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Abstract

Passive acoustic monitoring is an emerging approach to wildlife monitoring that

leverages recent improvements in automated recording units and other technolo-

gies. A central challenge of this approach is the task of locating and identifying

target species vocalizations in large volumes of audio data. To address this issue,

we developed an efficient data processing pipeline using a deep convolutional

neural network (CNN) to automate the detection of owl vocalizations in spec-

trograms generated from unprocessed field recordings. While the project was ini-

tially focused on spotted and barred owls, we also trained the network to

recognize northern saw-whet owl, great horned owl, northern pygmy-owl, and

western screech-owl. Although classification performance varies across species,

initial results are promising. Recall, or the proportion of calls in the dataset that

are detected and correctly identified, ranged from 63.1% for barred owl to

91.5% for spotted owl based on raw network output. Precision, the rate of true

positives among apparent detections, ranged from 0.4% for spotted owl to

77.1% for northern saw-whet owl based on raw output. In limited tests, the

CNN performed as well as or better than human technicians at detecting owl

calls. Our model output is suitable for developing species encounter histories for

occupancy models and other analyses. We believe our approach is sufficiently

general to support long-term, large-scale monitoring of a broad range of species

beyond our target species list, including birds, mammals, and others.

Introduction

Passive acoustic monitoring is an emerging alternative to

traditional surveys for wildlife monitoring. Modern

autonomous recording units (ARUs) can record continu-

ously for days or weeks at a time, generating large

amounts of audio data. Any species that makes character-

istic sounds may be a good candidate for acoustic moni-

toring, and this approach has been successfully applied in

studies of insects (Ganchev and Potamitis 2007), amphib-

ians (Alonso et al. 2017), bats (Russo and Jones 2003),

cetaceans (Luo et al. 2019), elephants (Wrege et al. 2017),

primates (Heinicke et al. 2015), and various avian species

(Figueira et al. 2015; Campos-Cerqueira and Aide 2016;

Shonfield et al. 2018; Wood et al. 2019).

Researchers are typically interested in isolating a partic-

ular signal within the data, such as the vocalizations of

some target species. Locating and identifying these signals

within a large body of field recordings is a necessary first

step in any analysis. Previous work has explored various

methods for automating the detection of target signals,

including hidden Markov models (Trifa et al. 2008), tem-

plate matching with dynamic time warping (Brown and

Miller 2007; Somervuo 2018), and artificial neural net-

works (Wood et al. 2019). Here we demonstrate the use

of a deep convolutional neural network (CNN) for

automating the detection of owl vocalizations in spectro-

grams generated from field recordings.

Our work follows from a recent effort to evaluate the

effectiveness of passive bioacoustics for monitoring
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northern spotted owls Strix occidentalis caurina (hereafter

‘spotted owl’) and for studying their competitive interac-

tions with barred owls S. varia. The spotted owl was listed

in 1990 as threatened under the US Endangered Species

Act (US Fish and Wildlife Service 1990), and monitoring

of populations as directed by the Northwest Forest Plan

(US Department of Agriculture and US Department of

Interior 1994) has revealed ongoing population declines

due to a range of environmental stressors (Dugger et al.

2016, Lesmeister et al. 2018). The barred owl is native to

eastern North America but has become established

throughout the Pacific Northwest since the 1970s (Mazur

and James 2000); this range expansion has brought barred

owls into competition with spotted owls for territory and

food resources (Guti�errez et al. 2007). Being larger, more

aggressive, and more generalist in its prey and cover selec-

tion, the barred owl has become a major contributor to

the decline of the spotted owl (Wiens et al. 2014, Dugger

et al. 2016, Lesmeister et al. 2018).

Following a successful 2017 study employing ARUs to

monitor spotted and barred owls at 30 field sites (L.

Duchac, unpublished data), the Northwest Forest Plan

monitoring program approved the expansion of ARU

deployments to 208 field sites in 2018. While in the previ-

ous study we searched recordings semi-manually for tar-

get species vocalizations, we felt that an automated

approach would scale up better to accommodate the

increasing pace of the data collection and would eventu-

ally require less human supervision.

CNNs have undergone rapid development in recent

years (e.g., Kahl et al. 2017), initially spurred by the per-

formance of ‘AlexNet’ (Krizhevsky et al. 2012) in the

ImageNet Large Scale Visual Recognition Challenge com-

petition (http://www.image-net.org/challenges/LSVRC/).

Similar networks continue to define the state of the art in

computer vision and image classification, with commer-

cial applications in areas such as facial recognition (Taig-

man et al. 2014) and autonomous vehicles (Nvidia 2019).

The suitability of CNNs for image classification stems

from their structure, conceptualized as a stack of layers in

which the output (or activation) of each layer is passed as

input to the following layer. Activations in higher layers

can represent increasingly complex features of the original

input, enabling the network to parse an image as a com-

position of meaningful elements rather than a collection

of unrelated pixels (LeCun 2015). Another appealing

aspect of CNNs is that the visual features used to discrim-

inate between image classes need not be explicitly pro-

grammed. Rather, the network learns these features

automatically from labeled examples through a supervised

training process. Thus researchers can bypass a great deal

of tedious and error-prone coding, provided sufficient

training data are available. The availability of large pre-

labeled training datasets has helped drive the refinement

of such models, as have improved methods for training

deep neural networks on graphics processing units.

CNNs fulfill all the basic requirements for automated

detection software: they process inputs efficiently, can

generate class scores for an arbitrary number of target

classes, and can incorporate new target classes through

minor structural changes and the addition of new training

data. Accuracy tends to improve with the addition of new

training data for existing target classes, allowing for con-

tinual improvements in classification performance. Addi-

tionally, CNNs can be readily implemented using free and

open-source software, affording substantial flexibility to

fine-tune network behavior and performance to suit pro-

ject objectives.

Materials and Methods

Target species

For the present analysis we had six focal species: spotted

owl, barred owl, northern saw-whet owl Aegolius acadicus,

great horned owl Bubo virginianus, northern pygmy-owl

Glaucidium gnoma, and western screech-owl Megascops

kennicottii. We included the non-Strix owls in the hope of

producing new insights into the behavior of the forest

owl assemblage as a whole. Furthermore, as all our target

species are nocturnally active and vocalize at low frequen-

cies, we believed that including these additional species

would improve the CNN’s discriminative ability for the

Strix owls as well.

Audio data collection

We collected audio from three historic spotted owl study

areas in Oregon (Coast Range and Klamath) and Wash-

ington (Olympic Peninsula). Field sites were selected from

a uniform grid of 5 km2 hexagons covering all three study

areas. In 2017 we selected 10 non-adjacent hexagons in

each study area, preferring hexagons where nesting spot-

ted owls were reported the previous year. In 2018 we col-

lected audio from only the Olympic Peninsula and Coast

Range study areas. We generated a pool of hexagons that

were >50% federally owned and >50% forested and ran-

domly selected 120 non-adjacent hexagons in the Coast

Range and 88 non-adjacent hexagons in the Olympic

Peninsula for sampling. Within each hexagon we

deployed five ARUs at random locations which were con-

strained to be on middle and upper slopes, ≥200 m from

the hexagon edge, ≥50 m from roads and trails, and

with ≥500 m between locations (e.g., Fig. 1). These rules

were designed to randomly sample the hexagons, maxi-

mize detectability for each species, avoid double-counting
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birds that might move between adjacent hexagons, and

minimize noise from roads and streams.

We used Song Meter SM4 ARUs (Wildlife Acoustics,

Maynard, MA, USA), each equipped with two omnidirec-

tional microphones with sensitivity of �33.5 dB � 3 dB

and a signal-to-noise ratio of 80 dB at 1 kHz. Audio data

were stored as hour-long WAV files with sampling rate of

32 kHz. In 2017 ARUs recorded from one hour before sun-

set to two hours after sunrise each night, producing 11–
15 h of recordings per 24-h period. ARUs were deployed

for 2 to 4 months between mid-March and late July and

collected ca. 150 000 h of recordings. In 2018 ARUs

recorded from 1 h before sunset to 3 h after sunset and

from 2 h before sunrise to 2 h after sunrise, producing 8 h

of recordings per 24-h period. ARUs were deployed at each

site for approximately 6 weeks between March and August

and collected ca. 350 000 h of recordings.

Training data compilation

Technicians located target species vocalizations in the

2017 data using the Simple Clustering feature of Kaleido-

scope Pro software (version 5.0, Wildlife Acoustics). This

function detects sounds that meet user-defined criteria

and clusters sounds by similarity using a hidden Markov

model. We selected for sounds 0.5–7.5 s in duration, 0 –
1.2 kHz in frequency, with a maximum inter-syllable gap

of 2 s. We developed these parameters empirically to

maximize the detection of spotted and barred owl calls

but successfully used them to detect all target species. We

reviewed the resulting clusters, tagging calls from our tar-

get species. Each tagged call corresponds to a record

which includes the source file, timestamp within the file,

duration, and a manually assigned species identification

field.

We constructed our CNN training set using tagged

records from the 2017 data, selecting a single call type for

each target species. We chose call types that were highly

stereotyped and diagnostic to each species, preferring calls

that were produced frequently (Fig. 2). For barred owl we

used 3920 unique examples of the two-phrased hoot call

(Odom and Mennill 2010), which typically consists of

eight notes and ends with a drawn-out, descending

‘hooahhh’. For spotted owl we used 3,801 examples of

the four-note location call (Forsman et al. 1984), which

consists of an initial note, a pause, a closely-spaced pair

of notes, another pause, and a terminal note. In practice

the initial note is often omitted; our training set included

the typical four-note version and the three-note variant.

For northern saw-whet owl, we used 3338 examples of

the advertising call (Rasmussen et al. 2008), an extended

series of whistled notes given at a steady rate of 2–3 s�1.

For great horned owl, we used 3353 examples of the terri-

torial hoot (Artuso et al. 2013), a low-pitched call con-

sisting of three to six notes. For northern pygmy-owl, we

used 3337 examples of the primary call (Holt and Peter-

sen 2000), which is similar to the saw-whet owl’s advertis-

ing call but slower, with intervals of 1–2 s between notes.

For western screech-owl, we used 3346 examples of the

‘bouncing ball’ call and the closely related double trill call

(Cannings et al. 2017), both consisting of a rapid series

of very brief hoots.

The training set for the CNN consisted of spectrograms

which we generated using SoX (version 14.4,

Figure 1. Example survey hexagon from the

Olympic Peninsula study area, Washington,

USA. Each 5 km2 hexagon (purple polygon)

contains five survey stations (red dots)

randomly placed within the hexagon, avoiding

areas with low topographic position (e.g. valley

bottoms), with ≥200 m between each station

and the hexagon edge, ≥50 m between the

station and any road or trail, and ≥500 m

between any two points. Elevation of

topographic contours is given in feet above sea

level. This hexagon is shown for illustrative

purposes and was not analyzed for the present

study.
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http://sox.sourceforge.net/). To reflect the variation found

in field recordings, we generated multiple spectrograms

with different parameters for each unique clip. Each call

to SoX included four distinct commands which were exe-

cuted in sequence. The ‘trim’ command isolated a 12-s

segment of the source audio beginning at time t, calcu-

lated as the call’s original timestamp minus x*(12 – [du-

ration]) seconds, where x was a random number between

zero and one. Hence, each spectrogram contained a com-

plete call, but at a somewhat random position. The

‘remix’ command isolated a single channel of the audio.

The ‘rate’ command resampled the audio at a rate of

6 kHz. Finally, the ‘spectrogram’ command generated an

image from the processed audio. We used the –z option

to randomize the dynamic range of the spectrogram to a

value between �100 and �90 decibels below full scale as

the lower end of the intensity scale. This affected the level

of contrast in the resulting image, mimicking the effect of

the call being louder or quieter relative to the background

noise. Each spectrogram represented 12 s of audio in the

frequency range 0–3 kHz; the upper frequency limit rep-

resents the Nyquist frequency of the 6 kHz sample rate.

Spectrograms were generated using a Hann window with

a window length of 2048, 50% window overlap, and a

DFT size of 256. Spectrograms were saved as grayscale

images at 500 9 129 resolution.

For the non-Strix owls we repeated the above process

with three sets of randomized values, producing three

images for each unique call, using only one channel of

the audio. For spotted owl and barred owl, we repeated

the process three times for each channel of the audio,

producing six images for each unique call. For classifica-

tion purposes we also created a Noise class, which served

as a catch-all for clips containing no target species vocaliza-

tions. We produced training data for the Noise class by cre-

ating one spectrogram of a 12 s clip at a random offset

within each audio file recorded at several sites. We reviewed

all spectrograms visually to ensure that each image included

visible call signatures of only the labeled class. Our final

training data set included spectrograms for all seven target

classes: northern saw-whet owl (n = 10 003), great horned

owl (n = 9999), northern pygmy-owl (n = 10 003), west-

ern screech-owl (n = 10 004), spotted owl (n = 22 373),

barred owl (n = 22 204), and Noise (n = 10 003).

Data processing

To process the data we used Python (version 2.7, Python

Foundation) to segment the raw audio files into non-

overlapping 12-s clips, then used SoX to generate a spec-

trogram from each clip. We chose a 12-s interval as it

cleanly divides an hour-long field recording, creates a

tractable number of images given the volume of data we

have to work with, and is long enough to fully contain

any of the owl calls. Spectrograms were generated from a

single channel of the audio using the same parameters as

the training data, except that the lower limit of the inten-

sity scale was fixed at �90 decibels below full scale. The

audio channel used corresponds to the left microphone of

each ARU; the choice of which channel to analyze was

A B

C D

E F

Figure 2. Example spectrograms of each target species call. A = Barred owl, B = Great horned owl, C = Northern pygmy-owl, D = Northern

saw-whet owl, E = Spotted owl, F = Western screech-owl. Spectrograms plot the energy present across a range of combinations of time (on the

x-axis) and frequency (on the y-axis), with lighter colors representing higher levels of energy. The lowest level of each call is the base frequency,

which carries the most energy. Images A, B, E, and F include visible overtones, indicating that these calls have a high signal-to-noise ratio. Each

spectrogram is 500 9 129 resolution and represents 12 s of audio in the frequency range 0–3 kHz.
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arbitrary. The spectrograms were then fed into the trained

CNN, which generated class scores for each image.

Convolutional neural network model

We implemented the CNN in Python using Keras (Chol-

let 2015), an application programming interface to the

open-source TensorFlow software library developed by

Google (Abadi et al. 2015). Our CNN contained four

convolutional layers followed by two fully connected lay-

ers. The first and second convolutional layer of our net-

work each contained 32 3 9 3 pixel filters and the third

and fourth convolutional layer each contained 64 3 9 3

pixel filters. Each convolutional layer used rectified linear

unit (ReLU) activation and was followed by 2 9 2 max

pooling and 20% dropout. After pooling and dropout,

output from the fourth convolutional layer was flattened

and passed to a 64-unit fully connected layer with L2 reg-

ularization, ReLU activation, and 50% dropout. Our final

layer was a seven-unit fully connected layer with softmax

activation, whose activation tensor comprised the pre-

dicted class scores for our target classes.

Convolutional layers are so called because they perform

convolution, which transforms an input (i.e., image)

using a small matrix of weights, or filter, to produce an

activation map. Each element of the activation map is val-

ued as the dot product of the filter and an equal-sized

region of the input, termed the receptive field. This value

is highest when the values in the receptive field are simi-

lar to those of the filter, hence the activation map for

each filter encodes the location of matching features

within the input. A convolutional layer systematically

applies a number of such filters (each with a different set

of learnable weights) over its input and concatenates the

resulting activation maps into an activation volume. Fully

connected layers do not perform convolution. Each unit

in a fully connected layer processes the entire activation

volume of the previous layer through a single set of learn-

able weights; these layers translate the features detected by

the convolutional layers to a set of predictions, that is,

class scores.

Output from each layer passes through an activation

function, which provides nonlinearity to contribute to the

CNN’s learning ability. The ReLU activation function

outputs zero for negative inputs and leaves nonnegative

inputs unchanged. Softmax activation normalizes activa-

tions from a layer so that they lie between zero and one

and sum to one across all units in the layer.

Max pooling downsamples the activation volume by

dividing each activation map into non-overlapping

regions (e.g., squares two units wide and two units high)

and retaining only the highest value from each; this sub-

stantially reduces the number of weights required for the

following layer (and the overall number of trainable

model parameters) while preserving coarse information

on feature locations. Dropout randomly omits some pro-

portion of units during training; this forces the model to

develop redundancy and helps to prevent overfitting. L2

regularization prevents overfitting during training by

adjusting the loss function by the squared Euclidean

norm of the weights of the preceding layers.

We trained the CNN for 100 epochs on a set of ca.

95 000 labeled images with a 4:1 training-validation split.

Training data were weakly labeled, that is, we provided

the correct label for each image but not the location of

any relevant features within the image. Loss was calcu-

lated as categorical cross-entropy, and we saved the model

only after epochs in which validation loss decreased in

order to prevent overfitting. We used the Adam optimiza-

tion algorithm (Kingma and Ba 2015) with a learning rate

of 0.0001.

Model performance and verification

We report preliminary results from the first set of data

from the 2018 field season to be processed by the CNN,

covering approximately 4976 h of recordings from 14

ARUs in three hexagons in the Coast Range study area.

We first performed a ‘na€ıve’ classification by labeling each

clip as the class with the highest class score (pMax). We

reviewed all clips that were labeled as target species under

this classification scheme (some with pMax as low as

0.190) as well as 1% of clips that were labeled as Noise;

the subset of Noise clips to be reviewed were randomly

selected, allowing us to estimate the number of false nega-

tives. Reviewing all apparent detections is onerous and

unnecessary for most applications; Chambert et al. (2018)

concluded that review of as little as 1% of apparent detec-

tions could yield unbiased and reasonably precise esti-

mates of site occupancy, provided that researchers employ

a modeling approach that explicitly accounts for false

detections.

Clips selected for review were extracted from the origi-

nal recordings as 12-s clips and searched for target species

vocalizations using the Kaleidoscope viewer. Although we

assigned exactly one label to each clip based on class

scores, technicians could assign multiple labels if the clip

contained calls from multiple species. We considered a

‘hit’ to be a real detection if the labels assigned by a

human technician included the class to which the CNN

assigned the highest class score. Although the CNN

assigned class scores based on the spectrogram alone,

technicians could also listen to the recording in order to

identify species.

We compared the labels assigned by human technicians

to the CNN’s class scores to calculate precision and recall.
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Precision is defined as the proportion of true positives

among apparent detections for each species, calculated as

[True Positives]/[True Positives + False Positives]. Recall

is defined as the proportion of real target vocalizations in

the dataset that are detected and correctly labeled, calcu-

lated as [True Positives]/[True Positives + False Nega-

tives]. We multiplied the number of clips of each target

species that the CNN incorrectly labeled as Noise by 100

and added the result to the denominator when calculating

recall. We first calculated precision and recall for the

na€ıve classification, then repeated the calculations, consid-

ering only clips for which pMax exceeded an increasingly

selective threshold. This enabled us to explore the tradeoff

involved in reviewing only a subset of apparent detec-

tions, which reduces the need for human labor but may

result in lower recall. Following recommendations by

Knight et al. (2017), we also report F1 score across the

range of thresholds and present receiver operating charac-

teristic and precision-recall curves, for comparison with

other research. F1 score combines precision and recall to

measure overall model performance; we used the

unweighted version, calculated as 2*[Precision*Recall]/

[Precision + Recall].

To confirm that the CNN’s detection power for our

target species was at least comparable to our previous

analytical approach, we processed recordings from these

hexagons using the same methods as the 2017 pilot study

and compared the number of real detections that the two

methods produced for each species.

We also wanted to examine the effect that increasing

selectivity (i.e., threshold) might have on data used in an

occupancy-based framework (e.g., MacKenzie et al. 2018).

To this end, we generated weekly encounter histories for

each target species at the hexagon level, first based on na€ıve

classification, and then successively filtering the detections

by maximum class score against an increasing threshold.

This admittedly basic example illustrates how automated

detection data may inform useful ecological analyses with

a range of manual review effort. For a more in-depth treat-

ment we direct readers to Chambert et al. (2018).

Results

The reviewed dataset included 164 210 clips. Technicians

confirmed 71 963 clips as containing calls from target

species. These included clips containing western screech-

owl (n = 29 252), northern pygmy-owl (n = 27 458),

northern saw-whet owl (n = 12 342), barred owl

(n = 5387), great horned owl (n = 1643), and spotted

owl (n = 94) calls. Great horned owls were detected at

two hexagons, while the other target species were detected

at all three hexagons. A total of 4033 clips contained two

target species, and 90 clips contained three target species;

of the 4123 clips containing multiple target species, 3876

contained western screech-owl and 2932 contained north-

ern saw-whet owl. A total of 89 clips originally labeled

Noise contained target species, including western screech-

owl (n = 62), northern pygmy-owl (n = 20), barred owl

(n = 3), great horned owl (n = 3), and northern saw-

whet owl (n = 2).

Recall was consistently highest for northern saw-whet

owl, northern pygmy-owl, and spotted owl (Table 1,

Fig. 3), whereas precision was highest for northern saw-

whet owl and western screech-owl (Table 1, Fig. 4). F1

score was highest for the three smallest owls and lowest

for spotted owls; the threshold at which the CNN per-

formed best was different for each species (Table 1,

Fig. 5). False positives were thinned more than real detec-

tions at higher thresholds, indicating that the CNN gener-

ally assigned higher scores to real calls than to similar,

non-target sounds (Fig. 6). Receiver operating characteris-

tic curves indicated generally good performance at distin-

guishing true positives (target species vocalizations) from

true negatives (Noise; Fig. 7). Precision-recall curves indi-

cated that the CNN performed best for the three small

species, while performance was mixed for barred owl and

poorer for great horned owl and spotted owl (Fig. 8).

Compared to our previous approach, with human tech-

nicians tagging output from the Simple Clustering feature

of Kaleidoscope, the CNN detected and correctly labeled

as many or more vocalizations from all target species,

although both methods detected the same set of species at

each hexagon. At the level of the hexagons, na€ıve occu-

pancy (≥1 detection at a hexagon) was consistently

unchanged after increasing the detection threshold from 0

to 0.99; weekly encounter histories changed somewhat

with increasing threshold, with some initial detections

occurring later in the season, but the overall patterns were

highly consistent (Table 2).

Discussion

Our results suggest that CNNs can be highly successful at

classifying owl calls and may detect more vocalizations

than other analytical methods. This finding is encouraging

given the desire of many researchers and management

agencies to use bioacoustic methods for broad-scale, long-

term monitoring of avian populations. In a review of

existing literature on automated birdsong recognition,

Priyadarshani et al. (2018) found that while many

researchers have reported strong results for single species

in short recordings, efficient automatic recognition of

multiple species in noisy, long-form field recordings

remains elusive. Work on automatic recognizers with owls

has been limited; Wood et al. (2019) obtained precision

of 40% and recall of 87% for California spotted owls
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considering calls exceeding a template matching score of

0.75 using Raven Pro. Shonfield et al. (2018) report preci-

sion of 1.7%, 72%, and 99% for barred owl, great horned

owl, and boreal owl respectively using template matching

in Song Scope, although that study did not assess recall at

the level of individual detections.

Our results, with recall ranging from 63.1 to 91.5%

from only a single training of the CNN, demonstrate this

Table 1. Precision, recall, and F1 score for six owl species at select threshold levels.

Metric Threshold Barred owl Great horned owl N. Pygmy-owl N. Saw-whet owl Spotted owl W. Screech-owl

Precision None 0.257 0.065 0.571 0.771 0.004 0.726

Precision 0.50 0.317 0.076 0.605 0.815 0.005 0.797

Precision 0.75 0.484 0.112 0.683 0.895 0.009 0.852

Precision 0.90 0.596 0.155 0.743 0.935 0.012 0.872

Precision 0.95 0.649 0.186 0.776 0.949 0.015 0.879

Precision 0.99 0.734 0.229 0.842 0.965 0.023 0.892

Recall None 0.667 0.917 0.980 0.918 0.915 0.814

Recall 0.50 0.638 0.895 0.962 0.901 0.894 0.789

Recall 0.75 0.551 0.766 0.900 0.855 0.840 0.700

Recall 0.90 0.475 0.623 0.823 0.801 0.745 0.614

Recall 0.95 0.416 0.528 0.766 0.760 0.691 0.559

Recall 0.99 0.304 0.321 0.624 0.678 0.617 0.446

F1 score None 0.371 0.121 0.721 0.838 0.009 0.768

F1 score 0.50 0.423 0.140 0.743 0.856 0.011 0.793

F1 score 0.75 0.515 0.195 0.776 0.875 0.018 0.769

F1 score 0.90 0.529 0.249 0.781 0.863 0.024 0.721

F1 score 0.95 0.507 0.276 0.771 0.844 0.029 0.683

F1 score 0.99 0.429 0.267 0.717 0.796 0.044 0.595

Performance metrics for the convolutional neural network are given for a na€ıve classification (no threshold), in which each clip was assigned the

label corresponding to the highest predicted class score (pMax), and for increasingly selective classification, in which we consider only clips for

which pMax equals or exceeds some threshold. Precision is the proportion of apparent ‘hits’ that represent real detections for a given species and

is calculated as [True Positives]/[True Positives + False Positives]. Recall is the proportion of real calls present in the dataset that are detected and

correctly identified by a recognizer and is calculated as [True Positives]/[True Positives + False Negatives]. F1 score is a measure of overall model

performance, calculated as 2 * [Precision * Recall]/[Precision + Recall].

Figure 3. Recall vs threshold for six owl

species. Recall is calculated as [True Positives]/

[True Positives + False Negatives], considering

only clips with pMax ≥ Threshold, where pMax is

the maximum class score predicted by the

convolutional neural network. Recall represents

the proportion of target species calls present in

the dataset that were detected and correctly

labeled by the convolutional neural network.
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technology’s potential to generate useful ecological infor-

mation, but given the large percentage of false positives

(range 22.9–99.6%), further refinement of the CNN will

be required before we can be confident that the output

accurately reflects the number of calls of a given species.

The misclassification of irrelevant sounds as target vocal-

izations is a major issue for several target species, espe-

cially spotted owl and great horned owl, and subsequent

trainings will be necessary to improve precision. Human

review will likely remain a necessary step between data

processing and analysis, but the effort required can be

reduced by reviewing only detections with high classifica-

tion scores, which disproportionately thins false positives.

Our reported precision was low for several species, par-

ticularly spotted owl. It should be noted that the number

of real detections for this species was very small, only 94

Figure 4. Precision vs threshold for six owl

species. Precision or True Positive Rate is

calculated as [True Positives]/[True Positives +

False Positives], considering only clips with pMax

≥ Threshold, where pMax is the maximum class

score predicted by the convolutional neural

network. Precision represents the proportion of

apparent detections that correspond to real

target species calls.

Figure 5. F1 score vs threshold for six owl

species. F1 score is interpreted as a balanced

measure of overall classifier performance

combining precision and recall. The F1 score

can be weighted to emphasize either precision

or recall; we have plotted the unweighted

version, calculated as 2*[Precision * Recall]/

[Precision + Recall], considering only clips with

pMax ≥ Threshold, where pMax is the maximum

class score predicted by the convolutional

neural network. The highest point on each

curve represents the threshold at which the

model gives the best overall performance for

each species if we consider precision and recall

to be equally important.
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across the three field sites. Given the level of calling activ-

ity that we have observed at known spotted owl territories

and nest sites, and considering spotted owl calls may be

audible at ranges of >1 km (Forsman et al. 1984), it is

unlikely that these sites were occupied by territorial spot-

ted owls. Because precision is calculated as the proportion

of true positives among apparent detections, even a low

rate of false positives would overwhelm real detections of

an uncommon species when processing large amounts of

data. Hence, our reported precision for spotted owl

should be interpreted cautiously. Indeed, given the moti-

vations for this study, it is encouraging that the CNN

successfully detected such a tenuous spotted owl presence

at multiple sites. For species of conservation concern,

which may be present at low densities on the landscape,

recall is more important than precision; the need for high

detection power justifies additional human effort in

reviewing apparent detections.

Even for species with a stronger presence, precision can

vary dramatically due to the presence of sounds similar to

those made by a target species. These sounds, which the

CNN may classify as target species with high confidence,

greatly increase the need for human review to avoid

biasing model results. Hence, efforts to refine the model

will be most productive if we identify consistent sources

of misclassification and work to counter these errors in

future trainings. For example, the presented iteration of

our CNN frequently misclassified ubiquitous band-tailed

Figure 6. Proportion of apparent detections remaining at various thresholds. This figure illustrates the effect of thresholding on the number of

apparent detections for each species, including both real detections and false positives, considering only clips with pMax ≥ Threshold, where pMax

is the maximum class score predicted by the convolutional neural network. A value of 1.00 on the y-axis is the original number of apparent

detections of each type generated for each species by assigning each clip to the class with the highest class score. False positives are thinned

quickly by thresholding, while the majority of real detections remain even at thresholds of 90% or more.
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pigeon Patagioenas fasciata calls as great horned owl,

negatively affecting precision for the latter species.

Hence, we will likely include band-tailed pigeon as a tar-

get class in future. CNNs are by nature modular; adding

a new target class is as simple as increasing the number

of units in the output layer and retraining the network.

It is difficult to anticipate every sound that might be

confused for a target species, but we can address com-

mon sources of error; human review of CNN output has

the convenient side effect of producing training data for

these non-target sounds in rough proportion to their

prevalence.

Recall was generally good but was noticeably poorer for

barred owl and western screech-owl. We believe several fac-

tors contributed to this result. First, the design of our CNN

implicitly treats each 12-s clip as containing, at most, one

target species. In reality, multiple target species may call

simultaneously, allowing one species to mask the presence

of another. This appears to have disproportionately affected

recall for western screech-owl, which was present in the

great majority (94%) of clips containing multiple species

but received the highest class score in less than one-third of

those cases, producing ca. 1900 missed detections for this

species. In future we may use sigmoid activation in the

Figure 7. Receiver operating characteristic (ROC) curves for convolutional neural network classification of six owl species. The ROC curve plots

the recall (AKA true positive rate) against the false positive rate. Recall is calculated as [True Positives]/[True Positives + False Negatives]. False

positive rate is calculated as [False Positives]/[False Positives + True Negatives]. The area under the ROC curve (AUC) corresponds to the probability

that the classifier will assign a higher score to a randomly chosen true positive than to a randomly chosen true negative. AUC values by species

were: Barred owl, 0.872; Great horned owl, 0.934; Northern pygmy-owl, 0.967; Northern saw-whet owl, 0.959; Spotted owl, 0.961; Western

screech-owl = 0.922. ROC curves were generated using the PRROC package in R, which interpolates values across the full range of threshold

values.
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output layer of the CNN; sigmoid activation is not normal-

ized across the layer and so is potentially conducive to mul-

ti-label classification. Western screech-owl was also the

target species most often labeled as Noise, for reasons

unknown. Additionally, while we trained the CNN on only

one call type for each species, technicians labeled clips only

to the species level, without noting call type. Barred owls

have a diverse vocal repertoire, and barred owl calls other

than the two-phrased hoot were frequently misclassified as

other target species. In particular, the barred owl ‘inspec-

tion call’ (Odom and Mennill 2010) appears to have been a

significant source of false positives for spotted owl, possibly

because it resembles the terminal note of the spotted owl’s

four-note location call. We may include this call type as a

separate class in future.

Because our approach depends on the recognition of

visual patterns in spectrograms, it is useful to consider the

nature of spectrograms and the variation inherent in this

type of plot. To produce a spectrogram we take a sound

recording, which represents energy as a periodic function

of time, and apply a discrete-time Fourier transform, which

decomposes the signal into its constituent frequencies to

represent energy as a function of both frequency and time.

The output is then plotted with time on the x-axis and fre-

quency on the y-axis, with energy levels mapped to a color

scale. Many signals of interest, such as bird calls, produce

recognizable patterns, which trained human observers can

recognize from cursory inspection of a spectrogram. Here

we demonstrated significant strides in developing a neural

network that can reliably accomplish the same task.

Figure 8. Precision-recall curves for convolutional neural network classification of six owl species. The precision-recall curve illustrates the tradeoff

between sensitivity (recall) and specificity (precision). Area under the curve (AUC) serves as a general measure of model performance; a classifier

with perfect precision and perfect recall would have AUC = 1. AUC values by species were: Barred owl, 0.473; Great horned owl, 0.166;

Northern pygmy-owl, 0.847; Northern saw-whet owl, 0.908; Spotted owl, 0.043; Western screech-owl, 0.807. Precision-recall curves were

generated using the PRROC package in R, which interpolates values across the full range of threshold values.
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Compared to three-dimensional objects in a video or

photograph, signals in a spectrogram have limited degrees

of freedom; they occur only at a fixed size and orientation

within a two-dimensional plane. However, there are sev-

eral forms of variation which a CNN must disregard in

order to make reliable predictions. Overall signal intensity

varies greatly, as animals produce sound at inconsistent

volume and at varying positions and orientations relative

to the recorder; this effect is compounded by variation in

background noise. Intensity also varies within each call as

the vocalizing animal places more stress on some syllables

or parts of syllables than others; less intense parts of the

call may fade out entirely as the sound attenuates with

distance, changing the apparent shape of the signal. The

signal may be compressed or expanded slightly in time or

frequency due to individual variation in sound produc-

tion. The signal may also blur along the time axis due to

echoes or scattering; this obscures the shape and separa-

tion between syllables, causing the call to appear cloudy

or smeared. Affected calls might still be recognizable but

will be more challenging to identify. When spectrograms

represent non-overlapping segments of the audio, some

portion of calls will be split between adjacent segments. If

this consistently hinders identification, such calls could be

under-counted; conversely, if the model can reliably

identify partial calls, split calls might be double counted.

These forms of variation will all be present in

varying combinations in field recordings. To make the

CNN more reliable, the training set should contain simi-

lar variation. This can be accomplished organically, by

drawing training examples from recordings made under

varying conditions, but it can also be simulated through

data augmentation.

Despite the need for further development, the demon-

strated effectiveness of this approach suggests that it may

be a good choice to support long-term monitoring of a

range of species at a large scale. We expect to achieve fur-

ther improvements with increased volume of training data

and number of target classes, experimentation with alter-

native model architectures, and fine-tuning the training

procedure.
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Table 2. Weekly encounter histories for six owl species with varying selectivity.

Threshold Barred owl Great horned owl N. saw-whet owl N. pygmy-owl Spotted owl W. screech-owl

Hexagon A None 11111110 11111100 00001010 11111110 10011110 11111110
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0.75 11111110 11111100 00001010 11111110 00001110 11111110

0.90 11111110 11111100 00001010 11111110 00001110 11111110

0.95 11111110 11111100 00001010 11111110 00001110 11111110

0.99 11111110 11111100 00001010 11111110 00001110 11111110

Hexagon B None 01111111 00000000 11111111 11110110 00010010 11111111

0.50 01111111 00000000 11111111 11110110 00010010 11111111
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classification (considering all real detections that were correctly tagged for a given species), then considering only real detections that were cor-

rectly tagged with pMax greater than or equal to some threshold, where pMax is the maximum class score predicted by the CNN. Each encounter

history indicates whether the species was detected (1) or not detected (0) at the site in each of eight consecutive weeks of recording. Bolded

entries represent a change from the hexagon-level encounter history for a given species at the previous threshold level. Great horned owls were
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