
Health & Place 67 (2021) 102494

1353-8292/Published by Elsevier Ltd.

The natural environment, plant diversity, and adult asthma: A retrospective 
observational study using the CDC’s 500 Cities Project Data 

Geoffrey H. Donovan a,*, Shawn M. Landry b, Demetrios Gatziolis a 

a USDA Forest Service, PNW Research Station, 620 SW Main Suite 502, Portland, OR, 97205, USA 
b School of Geosciences, University of South Florida, 4202 East Fowler Ave, NES107, Tampa, FL, 33620, USA   

A R T I C L E  I N F O   

Keywords: 
Greenness 
Respiratory 
Allergic 
Adult-onset asthma 
Biodiversity hypothesis 
Hygiene hypothesis 
Microbiome 

A B S T R A C T   

A wealth of evidence links microbial exposure to better human immune function. However, few studies have 
examined whether exposure to plant diversity is protective of immune diseases, despite the fact that plant leaves 
support ~1026 bacterial cells. Using the Centers for Disease Control and Prevention’s 500 cities project data, we 
found that a 1-SD increase in exposure to taxonomic plant diversity is associated with a 5.3 (95% CI: 4.2–6.4; p <
0.001) percentage-point decline in Census-tract level adult-asthma rate. In contrast, A 1-SD increase in overall 
greenness exposure (measured using the normalized difference vegetation index) was associated with a 3.8 (95% 
CI: 2.9–4.8; p < 0.001) percentage-point increase in adult-asthma rate. Interactions between air pollution and 
both overall greenness and plant diversity were positive, suggesting that air pollution may potentiate the allergic 
effects of plant pollen. Results show that the relationship between the natural environment and asthma may be 
more complex than previously thought, and the combination of air pollution and plant pollen may be a particular 
risk factor for asthma in adults.   

1. Introduction 

The impact of global biodiversity loss on ecological (Dunne et al., 
2002), agricultural (Butler et al., 2007), and economic (Balmford et al., 
2008) systems is well documented. However, biodiversity loss may have 
other less intuitive impacts. In particular, loss of plant diversity, and 
associated microbial communities, may have a negative impact on 
human immune development, which may, in turn, be contributing to a 
global increase in immune diseases, especially in high-income countries 
(Haahtela et al., 2013). However, few studies have examined the link 
between biodiversity and specific adverse health outcomes. We address 
this gap in the literature by testing the hypothesis that exposure to plant 
diversity is protective of adult asthma using the Centers for Disease 
Control and Prevention’s (CDC) 500 Cities Project Data (Centers for 
Disease Control and Prevention, 2018). 

1.1. Literature review 

The protective effect of microbial exposure on immune diseases is 
well established and has entered the popular lexicon via the hygiene 
hypothesis, which posits that early-life exposure to microbes promotes 

immune maturation and thereby reduces the risk of immune disease 
(Yazdanbakhsh et al., 2002). The hygiene hypothesis was developed by 
David Strachan (1989), and was based on the observation that children 
from larger families were less likely to develop hay fever. Since this 
pioneering work, a broad range of proxies for microbial exposure have 
been shown to be protective of allergic disease including day-care 
attendance (Ma et al., 2002), breastfeeding (Jackson and Nazar, 
2006), birth order (Goldberg et al., 2007), and growing up on a farm 
(Douwes et al., 2007). In addition, proxies for microbial exposure have 
been found to be protective of other immune diseases including child
hood acute lymphoblastic leukemia (Greaves, 2018), Type-1 diabetes 
(Cardwell et al., 2005), and multiple sclerosis (Fleming and Cook, 2006). 

Despite the wealth of evidence linking microbial exposure to better 
immune function (Hanski et al., 2012), few, if any, studies have exam
ined whether exposure to plant diversity is protective of immune dis
eases. One exception is a New Zealand study, which found that children 
who are exposed to more diverse land-cover are less likely to develop 
asthma (Donovan et al., 2018). 

Several studies have examined the relationship between exposure to 
the natural environment (not specifically plant diversity) and childhood 
asthma. A recent review (Hartley et al., 2020) identified seven studies of 
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greenness and asthma, of which only one (Donovan et al., 2018) found a 
direct association between greenness and a reduced incidence of child
hood asthma. However, several of the other studies found that greenness 
was protective for specific strata of the sample. For example, one study 
found that greenness was protective of asthma among children who 
were exposed to environmental tobacco smoke (Eldeirawi et al., 2019), 
and another found a protective effect among children who were exposed 
to high traffic volume (Feng and Astell-Burt, 2017). None of the six 
studies that failed to find a main effect of greenness on childhood asthma 
accounted for the composition of the greenness exposure. Five of the six 
measured greenness using the Normalized Difference Vegetation Index 
(NDVI), which is a greenness index bounded by − 1 and 1, and the sixth 
used exposure to publicly-accessible greenspace. 

Another recent review examined the relationship between early-life 
exposure to the natural environment and allergic respiratory diseases 
(Ferrante et al., 2020). The authors included 14 studies in their review 
and concluded that the overall evidence is suggestive of an association 
between early-life exposure and the probability of developing allergic 
respiratory disease; however, differences in study design, exposure 
metrics, and study populations make it difficult to draw stronger 
conclusions. 

Beyond immune diseases, such as asthma, a handful of studies have 
examined the relationship between exposure to biodiversity and self- 
reported wellbeing, generally finding a positive association (Dallimer 
et al., 2012). 

The lack of research on the association between exposure to plants 
and immune diseases is notable, given that the total leaf area of the 
world’s plants is 1,017,260,200 km2 (twice the world’s land area), and 
plant leaves support ~1026 bacterial cells (Vorholt, 2012). 

2. Methods 

2.1. Outcomes 

Our outcome was the rate of adult asthma at the Census-tract level 
for the 500 largest cities in the US. The source was the 500 Cities Project 
Data, which is a partnership between the CDC and the Robert Wood 
Johnson Foundation (Table 1). The 500 cities project data contains 
Census-tract level data on health outcomes (asthma, for example), un
healthy behaviors (smoking, for example), and health-prevention 

measures (annual medical checkups, for example) for the 500 largest 
cities in the US. The 500 Cities data don’t distinguish between adult- 
onset asthma and asthma that began in childhood and continued into 
adulthood. 

2.2. Exposures 

We created two categories of exposure metrics: 1) exposure to plant 
diversity; 2) exposure to overall greenness. We used plant-occurrence 
data from the Global Biodiversity Information Facility (GBIF) to calcu
late plant-diversity metrics. GBIF contains over 2 billion geo-coded plant 
records globally, of which 13,082,093 are in the US (data downloaded 
25th September 2019). Of these records, 5,806,248 had valid latitude/ 
longitude coordinates. Despite being the world’s most comprehensive 
source of biodiversity data, GBIF sampling intensity was not sufficient to 
provide a statistically sound estimate of plant diversity at the Census- 
tract level. Indeed, of the 72,538 Census tracts in the contiguous US 
(2017 tract boundaries), 16,860 have no GBIF records. Similarly, of the 
28,505 Census tracts in the 500 cities project data, 11,663 have no GBIF 
records. In addition, GBIF data come from multiple sources, so they are 
not a random sample of plants in the US. Therefore, we first counted the 
number of unique plant species in national land-cover-climate classes 
and then used these national totals to calculate tract-level metrics 
(Fig. 1). In the presence of non-random sampling, this point-to-grid 
approach is most accurate, when points are aggregated to large units 
such as national land-cover-climate classes (Schmitt et al., 2017). We 
used composite land-cover-climate classes, rather than simple 
land-cover classes, because they would better reflect potential species 
diversity at the local level. Specifically, land-use-climate classes are a 
composite of National Land Cover data (20 land-cover types) and USDA 
plant hardiness zones (13 10-Farenheit zones). Of the 260 possible 
land-use-climate classes, only 132 were non-empty, as not all NLCD 

Table 1 
Data sources for outcomes, exposures, and covariates.  

Variables Source 

Asthma rates, health-risk factors, 
and health-promotion activities 

CDC (2018). 500 Cities: Census Tract-level 
Data (GIS Friendly Format), 2017 release. 
Centers for Disease Control and Prevention. 

Socio-economics, race, and 
ethnicity 

US Census (2018). Census 2013–2017 
American Community Survey 5-year Summary 
File. U.S. Department of Commerce, U.S. 
Census Bureau 

Air quality EPA (2018). Air Quality Index (AQI) by county 
for 2018. US Environmental Protection Agency 

Climate zones PRISM (2019). USDA Plant Hardiness Zone GIS 
Datasets. PRISM Climate Group, Oregon State 
University. 

Plant diversity GBIF.org (2019). Plant occurrence data, Global 
Biodiversity Information Facility 

Land cover NLCD (2016). National Land Cover Database, 
Land Cover Conterminous United States. 
Multi-Resolution Land Characteristics (MRLC) 
consortium 

Normalized Difference Vegetation 
Index (NDVI) 

USGS (2018). USGS EROS Archive - Vegetation 
Monitoring - eMODIS Remote Sensing 
Phenology: Maximum NDVI for 2018. USGS 
EROS 

Road density USGS (2019). USGS National Transportation 
Dataset. U.S. Geological Survey, National 
Geospatial Technical Operations Center  

Fig. 1. Flowchart showing how Census-tract level plant-diversity metrics were 
calculated. Figure credit: Miles Scheuering. 

G.H. Donovan et al.                                                                                                                                                                                                                            



Health and Place 67 (2021) 102494

3

land-cover types were present in each climate zone. 
We calculated tract-level metrics by multiplying the number of 

species in each land-cover-climate class by the proportion of a tract 
covered by that class and then summing across all land-cover-climate 
classes. For example, if 40% of a tract was covered by land-cover- 
climate class type 1 (100 unique species nationally), and the remain
ing 60% of the tract was covered by land-cover-climate class type 2 (200 
species nationally), then tract-level species richness would be 
(0.4*100)+(0.6*200) = 160. 

In addition to simple species richness, we calculated indices of 
rarefied species richness and taxonomic distance using the R package 
Vegan (Oksanen, 2019). 

We calculated rarefied species richness, because simple species 
richness can be misleading, if, as is the case with GBIF data, sampling 
intensity isn’t constant across sampling units. Land-use-climate classes 
may appear more diverse simply because of higher sampling intensity. 
Rarefaction corrects for this issue by normalizing to a common sampling 
intensity across observational units. 

Simple species richness does not account for the degree of taxonomic 
difference between two species. For example, two species from the same 
genus are given the same weight as two species that come from different 
genera. To account for the degree of difference between species, we 
calculated a taxonomic-distance index in which plants of different spe
cies but the same genus were given a score of one, plants in different 
genera but the same family were given a score of two, plants in different 
families but the same order were given a score of three, and plants in 
different orders were given a score of four. See Oksanen (2019) for de
tails of how all indices were calculated. 

To measure exposure to overall greenness, we used the Normalized 
Difference Vegetation Index (NDVI), which is a greenness index boun
ded by − 1 and 1, which is typically derived from satellite imagery. 
Specifically, we used maximum NDVI for 2018 derived from the USGS 
EROS Archive. Tract-level values were the average of the 250 m NDVI 
pixels within each tract boundary. There were some pixels that were 
either undetectable (100 in original data) or water (255 in data). These 
were set to null, and data were then rescaled to 1–100 before averaging. 

For ease of interpretation, we standardized all biodiversity and 
greenness metrics by subtracting the mean and dividing by the standard 
deviation. 

Census tracts in the US sometimes cross jurisdictional boundaries of 
cities and towns. If a Census tract was divided between two cities that 
both appeared in the 500 cities data project, then we assigned outcome 
data to both tracts. If a neighboring city was not part of the sample, then 
outcome data was assigned solely to fractional tract that was part of the 
500 cities data project. We only included fractional tracts, if over 50% of 
the tract’s population fell within a city included in the sample. 

2.3. Covariates 

We controlled for a range of covariates that previous research has 
found to be associated with asthma rates including race (Centers for 
Disease Control Prevention, 2004), socioeconomic status (Miller, 2000), 
air pollution and proximity to roads (Guarnieri and Balmes, 2014). For 
data sources see Table 1. 

2.4. Statistical analysis 

Our data were structured hierarchically: tracts are clustered within 
cities, and cities are clustered within states. Policies at both the city and 
state level could affect asthma rates; therefore, we estimated a mixed 
linear model of tract-level adult asthma rates including random effects at 
the city and state level. Model selection was done using backwards se
lection with progressively lower p-value thresholds (final threshold: p <
0.05). We systematically reintroduced insignificant variables—with 
particular focus on variables associated with asthma in previous stud
ies—and retained them, if they induced a greater than 10% change in 

coefficients of interest. 
To guard against including highly collinear combinations of vari

ables in our models, we estimated simple linear versions of all regression 
models (without city- or state-level random effects). This allowed us to 
calculate variance inflation factors (we investigated any variable with a 
VIF>5). 

Finally, to investigate spurious correlation, we used out-of-sample 
validation (Steyerberg and Harrell, 2016) to compare the performance 
of our final regression model to two reduced-form models: 1) No vari
ables describing greenness (NDVI) or plant diversity; 2) No variables 
describing plant diversity (but including greenness). The rationale for 
out-of-sample validation is that spurious associations with good 
explanatory power in-sample tend to perform poorly out-of-sample. In 
contrast, causal associations that perform well in-sample will also have 
good predictive power out-of-sample. We trained both models on 90% of 
the sample (drawn randomly from the full sample) and predicted asthma 
rates using the remaining 10%. The sample was randomized, and this 
process was repeated 1000 times. After each iteration of the full or 
reduced-form models, we recorded the mean squared error (MSE) of the 
asthma-rate predictions. 

3. Results 

The full 500 Cities data project contains 500 cities and 28,505 Census 
tracts. However, our analytic sample was restricted to the 498 cities in 
the contiguous US, as not all data sources were available for Alaska and 
Hawaii. Dropping these two states reduced the number of Census tracts 
in the sample by 296. The sample was reduced by a further 1842 tracts 
dues to missing outcome and covariate data. Table 2 provides descrip
tive statistics for the analytical sample. 

We found that taxonomic diversity had greater explanatory power 
(measured using the Akaike Information Criterion) than simple richness 
or rarefied richness. Therefore, we used taxonomic diversity in all 
models. 

Asthma rates were higher in tracts with a higher proportion of Af
rican Americans and lower in tracts with more Asians and Hispanics 
(percentage white was excluded due to collinearity) (Table 3). Variables 
indicating lower socioeconomic status (percent of households headed by 
a female, percent of households below the federal poverty line, unem
ployment rate, and percent of residents without health insurance) were 
positively associated with adult asthma rate. In contrast, variables 

Table 2 
Tract-level descriptive statistics for outcomes, exposure, and covariates for an
alytic sample (498 cities, 26,367 tracts).  

Variable Mean SD 

White (%) 60.2 27 
Hispanic (%) 24.4 25 
Asian (%) 7.2 11.1 
African American (%) 20.5 26.8 
American Indian (%) 0.65 1.5 
Population 4494 2314 
Health Insurance (%) 87.9 8.3 
Population under 18 (%) 22.4 7.7 
Female head of household (%) 15.9 10.1 
Population >25 graduated high school (%) 84.3 12.8 
Population >25 bachelor’s degree 32.0 21.1 
Unemployment >16 (%) 8.0 5.8 
Median household income ($) 58,726 31,458 

Adult asthma rate (%) 9.7 1.9 
Adult smoking rate (%) 18.2 6.1 
Adult obesity (BMI ≥ 30) rate (%) 30.2 8.2 
Adults who sleep <7 h a night (%) 36.7 5.9 
Adults had routine medical checkup in last year (%) 69.4 6.4 

Maximum NDVI (2018) 0.54 0.18 
Species richness 1943 241 
Rarefied species richness 255 12 
Taxonomic diversity 118 9.8  
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associated with higher socioeconomic status (percent of the population 
25 years and older who graduated high school, and percent of the total 
population with a bachelor’s degree) were negatively associated with 
adult asthma rate. Tracts with a higher proportion of adults who had a 
routine checkup in the last year had higher rates of asthma. Clearly, 
medical checkups do not cause asthma. Rather, routine checkups pro
vide an opportunity to diagnose health conditions including asthma. 
Tracts with higher rates of adult obesity (BMI≥30), or higher rates of 
adults sleeping less than seven hours a night, had higher rates of adult 
asthma. Finally, poorer air quality was associated higher rates of adult 
asthma. 

Two variables describing exposure to the natural environment were 
significantly associated with adult asthma rates. NDVI (greenness) was 
positively associated with adult asthma rate, whereas taxonomic di
versity was negatively associated with adult asthma. In addition, in
teractions between NDVI and air pollution, and between taxonomic 
diversity and air pollution, were positive. This indicates that in areas 
with poor air quality, increased greenness and taxonomic diversity are 
associated with an additional increase in adult asthma rates. 

As NDVI, taxonomic diversity, and maximum annual PM2.5 enter the 
model alone and in interaction terms, individual coefficients do not 
represent the full aggregate effect of these three variables. Therefore, we 
used the delta method to calculate combined effects and associated 
confidence intervals (Table 4). 

Out-of-sample validation showed that the full model (MSE = 0.0281) 
performed better than a reduced-form model without either plant di
versity or NDVI (MSE = 0.0368). A one-sided t-test showed that this 
difference in performance was statistically significant (p < 0.001). Fig. 2 
shows the simulation results for the 1000 iterations of these two models. 
The full model also performed better than a reduced form model without 
plant diversity but including NDVI (MSE = 0.0299), and a one-sided t- 
test showed that this difference was statistically significant (p = 0.013). 
Note that NDVI and taxonomic diversity are uncorrelated (correlation 
coefficient = 0.091). 

4. Discussion 

In this large national study, we found significant associations be
tween Census-tract level adult asthma rates and exposure to both taxo
nomic plant diversity and overall greenness. Exposure to taxonomic 
diversity was associated with reduced rates of adult asthma, whereas 
greenness was associated with increased rates. The magnitude of the 
protective effect of plant diversity was not trivial: a 1-Standard Devia
tion (SD) increase in exposure to taxonomic plant diversity was associ
ated with a 5.3 (95% CI: 4.2–6.4; p < 0.001) percentage-point decline in 
adult-asthma rate. A 1-SD increase in NDVI, in contrast, was associated 
with a 3.8 (95% CI: 2.9–4.8; <0.001) percentage-point increase in adult- 
asthma rate. Interactions between plant diversity and NDVI and 
maximum annual PM2.5 levels were both positive, which suggests that 
in high-pollution areas, NDVI is a greater risk for asthma, and the pro
tective effect of plant diversity is attenuated. This finding is consistent 
with previous research showing that air pollution can potentiate the 
allergic effects of plant pollen (Janssen et al., 2003). 

The extant research on greenness and asthma is inconclusive and has 
primarily focused on childhood asthma (Hartley et al., 2020). Most 
studies either found no relationship between greenness exposure and 
childhood asthma, or found that greenness was only protective if a child 
was exposed to environmental risk factors such as tobacco smoke or 
traffic-related air pollution. In contrast, we found that exposure to 
greenness was a risk factor for adult asthma. Our findings are not a 
function of using different exposure metrics as all but one of the seven 
studies included in the recent review of greenness and childhood asthma 
(Hartley et al., 2020) also used NDVI. It is possible, therefore, that our 
findings reflect differences in the causal pathways linking exposure to 
the natural environment and childhood versus adult-onset asthma (not 
all adult asthma in our analysis is adult onset; some may have begun in 
childhood). Although less is known about adult-onset asthma, it is 
known to have a higher prevalence among females (Gibson et al., 2010), 
be less associated with allergies (Shaaban et al., 2008), have a lower 
remission rate (De Marco et al., 2002), and have a weaker genetic 
component (de Nijs et al., 2013) than childhood asthma. Given these 
differences, it is plausible that greenness is a risk factor for adult-onset 
asthma but not childhood asthma. However, as this is an observa
tional study with an ecological design, it may be appropriate to view our 
study as hypothesis forming rather than hypothesis testing. 

Our finding that exposure to plant diversity is protective of adult 
asthma is consistent with the hygiene hypothesis and with a previous 
study in children that found that exposure to more diverse land-cover 
types was protective of asthma (Donovan et al., 2018). In addition, 
our finding that NDVI was a risk factor for adult asthma suggests that 
plant diversity is not merely a proxy for greenness exposure. Future 
green-health research may wish to consider not just the intensity of 
exposure to the natural environment but also the composition of that 
exposure. 

The protective effect of plant diversity is also consistent with past 
research showing that common childhood infections (although not more 
serious infections such as pertussis and measles) are protective of adult- 
onset asthma (Burgess et al., 2012). If exposure to common microbial 
infection is protective, then it is plausible that exposure to the 
non-pathological microbial communities known to be associated with 

Table 3 
Association between Census-tract level adult asthma rates and exposure to 
taxonomic plant diversity for the 498 largest cities in the contiguous US, con
trolling for race, ethnicity, socioeconomic status, behavioral risk factors, health 
prevention, air pollution, and overall greenness (n = 26,367).  

Variable Coefficient Lower 95% 
CI 

Upper 95% 
CI 

p-value 

African American (%) 0.496 0.432 0.560 <0.001 
American Indian (%) 0.0873 − 0.316 0.491 0.553 
Asian (%) − 3.200 − 3.290 − 3.109 <0.001 
Hispanic (%) − 1.754 − 1.806 − 1.702 <0.001 
Female head of household 

(%) 
1.022 0.939 1.105 <0.001 

High-school graduates (%) − 0.0222 − 0.0231 − 0.0213 <0.001 
Bachelor’s degree (%) − 0.00402 − 0.00458 − 0.00346 <0.001 
Population below poverty 

line (%) 
0.0274 0.0268 0.0280 <0.001 

Unemployment rate >16 
(%) 

0.00906 0.00784 0.0103 <0.001 

No health insurance (%) 0.00707 0.00607 0.00808 <0.001 
Routine medical checkup 

in last year (%) 
0.00786 0.00540 0.0103 <0.001 

Obesity (BMI ≥ 30) rate 
(%) 

0.0334 0.0300 0.0369 <0.001 

Sleep <7 h a night (%) 0.111 0.106 0.117 <0.001 
Maximum PM2.5 

concentration (stand.) 
0.392 0.304 0.481 <0.001 

Taxonomic diversity 
(stand.) 

− 0.0528 − 0.0638 − 0.0418 <0.001 

Maximum NDVI (stand.) 0.0383 0.0290 0.0475 <0.001 
Taxonomic- 

diversity*PM2.5 
0.0383 0.0290 0.0475 <0.001 

NDVI*PM2.5 0.0289 0.0190 0.0387 <0.001  

Table 4 
Coefficients for air pollution, taxonomic plant diversity, and NDVI accounting 
for main effect and interaction terms.  

Variable Coefficient Lower 95% 
CI 

Upper 95% 
CI 

p-value 

Maximum PM2.5 
concentration (stand.) 

0.392 0.304 0.480 <0.001 

Taxonomic diversity 
(stand.) 

− 0.0527 − 0.0637 − 0.0417 <0.001 

Maximum NDVI (stand.) 0.0383 0.0291 0.0476 <0.001  

G.H. Donovan et al.                                                                                                                                                                                                                            



Health and Place 67 (2021) 102494

5

plants (Kowalchuk et al., 2002) is also protective of adult-onset asthma. 
This protective effect is likely mediated through the microbiome, as 
multiple studies have found that increased diversity of the human 
microbiome is associated with a reduced risk of asthma (Fujimura and 
Lynch, 2015). Support for this mechanism is provided by a Scandinavian 
study (Hanski et al., 2012), which found that people living in more 
biodiverse areas have more diverse skin bacteria and lower rates of 
atopic sensitization. Similarly, a recent small study found that the di
versity of participants’ skin and nasal microbiota increased after expo
sure to diverse urban greenspace (Selway et al., 2020). Animal studies 
have also found a link between exposure to more diverse vegetation and 
diversity of the microbiome. For example, Phillips et al. (2018), found 
significant differences in the diversity of the gut microbiota of urban and 
rural white-crowned sparrows, which the authors attribute to higher 
plant diversity in urban areas. 

We found that taxonomic plant diversity explained more of the 
variation in adult asthma than equivalent metrics based on species 
richness or rarefied species richness. This finding also suggests that plant 
microbial communities may play a role in the protective effect of plant 
diversity, as research has shown that more taxonomically diverse plant 
communities support more diverse microbial communities (Kowalchuk 
et al., 2002). 

The significant interactions between air pollution and both NDVI and 
plant diversity suggests that planting vegetation in areas with high levels 
of air pollution should be undertaken cautiously. For example, several 
studies have shown trees along busy roads can absorb harmful air pol
lutants (Vailshery et al., 2013). However, the combination of trees and 
traffic-related air pollution may also result in allergic sensitization 
(Janssen et al., 2003). We are not suggesting that trees and other 
vegetation should never be planted in high-pollution areas. Rather, 
future research could valuably focus on identifying plants that, when 
combined with air pollutants, pose the greatest risk of allergic 
sensitization. 

Past studies have shown that exposure to the natural environment is 
associated with other drivers of adverse health outcomes including race, 
education, and income (Jesdale et al., 2013). This raises the possibility 

that our results are driven by an omitted variable that is causally asso
ciated with both adult asthma rate and the natural environment 
(spurious correlation). However, out-of-sample validation shows that 
the inclusion of both plant diversity and greenness improved the pre
dictive power of models, which suggests that our results are not due to 
spurious correlation. 

Our study does have several limitations. This is an observational 
study, so we were unable to establish a causal relationship between 
greenness, plant diversity, and asthma. The study’s ecological design 
means that results may be subject to ecological bias. In addition, plant- 
diversity metrics were based on species abundance in national land- 
cover-climate classes, and it is unlikely that every species present in 
these national classes is present in every Census tract that is covered by 
that class. Furthermore, not all data sources are from the same year. 
Finally, we were not able to distinguish between adult-onset asthma and 
asthma that began in childhood. 

Despite these limitations, our study has several strengths. We used a 
large national sample consisting of the 498 largest cities in the contig
uous US, so there were few sample-selection issues. Unlike other green- 
health studies, we considered both the intensity of exposure to the 
natural environment (NDVI) as well as the composition of that exposure 
(taxonomic diversity). Furthermore, this is one of the few studies to 
focus on asthma in adults rather than children. Finally, our use of out-of- 
sample validation means that the reported associations are not due to 
spurious correlation. 

5. Conclusions 

Our results suggest that the causal pathways linking exposure to the 
natural environment and asthma may be different in adults than chil
dren. In addition, our finding that exposure to more diverse plants is 
protective of asthma suggests that the composition of exposure to nature 
may be as important as the intensity of exposure. 

Fig. 2. Out-of-sample validation results comparing full model (Table 3) to a reduced-form model without NDVI or taxonomic diversity (1000 repetitions, 90% of 
sample used to train models and 10% used to predict). 
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