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Abstract 
 

Montréal Process Criterion 1, Conservation of Biological Diversity, expresses 
species diversity in terms of number of forest dependent species.  Species 
richness, defined as the total number of species present, is a common metric 
for analyzing species diversity.  Several model-based and non-parametric 
techniques have been developed to estimate tree species richness from 
sample data.  Four sample-based approaches to estimating tree species 
richness were compared using data obtained from forest inventory plots in 
Minnesota, USA.  The results indicate that approaches based on a 3-
parameter exponential model and the non-parametric jackknife were 
superior to approaches based on the Michaelis-Menten model and the non-
parametric bootstrap.  Estimates of tree species richness were greater for 
forested areas with low housing density than for areas that were uninhabited. 
 

_____________________________________________________________________ 
 
Introduction 
 
Of the international forest sustainability initiatives, the Montréal Process (1998) is 
geographically the largest, involving 12 countries on five continents and accounting for 
90 percent of the world’s temperate and boreal forests.  The Montréal Process 
prescribes a scientifically rigorous set of criteria and indicators that have been 
accepted for estimating the status and trends of the condition of forested ecosystems.  
A criterion is a category of conditions or processes and is characterized by a set of 
measurable quantitative or qualitative variables called indicators which, when 
observed over time, demonstrate trends.  The Montréal Process includes seven 
criteria (McRoberts et al. 2004) of which Criterion 1, Conservation of Biological 
Diversity, focuses on the maintenance of ecosystem, species, and genetic diversity.  
Of the indicators associated with Criterion 1, one of the most intuitive is Indicator 6, 
Number of Forest Dependent Species.  When the emphasis is on the number of tree 
species, this indicator is characterized as tree species richness.  A primary research 
interest is to determine the factors that affect tree species richness; e.g., do increases 
in housing density or forest fragmentation affect tree species richness?   
 
Because species richness relates only to the presence or absence of species, 
regardless of distribution or abundance, estimation of species richness is difficult apart 
from a complete census.  However, complete tree censuses are not practical for the 
naturally regenerated, mixed species, uneven aged forests that occur in much of the 
world.  As a result, estimation of tree species richness must depend on sample data.  



However, although tree species richness is an intuitive measure, it is difficult to 
estimate using sample data because there is no assurance that all species have been 
observed in the sample, particularly rare or highly clustered species.  
 
The objectives of the study were twofold:  (1) to compare two model-based and two 
non-parametric approaches for estimating tree species richness from forest inventory 
plot data, and (2) to compare estimates of tree species richness for uninhabited forest 
land and forest land with low levels of housing density. 
 
Data 
 
Forest inventory data is widely recognized as an excellent source of information for 
estimating the status and trends of forests in the context of the Montréal Process or 
the Ministerial Conference for the Protection of the Forests of Europe (McRoberts et al. 
2004).  The national forest inventory of the United States of America (USA) is 
conducted by the Forest Inventory and Analysis (FIA) program of the Forest Service, 
U.S. Department of Agriculture.  The program collects and analyzes inventory data 
and reports on the status and trends of the nation’s forests.  The national FIA plot 
consists of four 7.32-m (24-ft) radius circular subplots which are configured as a 
central subplot and three peripheral subplots with centers located at 36.58 m (120 ft) 
and azimuths of 0o, 120o, and 240o from the center of the central subplot.  All trees on 
these plots with diameters at breast height of at least 12.5 cm (5.0 in) were measured 
and the species identifications were recorded.  
 
The national FIA sampling design is based on an array of 2,400-ha (6,000-ac) 
hexagons that tessellate the nation.  This array features at least one permanent plot 
randomly located in each hexagon and is considered to produce an equal probability 
sample.  The sample was systematically divided into five interpenetrating, non-
overlapping panels.  Panels are selected for measurement on approximate 5-, 7-, or 
10-year rotating bases, depending on the region of the country, and measurement of 
all accessible plots in one panel is completed before measurement of plots in a 
subsequent panel is initiated.   
 
The study area was in Minnesota, USA, and consisted of the geographic intersection 
of Bailey’s ecoprovince 212 (Bailey 1995) and Mapping Zone 41 of the Multiresolution 
Land Characterization Consortium (Loveland and Shaw 1996) (Figure 1).  Forests in 
the study area are generally naturally regenerated, mixed species, and uneven aged.  
 
Using the Wildland-Urban Interface (WUI) map constructed by Radeloff et al. (2005), 
the study area was partitioned into four categories corresponding to combinations of 
levels of vegetative cover and housing density.  The WUI map was constructed using 
information from two sources: vegetative cover information was obtained from the 
National Land Cover Dataset (Vogelmann et al. 2001), a 21-class land cover 
classification based on nominal 1991 Landsat Thematic Mapper satellite imagery and 
other ancillary data, and housing density information was obtained from the 2000 U.S. 
Census.  The focus of this study was on comparing estimates of tree species richness 
for two WUI categories: (1) the WUI Vegetated category (VEG), defined as areas with 
vegetative cover but with little or no housing; and (2) the WUI Intermix category (INT), 



defined as areas with 50 percent or greater vegetative cover and 0.067 or fewer 
houses per ha (2.47 ac).  For all four WUI categories, data for 3,296 forested FIA plots 
were available.  The VEG category consisted of approximately 47,250 km2 (29,500 
mi2) and included 801 forested FIA plots on which 39 species were observed, and the 
INT category consisted of approximately 36,000 km2 (22,500 mi2) and included 2,373 
forested FIA plots on which 53 species were observed.  The differences between plot 
and area proportions for these two categories is due to non-forested plots which were 
not used for this study. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  Minnesota, USA, study area. 
 
 
Methods 
 
Estimation of tree species richness is difficult apart from a complete census, because 
rare or highly clustered species may easily be missed using sample-based 
approaches.  Several model-based and non-parametric approaches have been 
proposed for estimating tree species richness from sample data.  All these approaches 
extrapolate information from the distribution of the species observed in the sample, So, 
to estimate the total number of species, St .  The model-based approaches are based 
on species accumulation curves (Soberón and Llorente 1993) and feature nonlinear 
statistical models with horizontal asymptotes whose estimates are considered 
estimates of St.  Two nonlinear models were considered, the Michaelis-Menten model 
and a 3-parameter exponential model.  Two non-parametric approaches were also 
considered, the bootstrap and the jackknife. 
 
Michaelis-Menten model 
 
Because relationships between So and n, the number of plots measured, vary 
depending on the order in which plots are measured, estimates of parameters of 
model relationships will also vary by the same plot ordering.  To avoid this artificial 
feature, the plots were randomly re-ordered 1,000 times, and the mean of So over the 



1,000 replications for each n was used as the dependent variable when fitting the 
models. 
 
The Michaelis-Menton model (Raaijmakers 1987) has been used previously for 
estimating species richness (e.g., Clench 1979) and is mathematically formulated as, 
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where E(.) is statistical expectation, So is the number of species observed, n is the 
number of plots, and the βs are parameters to be estimated.  The estimate of the 
asymptote, β1, provides an estimate of St.  The covariance matrix of the model 
parameter estimates is estimated as, 
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Exponential model 
 
An exponential model of the mathematical form, 
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was fit in the same manner as was the Michaelis-Menten model.  With this model, β1 
corresponds to the asymptote, and its estimate provides an estimate of St.   
 
Bootstrap 
 
Following the derivations of Smith and van Belle (1984), the bootstrap procedure 
(Efron 1979) may be described using five steps: 
 

1. Construct the empirical cumulative probability function with density n-1 at 
each of the n plot observations. 

 
2. Draw a sample of size n with replacement from the empirical cumulative 

probability function. 
 

3. Define 
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where Yj is the number of plots in the bootstrap sample from Step 2 for 
which the jth species is present.  The bias in  is, $So
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4. Repeat Steps 2-3 N times. 
 
5. Calculate the bootstrap estimate of St as 
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The variance of is given by Smith and van Belle (1984) as, $St
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where, for the original sample, Yj is the number of plots for which the jth species is 
observed and  Zjk is the number of plots for which the jth and kth species are jointly 
absent. 
  
Jackknife 
 
The Jackknife estimate of St may be obtained in five steps (Smith and van Belle 1984): 
 

1. Remove the observations corresponding to the ith plot, and let ri be the 
number of species that were observed only on the ith plot. 

 
2. Using only observations from the remaining plots, calculate the ith jackknife 

estimate of So as, 
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4. Repeat Steps 1-3 for each of the n plots. 
 
5. Calculate the jackknife estimate of St as, 
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The above jackknife estimates are characterized as first-order, because the 
observations from only a single plot are removed.  Second-order jackknife estimates 
based on removing two plots simultaneously may also be calculated, but for this 
application preliminary analyses indicated they were not substantially better than first-
order estimates. 
 
Analyses 
 
Evaluation of the nonlinear models was based on the quality of fit of the model to the 
data and the standard errors of the estimates of the asymptotes.  The non-parametric 
bootstrap and jackknife approaches were evaluated to ensure that the sample size 
was adequate to produce defensible estimates of St.  The issue is whether the 
estimate of St continues to increase as observations for more plots are added to the 
sample.  If so, the sample size is inadequate.   To evaluate the adequacy of the 
sample size, subsets of the total sample of various sizes were randomly drawn 250 
times, and the mean of the estimates, , was calculated for each subset.  If the 
sample size is adequate, the graph of the mean versus the subset sample size should 
reach and approximately maintain a plateau as the subset sample size increases.  
Adequacy of the sample size was evaluated for both non-parametric approaches using 
data for VEG and INT combined and data for each separately. 

$St

 
After evaluating the four approaches, the best one with respect to a basis in 
probability, adequacy of the sample size, and precision of the estimates was selected.  
Estimates of St were calculated for VEG and INT separately.  The difference in the 



estimates was considered to be statistically significant if the 2-standard error 
confidence intervals did not overlap. 
 
Results 
 
The estimates of St for VEG and INT combined obtained using the exponential model 
and jackknife techniques were similar (Table 1).  However, the estimate obtained using 
the bootstrap technique was only slightly greater than the number of species observed, 
and the estimate obtained using the Michaelis-Menten model was less than the 
number of species observed.  The latter result is due to an extremely poor fit of the 
model to the data (Figure 2).  For the two non-parametric approaches, the sample size 
was adequate for the jackknife approach but not for the bootstrap approach (Figure 3).  
Because of the poor fit of the Michaelis-Menten model and the inadequacy of the 
sample size for the bootstrap approach, these two approaches were not considered 
further.  The much smaller standard errors, ( )SE St

$ , for the model-based approaches 
was attributed to using the average of So over a large number of randomizations of the 
plot orderings as the dependent variable.  This averaging process masks the greater 
residual variability that would be observed if only a single ordering were used. 
 
 

Table 1.  Estimates of total tree species, . $St

All categories1 Intermix2 

(INT) 
Vegetated3 

(VEG) 
Approach 
 

$St  ( )SE St
$ $St  ( )SE St

$ $St  ( )SE St
$  

Michaelis-Menten model 54.25 0.07 52.48 0.08 38.92 0.07 
Exponential model 65.56 0.11 64.85 0.15 41.62 0.10 
Bootstrap 57.30 1.30 55.48 1.36 40.68 1.10 
Jackknife 63.00 1.68 61.00 1.68 45.00 1.56 
1  55 species observed 
2  53 species observed 
3  39 species observed 

 
Although was greater for the jackknife approach than for the exponential model 
approach, the jackknife approach was selected for comparing estimates for VEG and 
INT because it has a basis in probability while the exponential model is an entirely 
arbitrary formulation.  

( )SE St
$

 
Sample sizes for both VEG and INT were adequate for the jackknife approach.  For 
VEG, the number of observed species was So = 39 , and the estimate of total species 

was with standard error, $ .St
J = 45 00 ( )SE St

J$ .= 156 ; for INT,  So = 53 , and with 

.  The comparison of the estimates indicated that tree species richness 
was statistically significantly greater in INT, which included a low level of housing 
density, than in VEG, which included little or no housing.   All species observed in 
VEG, except one, were also observed in INT.  Of the 14 species observed in INT but 

$ .St
J = 6100

( )SE St
J$ .= 168



not observed in VEG, several were ornamental or exotic species that are often 
associated with homes.   
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Figure 2.  Quality of fit for model-based approaches. 
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Figure 3.  Adequacy of sample size for non-parametric approaches. 
 
Conclusions 
 
Four conclusions may be drawn from the study.  First, forest inventory plot data may 
be used to estimate tree species richness, although caution must be exercised to 
ensure the adequacy of the sample size.  Second, for this data set, the exponential 
model exhibited considerable more flexibility in fitting the data than did the Michaelis-
Menten model.  In fact, the quality of the fit of the Michaelis-Menten model was so poor 
that the estimate of total species was less than the number of species observed.  
Third, for this data set the sample size was adequate for the non-parametric jackknife 



approach but not for the non-parametric bootstrap approach.  However, this conclusion 
should not be construed to suggest that the jackknife approach will always be superior 
to the bootstrap approach.  Fourth, the estimate of tree species richness for the 
Intermix category (INT) which included low levels of housing density was statistically 
significantly greater than the estimate for the vegetated category (VEG) which included 
very few houses.  This result is partially attributed to the ornamental and exotic species 
associated with homes in INT.
 
Reference 
 
Bailey, R.G.  (1995)  Description of the ecoregions of the United States.  Ed. 2.  
Revised and expanded (1st ed. 1980).  USDA Forest Service Miscellaneous 
Publication No. 1391 (revised).  108 p. with separate map. 
Clench, H.  (1979)  How to make regional lists of butterflies: Some thoughts.  Journal 
of Lepidopterists’ Society 33: 216-231. 
Efron, B.  (1979)  Bootstrap methods: Another look at the jackknife.  Annals of 
statistics 7: 1-26. 
Loveland, T.L., and Shaw, D.M.  (2001)  Multiresolution land characterization: 
building collaborative partnerships.  In:  Scott, J.M., Tear, T., and Davis, F. (Eds). Gap 
analysis: a l;andscape approach to biodiversity planning.  Proceedings of the 
ASPRS/GAP Symposium, Charlotte, North Carolina, USA 1996.  pp. 83-89. 
McRoberts, R.E., McWilliams, W.H., Reams, G.A., Schmidt, T.L., Jenkins, J.C., 
O’Neill, K.P., Miles, P.D., and Brand, G.J.  (2004)  Assessing sustainability using 
data from the Forest Inventory and Analysis program of the United States Forest 
Service.  Journal of Sustainable Forestry 18: 23-46. 
Raaijmakers, J.G.W.  (1987)  Statistical analysis of the Michaelis-Menten equation.  
Biometrics 43: 792-803. 
Radeloff, V.C., Hammer, R.B., Stewart, S.I, Fried, J.S., Holcomb, S.S., and 
McKeefry, J.F. (2005) The wildland–urban interface in the United States. Ecological 
Applications 15:799–805. 
Smith, E.P., and van Belle, G.  (1984)  Nonparametric estimation of species richness.  
Biometrics 40: 19-129. 
Soberón, J., and Llorente, J.  (1993)  The use of species accumulation functions for 
the prediction of species richness.  Conservation Biology 7: 480-488. 
Vogelmann, J.E., Howard, S.M., Yang, L., Larson, C.R., Wylie, B.K., and Van Driel, 
N. (2001) Completion of the 1990s National Land Cover Data Set for the conterminous 
United States from Landsat Thematic Mapper data and ancillary data sources.  
Photogrammetric Engineering and Remote Sensing 67: 650-662. 
 
 


