (Popescu & Zhao, 2008; Gatziolis, 2012). 
With sufficient field-of-view overlap between two 
consecutive synthetic images, the 3D model obtained 
using our photogrammetry workflow showed 
excellent agreement with the reference LiDAR model 
(more than 95% voxel co-localization between the 
two models).

Our typical setup uses a location positioned in the 
middle of an open area for both the start and end of 
the flight. The UAV would initially ascend vertically 
above its starting location to a pre-specified height, 

then move horizontally to the beginning of the 
trajectory, complete it, and finally return to the starting 
location (Figure 1). In the present development state 
of our system, it is the user’s responsibility to ensure 
that the designed flight path is free of other objects, 
an easy to achieve requirement considering the wealth 
of georeferenced, high resolution, publicly available 
aerial photographs. 

Most UAV flights produced complete tree 
reconstructions (Figure 2). In the absence of detailed 
crown dimensionality measurements, we relied 
on ocular assessment of reconstruction accuracy 
and precision. The typical examples shown on 
Figure 2, obtained with the spiral UAV trajectory 
(Figure 1c), among our most reliable for complete 
target reconstruction, shows that even the shaded 
components of the tree crown interior are represented.

DISCUSSION
Rapid developments in UAV technology and 
enhancements in structure from motion software 
have enabled detailed representation of manmade 
objects. In this work and in Gatziolis et al. (2015), 
we describe how this technology can inexpensively 
be extended to representations of natural objects, 
such as trees or groups of trees. After extensive 
experimentation that involved several UAV platforms, 
cameras, mission planning alternatives, processing 
software, and numerous procedural modifications 
and adjustments, our workflow has been proven 
capable of handling most conditions encountered in 
practice to deliver detailed reconstruction of trees. 
In addition to robust performance, our imaging 
system can be employed rapidly in support of time-
sensitive monitoring operations as, for instance, the 
assessment of forest fire damage or progress of forest 
recovery from disturbance. It is also well suited to 
providing tree dimensionality data through time, a 
prerequisite for improved models of tree growth and 
for an accurate assessment of tree competition and 
morphological plasticity.
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Figure 1—Different UAV trajectories tested for image acquisition. a. circular, at constant height; b. ‘stacked circles’, each at different 
above-ground height, for tall trees (height more than 20 m); c. spiral, for trees with complex geometry; d. vertical meandering, targeting tree 
sectors; e. clover, for trees with wide, ellipsoidal tree crowns; f. ‘spring-hemisphere’, designed for trees with flat-top, asymmetrical crowns; 
g. ‘nested circles’, centered on the tree; and h. ’jagged saucer’, designed for trees with dense foliage but low crown compaction ratio.
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Figure 2—Illustration of comprehensive tree reconstructions (right column) and reference UAV-based images (left column).
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URBAN FIA: 
WHERE WE HAVE BEEN, WHERE WE ARE,  

AND WHERE WE ARE GOING

Mark Majewsky1

Abstract—The FIA program has been inventorying the Nation’s forestland since the 
1930s.  The focus of the CORE FIA program is to capture trees that meet the FIA 
definition of forestland, in doing so it excludes trees that do not.  Leadership recognized 
the need to fill this gap and the  2014 Farm Bill has instructed FIA to “Implement an 
annualized inventory of trees in urban settings, including the status and trends of trees 
and forests, and assessments of their ecosystem services, values, health, and risk to 
pests and diseases”.  The objective of the Urban FIA program is to meet this mandate 
by not restricting the sample methods to defined forestland within Census-defined urban 
areas.  We will use the FIA sampling frame to annually monitor the urban forests of the 
Nation with special emphasis in the largest (iconic) cities of America.  This is not the first 
time the FIA program has ventured into urban areas; there were numerous pilot studies 
completed as far back as the mid-1990s.  With the pilots behind us FIA has now partnered 
with the Urban and Community Forestry Unit’s i-Tree program.  This synergy, in addition 
to lessons learned from the pilots, has led to the development of the current Urban FIA 
protocols.  The program is currently active in the Baltimore, MD and Austin, TX metro 
areas, and will add Houston, TX; Madison, WI; Milwaukee, WI; Providence, RI; Des 
Moines, IA and likely St Louis, MO metro areas during the 2015 field season.   In this 
session, we will present a very brief history of past FIA urban pilots, why we are moving 
to the Urban FIA approach, and how we plan to implement the program across the Nation.

1 Mark Majewsky, Supervisory Forester, NRS FIA, 651-261-0053, 
mmajewsky@fs.fed.us
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AUSTIN’S URBAN FIA:  
SEAMLESS RURAL TO URBAN RESOURCE MONITORING IN TEXAS

Chris Edgar1, Burl Carraway2

Abstract—In 2014 Urban Forest Inventory and Analysis (Urban-FIA) was implemented 
for the first time ever in Austin, Texas. Work was accelerated and a full complement of 
plots in the city was measured in six months. In 2015 results are to be released in an FIA 
report and data made available in a publicly accessible database.  In this presentation we 
discuss the importance of seamless rural to urban monitoring in a state where 85 percent of 
the population lives in urban areas. We highlight major findings from the Austin analysis 
and report. We discuss how the data strengthen urban forest management and advocacy 
efforts. Our online application My City’s Trees will be presented. We conclude the 
presentation with observations on the status and future direction of Urban-FIA in the state.

1 Chris Edgar, Forest Resource Analyst, Texas A&M Forest 
Service, College Station, TX, 979-458-6630, cedgar@tfs.tamu.edu
2 Burl Carraway, Sustainable Forestry Department Head, Texas 
A&M Forest Service, College Station, TX
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GOING PUBLIC:  ACCESSING URBAN DATA AND PRODUCING 
POPULATION ESTIMATES USING THE URBAN FIA DATABASE

Chris Edgar1, Mark Hatfield2

Abstract—In this presentation we describe the urban forest inventory database 
(U-FIADB) and demonstrate how to use the database to produce population estimates. 
Examples from the recently completed City of Austin inventory will be used to 
demonstrate the capabilities of the database. We will identify several features of 
U-FIADB that are different from the FIA database (FIADB) and discuss whether the 
differences are out of necessity or by design. Urban forest inventory is a melding of two 
different inventory systems and approaches, FIA and i-Tree, both of which are well-
established and successful in their own right. They each have their own tradition and can 
provide fresh perspective. Integration of the two systems will take time and the database 
will necessarily evolve. We conclude the presentation with observations and comments 
on future direction and development.

1 Chris Edgar, Forest Resource Analyst, Texas A&M Forest 
Service, College Station, TX, 979-458-6630, cedgar@tfs.tamu.edu
2 Mark Hatfield, Forester, USFS NRS-FIA, Durham, NH, 603-868-
7641, mahatfield@fs.fed.us
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THE URBAN FIA INVENTORY:  
PLOT DESIGN, DATA COLLECTION, DATA FLOW AND PROCESSING

Tonya Lister1, Mark Majewsky2, Mark Hatfield3, Angie Rowe4, Bill Dunning5, Chris Edgar6, Tom Brandeis7

Abstract—More than 80 percent of the U.S. population lives in urban areas and tree 
cover in these areas offers a wide range of environmental benefits including the provision 
of wildlife habitat, aesthetic appeal and visual barriers, microclimate control, water 
quality improvement, and air and noise pollution control.  Recognizing the importance 
of urban forests, and with direction from the 2014 Farm Bill to include urban forest 
monitoring in its strategic plan, FIA has initiated an annualized urban inventory program. 
Urban FIA Inventory methods include a blending of elements from the core FIA program 
and from the i-Tree Eco program, along with several new urban field variables. Under 
the Urban FIA Inventory protocol, unique nonforest land uses are mapped and tree 
measurement data are collected across all land uses using a fixed radius, single subplot 
plot design. In this session, we will present an overview of FIA’s urban inventory 
methods, including sample plot design and data collection methods.  We will also discuss 
lessons learned based on the first field season of data collection and future improvements 
and additions to the Urban FIA methodology.

1 Tonya Lister, Research Forester, NRS FIA, 610-557-4033, 
tlister01@fs.fed.us
2 Mark Majewsky, Supervisory Forester, NRS FIA, 651-261-0053, 
mmajewsky@fs.fed.us
3 Mark Hatfield, Forester, NRS FIA, Durham, NH, 603-868-7641, 
mahatfield@fs.fed.us
4 Angie Rowe, Supervisory Forester, SRS FIA, 865-862-2052, 
krowe@fs.fed.us
5 Bill Dunning, Supervisory Forester, RMRS, 801-625-5463, bdun-
ning@fs.fed.us
6 Chris Edgar, Forest Resource Analyst, Texas A&M Forest Service, 
979-458-6630, cedgar@tfs.tamu.edu
7 Tom Brandeis, Supervisory Research Forester, SRS FIA, 865-862-
2030, tjbrandeis@fs.fed.us
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I-TREE AND URBAN FIA—WHAT’S THE CONNECTION?

David J. Nowak1

Abstract—The i-Tree program (www.itreetools.org) was developed to assess ecosystem 
services and values from trees and forests based on measured forest data. The i-Tree 
program is currently being integrated with FIA data to assess various ecosystem services 
and values from urban FIA data. This presentation will overview the history and use of 
i-Tree; the various tools of i-Tree and how i-Tree assesses ecosystem services and values.

1 David J. Nowak, Project Leader, Urban Forests, Human Health 
& Environmental Quality, NRS, Syracuse, NY, 315-448-3212, 
dnowak@fs.fed.us
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THE EVOLUTION OF WISCONSIN’S URBAN FIA PROGRAM – 
YESTERDAY TODAY AND TOMORROW

Stoltman, Andrew M.1, Rideout, Richard B.2

Abstract—In 2002, Wisconsin was part of two pilot projects in cooperation with the 
US Forest Service. The first was a street tree assessment, and the second was an urban 
FIA project. The data generated by these pilots changed the way that Wisconsin DNRs’ 
Urban Forestry Program conducts its business. Although there have been several urban 
FIA pilot projects throughout the U.S., in 2012, Wisconsin became the first state where 
those pilot FIA plots were re-measured. The results of this re-measurement demonstrate 
how urban foresters in Wisconsin have altered their tactics in recent years due to several 
factors, including the emergence of emerald ash borer. In recognition that good data 
leads to more effective management, the Wisconsin Department of Natural Resources 
Division of Forestry recommended a major expansion of urban inventory data to better 
guide urban forest managers. This initiative is being implemented in 2015, and includes 
statewide continuous urban FIA plots, a repeatable remotely sensed urban tree canopy 
assessment, and the aggregation of existing inventories such as municipal street or park 
tree inventories.

1 Stoltman, Andrew M., Rural and Urban Forest Inventory 
Analyst, Wisconsin Department of Natural Resources – Division 
of Forestry, Madison, WI, 608-266-9841, andrew.stoltman@
wisconsin.gov 
2 Rideout, Richard B., Urban Forestry Policy and Partnership 
Coordinator, Wisconsin Department of Natural Resources – Divi-
sion of Forestry, Madison, WI, 608-267-0843, richard.rideout@
wisconsin.gov
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NLCD TREE CANOPY COVER (TCC) MAPS  
OF THE CONTIGUOUS UNITED STATES AND COASTAL ALASKA

Robert Benton1, Bonnie Ruefenacht2, Vicky Johnson3, Tanushree Biswas4, Craig Baker5,  
Mark Finco6, Kevin Megown7, John Coulston8, Ken Winterberger9, Mark Riley10

Abstract—A tree canopy cover (TCC) map is one of three elements in the National 
Land Cover Database (NLCD) 2011 suite of nationwide geospatial data layers. In 2010, 
the USDA Forest Service (USFS) committed to creating the TCC layer as a member 
of the Multi-Resolution Land Cover (MRLC) consortium. A general methodology for 
creating the TCC layer was reported at the 2012 FIA Symposium in Knoxville, Tennessee 
by several USFS researchers. Since that time, remote sensing specialists at the USFS 
Remote Sensing Application Center (RSAC) have translated those general methods into 
a process capable of being implemented over the Contiguous United States and Coastal 
Alaska and produced the TCC 2011 layers. 

This poster presents the products produced by the NLCD TCC 2011 team in graphical 
form and is a companion to a presentation on the same topic. Both versions of the NLCD 
TCC dataset are distributed through the MRLC NLCD website at http://www.mrlc.gov.

1 Robert Benton, Project Manager / Remote Sensing Analyst, 
RedCastle Resources, Inc. working onsite at the Remote Sensing 
Applications Center, Salt Lake City, UT801.975.3836, robertben-
ton@fs.fed.us
2 Bonnie Ruefenacht, Senior Remote Sensing Analyst, RedCastle 
Resources, Inc. working onsite at the Remote Sensing Applications 
Center, Salt Lake City, UT, 801.975.3828, bruefenacht@fs.fed.us
3 Vicky Johnson, Remote Sensing Analyst, RedCastle Resources, 
Inc. working onsite at the Remote Sensing Applications Center, Salt 
Lake City, UT, 801.975.3759, vjohnson@fs.fed.us
4 Tanushree Biswas1, Remote Sensing Analyst, RedCastle Resources, 
Inc. working onsite at the Remote Sensing Applications Center, Salt 
Lake City, UT 801.975.3754, tbiswas@fs.fed.us
5 Craig Baker, Remote Sensing Technician, RedCastle Resources, 
Inc. working onsite at the Remote Sensing Applications Center, Salt 
Lake City, UT, 801.975.3426, crbaker@fs.fed.us

6 Mark Finco, Principal Investigator, RedCastle Resources, Inc. 
working onsite at the Remote Sensing Applications Center, Salt 
Lake City, UT, 801.975.3767, mfinco@fs.fed.us
7 Kevin Megown, Program Leader, Remote Sensing Applications 
Center, USDA Forest Service, Salt Lake City, UT, 801.975.3826, 
kamegown@fs.fed.us
8 John Coulston Research Scientist, Southern Research Station, 
USDA Forest Service, Knoxville, TN, 865.862.2008, jcoulston@
fs.fed.us
9 Ken Winterberger, Forester, Pacific Northwest Research Station, 
USDA Forest Service, Anchorage, AK, 907-743-9419, kwinter-
berger@fs.fed.us 
10 Mark Riley, Regional Remote Sensing Coordinator, Alaska 
Regional Office, USDA Forest Service, Juneau, AK, 907-586-8759, 
markriley@fs.fed.us
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ESTIMATING CARBON IN FOREST SOILS OF THE UNITED STATES 
USING THE NATIONAL FOREST INVENTORY 

Grant M. Domke1, Charles H. Perry1, Brian F. Walters1, Christopher W. Woodall1,  
Lucas E. Nave3 and Christopher W. Swanston4, 

Abstract—Soil organic carbon (SOC) is the largest terrestrial carbon (C) sink on earth and 
management of this pool is a critical component of global efforts to mitigate atmospheric 
C concentrations. Soil organic carbon is also a key indicator of soil quality as it affects 
essential biological, chemical, and physical soil functions such as nutrient cycling, water 
retention, and soil structure maintenance. Much of the SOC on earth is found in forest 
ecosystems and is thought to be relatively stable. That said, there are a growing number 
of studies documenting the sensitivity of SOC to global change drivers, particularly in 
the northern circumpolar region where approximately 50% of the global SOC is stored. 
In the United States (US), SOC in forests is monitored by the national forest inventory 
(NFI) conducted by the Forest Inventory and Analysis (FIA) program within the United 
States Department of Agriculture, Forest Service. The FIA program currently uses SOC 
predictions based on SSURGO/STATSGO data to populate the national forest inventory. 
Most of the point samples used to obtain estimates of SOC in forests from the SSURGO/
STATSGO data are from non-forested sites. The FIA program has been consistently 
measuring soil attributes as part of the NFI since 2001 and has recently amassed a nearly 
complete inventory of SOC in forests in the conterminous US and coastal Alaska. As an 
initial step towards developing a map of SOC in forests of the US we will 1) describe 
the inventory of soil variables in the NFI, 2) compare model predictions of SOC density 
with estimates from the NFI, 3) evaluate new estimation approaches to replace existing 
model predictions, and 4) describe next steps towards the development of data-driven 
visualization products that rely on existing and emerging remotely sensed data products, 
NFI measurements, and auxiliary environmental data sources. 

1 USDA Forest Service, Northern Research Station, St. Paul, MN, 
2 USDA  Forest Service, Southern Research Station, Knoxville, TN,
3 University of Michigan Biological Station, Pellston, MI, 
4 USDA Forest Service, Northern Research Station, Houghton, MI
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AN APPLICATION OF QUANTILE RANDOM FORESTS FOR 
PREDICTIVE MAPPING OF FOREST ATTRIBUTES

E.A. Freeman1 and G.G . Moisen2

Abstract—Increasingly, random forest models are used in predictive mapping of forest 
attributes. Traditional random forests output the mean prediction from the random trees. 
Quantile regression forests (QRF) is an extension of random forests developed by Nicolai 
Meinshausen that provides non-parametric estimates of the median predicted value as 
well as prediction quantiles. It therefore allows spatially explicit non-parametric estimates 
of model uncertainty. Here, we illustrate how to use QRF in predictive mapping of 
continuous forest attributes such as tree canopy cover and biomass.  Using FIA plot data 
as our response, we model the forest attributes as functions of landsat and other predictor 
variables through the quantregForest R package. We predict the 5th, 50th, and 95th 
quantiles and map the distributions over a mountainous region in the Interior West. We 
demonstrate how to produce prediction intervals, explore causal relationships, and detect 
outliers using this method, then make user-friendly code available through the extensions 
to the ModelMap R package.

1 Ecologist, USDA Forest Service, Rocky Mountain Research 
Station, 507 25th Street, Ogden, UT 84401, USA, 801-510-3765, 
eafreeman@fs.fed.us
2 Research Forester, USDA Forest Service, Rocky Mountain 
Research Station, 507 25th Street, Ogden, UT 84401, USA, 801-510-
3765, eafreeman@fs.fed.us

mailto:eafreeman@fs.fed.us
mailto:eafreeman@fs.fed.us
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MAPPING FOREST CANOPY DISTURBANCE  
IN THE UPPER GREAT LAKES, USA

James D. Garner, Mark D. Nelson, Brian G. Tavernia, Charles H. Perry, and Ian W. Housman1

Abstract—A map of forest canopy disturbance was generated for Michigan, Wisconsin, 
and most of Minnesota using 42 Landsat time series stacks (LTSS) and a vegetation 
change tracker (VCTw) algorithm. Corresponding winter imagery was used to reduce 
commission errors of forest disturbance by identifying areas of persistent snow cover. 
The resulting disturbance age map was classed into 5-year age classes and then used to 
attribute age to forested pixels within the National Land Cover Database of 2011. Overall 
map classification accuracy was 84.9 percent when using Forest Inventory and Analysis 
data as reference. User’s and producer’s accuracies were high for persistent forest, 
nonforest, and water, but low for  disturbed forest 5-year age classes, likely due to rarity 
of forest canopy disturbance on the landscape and confusion among 5-year age classes in 
both map and reference data sets.

Forest canopy disturbance is defined in this study as 
any event, natural or anthropogenic, that reduces tree 
canopy cover to the extent that there is a change in 
the dominant age cohort. Such disturbance events, 
or lack thereof, provide both benefits and challenges 
to a variety of forest ecosystem functions. Forest 
disturbance provides important habitat for early 
successional forest-associated wildlife species 
such as American woodcock (Scolopax minor), 
Kirtland’s warbler (Septophaga kirtlandii), white-
tailed deer (Odocoileus virginianus), and many other 
species. In contrast, increased water turbidity and 
phosphorous have been linked to increased forest 
canopy disturbance (Seilheimer et al. 2013). Forest 
canopy disturbance also provides inroads for invasive 
plant species, especially following timber harvesting 
activities if proper care is not taken to eliminate seeds 
and spores from logging equipment and subsequent 
vehicle traffic.  

The USDA Forest Service, Forest Inventory and 
Analysis (FIA) program produces data, information, 
and knowledge on many characteristics of forest 
composition and structure. FIA attributes affected 
by or indicative of forest canopy disturbance include 
condition-level attributes of stand age, disturbance, 
treatment, and stand-size (tree diameter) class; 
and tree-level attributes of damage, mortality, and 
removal. These FIA attributes provide area estimates 
of forest canopy disturbance and stand age class, 
but do not fully meet the needs for spatially explicit 
land management information.  Existing upper Great 
Lakes geospatial data sets also do not allow regionally 
consistent assessment of amount and configuration 
of forest canopy disturbance across a wide range of 
spatial scales. 

METHODS
We analyzed spectral-temporal data within several 
Landsat time series stacks (LTSS) to identify spatially 
explicit forest canopy disturbance. The vegetation 
change tracker (VCT) algorithm (Huang et al. 2010) 
was employed to track spectral data of individual 
pixel locations throughout these LTSS. VCT identifies 
trajectories in these data and flags departures from 
stable forest as disturbance events. The USDA 
Forest Service Northern Research Station (NRS) 

1 Spatial Ecologist (JDG), USDA Forest Service, Northern 
Research Station; Research Forester (MDN), USDA Forest 
Service, Northern Research Station, 1992 Folwell Avenue, St. 
Paul, MN 55108; Spatial Analyst (BGT), The Nature Conservancy, 
Geospatial Science Application Center; Research Soil Scientist 
(CHP), USDA Forest Service, Northern Research Station; and 
Remote Sensing Specialist (IWH), USDA Forest Service, Remote 
Sensing Applications Center.  MDN is corresponding author: to 
contact, call (651) 649-5104 or e-mail at mdnelson@fs.fed.us.
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in collaboration with the agency’s Remote Sensing 
Applications Center adapted VCT by incorporating 
winter Landsat imagery of seasonally persistent 
snow-cover to reduce commission errors of forest 
disturbance (VCTw) (Stueve et al. 2011). We applied 
VCTw to Landsat Thematic Mapper and Enhanced 
Thematic Mapper Plus imagery dating from 1987 
to 2010 to map forest canopy disturbance across 
42 Landsat scenes encompassing the intersection 
of Minnesota, Wisconsin, and Michigan with Bird 

Conservation Regions (BCR) 12 and 23 (Fig. 1). 
These scenes were then mosaicked together following 
a procedure which assigns precedence in overlapping 
areas based on the consistency of each scene with 
neighboring scenes (Nelson et al., in prep.2). The 
resulting forest canopy disturbance map was relabeled 
into 5-year forest age classes based on year of 
disturbance (1990-1994, 1995-1999, 2000-2004, 
2005-2009) plus one class of persisting forest (no 
disturbance since 1990) (Fig. 2). 

2 Nelson, M.D.; Houseman, I.W.; Stueve, K.M.; Perry, C.H. In 
preparation. Effects of satellite image mosaic precedence on 
consistency and accuracy of forest canopy disturbance mapping.

Figure 1.—Study area, consisting of the intersection of Michigan, Minnesota, and Wisconsin,  with Bird Conservation Regions (BCRs) 12 
and 23. Data sources: North American Bird Conservation Initiative (BCRs, with revisions), Esri (state boundaries, basemap).
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To allow for the inclusion of forest type in 
subsequent analyses, VCTw-based forest age 
classes were assigned to deciduous, evergreen, and 
mixed forest, and woody wetlands pixels in the 
2011 National Land Cover Database (NLCD2011) 
(Homer et al. 2015). Despite the inclusion of winter 
imagery in VCTw, preliminary analysis indicated that 
NLCD2011 provides better accuracies of persistent 
general land use classes (forest, nonforest, water). 
As such, NLCD2011 forest pixels that were not 
associated with VCTw age data were labeled as forest 
of persisting age class. 

A subset of shrub/scrub and grassland/herbaceous 
pixels in NLCD2011 were reclassed as forest when 
corresponding VCTw pixels were classed as young 
forest (0-20 years of age); these pixels were labeled 
as ‘other’ forest type and were assigned to their 
corresponding VCTw-based age class. Co-registration 
disagreement between the NLCD and VCTw maps 
occasionally resulted in age class assignment to only a 
portion of an NLCD2011 forest patch, creating a thin 
strip having no age class along the NLCD2011 forest 
edge. Areas less than two pixels wide within these strips 
were assigned to the age class of the largest neighboring 
NLCD2011 forest patch. Finally, all patches smaller 
than four pixels were aggregated into their nearest 

Figure 2.—Map subset shows a portion of the Boundary Waters Canoe Area Wilderness in northern Minnesota illustrating widespread 
canopy disturbance caused by a severe storm event on 4 July 1999, followed by the Cavity and Ham Lakes fires of 2006 and 2007. Data 
sources: Nelson et al. (in prep.; land cover and forest age classes), Esri (state boundaries, basemap).
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neighbor, resulting in a four pixel minimum mapping 
unit (MMU) for the dataset. This MMU (0.36 ha) is 
similar to the minimum patch size required to meet 
FIA’s definition of forest land (0.4047 ha).

The accuracy of the resulting raster data set was 
assessed by comparing the mapped age classes to 
27,219 FIA plots located within the study area, and 
following “good practices” prescribed in Olofsson et al. 
(2014). To avoid complications involved with assigning 
classes to mixed condition plots and mixed pixel 
samples, only FIA single condition central subplots 
were co-located with individual pixels (Chen and Stow 
2002). The percentage of FIA plots omitted for not 
having single condition central subplots was 2.7, 4.2, 
and 4.5 percent in Minnesota, Michigan, and Wisconsin, 
respectively. Mapped age classes were subsequently 
compared with corresponding FIA field age following 
methods described in Nelson et al.3 Results were used to 
populate confusion matrices with proportion estimates 
weighted by proportion of area mapped in each class 
(Olofsson et al. 2014; Table 1), from which metrics of 
accuracy were estimated. Post-stratified area estimates 
and corresponding 95 percent confidence intervals were 
produced from the FIA field data using the map classes 
as strata, per Olofsson et al. (2014).

RESULTS
Overall classification accuracy for the study-wide 
assessment was 84.9 percent (±0.42 percent, based 
on 95 percent confidence intervals; Table 1). Overall 
accuracy was 89.54 percent (±0.36 percent) after 
aggregating forest into a single class (forest, nonforest, 
water; confusion matrix not shown). 

We estimated 216,563 (±1,532) km2 of forest land 
area, and 26,635 (±1,134) km2 of forest canopy 
disturbance within the 20-year window (1990-2009). 
About 12 percent of forest area was disturbed between 
1990 and 2009; 8.5 percent in Michigan, 10.9 percent 
in Wisconsin, and 16.2 percent in the Minnesota 
portion of the study region. 

In general, producer’s accuracies tended to decrease 
and user’s accuracies tended to increase with decreasing 
proportion of the respective class on the landscape and 
with time since disturbance.  Each of the 5-year increment 
disturbed forest classes occupied less than 1 percent of the 
study area, and their corresponding accuracies were low, 
ranging from 15-31 percent for producer’s accuracies and 
39-45 percent for user’s accuracies. 

DISCUSSION AND CONCLUSION
We applied the VCTw forest canopy disturbance 
algorithm to several Landsat LTSS and NLCD2011 
data to map forest canopy disturbance, persisting forest, 
nonforest, and water within Minnesota, Wisconsin, and 
Michigan portions of BCRs 12 and 23 in the western 
Great Lakes. The proportion of forest area experiencing 
canopy disturbance within the past 20 years varied 
among states. Using FIA data for validation, the 
resulting map had relatively high overall accuracy when 
including all seven classes, but low producer’s and user’s 
accuracies for the 5-year age classes (Table 1), which 
were rare on the landscape and subject to confusion with 
other 5-year age classes. There was a discernable trend in 
both the user’s and producer’s accuracy of the disturbed 
forest classes, with accuracy tending to decrease as time 
since disturbance increases. This may be attributable to 
varying rates of recovery following disturbance, creating 
difficulty for FIA field crew assignment of field age to 
older forest conditions, thus affecting the veracity of the 
FIA plot data set used for map validation. Additional 
details on mapping, validation methods, and results by 
various subareas are reported in Nelson et al.2
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3 Nelson, M.D.; Tavernia, B.G.; Garner, J.D.; and Perry, C.H. In 
preparation. Geospatial modeling and validation of recent forest 
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Table 1. Confusion matrix and estimates of classification accuracy (overall, user’s, producer’s) for forest 
disturbance age classes, persistent forest, nonforest, and water. Matrix cell values are presented as 
estimated area proportions weighted by the proportion of area mapped in each class, as recommended in 
Olofsson et al. (2014).

Reference categories

Map categories Persistent  
forest

Forest 
disturbed  
1990 to 

1994

Forest 
disturbed  
1995 to 

1999

Forest 
disturbed  
2000 to 

2004

Forest 
disturbed  
2005 to 

2009 Nonforest Water Total
User’s 

Accuracy
Persistent forest 0.401 0.010 0.009 0.007 0.005 0.051 0.003 0.486 0.824
Forest disturbed  
1990 to 1994 0.002 0.003 0.001 0.000 0.000 0.000 0.000 0.006 0.426

Forest disturbed  
1995 to 1999 0.002 0.001 0.003 0.001 0.000 0.001 0.000 0.008 0.446

Forest disturbed  
2000 to 2004 0.002 0.000 0.001 0.004 0.001 0.001 0.000 0.009 0.408

Forest disturbed  
2005 to 2009 0.003 0.000 0.000 0.001 0.003 0.001 0.000 0.008 0.388

Nonforest 0.028 0.002 0.004 0.003 0.002 0.393 0.003 0.435 0.904
Water 0.001 0.000 0.000 0.000 0.000 0.004 0.043 0.048 0.895
Total 0.439 0.016 0.018 0.016 0.011 0.451 0.049 1.000
Producer’s  
accuracy 0.915 0.150 0.172 0.239 0.306 0.870 0.874 0.849
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NATIONAL FOREST CHANGE MONITORING SYSTEM  
IN SOUTH KOREA: AN ANALYSIS OF FOREST TREE SPECIES 

DISTRIBUTION SHIFTS

Eun-Sook Kim, Cheol-Min Kim, Jisun Lee and Jong-Su Yim

Abstract—Since 1971, South Korea has implemented national forest inventory (NFI) in 
pursuance of understanding current state and change trend of national forest resources. NFI1 
(1971~1975), NFI2 (1978~1981), NFI3 (1986~1992) and NFI4 (1996~2005) were implemented 
in order to produce national forest resources statistics. However, since the early 1990s, 
international conventions and organizations started to require diverse forest information for 
the sustainable forest management and periodic monitoring of forest resources. Following 
these requirement, South Korea reformed total national forest inventory system. Starting 
from NFI5 (2006~2010), national forest resources inventory was implemented on the basis 
of the new system. These time series NFI data can be used to understand the long-term 
transition of forest and predict the future of forest condition in national scale. 

In this study, two analyses were performed to identify forest distribution change using the 
long-term NFI data. First, area change and distribution change by forest types (coniferous 
forest, mixed forest, deciduous forest) were compared using time series forest type maps. 
Second, density change of Pinus densiflora and Quercus spp. using time series NFI data. 
As results, coniferous forest were reduced overall, but deciduous forests show evident 
increasing trend. The change of tree density appeared differently based on the topographic 
characteristics. While tree density of Pinus densiflora has rapidly decreased in regions 
with low altitude and gentle slope, tree density of Quercus spp. has sharply increased in 
regions with high altitude and steep slope. As for the tree density of Pinus densiflora, the 
northern slope showed more decreasing trend than southern slope. Time series National 
Forest Inventory data is the most extensive forest survey information in South Korea. We 
could analyze the long-term changing trend of forest stand based on these data.

Keywords: national forest inventory, forest change monitoring, distribution shifts

INTRODUCTION
Since 1971, South Korea has periodically conducted 
national forest inventory (NFI) to calculate the 
statistics of national forest resource. NFI was carried 
out with field surveys on sampling plots placed 
throughout the country in parallel with the production 
of forest type maps to classify and to map forest 
types using aerial photographs. In addition, starting 
in the fifth NFI, the forest monitoring system has 
been reformed with the aim of sustainable forest 

management and production of forest statistics at 
international standard (Table 1). Especially since 
the fifth NFI, sampling plots placed throughout the 
country became permanent and repeated survey has 
been conducted. Therefore, the base for monitoring 
changes in the same plots has been provided, and 
monitoring survey is now being conducted as the sixth 
NFI (2011~2015).

1 Korea Forest Research Institute, Seoul 130-712, South Korea, Tel: 
+82-2-961-2893 / E-mail: drummer12@korea.kr
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These data can be used to understand the transition 
of forest and predict the future of forest condition 
in national scale. Hernandez et al.(2014) studied the 
change of spatial distribution for Pinus sylverstris 
and Fagus sylvatica using time series NFI data. 
Bechage et al.(2008) analyzed the distribution shifts 
of hardwood-boreal ecotone from 1964 to 2004 based 
on elevation transect survey. The aims of this study 
are to understand the entirely changing trends of forest 
type and to draw main factors of distribution shifts for 
Pinus densiflora and Quercus spp.

STUDY SITE AND DATA
In this study, an analysis on a pilot area was conducted 
using the long-term National Forest Inventory (NFI) 
data to develop an analysis method for forest distribution 
change.  Study areas are located in the temperate Midwest 
region of South Korea and cover the Chungcheongnam-
do, Chungcheongbuk-do and Daejeon Metropolitan 
City with the total area of 1,660,000 hectare. The study 
area consists of forest area of 964 hectare which is 58% 
of the total land. Within the Chungcheong region, as 
Chungcheongnam-do is adjoined the Yellow Sea and 
Chungcheongbuk-do includes forested areas with east 
high and west low characteristics, showing different 
forest characteristics. For forest distribution change 
analysis, time series forest type maps and NFI data 
created over 40 years were used. Forest type maps used 
for analysis were the first forest type map (1972~1974), 
the third forest type map (1991), and 1:5,000 forest type 
map (2009), and NFI data used in this study are the first 

NFI (1975, 889 plots), the third NFI (in 1991, 1,493 
plots), and the fifth NFI (2006~2010, 1,662 plots). 

METHODS
Two analyses were performed to identify forest 
distribution change using the long-term NFI data. First, 
area change and distribution change by forest types 
(coniferous forest, mixed forest, deciduous forest) were 
compared using time series forest type maps. Second, 
density change of Pinus densiflora and Quercus spp. 
using time series NFI data. For each sampling plot, the 
number of Pinus densiflora and Quercus spp. (Quercus 
mongolica, Quercus acutissima, Quercus serrata, 
Quercus variabilis, Quercus aliena, Quercus dentata) 
per hectare were calculated to obtain tree density 
of each sampling plot. And, we compared the time 
series changes of tree density and topographic factors 
(elevation, slope, and aspect). Tree density analysis 
of Pinus densiflora and Quercus spp. were carried out 
only on natural forest sampling plots. 

RESULTS
In the analysis of area changes of forest types using the 
time series forest type maps, coniferous forest and mixed 
forest were reduced overall, but deciduous forests show 
evident increasing trend. In comparing the data of 1970s 
and today, the area of coniferous forest has declined 
35% and mixed forest 68%. Whereas, deciduous 
forest has significantly increased from 41,109 ha to 
453,596 ha, and the increasing trend is mainly found in 
Chungcheongbuk-do region (eastern part of study area). 

Table 1. National Forest Inventory system for plot survey and forest type map

Phase Years Sample Design
Number 
of plots Plot form 

Forest Type Map 
production

NFI1 1971~1975

Stratified Systemic Sampling

7,051
Circular sample plot
(0.01ha)

First Forest Type Map
(1:25,000)

NFI2 1978~1981 4,839 Second Forest Type Map
(1:25,000)

NFI3 1986~1992 14,474
Cluster plot
(0.05ha)

Third Forest Type Map 
(1:25,000)

NFI4 1996~2005 2,788 Fourth Forest Type Map 
(1:25,000)

NFI5 2006~2010 Systematic Sampling 14,164 Cluster and multiplex circular 
plots (0.04ha, basic plot)

1:5,000 Forest Type Map
(Separate from NFI)



New Directions in Inventory Techniques & Applications Forest Inventory & Analysis (FIA) Symposium 2015 370PNW-GTR-931

When comparing the natural change of tree density by 
tree species using the survey data of time series NFI 
sample plots, density of Pinus densiflora has reduced 
overall and particularly a notable decrease is found 
in the Chungcheongnam-do (western part of study 
area) region. Also, the tree density of Quercus spp. has 
rapidly rose entering the fifth NFI, and a significant 
increase was observed in the mountainous region of 
Chungcheongbuk-do (eastern part of study area). 

The change of tree density appeared differently based 
on the topographic characteristics.  While tree density 
of Pinus densiflora has rapidly decreased in regions 
with low altitude and gentle slope, tree density of 
Quercus spp. has sharply increased in regions with 
high altitude and steep slope. As for the tree density 
of Pinus densiflora, the northern slope showed more 
decreasing trend than southern slope. 

Table 2. Area changes of forest types by year (hectare) 

Forest type 1972~1974 1991 2009

Total 884,088 893,712 885,270

Coniferous Forest 493,048 378,930 320,654

Mixed Forest 349,931 246,308 111,020

Deciduous Forest 41,109 268,474 453,596

Figure 1—Forest type distribution change based on time series forest type maps 
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DISCUSSION
In this study, coniferous forest were reduced overall, 
but deciduous forests showed evident increasing trend. 
Similarly, tree density of Pinus densiflora has reduced 
and that of Quercus spp. has increased. This phenomenon 
can be understood as the general trends caused by 
temperature increase of climate change. Tree density of 
Pinus densiflora has rapidly decreased in regions with 
low altitude and gentle slope and these results shows 
that optimal habitat region of this species is changing. 

Also, decline trends of Pinus densiflora in northern slope 
region contained the good moisture conditions is the 
result of completion between other tree species.

Time series National Forest Inventory data is the most 
extensive forest survey information in South Korea. 
We could analyze the long-term changing trend of 
forest stand based on these data. We have the plans of 
an intensive analysis for interrelationships of climate 
change and forest change using NFI data and long-
term climate data.

Figure 2—Change analysis in tree density of Pinus densiflora and Quercus spp. depending on the terrain conditions using time series NFI data
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FOREST INVENTORY AND ANALYSIS PROGRAM  
IN THE WESTERN U.S. AFFILIATED PACIFIC ISLANDS: 

PERSPECTIVES FROM WORKING IN ISLAND ECOSYSTEMS  
AND BUILDING CROSS CULTURAL PARTNERSHIPS 

Ashley Lehman1

Abstract—The Pacific Northwest (PNW) Research Station’s Forest Inventory and 
Analysis (FIA) program of the USDA Forest Service monitors and reports on the status 
and trends of the Pacific Island’s forest resources and ecosystem services.  Since 2001 
the FIA program has partnered with State and Private Forestry’s, Region 5 and the local 
governments in the U.S. Affiliated Western Pacific Islands to implement a nationally-
standardized plot sampling design on a periodic basis. Permanent monitoring plots are 
measured on a 10 year periodic cycle across the island nations of American Samoa, 
Guam, Palau, The Commonwealth of the Northern Mariana Islands, The Federated States 
of Micronesia and The Republic of the Marshall Islands. To date we are conducting 
our second measurement of the region and have successfully completed two thirds 
of the inventory. Forest health changes over 10 years have been drastic on some 
island ecosystems. Further, collaboration with other agencies, NGO’s and other state 
governments has been a successful approach to build local partnerships and maximize 
data use.  Monitoring efforts are important for local land managers and communities 
because inventories provide detailed information on forest health issues and provide 
insights to long term trends in forest change. 

1 Ashley Lehman, FIA Pacific Island Coordinator, Pacific North-
west Research Station Forest Inventory and Analysis Program, 
USDA Forest Service, Anchorage Forestry Sciences Lab,  161 
E 1st Ave., Door 8, Anchorage, AK 99501,  907-743-9415, 
adlehman@fs.fed.us



New Directions in Inventory Techniques & Applications Forest Inventory & Analysis (FIA) Symposium 2015 374PNW-GTR-931

WOODY ENCROACHMENT IN THE CENTRAL UNITED STATES

Greg C. Liknes, Dacia M. Meneguzzo, and Kevin Nimerfro

Abstract—The landscape of the central United States is dominated by cropland and 
rangeland mixed with remnants of short- and tall-grass prairies that were once prevalent. 
Since the last ice age, these areas had sparse tree cover due to cyclical severe droughts, 
intentional fires used by indigenous people as a land management tool, and natural 
fires caused by lightning. More recently, tree cover is suppressed by tillage or grazing. 
However, the combination of fire suppression and idling of farmland due to conservation 
programs and periodic downturns in the agricultural economy allows woody species 
to take hold where they were historically absent. As a result, woody encroachment is a 
topic of concern in these primarily nonforest areas. Using data from the Forest Inventory 
and Analysis program, we examine the expansion of eastern redcedar (Juniperus 
virginiana), as well as several other prevalent woody species, in the central United 
States. We compare the change over time for these woody species with respect to area, 
density, volume, and seedling abundance at both county- and state-levels. In addition, 
we examine the corresponding plot-level tree diversity in the presence and absence of 
these species over a range of densities. Our analysis shows the expansion is widespread 
but highly varied across the region in terms of rate, prevalence, and dominant species. 
Woody species are having an impact on the region’s ecosystems and will likely play an 
increasing role if current trends continue.
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NATIONAL REPORT ON SUSTAINABLE FORESTS—2015: 
CONSERVATION OF BIOLOGICAL DIVERSITY

Mark D. Nelson1, Curt H. Flather2, Kurt H. Riitters3, Carolyn Sieg4, James D. Garner5

Abstract—The National Report on Sustainable Forests—2015 relies on Montréal 
Process Criteria and Indicators (C&I) for Forest Sustainability to organize and present 
data relevant to U.S. forests. The 2015 report addresses seven criteria, the first of which is 
Conservation of Biological Diversity, which is organized into nine indicators that address 
three sub-criteria: ecosystem diversity, species diversity, and genetic diversity. Selected 
highlights from the report include the following. Total forest land area increased by 14 
million acres since the previous report. Area of timberland increased by 7 million acres, 
with a 14 million acre increase in large diameter size class and a 7 million acre decrease 
in medium and small diameter size class. Woodlands (41%) and forest (31%) are more 
protected than other types of natural vegetation (16%). Between 2001 and 2011, net 
loss of interior forest was between 7.0 and 20.0 percent, varying with landscape scale. 
Greatest proportion of numbers of forest bird species with increasing population trends 
compared to the number of species with decreasing trends occurred in mixed wooded 
plains of the eastern Great Lakes and scattered valley and plains systems in the West; 
greatest proportion of species with decreasing trends compared to those with increasing 
trends occurred in oak forests of the southern Appalachians, pine and northern hardwood 
forests of the upper Midwest and Great Lakes, and montane and arid high plains systems 
in the intermountain West.

Between 1966 and 2011, about 19% of forest-associated bird species increased in 
populations and 20% decreased. Decliners include species associated with early 
successional or wetland habitats. Some generalist bird species and some that favor dead 
trees as foraging and nesting substrates have increased. Results for all nine indicators are 
presented in the poster.

1 Mark D. Nelson, Research Forester, U.S. Department of 
Agriculture, Forest Service, Northern Research Station, 1992 
Folwell Avenue, St. Paul, MN 55108, phone (651) 649-5104, e-mail 
mdnelson@fs.fed.us 
2 Curt H. Flather, Research Ecologist, U.S. Department of Agricul-
ture, Forest Service, Rocky Mountain Research Station, 240 West 
Prospect Road, Fort Collins, CO, 80526, phone (970) 498-2569, 
e-mail cflather@fs.fed.us
3 Kurt H. Riitters, Research Ecologist, U.S. Department of Agri-
culture, Forest Service, Southern Research Station, 3041 East 
Cornwallis Road, Research Triangle Park, NC, 27709, phone (919) 
549-4015, e-mail kriitters@fs.fed.us

4 Carolyn Sieg, Research Plant Ecologist, U.S. Department of 
Agriculture, Forest Service, Rocky Mountain Research Station, 
2500 South Pine Knoll Drive, Flagstaff, AZ, 86001, phone (928) 
556-2151, e-mail csieg@fs.fed.us
5 James D. Garner, Wildlife Biologist, U.S. Department of 
Agriculture, Forest Service, Northern Research Station, 1992 
Folwell Avenue, St. Paul, MN 55108, phone (651) 649-5107, e-mail 
jamesdgarner@fs.fed.us
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CONSEQUENCES OF DATA REDUCTION IN THE FIA DATABASE: A 
CASE STUDY WITH SOUTHERN YELLOW PINE

Anita K. Rose1, James F. Rosson, Jr2., and Helen Beresford3

ABSTRACT.--The Forest Inventory and Analysis Program strives to make its data 
publicly available in a format that is easy to use and understand most commonly accessed 
through online tools such as EVALIDator and Forest Inventory Data Online. This 
requires a certain amount of data reduction. Using a common data request concerning the 
resource of southern yellow pine (SYP), we demonstrate how results may vary depending 
on the particular data reduction approach employed. We used the loblolly-shortleaf pine 
forest-type group (FTG) and the longleaf-slash pine FTG as surrogates for SYP. The 
volume of our four target species (loblolly pine, shortleaf pine, slash pine, and longleaf 
pine) in these two FTGs was 98.2 billion cubic feet, but this was only 84 percent of the 
total volume for the target species in all FTGs. In addition, many unwanted species were 
included by using total volume in the two FTGs as a surrogate for SYP.

The Forest Inventory and Analysis (FIA) Database 
represents measurements made on a large number of 
sample unit variables. The FIA Program strives to 
make these data publicly available in a format that is 
easy to use and understand most commonly accessed 
through online tools such as EVALIDator and Forest 
Inventory Data Online (FIDO). This requires a 
certain amount of data reduction (collapsing data into 
understandable formats; examples are forest type and 
species groups). However, users may not be aware of 
the precise data reduction algorithms in these online 
tools, and this may result in output that falls short of 
what the user needed or expected, many times without 
their knowledge. In addition, the actual query a user 
wants may not be available, forcing them to use a 
surrogate that may or may not reflect what is desired. 
An example of this would be the use of forest type as a 
surrogate to determine the spatial extent of a species.

Issues in data reduction also arise from definition 
confusion. Forestry terms are sometimes informal, 
vague, or change over time, and this causes problems 
when applied in a precise manner. For example, 
the term southern yellow pine (SYP) has evolved 
over the last 100 years from originally meaning 
only slow-growing (ring-width restricted) longleaf 
pine (Pinus palustris Mill.) to various combinations 
of southern pines (USDA Forest Service 1936). 
Furthermore, formal definitions for commercial 
lumber are set by the American Society for Testing 
and Materials and may change in reaction to market 
conditions. Adding to the confusion is the fact that 
commercial timber definitions may not coincide with 
botanical descriptors such as forest type. Therefore, 
it is important that these definitions are documented 
for users. Using a common data request concerning 
the resource of SYP, we demonstrate how results 
may vary depending on the particular approach used 
with the data.

METHODS
Our target species for SYP were loblolly pine (P. 
taeda L.), slash pine (P. elliottii Engelm.), shortleaf 
pine (P. echinata Mill.), and longleaf pine. Because 
spatial extent of an individual species is not currently 
an option in the online tools, we assessed the area 

1 Anita K. Rose; Research Ecologist; USDA Southern Research 
Station, Forest Inventory and Analysis; 4700 Old Kingston Pike; 
Knoxville, TN 37919; anitarose@fs.fed.us; 865-862-2029
2 James F. Rosson, Jr.; Research Forester; USDA Southern Research 
Station, Forest Inventory and Analysis; 4700 Old Kingston Pike; 
Knoxville, TN 37919; jrosson@fs.fed.us; 865-862-2067
3 Helen Beresford; IT Specialist; USDA Southern Research Station, 
Forest Inventory and Analysis; 4700 Old Kingston Pike; Knoxville, 
TN 37919; hberesford@fs.fed.us; 865-862-2091
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and volume of SYP in the 13 Southern States using 
the loblolly-shortleaf pine forest-type group (FTG) 
and the longleaf-slash pine FTG as surrogates for 
SYP. In order to duplicate the choices and selections 
available to and made by many users of FIA data 
in FIDO or EVALIDator, we made the following 
assumptions for this analysis: 1 – some users would 
accept that all the volume in the two FTGs was SYP 
volume, and 2 – some users would further filter the 
results from the two FTGs to only include volume 
for the target species. The loblolly-shortleaf pine 
FTG includes the following detailed forest types: 
loblolly pine, shortleaf pine, Virginia pine, sand pine, 
Table Mountain pine, pond pine, pitch pine, and 
spruce pine. The longleaf-slash pine FTG includes 
the following detailed forest types: longleaf pine and 
slash pine. Forest type is a classification of forest land 
based upon and named for the tree species that forms 
the plurality of live-tree stocking. Forest-type groups 
are combinations of forest types that share closely 
associated species or site requirements.

RESULTS AND DISCUSSION
Area and volume for the loblolly-shortleaf pine FTG 
and the longleaf-slash pine FTG together in the South 
was 70.4 million acres of forest land, and 115.5 
billion cubic feet of volume (regardless of species) 
(Table 1). Volume per acre for these two FTGs 
averaged 1,641.6 cubic feet per acre and ranged 
from a low of 1,152.1 cubic feet per acre in Florida 
to a high of 2,033.5 cubic feet per acre in Virginia. 
Georgia, Alabama, and Mississippi ranked as the top 
three States in the South for both area and volume 
of the two FTGs combined (Table 1). Rankings 
changed slightly when the FTGs were considered 
separately. Florida ranked first for area and volume 
of the longleaf-slash FTG, the majority of which 
was accounted for by slash pine. Our target species 
(loblolly pine, slash pine, shortleaf pine, and longleaf 
pine) were, not surprisingly, the top four species for 
volume in the two FTGs. They accounted for 98.2 
billion cubic feet (85 percent of the total) (75.6, 
11.8, 6.7, and 4.1 billion cubic feet, respectively) 

Table 1.—Area and volume of all-live trees in the loblolly-shortleaf pine and the longleaf-slash pine forest-
type groups (as surrogates for southern yellow pine) by State and forest-type group, 2012

State

Forest-type group
Both groups Longleaf-slash pine Loblolly-shortleaf pine

Forest land Volume Forest land Volume Forest land Volume
thousand acres million cubic feet thousand acres million cubic feet thousand acres million cubic feet

Alabama 9,639.8 14,496.5 1,055.8 1,593.8 8,584.0 12,902.7
Arkansas 5,668.0 9,902.3 — — 5,668.0 9,902.3
Florida 7,478.3 8,615.7 5,800.7 6,510.2 1,677.6 2,105.5
Georgia 11,114.9 18,407.8 3,691.8 5,055.5 7,423.1 13,352.3
Kentucky 191.2 320.2 — — 191.2 320.2
Louisiana 5,927.6 9,580.3 812.7 1,192.9 5,114.9 8,387.4
Mississippi 8,080.6 13,692.6 822.2 1,413.0 7,258.3 12,279.6
North Carolina 5,825.0 10,489.5 323.6 519.4 5,501.4 9,970.1
Oklahoma (east) 1,102.8 1,437.3 — — 1,102.8 1,437.3
South Carolina 6,067.9 11,184.5 549.7 701.7 5,518.2 10,482.9
Tennessee 973.2 1,546.5 — — 973.2 1,546.5
Texas (east) 5,350.6 9,849.0 144.2 270.6 5,206.5 9,578.4
Virginia 2,950.2 5,999.2 — — 2,950.2 5,999.2

All States 70,369.9 115,521.5 13,200.7 17,257.0 57,169.2 98,264.5

— = no value for the cell.



New Directions in Inventory Techniques & Applications Forest Inventory & Analysis (FIA) Symposium 2015 378PNW-GTR-931

Ta
bl

e 
2.

—
Vo

lu
m

e 
of

 li
ve

 tr
ee

s 
(≥

5.
0 

in
ch

es
 d

ia
m

et
er

 a
t b

re
as

t h
ei

gh
t; 

w
he

re
 to

ta
l v

ol
um

e 
≥1

00
.0

 m
ill

io
n 

cu
bi

c 
fe

et
) i

n 
th

e 
lo

bl
ol

ly
-s

ho
rt

le
af

 p
in

e 
an

d 
th

e 
lo

ng
le

af
-s

la
sh

 p
in

e 
fo

re
st

-t
yp

e 
gr

ou
ps

 b
y 

sp
ec

ie
s 

an
d 

St
at

e,
 2

01
2

Sp
ec

ie
s

A
ll 

St
at

es
A

L
A

R
FL

G
A

K
Y

LA
M

S
N

C
ea

st
 O

K
SC

TN
ea

st
 T

X
VA

m
ill

io
n 

cu
bi

c 
fe

et
A

ll 
sp

ec
ie

s
11

5,
52

1.
5

14
,4

96
.5

9,
90

2.
3

8,
61

5.
7

18
,4

07
.8

32
0.

2
9,

58
0.

3
13

,6
92

.6
10

,4
89

.5
1,

43
7.

3
11

,1
84

.5
1,

54
6.

5
9,

84
9.

0
5,

99
9.

2
Lo

bl
ol

ly
 p

in
e

75
,5

65
.7

10
,5

93
.5

6,
27

8.
6

1,
12

3.
4

11
,0

08
.2

89
.1

7,
15

9.
4

10
,2

28
.6

7,
22

4.
3

62
5.

8
8,

89
1.

3
82

9.
4

7,
32

9.
7

4,
18

4.
5

S
la

sh
 p

in
e

11
,7

69
.2

65
3.

4
—

5,
07

5.
1

4,
13

3.
2

—
65

8.
0

77
4.

3
11

0.
4

—
14

4.
7

—
22

0.
3

—
S

ho
rtl

ea
f p

in
e

6,
71

5.
8

44
0.

7
2,

60
1.

3
24

.1
38

3.
3

16
.7

27
2.

3
58

5.
5

27
6.

8
65

6.
6

14
6.

5
14

7.
2

1,
03

4.
3

13
0.

7
Lo

ng
le

af
 p

in
e

4,
13

5.
5

74
3.

8
—

90
9.

1
54

3.
2

—
45

3.
5

44
4.

9
44

5.
0

—
54

8.
2

—
47

.7
—

S
w

ee
tg

um
2,

88
2.

4
40

7.
4

23
1.

0
30

.7
42

4.
7

6.
0

27
6.

2
35

6.
5

35
0.

4
8.

2
28

6.
3

30
.0

32
2.

7
15

2.
3

Vi
rg

in
ia

 p
in

e
2,

33
8.

5
33

0.
5

—
—

29
1.

0
10

8.
5

—
0.

2
54

7.
4

—
16

9.
2

24
5.

7
—

64
6.

2
W

at
er

 o
ak

1,
33

3.
1

21
9.

2
41

.3
73

.4
26

8.
6

—
14

2.
7

17
4.

3
68

.2
3.

2
16

8.
6

—
16

6.
4

7.
2

Ye
llo

w
-p

op
la

r
1,

12
7.

4
19

3.
1

—
3.

3
18

7.
6

23
.9

7.
2

14
1.

3
22

2.
0

—
79

.2
47

.1
—

22
2.

7
S

ou
th

er
n 

re
d 

oa
k

88
1.

8
11

1.
3

74
.8

9.
1

11
4.

1
1.

4
12

7.
0

14
0.

1
45

.1
3.

8
49

.2
23

.5
12

7.
6

54
.7

W
hi

te
 o

ak
86

7.
7

81
.9

20
1.

7
—

86
.3

10
.8

73
.5

10
6.

4
76

.5
19

.4
55

.5
26

.1
59

.9
69

.5
R

ed
 m

ap
le

74
2.

2
71

.5
30

.1
15

.5
11

0.
8

6.
1

30
.1

47
.7

20
2.

4
3.

0
69

.3
27

.0
21

.4
10

7.
3

P
on

d 
pi

ne
73

0.
5

—
—

86
.2

94
.2

—
—

—
43

2.
6

—
11

4.
9

—
—

2.
6

S
an

d 
pi

ne
72

6.
1

—
—

71
9.

1
7.

0
—

—
—

—
—

—
—

—
—

P
os

t o
ak

58
6.

1
51

.8
10

1.
3

1.
2

33
.8

0.
7

67
.7

79
.3

22
.2

65
.9

25
.2

8.
1

12
0.

1
8.

9
B

la
ck

gu
m

42
0.

7
51

.4
38

.2
13

.2
43

.0
0.

7
56

.6
87

.1
17

.5
3.

4
32

.2
5.

8
56

.7
15

.1
E

as
te

rn
 re

dc
ed

ar
30

7.
1

36
.0

36
.7

5.
0

31
.4

9.
7

3.
2

25
.6

30
.1

5.
8

48
.0

23
.2

16
.3

36
.1

La
ur

el
 o

ak
30

5.
9

55
.8

0.
4

87
.4

73
.5

—
4.

6
21

.6
9.

0
—

33
.7

—
19

.6
0.

5
W

in
ge

d 
el

m
26

3.
0

23
.5

32
.5

1.
0

38
.9

0.
6

19
.2

35
.6

9.
6

5.
2

30
.8

4.
9

57
.2

4.
0

B
la

ck
 c

he
rr

y
26

0.
9

37
.3

17
.3

14
.4

44
.3

3.
7

16
.0

42
.7

26
.7

0.
2

26
.5

8.
3

5.
5

18
.0

S
w

am
p 

tu
pe

lo
20

9.
6

12
.8

—
48

.8
82

.1
—

1.
2

12
.4

12
.2

—
38

.9
—

—
1.

0
W

ill
ow

 o
ak

20
4.

9
13

.2
20

.6
0.

5
16

.1
—

15
.2

30
.0

17
.4

0.
2

32
.7

0.
5

26
.3

32
.2

C
he

rr
yb

ar
k 

oa
k

20
2.

0
15

.4
21

.4
0.

2
2.

1
0.

1
33

.0
31

.5
12

.6
—

22
.3

0.
2

59
.6

3.
7

M
oc

ke
rn

ut
 h

ic
ko

ry
17

4.
8

23
.9

20
.1

1.
9

19
.5

1.
6

18
.8

19
.9

12
.6

5.
5

21
.5

8.
3

12
.8

8.
3

S
w

ee
tb

ay
17

3.
4

33
.6

6.
2

50
.2

10
.5

—
9.

6
52

.5
3.

2
—

0.
5

—
6.

5
0.

6
S

pr
uc

e 
pi

ne
15

9.
3

36
.6

—
34

.0
17

.4
—

28
.2

41
.7

—
—

1.
5

—
—

—
P

on
d 

cy
pr

es
s

13
1.

6
1.

0
—

68
.7

52
.8

—
2.

3
3.

9
0.

2
—

2.
8

—
—

—
Lo

bl
ol

ly
 b

ay
12

2.
1

—
—

37
.9

22
.3

—
—

—
56

.0
—

5.
9

—
—

—
S

ca
rle

t o
ak

11
8.

2
13

.8
—

—
23

.0
0.

1
—

2.
0

22
.1

—
9.

8
16

.3
—

31
.1

N
or

th
er

n 
re

d 
oa

k
11

3.
9

10
.6

41
.6

—
11

.0
0.

4
—

5.
7

16
.4

10
.8

5.
6

0.
5

—
11

.2
P

itc
h 

pi
ne

11
1.

5
—

—
—

8.
6

19
.6

—
—

36
.5

—
0.

1
3.

4
—

43
.3

Li
ve

 o
ak

11
1.

2
3.

9
—

61
.5

31
.9

—
1.

4
2.

4
0.

7
—

9.
3

—
0.

1
—

P
ig

nu
t h

ic
ko

ry
10

9.
5

26
.1

0.
2

0.
9

27
.9

3.
3

2.
0

13
.8

10
.5

0.
1

6.
6

10
.2

0.
3

7.
7

B
la

ck
 o

ak
10

6.
5

13
.7

18
.2

—
7.

0
—

4.
3

7.
0

11
.1

3.
2

6.
2

6.
3

1.
5

28
.0

S
ou

rw
oo

d
10

4.
8

18
.9

—
—

23
.3

1.
2

0.
8

16
.9

21
.7

—
5.

7
6.

0
—

10
.4

—
 =

 n
o 

va
lu

e 
fo

r t
he

 c
el

l.



New Directions in Inventory Techniques & Applications Forest Inventory & Analysis (FIA) Symposium 2015 379PNW-GTR-931

of the volume in the two FTGs (Table 2). Mostly 
nonpine species accounted for the remaining volume, 
especially sweetgum (Liquidambar styraciflua L.) 
and water oak (Quercus nigra L.). There were a 
total of 130 species (not including unknowns) tallied 
in these two FTGs across the South. Virginia pine 
(P. virginiana Mill.) accounted for a significant 
percentage of the volume in the two FTGs in 
southeastern States like Tennessee, Virginia, North 
Carolina, and Kentucky. In addition, using the total 
volume in the two FTGs as a surrogate for SYP 
overestimated the volume of the four target species 
in several States and underestimated it in other 
States (compare totals in Table 1 to totals in Table 3). 
Kentucky had the highest percentage overestimate. 
Volume of SYP in Kentucky was estimated at 320.2 
million cubic feet (Table 1) using the FTG method. 
However, the actual total volume of the four target 
species, regardless of FTG, was only 215.3 million 
cubic feet in that State (Table 3). This is primarily 
due to the amount of Virginia pine and yellow-poplar 
included in the FTGs. 

While the four target species accounted for 85 percent 
of the volume in these two FTGs, this was only 84 
percent of the total volume for these four species in 
the South (Table 3). So, while using the two FTGs 
as a surrogate for SYP resulted in the inclusion of 
unwanted species, it also resulted in the exclusion 
of 16 percent of the total volume for the species of 
interest. And in States like Kentucky, Tennessee, and 
east Oklahoma, a significant percentage of the volume 
of loblolly and shortleaf pine (no slash or longleaf 
pine were recorded in these States) was excluded 
(51, 30, and 25 percent, respectively) by using the 
FTG method. This is most likely due to these species 
occurring in mixed oak-pine stands.

While we recognize that for the Southern States as 
a whole the estimate of SYP volume using the FTG 
method was very close to the actual volume for the 
four species of interest regardless of FTG (115.5 
(estimated) – Table 1 versus 116.5 (actual) billion 
cubic feet – Table 3) this does not take into account 
the inaccuracies at the State level, especially for 
States like Kentucky. In addition, while total volume 

Table 3.—Actual volume of loblolly pine, shortleaf pine, slash pine, and longleaf pine by State and  
forest-type group, 2012

State All groups
Forest-type group

Longleaf-slash pine Loblolly-shortleaf pine All other groups

million cubic feet
Alabama 15,082.2 1,375.5 11,055.9 2,650.8
Arkansas 10,881.4 — 8,879.8 2,001.5
Florida 8,514.2 5,981.2 1,150.5 1,382.5
Georgia 18,761.8 4,650.6 11,417.2 2,694.0
Kentucky 215.3 — 105.7 109.6
Louisiana 9,767.9 1,132.4 7,410.7 1,224.8
Mississippi 13,968.6 1,206.6 10,826.7 1,935.2
North Carolina 9,704.8 493.8 7,562.7 1,648.3
Oklahoma (east) 1,719.9 — 1,282.4 437.5
South Carolina 11,319.3 635.7 9,094.9 1,588.6
Tennessee 1,400.7 — 976.7 424.0
Texas (east) 9,862.6 247.7 8,384.3 1,230.6
Virginia 5,265.9 — 4,315.2 950.8
All States 116,464.6 15,723.5 82,462.8 18,278.4

— = no value for the cell.
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may not be terribly overestimated or underestimated 
using this method in many States, other analyses 
may be significantly (and negatively) affected. For 
example, including a large amount of Virginia pine in 
an analysis of SYP may negatively impact growth and 
removal estimates or detailed diameter-class analyses.

One option for a slightly more accurate assessment 
of SYP using online tools would be to use detailed 
forest types rather than FTGs. This would (hopefully) 
eliminate some of the unwanted species (like Virginia 
pine). Further analyses into this issue will include 
an examination of the actual spatial extent of the 
four target species. This is accomplished through the 
creation of a specialized pseudoforest type by the user 
(in a programming language like Oracle) based upon 
the user’s specifications, as well as by an investigation 
of the effect of including unwanted species on the 
resulting detailed analysis of SYP in the South.

The most accurate assessment would be for the user 
to select the species to include in what they perceive 
as the SYP group. However, current capacity of the 
online tools often eliminates that prospect because an 
estimate of forest area is usually needed along with 
volume. This often forces the user to rely on the SYP 
volume in the loblolly-shortleaf and longleaf-slash 
pine FTGs. Users need to be aware of the intricacies 
that exist and the inaccuracies introduced when forest 
type (or FTG) is used as a surrogate for species. The 
FIA Program needs to clearly document the definitions 
of the tool algorithms and encourage increased 
flexibility in online capabilities so users can accurately 
retrieve the information they need.
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MODELING ASPEN COVER TYPE  
DIAMETER DISTRIBUTIONS IN MINNESOTA

Curtis L. VanderSchaaf1

Abstract—An attempt was made to model diameter distributions of aspen (Populus spp) 
stands. The aspen (1,020,150 acres) cover type has the greatest acreage on DNR lands and 
it contains a variety of hardwood and softwood species. Aspen is a valuable pulpwood 
species, annually comprising around 50 percent of total timber harvest on DNR lands.

Modeling distributions of this cover type has been minimal; stands often contain a variety 
of tree sizes and species, making modeling difficult, particularly given a disproportionate 
amount of smaller trees. For this analysis, a three-parameter Weibull-based modeling 
approach was used, where the parameters are predicted using the 0, 25th, 50th, and 95th 
estimated percentiles of the distribution. The percentiles are predicted as functions of 
quadratic mean diameter and stand/plot age. Currently, species compositions were ignored.

Data used in model fitting were obtained from the Forest Inventory and Analysis (FIA) 
database and from all regions of the state.

Prediction errors are rather large for smaller diameter classes and onset of merchantability 
(e.g. 4 to 6 inches). When looking at the average error across all diameter classes at a 
particular site, each diameter class within a site had an average error of 20 trees per acre 
(smaller diameters generally had larger absolute tree per acre errors).

For common merchantable rotations (e.g. 40 to 50 years), total errors (total across all 
diameter classes) are less relative to younger and older ages. However, for diameter 
classes of most interest (6 to 12 inches), prediction errors are generally larger for these 
rotation ages relative to younger stands.

INTRODUCTION
As part of a project determining optimal economic 
rotation ages of aspen (Populus spp) cover types on 
Minnesota DNR lands for harvest scheduling analyses, 
it was attempted to model diameter distributions of these 
stands. By far the aspen (1,020,150 acres) cover type 
has the greatest acreage on DNR lands. Although some 
stands are dominated by aspen, a variety of species 
can be found including ash (Fraxinus spp), balsam 
poplar (Populus balsamifera L), birch (Betula spp), 
elm (Ulmus spp), maple (Acer spp), oak (Quercus spp), 

balsam fir (Abies balsamea (L.) Mill.), pine (Pinus spp), 
and spruce (Picea spp). Aspen is a valuable pulpwood 
species, recently averaging around $30 per cord, and in 
2012 it comprised 63 percent of the pulpwood harvest 
and 50 percent of the total timber harvest.   

Knowing the likely diameter distribution within a stand 
can provide more precise economic assessments since 
stumpage values are often related to diameter class. For 
example, the pulpwood and bolt class which usually 
occurs for d.b.h.s ranging from 8 to 11 inches, generally 
results in higher stumpage relative to merchandizing 
trees as pulpwood only (e.g. 8 inches and less), 
stumpage values can increase by nearly 60 percent. 
Currently, species compositions were ignored, but if 

1 Forest Modeler, Minnesota Department of Natural Resources, 
Division of Forestry, Resource Assessment Unit, Grand Rapids, 
MN 55744.  To contact, call 218-322-2518 or email at curtis.
vanderschaaf@state.mn.us.
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future analyses are conducted they should concentrate 
on developing separate distributions by species.  

Modeling distributions of this cover type has been 
minimal; stands often contain a variety of tree sizes and 
species, making modeling difficult, particularly given 
a disproportionate amount of smaller trees. Previous 
modeling has concentrated on estimating either total 
stand yields or has used an individual tree approach. For 
this analysis, a three-parameter Weibull-based modeling 
approach was used, where the parameters are predicted 
using the 0, 25th, 50th, and 95th estimated percentiles of 
the diameter distribution. The percentiles are predicted as 
functions of quadratic mean diameter and stand/plot age.

METHODS
Data used in model fitting were obtained from the Forest 
Inventory and Analysis (FIA) database. Survey data were 
obtained from all regions of the state, only plots measured 
from 2003 to 2007 (EVAL_GRP = 272007), and 2008 to 
2012 (EVAL_GRP = 272012) were used (FORTYPCD 
= 901), and all four subplots within a plot had to have 
the same condition class. Since only a point in time 

distribution estimate is desired, temporal correlation 
when using data from the same plot was ignored.

Plots are clusters of four points arranged such that point 
1 is central, with points 2 through 4 located 120 feet 
from point 1 at azimuths of 0, 120, and 240 degrees. 
Each cluster point is surrounded by a 24.0 foot fixed-
radius subplot where trees 5.0 inches d.b.h. and larger are 
measured. Combined, the four subplots total approximately 
1/6th acre. Each subplot contains a 6.8 foot fixed-radius 
microplot where saplings 1.0 to 4.9 inches are measured. 
The four microplots total approximately 1/75th acre. Blow-
up factors associated with these different plot sizes could 
impact modeling ability. Condition classes are assigned 
to differentiate conditions occurring on a plot, a subplot 
can have more than one condition class.  A condition class 
differentiates stand conditions given variables that FIA 
monitors, such as cover type, ownership, and stand density.

A percentile-based, parameter recovery, three-parameter 
Weibull distribution procedure was used to model diameter 
distributions (Brooks and others 1992). Due to correlation 
among residuals of the equations, parameters were 
estimated using seemingly unrelated regression (SUR). 
The following system of equations was estimated:

Min (D0) = a + b * Dq + c * Age 						      [1] 
D25 = d + e * Dq								        [2] 
D50 = g + h * Dq + i * Age  							       [3] 
D95 = j + k * Dq + l * Age  							       [4]

Where:

Min (D0) – minimum d.b.h. (inches) within a plot,  
Di – predicted value for the d.b.h. (inches) at which the ith percentile occurs,   
Dq – quadratic mean diameter (inches), and 
Age – stand age. 
The percentiles were then used to estimate parameters of the Weibull distribution:

a (Location) = (n1/3D0 - D50)/(n1/3 - 1) 					     [5] 
c (Shape) =2.343088/(ln(D95-a)-ln(D25-a))				    [6] 
b (Scale) = -(aΓ_1)/Γ_2 +√((a/Γ_2 )2 (Γ_12-Γ_2 )+Dq2/Γ_2 )			   [7]

Where:

Γ_1 = Γ[1+(1/c)], 
Γ_2 = Γ[1+(2/c)] , and 
Γ = gamma function.
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For the observations used to fit equations [1] to [4], 
the average age of plots was 39 ranging from 0 to 
116 years, trees per acre ranged from 6 to 4,585 and 
averaged 1,039, basal area per acre averaged 76 
ranging from 0.4 to 234 square feet, quadratic mean 
diameter ranged from 1.0 to 13.1 inches and averaged 
4.4 inches, and site index (base age 50) averaged 63 
feet and ranged from 2 to 112 feet.  

RESULTS AND DISCUSSION
Parameter estimates for equations [1] to [4] are 
presented in Table 1. Perhaps future analyses can 
attempt to separate species.  

Table 2 presents verification results by diameter class. 
For all FIA plots used in model fitting, number of trees 
were predicted by diameter class using the Weibull 
distribution, the difference from the FIA observed 
was calculated, squared (to eliminate negative and 
positive errors), square rooted to produce the original 
units (trees per acre), and then averaged. Analyzing 
prediction errors by diameter class will help to identify 
if errors are greater at certain ranges of diameter 
classes – for example, perhaps the Weibull distribution 
is not flexible enough to model Aspen distributions 
across the entire range of stand conditions.  

Prediction errors are rather large for smaller diameter 
classes and near the beginning of merchantability (e.g. 
4 to 6 inches). Figure 1 shows in some cases there 
is an inability to model smaller diameter classes of 
merchantable rotation age Aspen stands – all plots 
have a site index of 65 feet. For distributions depicted 
in the figure plot ages ranged from 37 to 47 years. 

When looking at the average error across all diameter 
classes at an individual site, each diameter class within 
a site had an average error of 20 trees per acre (smaller 
diameters generally had larger absolute tree per acre 
errors). Average error across all diameter classes 
within a site was 585 (ranging from 13 to 3,379 trees 
per acre) – hence on average 585 trees were placed 
into the wrong diameter class at each site.

Table 1.—Parameter estimates for equations [1] to 
[4]. Sample size was 1,876 plots.

Aspen Intercept Dq Age
D0 0.328 0.472 -0.021
D25 -0.190 0.910 -
D50 0.238 0.911 0.029
D95 3.604 0.874 0.080

Table 2.—Verification results for equations [1] to 
[4] by diameter class. Number of plots was 1,864. 
The number of plots is less relative to model fitting 
because some plots had too few trees to estimate 
Weibull parameters.

Diameter class (inches) Error in Trees Per Acre
1 143.3

2 127.4

3 93.0

4 76.4

5 51.9

6 29.6

7 19.2

8 12.3

9 8.5

10 6.3

11 5.0

12 3.8

13 3.1

14 2.4

15 1.8

16 1.2

17 0.7

18 0.5

19 0.4

20 0.2

21 0.1

22 0.1

23 0.0

24 0.1

25 0.0

26 0.0

27 0.0

28 0.0

29 0.0

30 0.0



New Directions in Inventory Techniques & Applications Forest Inventory & Analysis (FIA) Symposium 2015 384PNW-GTR-931

Figure 1—Observed Aspen forest type (FORTYPCD = 901) diameter distributions (from FIA – blue line) and those predicted using 
equations [1] to [4] for the Weibull distribution (red line), all plots have a site index (base age 50) of 65 feet, and range in age from 37 
to 47 years.
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Based on Table 2, it would be expected that younger 
stands, because of a larger number of smaller trees, 
would have larger prediction errors. To see if prediction 
errors varied by age, stands were separated into 10 
year age-classes, and greater than 50 years old (Table 
3). For common merchantable rotation ages (e.g. 40 
to 50 years), total errors are less relative to younger 
and older ages. However, for diameter classes of most 

interest (6 to 12 inches), prediction errors are generally 
larger for these rotation ages relative to younger stands 
– absolute errors are based on number of trees per acre 
within a diameter class, since these ages have more 
trees in this range relative to younger ages, absolute 
errors are greater – hence absolute errors are likely a 
function of trees per acre (which is likely correlated 
with age, yes); but not directly related to age.

Table 3—Verification results for equations [1] to [4] by age-class and diameter class.  Where n is number of 
plots within an age group.

Diameter class 
(inches)

Age Group

< 10.1
> 10 and  

< 20.1
> 20 and  

< 30.1
> 30 and  

< 40.1
> 40 and  

< 50.1 > 50.1
1 200.4 222.4 148.1 96.3 98.7 117.7

2 153.9 219.2 128.5 88.7 86.8 102.7

3 92.0 139.8 130.0 86.8 65.1 68.0

4 41.5 83.5 99.8 86.8 72.3 73.0

5 18.5 38.4 56.5 62.1 56.1 62.7

6 8.4 11.4 23.5 27.4 36.0 46.4

7 5.3 5.5 12.7 16.6 22.4 32.9

8 3.8 4.2 7.4 12.6 14.2 20.4

9 2.4 3.0 4.5 7.6 11.3 14.0

10 1.9 2.0 2.7 5.2 9.2 10.6

11 1.3 1.5 2.4 3.6 6.9 8.7

12 0.6 0.9 1.2 2.5 5.0 7.2

13 0.8 0.5 0.9 1.4 4.3 6.2

14 0.3 0.3 0.7 1.3 2.6 5.1

15 0.4 0.2 0.5 0.8 1.9 3.9

16 0.2 0.2 0.2 0.4 1.1 2.8

17 0.2 0.1 0.1 0.3 0.8 1.4

18 0.1 0.1 0.0 0.1 0.4 1.2

19 0.1 0.1 0.1 0.1 0.3 0.8

20 0.0 0.0 0.0 0.1 0.2 0.4

21 0.0 0.0 0.0 0.0 0.1 0.2

22 0.0 0.0 0.0 0.1 0.1 0.2

23 0.0 0.0 0.0 0.0 0.0 0.1

24 0.0 0.0 0.0 0.0 0.0 0.1

25 0.0 0.0 0.0 0.0 0.0 0.1

26 0.0 0.0 0.0 0.0 0.0 0.0

27 0.0 0.0 0.0 0.0 0.0 0.0

28 0.0 0.0 0.0 0.0 0.0 0.0

29 0.0 0.0 0.0 0.0 0.0 0.0

30 0.0 0.0 0.0 0.0 0.0 0.0

N 215 304 258 226 225 636
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ALTERNATIVES TO ESTIMATE STATEWIDE CHANGES  
IN ASPEN COVER TYPE VOLUMES

Curtis L. VanderSchaaf1

Abstract—For Minnesota, the only data available to conduct regional or state-wide 
level assessments across all ownerships is the Forest Inventory and Analysis Program 
(FIA). Some of the many alternatives available to estimate regional changes in standing 
volume are referred to here as 1.) FIA alternative, 2.) a commonly applied growth and 
yield system referred to as Walters and Ek, 3.) a calibrated Walters and Ek alternative, 
4.) a different calibrated Walters and Ek alternative, and 5.) Forest Vegetation Simulator 
(FVS) estimates. The purpose of this study is to quantify the ability of these alternatives 
to estimate standing merchantable volume five years into the future of unmanaged aspen 
cover/forest types, particularly to see whether FVS provides reliable estimates. Aspen 
forests are by far the dominant cover type in the state.      

FIA data from 1999 and 2004 were used to calibrate models, and in some cases to project 
data.  Projections were compared to 2009 plot data, considered to be the true values.

If large-scale, strategic, short term projections are needed, the FIA alternative (1) or the 
Walters and Ek Alternative Two (4) will be superior. However, for long-term planning, 
the FVS (5) or either the uncalibrated Walters and Ek alternative (2) or, if calibration can 
be easily calculated, Alternative One (3) will likely be best.  

INTRODUCTION
Regional growth rate estimates are important for 
many natural resource analyses including silvicultural 
assessment, harvest scheduling, and resource planning. 
For Minnesota, the only statewide data available to 
conduct regional or statewide level assessments across 
all ownerships is the Forest Inventory and Analysis 
Program (FIA). 

Of the 15.9 million acres of timberland within 
Minnesota, 4.8 million (or 30%) is classified as aspen 
forest type. Total cubic foot volume on aspen forest 
types of trees greater in diameter than 5 inches is 
estimated to be 4.3 billion (around 55 million cords), 
or 25% of the 17.2 billion cubic feet of volume 
on Minnesota timberland. Aspen volume occurs 

throughout the state, most heavily concentrated in 
northcentral and northeastern Minnesota.  

Several alternatives exist to estimate regional changes 
in standing volume, some based more on the subject 
data than others. The purpose of this study is to 
quantify the ability of different alternatives to estimate 
standing merchantable volume five years into the 
future of unmanaged aspen cover/forest types. 

METHODS
Data used in model development were obtained 
statewide from USDA FIA annual surveys completed 
between 1999 and 2009. Due to time, only the plots 
remeasured during 2009 were analyzed in this study 
(hence, an initial measurement, a second measurement, 
and then a third measurement in 2009).    

For comparison purposes, the dependent variable is the 
volume of trees of d.b.h. 5.0 inches and greater from 
a 1-foot stump to a 4-inch top d.o.b. (essentially trees 
merchantable for pulpwood, sawtimber, veneer, etc.). 

1 Forest Modeler, Minnesota Department of Natural Resources, 
Division of Forestry, Resource Assessment Unit, Grand Rapids, 
MN 55744.  To contact, call 218-322-2518 or email at curtis.
vanderschaaf@state.mn.us.
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Within FIADB, the variables VOLCFNET and TPA_
UNADJ are used to estimate individual tree volume on 
a plot.

Estimate of Volume  
Five Years Into the Future
For this study, the true or known volume for a 
particular plot (i) is assumed to be the observed 
standing volume in 2009 obtained from FIADB, 
further referred to as [VT09i]. In a way, each 
individual FIA plot can be assumed to provide a 
statewide estimate of change in aspen volume.

Estimation Alternatives
A few of the more practical alternatives to estimate 
changes in the aspen forest type resource  are 
compared in this paper.  

FIA Alternative
An estimate of the standing volume for the plots 
measured in 2009 can be obtained by adding the 
change in standing volume for a FIA plot from 1999 to 
2004 to the 2004 FIA plot volume.  

[VFIA09i] = [VT04i] + ([VT04i] – [VT99i])	 [1]

Where:

[VFIA09i] -- is the estimate of volume for plot i in 
2009 using this alternative,

[VT04i] -- is the observed volume obtained from 
FIADB for a particular plot in 2004, and

[VT99i] -- is the observed volume from FIADB for a 
particular plot in 1999.

Walters and Ek (1993)
Walters and Ek (1993) presented plot level equations 
to predict cover type yield (merchantable volume) 
using FIA data from the 1977-1978 Minnesota survey 
(plots actually measured from 1974 to 1980). For this 
alternative, site index is an external variable obtained 
from the 2004 FIA plot measurement – site index is 
assumed to be the same in 2009 as the value from 2004.  

The estimate of standing volume for this alternative is 
further referred to as [VW09i].

Walters and Ek (1993) Alternative One
A second approach using the Walters and Ek 
models was examined (Alan Ek, 2012, personal 
communication 02/05/2012). A calibration approach 
included taking the ratio between the observed 2004 
FIA volume for a plot and an estimate using Walters 
and Ek for 2004, and then multiplying this ratio times 
the Walters and Ek estimate for 2009.   

Estimates of merchantable volume in 2004 (V2004m) 
and 2009 (V2009m) were obtained using the model 
system presented in Walters and Ek (1993).

This alternative is obtained using the following ratio:

[VWOne09i] = [V2009m] ([VT04i] / [V2004m])     [2]

Walters and Ek (1993) Alternative Two
A third approach using Walters and Ek (1993) involves 
estimating volumes for both 2004 and 2009 using their 
models, calculating the difference, and then adding 
this difference to the 2004 observed FIA data (Alan 
Ek, 2012, personal communication 02/05/2012):

[VWTwo09i] = [VT04i] + ([V2009m] – [V2004m]) [3]

Forest Vegetation Simulator (FVS)
The Forest Vegetation Simulator (FVS) is an 
individual tree based, distance independent growth 
and yield model fit in large part to individual tree 
growth data. The FVS variant used in this analysis 
is referred to as the Lake States variant (Dixon and 
Keyser 2013). Within FVS, to be as consistent as 
possible with the definition of volume used by FIA, 
the minimum merchantable d.b.h. was set to 5 inches, 
and the stump height was maintained at 1 foot. The 
form class was maintained at the default value of 80 
and the National Volume Estimator library equations 
were used.

The estimate of standing volume for this alternative is 
further referred to as [VF09i].

Statistical Measures of Estimation
Since estimates are obtained on a plot by plot basis, 
estimates of variance and bias can be obtained and used 
to obtain an estimate of Mean Square Error (MSE):
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[VErrorki]  = [VT09i] – [Vk09i]	 [4]

Where:

[VErrorki]--is the difference between the true standing 
volume in 2009 of plot i obtained from FIADB 
[VT09i] and its estimated value for 2009 using one of 
the five alternatives (k), and 

[Vk09i]  -- is the estimate of standing volume in 2009 
using one of the five alternatives for a particular plot.

Using values from equation [4], estimates of bias (average 
error), variance, and MSE for the five alternatives (k) 
were obtained using the following formulas:

	 [5]

	 [6]

[MSEk] = [Biask2] + [Variancek]	 [7]

Where:

n -- number of plots (n = 56).

Plot Removal
Due to a variety of reasons, plots were excluded from the 
analysis. Plots/subplots that had any type of disturbance 
from 1999 to 2004 or from 2004 to 2009 were removed 
(e.g. harvesting [REMVCFAL > 0 for any tree in the 
plot], beaver/deer/disease/insect/wind damage, etc. – 
DSTRBCD and TRTCD). Plots were also removed if 
in 2004 or 2009 their cover/forest types changed from 
aspen. Some plots were actually measured during 2003 
(even though the nominal year was 2004), for simplicity, 
these plots were removed from the analysis because 
FVS first estimated volume for 2003 to 2004, and then 
estimated volume from 2004 to 2009 – hence an extra 
year of estimation was included for the FVS alternative. 
Additionally, within FVS, for a particular FIA plot, those 
condition classes not classified as an aspen forest type 
were grouped with the condition classes defined to be an 
aspen forest type – thus, these plots were removed as well.

After plot removal, a total of 56 plots were included in 
the analysis (Table 1).

RESULTS AND DISCUSSION
Excluding the calibration approaches, the FIA 
alternative had the best statistical properties (Table 2 
and Figure 1). The Walters and Ek (1993) alternative 
produced the largest Mean Square Error, but less bias 
than the FVS Alternative. Of the three basic approaches, 
it is not surprising that the FIA alternative produced the 
best results. The 2009 estimate is highly correlated with 
the 1999 and 2004 estimates, thus highly correlated 
with the growth rate used from 2004 to 2009.

Although independent data was used to fit the FVS 
models (e.g. mortality, height, volume, etc.), actual 
plot data from 2004 was used to, in a sense, calibrate 
the FVS model for that individual plot. Obviously, the 
2009 FVS estimate is correlated with the 2004 FIA 
estimate because tree data from 2004 is used to project 
forward to 2009, despite the use of independent tree 
growth equations within FVS.

Table 1.--Summary statistics of the 56 aspen forest 
type plots included in the analysis across the three 
inventory years (1999, 2004, and 2009). Mean is 
defined as net volume of wood in the central stem of 
trees 5.0 inches in diameter or larger, from a 1-foot 
stump to a minimum 4-inch top d.o.b. (VOLCFNET 
within FIADB).

Species Group

Number  
of FIA  
plots

Mean              
(cubic feet/

acre) Std Dev
Aspen  
(bigtooth and quaking)

56
767 738

Other hardwoods 220 264
Conifers 186 316

Table 2—Bias, Variance, and Mean Square Error 
(MSE) estimates for the five alternatives.

Alternative
Number of 
FIA plots Bias Variance MSE

FIA

56

15 121,850 122,071
FVS -185 142,951 177,302
Walters and Ek 
(1993) -151 459,298 482,122
Walters and Ek 
Cali One 6 128,528 128,561
Walters and Ek 
Cali Two -7 73,316 73,366
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The Walters and Ek (1993) alternative produced 
the most variable results. This is most likely due to 
low correlations between the equations presented in 
Walters and Ek and the 2004 and 2009 FIA data. The 
calibration of the Walters and Ek model approaches 
produced substantial improvements.  

LITERATURE CITED
Dixon, G.E.; Keyser, C.E., comps. 2008 (revised April 

10, 2013). Lake States (LS) Variant Overview – 
Forest Vegetation Simulator. Internal Rep. Fort 
Collins, CO: U.S. Department of Agriculture, 
Forest Service, Forest Management Service 
Center. 44 p.

Walters, D.K.; Ek, A.R. 1993. Whole stand yield and 
density equations for fourteen forest types in 
Minnesota. Northern Journal Applied Forestry 10: 
75-85.

Figure 1—Predicted versus observed total volume (cubic meters per ha - VOLCFNET) in 2009 for the five alternatives. The black line is 
observed versus observed volume. n = 56 plots.



New Directions in Inventory Techniques & Applications Forest Inventory & Analysis (FIA) Symposium 2015 391PNW-GTR-931

COMPETITION ALTERS TREE GROWTH RESPONSES TO CLIMATE  
AT INDIVIDUAL AND STAND SCALES

Kevin R. Ford1, Ian K. Breckheimer2, Jerry F. Franklin3, James A. Freund3, Steve J. Kroiss2,  
Andrew J. Larson4, Elinore J. Theobald2, Janneke HilleRisLambers2

Abstract—Understanding how climate affects tree growth is essential for assessing 
climate change impacts on forests, but is complicated by the effects of competition, 
which strongly influences growth and could alter how forests respond to climate change. 
We characterized the joint effects of climate and competition on diameter growth in 
the mountain forests of Mount Rainier National Park, Washington State, USA using 
long-term (32-year) forest monitoring data from permanent sample plots in mature and 
old-growth stands. To analyze the data, we adapted the diameter growth function from 
ORGANON (a proven forest simulation model), to explicitly include climate, and fit the 
model using hierarchical Bayesian methods to facilitate error propagation for projections 
of climate change impacts on individual- and stand-level growth. Individual growth was 
sensitive to climate under low but not high competition, likely because tree ability to 
increase growth under more favorable climate (in this case, greater energy availability) is 
constrained by competition. We found this pattern for all focal species (Abies amabilis, 
Tsuga heterophylla, Pseudotsuga menziesii and Thuja plicata), but with some important 
variations. Therefore, warming will likely increase individual growth most in low-
density stands where there is little competition. However, higher denisty stands have 
more and/or larger trees, conferring greater capacity for stand-level growth increases. 
Our results imply that stand-level growth responses to climate change will be greater 
at medium density than low density, due to greater capacity for increases, but similar 
at high and medium densities, due to greater competition counteracting greater growth 
increase capacity. Thus, competition will likely mediate the impacts of climate change 
on tree growth in important but complex ways at the individual and stand scales. This 
work highlights the value of combining long-term forest monitoring data with advanced 
statistical modeling to assess the impacts of climate change on forests.

1 Research Ecologist, USDA Forest Service Pacific Northwest 
Research Station, Olympia Forestry Sciences Laboratory, 3625 
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