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abstract: A key assumption of epidemiological models is that
population-scale disease spread is driven by close contact between
hosts and pathogens. At larger scales, however, mechanisms such
as spatial structure in host and pathogen populations and environ-
mental heterogeneity could alter disease spread. The assumption
that small-scale transmission mechanisms are sufficient to explain
large-scale infection rates, however, is rarely tested. Here, we pro-
vide a rigorous test using an insect-baculovirus system. We fit a
mathematical model to data from forest-wide epizootics while con-
straining the model parameters with data from branch-scale exper-
iments, a difference in spatial scale of four orders ofmagnitude. This
experimentally constrained model fits the epizootic data well, sup-
porting the role of small-scale transmission, but variability is high.
We then compare this model’s performance to an unconstrained
model that ignores the experimental data, which serves as a proxy
for models with additional mechanisms. The unconstrained model
has a superior fit, revealing a higher transmission rate across forests
comparedwith branch-scale estimates. Our study suggests that small-
scale transmission is insufficient to explain baculovirus epizootics.
Further research is needed to identify the mechanisms that contrib-
ute to disease spread across large spatial scales, and synthesizingmod-
els and multiscale data are key to understanding these dynamics.

Keywords: disease ecology, epidemiological modeling, Bayesian in-
ference, microbial control.

Introduction

Ordinary differential equation (ODE) models of host-
pathogen interactions rely on the assumption that the host
population is well mixed (Murray 1989), so that transmis-
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sion can result from random contact between any given
infected/susceptible host pair with no effects of spatial var-
iation in host density or the environment (Keeling and
Rohani 2008). Such ODE models have led to important
conceptual advances, such as the threshold theorem of ep-
idemiology (Kermack and McKendrick 1927) and the hy-
pothesis that pathogens can control populations of their
hosts (Anderson and May 1979). More recently, the avail-
ability of high-performance computing and the develop-
ment of sophisticated fitting algorithms have made it pos-
sible to use stochastic versions of ODE models, further
enhancing their ability to serve as statistical tools for car-
rying out robust tests of theory (King et al. 2008).
The assumption that pathogen dynamics are driven

only by small-scale, spatially homogenous interactions be-
tween individual hosts is perhapsmost appropriate for di-
rectly transmitted human diseases, such as measles and
flu (Keeling and Rohani 2008), and for bite-transmitted
animal diseases, such as rabies (Blackwood et al. 2013)
and facial tumor disease of Tasmanian devils (Hamede
et al. 2009). For many other animal diseases, transmission
instead occurs when hosts contact infectious pathogen
particles in the environment (Rohani et al. 2009), but this
complication is often accommodated simply by adding a
pathogen-particle equation to otherwise standard models
(Anderson and May 1980). Theory of environmentally
transmitted pathogens then follows classical theory in as-
suming that transmission results from small-scale inter-
actions between hosts and infectious particles and in as-
suming that spatial structure and spatial heterogeneity have
negligible effects.
Formany environmentally transmittedpathogens, how-

ever, these assumptions are likely to be incorrect. In bo-
vine spongiform encephalopathy, for example, particle
densities in the soil vary spatially (Somerville et al. 2019),
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Testing Basic Disease Theory 617
while in chronic wasting disease of deer particle survival
in the soil can be altered by spatial variation in soil prop-
erties (Kuznetsova et al. 2014). In some Daphnia pathogens,
infectious particles are ingested during feeding (Shocket
et al. 2018), and pathogen dynamics may therefore be mod-
ulated by resource quality (Hall et al. 2009), which may in
turn vary spatially. In ranaviruses of frogs, transmission
rates are partly determined by short-range dispersal of in-
fectious particles (Mihaljevic et al. 2018), which may lead
to spatial variation in particle density. In these cases, it
seems likely that neglecting spatial structure could lead to
deeply flawed model predictions. The reliability of mod-
els of environmentally transmitted pathogens is therefore
in doubt.
Whether the models are indeed unreliable, however, is

unknown because there are very few tests of the assump-
tion that disease dynamics are driven by contacts between
hosts and pathogens at small scales. Part of the problem is
that such tests face significant obstacles. Arguably the sim-
plest test would be to compare infection rates at different
scales, but data on small-scale transmission are often lack-
ing because epidemiological studies understandably focus
on data collected at the scale of the entire host popula-
tion. Collecting data at both small and large scales could
nevertheless provide a robust test of a fundamental model
assumption.
A straightforward way to collect infection data at small

scales is to carry out transmission experiments. For the
vertebrate pathogens that are often the focus of disease
ecology, experiments are often impossible (McCallum
2016), but for some invertebrate pathogens experiments
are possible. For insect baculoviruses, like the baculovirus
of the Douglas-fir tussock moth (Orgyia pseudotsugata)
that we study here, experiments can even be straightfor-
ward (Elderd 2013). In insect baculoviruses, transmission
occurs when uninfected host larvae, while feeding on
their host plant, accidentally consume infectious particles
known as “occlusion bodies,” which are released from the
cadavers of dead infected larvae (Cory and Hoover 2006).
For insect baculoviruses, it is therefore possible to carry
out experiments on single branches, in which the only
process operating is transmission that results from unin-
fected hosts consuming occlusion bodies released from
dead infectious hosts on the same branch.
Because baculoviruses play an important role in con-

trolling pest insects, baculovirus data are also often avail-
able at the scale of entire forests (Moreau and Lucarotti
2007). Forest-scale data are collected tounderstand the con-
ditions under which natural baculovirus epizootics (epi-
zootics are epidemics in animals) cause the collapse of
pest insect populations (Moreau and Lucarotti 2007) and
to document epizootics that result from using baculovi-
ruses as insecticides (Hunter-Fujita et al. 1998). To under-
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stand the role of small-scale transmission in baculovirus
epizootics, we therefore carried out a small-scale transmis-
sion experiment, andwe collected large-scale epizootic data
from pest control programs in which we participated as
well as from pest control programs documented in the lit-
erature (Otvos et al. 1987). Our experiment was carried out
on single Douglas-fir branches that encompassed an aver-
age of 0.15 m2 of foliage, while the epizootic data were col-
lected in plots that encompassed 1–10 ha of forest. The dif-
ference in spatial scale over which the two data sets were
collected was thus about four orders of magnitude.
To compare pathogen dynamics across spatial scales,

we used our short-term, small-scale experimental data to
estimate the parameters of a model of baculovirus dynam-
ics, and we inserted the parameters into the model to pre-
dict infection rates in epizootics. As we will show, the
model is able to explain a substantial fraction of the vari-
ation in the epizootic data, but considering only a single
model begs the question of whether a model that includes
larger-scale processes could better explain the data. In-
deed, spatial variation in pathogen densities (Dwyer and
Elkinton 1993) and in forest tree-species composition (El-
derd et al. 2013) have been suggested to be a key determi-
nant of the dynamics of baculoviruses. A seemingly obvi-
ous additional step would therefore be to test whether a
model that allows not just for small-scale transmission
but also for large-scale spatial structure or environmental
heterogeneity can explain the epizootic data better than a
model that allows only for small-scale transmission.
A problem with such an approach is that the epizootic

data do not include information about changes in infec-
tion rates over space, so it would likely be impossible for
us to use the data to make inferences about spatial models.
The underlying problem is that the collection of the large-
scale data was not guided by an appropriate spatial model.
This is a common problem in ecology and epidemiology,
especially when theory is confronted by data collected dur-
ing management programs (Restif et al. 2012).
To avoid this problem, we devised a model-based sta-

tistical strategy to infer whether large-scale processes were
reflected in the large-scale data, in which we used a proxy
model that did not include spatial structure but that was
unconstrained by the small-scale data. This unconstrained
model uses the same equations as the model for which we
estimated parameters from small-scale data, but its pa-
rameters were estimated only from the epizootic data, al-
lowing for the possibility that its parameter values would
reflect large-scale spatial variation in host and pathogen
densities. To fit both the model with experiment-based pa-
rameters and the unconstrained proxy model to the epizo-
otic data, we used Bayesian statistical techniques, which
provided a consistent framework with which to compare
the two models (Gelman et al. 2014). We thus constructed
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618 The American Naturalist
informative priors for the experiment-based model using
the experimental data, and we constructed uninformative
or “vague” priors for the proxymodel by assuming that all
parameters were equally likely within some large range of
possible values.
This approach allows for uncertainty in the experimen-

tal parameters while also allowing for the possibility that
spatial structure would lead to differences in the parame-
ter estimates for the two models. As we will show, the pa-
rameter estimates are indeed quite different for the two
models, andmodel selectionusing theWatanabe-Akaike in-
formation criterion (WAIC; Gelman et al. 2014) showed
that the unconstrained model explains the data far better
than the model with experiment-based priors. Interac-
tions between individual hosts and infectious particles
at small scales are therefore not sufficient to explain the
population-level spread of the tussock moth baculovirus.
As we discuss, importantmissingmechanisms in ourmod-
els involve large-scale spatial variation, specifically in the
frequency of different strains of the baculovirus (Williams
et al. 2011) and in the composition of the forests in which
tussock moth outbreaks occur (Shepherd et al. 1988). Our
results therefore suggest that a better understanding of
spatial structure and environmental heterogeneity could
significantly improve our understanding of the dynamics
of animal diseases, emphasizing the importance of statis-
tically robust empirical tests in the development of eco-
logical theory.
Methods

Baculovirus Natural History

The models that we use were first developed for human
pathogens (Anderson and May 1992) but are general
enough that they can be used to describe baculovirus epi-
zootics. To explain why, we first describe baculovirus nat-
ural history, and then we show how simple susceptible-
exposed-infected-removed (SEIR)models can encompass
this natural history.
Baculovirus epizootics play a key role in terminating

tussock moth outbreaks, which occur at roughly 10-year
intervals (Mason 1996). During outbreaks, tussock moth
densities increase from levels at which larvae are undetect-
able to levels at which defoliation may be widespread and
severe (Shepherd et al. 1988). Outbreaking populations are
usually terminated by baculovirus epizootics, in which cu-
mulativemortality can exceed 90% (Mason 1996). So far as
can be known, the Douglas-fir tussock moth is the only or-
ganism in its range that is susceptible to the baculovirus,
althoughOrgyia species from other parts of North America
have been successfully infectedwith theDouglas-fir tussock
moth baculovirus in the laboratory (Rohrmann 2014).
This content downloaded from 170.14
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As is often the case in insect baculoviruses, transmission
of the tussock moth baculovirus occurs when larvae acci-
dentally consume infectious virus particles known as “oc-
clusion bodies” while feeding on foliage (Cory and Myers
2003). Larvae that consume a large enough dose die in
about 2 weeks. Shortly after death, viral enzymes dissolve
the insect’s integument, releasing occlusion bodies onto
the foliage, where they are available to be consumed by
uninfected larvae (Miller 1997). Epizootics are terminated
when larvae pupate or when epizootics are so severe that
most hosts die before pupating (Fuller et al. 2012).
The virus overwinters largely through external con-

tamination of egg masses (Thompson and Scott 1979).
The rate of egg mass contamination therefore appears
to determine infection rates at the beginning of the larval
period, which are often low (Otvos et al. 1987). High in-
fection rates then apparently result from multiple rounds
of transmission during the larval period (Shepherd et al.
1984; Otvos et al. 1987). In our study areas in the US states
of Washington, Idaho, and Colorado as well as in British
Columbia, Canada, this period is currently early June to
mid-August.
A Random SEIR Model

Because pathogen transmission and host reproduction
occur at different times of the year, we described baculo-
virus epizootics using a model that does not include host
reproduction. We began with a standard SEIR model from
human epidemiology (Keeling and Rohani 2008), and we
modified the model to allow for two sources of heteroge-
neity in infection risk. The first source of heterogeneity
results from variation between individual hosts, which in
insect-baculovirus interactions can be due either to varia-
tion in infection risk given exposure to the virus (Páez et al.
2015) or to variation in exposure risk itself (Parker et al.
2010), either of whichmay be heritable. The second source
of variation in infection risk in our model arises from sto-
chastic fluctuations in transmission.
Allowing for stochasticity is important because stochas-

ticity may interact in complex ways with disease dynam-
ics, so that the variability in the model predictions may
change as the epizootic proceeds or as initial host and
pathogen densities vary between epizootics. By including
stochasticity, we allow for this type of variation, ensuring
that our estimation procedures are statistically robust.
Perhaps the best-known approach to allowing for sto-

chasticity in ODEs is to assume that stochastic perturba-
tions occur over infinitesimal timescales, leading to “sto-
chastic ODEs” (Øksendal 2003). In insect-baculovirus
interactions, it seems likely that stochasticity is due to sto-
chastic changes in weather conditions, which can affect
baculovirus feeding and thus infection risk (Eakin et al.
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Testing Basic Disease Theory 619
2015). It is therefore intuitive to instead assume that
stochasticity operates on a daily timescale.
We thus assume that stochastic perturbations occur

over a finite timescale, and so our model equations are
known as “random ODEs” (Han and Kloeden 2017). The
distinction from stochastic ODEs is important because it
allow us to rely on methods from deterministic calculus
(Han and Kloeden 2017), whereas numerical integration
of stochastic ODEs, in contrast, requires more sophisti-
cated methods (Øksendal 2003).
Our approach is to first construct a model for epizo-

otic dynamics during a single day:

dSt
dt

p 2�neϵtStPt

"
St(t)
St(0)

#C2

, ð1Þ

dE1,t

dt
p �neϵtStPt

"
St(t)
St(0)

#C2

2mdE1,t, ð2Þ

dEi,t

dt
p mdEi21,t 2mdEi,t (i p 2, ::: ,m), ð3Þ

dPt

dt
p mdEm,t 2 mPt: ð4Þ

Here, the subscript t is an integer denoting the day, so that
the stochasticity term ϵt represents the stochastic pertur-
bation on day t. In the interests of simplicity, we assume
that ϵt follows a normal distribution withmean 0 and stan-
dard deviation j, and we exponentiate ϵt to avoid negative
transmission rates, which would be biologically nonsensi-
cal. Because weather conditions likely varied between pop-
ulations, we estimated a value of the standard deviation j

for each epizootic.
As in standard SEIRmodels, transmission in this model

occurs through a mass action term. In models of human
diseases, this term is often written as bSI, where S is the
density of uninfected (or “susceptible”) hosts, I is the den-
sity of infected hosts, and b is the transmission parameter.
Here, transmission instead occurs through contact be-
tween susceptible hosts S and infectious cadavers P, with
transmission parameter �n.
We further modify the transmission term to allow for

inherent variation among hosts, according to

"
St(t)
St(0)

#C2

:

This term comes frommodels originally developed for the
gypsymoth baculovirus (Dwyer et al. 1997), which were in
turn derived from models of sexually transmitted infec-
tions in humans (Anderson andMay 1992). The approach
is to assume that there is a distribution of infection risk in
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the host, withmean�n and coefficient of variationC (Dwyer
et al. 2000), as an approximation to a more computation-
ally intensive partial differential equation model. The ap-
proximation is highly accurate if transmission rates follow a
gamma distribution, but it is also reasonably accurate if
transmission rates instead follow a lognormal distribution,
which has a fatter tail than a gammadistribution (G.Dwyer,
unpublished data). In general, we assume that transmission
occurs among larvae in the fourth instar (plarval stage),
the instar that has the biggest impact on cumulative infec-
tion rates (Otvos et al. 1987; Dwyer 1991). To allow for the
smaller size of hatchlings, we multiply the initial virus den-
sity by the parameter r, which is the ratio of the number of
virus particles produced by a first-instar cadaver to the
number produced by a fourth-instar cadaver.
As in standard SEIR models, susceptible hosts St that

become infected proceed through m exposed classes, Ei,t.
Exposed hosts eventually die of the infection, joining the
infectious cadaver class Pt, which represents the dynamics
of the pathogen in the environment (the R class of SEIR
models corresponds to cadavers that are no longer infec-
tious, and so we do not include it here). Pathogen infec-
tiousness decays at rate m, due mostly to UV radiation
(Thompson and Scott 1979). Hosts move between ex-
posed classes at rate md, so that the time spent in a single
exposed class follows an exponential distribution with
mean time 1=(md). The total time in them exposed classes
is the sum ofm such distributions, and a well-known the-
orem has shown that this sum follows a gamma distribu-
tion with mean 1=d and variance 1=(md2) (Keeling and
Rohani 2008).
Once equations (1)–(4) have been numerically inte-

grated for day t, the initial conditions for day t1 1 are up-
dated. To carry out this updating, the model sets the initial
conditions for day t1 1 equal to the final values on day t:

St11(0) p St(1), ð5Þ
Et11,j(0) p Et,j(1) ( j p 1, ::: ,m), ð6Þ
Pt11(0) p Pt(1): ð7Þ

Here, St(1) is the density of uninfected larvae at the end of
day t, St11(0) is the density of uninfected larvae at the be-
ginning of the following day, and so on for the other state
variables.

Field Transmission Experiments

In equations (1)–(4), the average transmission rate, �n, rep-
resents the overall infection risk per unit time. It therefore
encompasses both the probability of exposure and the
probability of infection given exposure, and so it allows
for the effects of both host behavior and host-tree foliage
quality. Transmission �n is therefore best measured in the
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620 The American Naturalist
field, so that larvae can feed freely on virus-contaminated
foliage (Elderd 2013).
Previous work with the gypsy moth (Lymantria dispar)

produced a protocol for baculovirus field-transmission ex-
periments that gave repeatable results (Dwyer 1991; Dwyer
et al. 1997; Fleming-Davies et al. 2015). Following this pro-
tocol, we first reared uninfected tussock moth larvae in the
laboratory from field-collected eggmasses. The eggmasses
had been collected from an early-stage outbreak in Chey-
enne Mountain State Park in Colorado in 2014. To deacti-
vate any virus particles on the surface of the eggs, we sub-
merged the egg masses in 5% formalin for 90 min prior to
incubation (Dwyer and Elkinton 1995).We used hatchling
larvae as infected hosts in our experiments because the
most important round of transmission occurs when third-
and fourth-instar larvae are infected by first-instar cadav-
ers (Shepherd et al. 1984; Otvos et al. 1987).
To infect the hatchlings, we placed them on artificial diet

contaminated with the virus. A pilot study allowed us to
determine the viral dose that results in roughly 95% of lar-
vae becoming infected. We therefore used a solution of 104

occlusion bodies/mL, andwe used a Pasteur pipette to place
five drops of this solution onto artificial diet in a 6-ounce
(177-mL) plastic rearing cup. After larvae fed for 24 h, they
were moved to additional rearing cups.
To ensure that the infected larvae were indeed infected,

we reared them at 267C in the laboratory for 5 days. Five
days was long enough to ensure that any uninfected larvae
would molt to the second instar, whereas the virus pre-
vented infected larvae from molting (Burand and Park
1992). Second instars have different coloring from first
instars, and so it was straightforward to identify and re-
move uninfected larvae, which were all in the second instar
(Fuller et al. 2012). The infected larvae were then placed
on Douglas-fir branches in the field at two densities, 10 and
40 larvae per branch. The trees that we used were encom-
passed within an area of roughly 2 ha in the Okanogan-
Wenatchee National Forest, near Entiat, Washington.
The branches were enclosed in mesh bags, which pre-

vent the emigration of larvae and the breakdown of the
virus (Fuller et al. 2012). We then allowed 5 days for the
infected larvae to disperse on the foliage and die, a time
sufficient to ensure that they all died. On the fifth day, we
added 20 uninfected larvae, which we had reared in the lab-
oratory to the fourth instar (Dwyer et al. 1997). Controls
consisted of branches containing only uninfected larvae.
An insect larva’s susceptibility to baculovirus infection

can vary in a complex way within an instar (Grove and
Hoover 2007). We therefore developmentally synchro-
nized the uninfected fourth instars as follows. Shortly be-
fore molting, a larva’s head capsule slips forward, making
it possible to see that the larva is close to the end of its
instar. To synchronize fourth instars, we collected third
This content downloaded from 170.14
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instars with slipped head capsules, and we held them at
47C, halting development, until we had enough larvae to
begin the experiment. We then reared the larvae at 267C
until they had molted to the fourth instar, which occurred
within 48 h. The effect was that the uninfected larvae all
reached the fourth instar within a relatively short period.
In previous experiments that used this protocol, the var-
iance in the infection rate was indistinguishable from the
variance of the corresponding binomial distribution (El-
derd et al. 2008). Synchronization therefore appears to
eliminate most sources of extraneous variability, leaving
only the binomial variation that is expected in an infec-
tion experiment.
Our experimental treatments consisted of the two viral

densities (10, 40) crossedwith three viral isolates, for a total
of six treatments, each replicated 14 times. We also had
seven control bags inwhich there were no infectious cadav-
ers. The WA isolate was collected from Washington State
in 2010, while the NM isolate was collected in New Mex-
ico in 2014. The final isolate was TMB-1 (“Tussock Moth
Biocontrol-1”), which makes up the insecticidal spray for-
mulations produced by the US Department of Agriculture
Forest Service (Martignoni 1999). Transmission electron
microscopy showed that all three isolates were the multi-
capsid form of the virus, known as OpMNPV. In multi-
capsid strains, the virions are found in clumps within the
occlusion bodies, as opposed to single-capsid (OpSNPV)
strains, in which the virions occur singly within the occlu-
sion bodies (Hughes and Addison 1970).
The experiment included 91 branches with 20 unin-

fected larvae each, for a total of 1,820 uninfected larvae.
We allowed the initially uninfected larvae to feed on fo-
liage for 7 days, and then we removed the branches from
the trees and brought them into the laboratory. Next, lar-
vae from the branches were reared individually for 3 weeks
in 2-ounce (59-mL) cups partially filled with artificial tus-
sock moth diet, at 267C in the laboratory. To determine
whether larvae had died of the virus, we examined smears
from dead larvae under a light microscope at#400 for the
presence of occlusion bodies, which are easily visible at
that magnification (Fleming-Davies et al. 2015).
After the 7-day experimental period, we photographed

each branch, and we used ImageJ (Schindelin et al. 2015)
to estimate the area of foliage on each branch. We then
calculated the density of infectious cadavers and the den-
sity of uninfected hosts by dividing the number of cadav-
ers or hosts by the foliage area. This allowed us tomeasure
densities on single branches using the same units as in the
epizootic data, with the proviso that the epizootic data
were collected at a much larger scale.
As part of this experiment, we attempted to measure

the decay rate m of infectious cadavers on foliage by al-
lowing some cadavers to be exposed to sunlight outside
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the mesh bags for 3 days. Three days, however, proved to
be too short a period for us to detect meaningful decay of
the virus, and we therefore do not report those results.
Previous work was similarly unsuccessful at estimating
the decay rate of the tussock moth baculovirus using ex-
posure periods of 1, 4, 13, and 32 days (Dwyer 1992). It
may therefore be that the decay rate of the virus is very
low. As we will show, this result is consistent with some
of the estimates of the decay rate m that result from fitting
our models to the epizootic data.

Estimating Transmission Parameters �n and C from the Ex-
perimental Data. Direct comparison of the infection rate
in our experiment to the infection rate in the epizootics
is not meaningful because our experiments were designed
to only allow for a single round of transmission, whereas
there were undoubtedly multiple rounds of transmission
in the epizootics. The infection rate in the experiment was
therefore likely to differ from the infection rate in the epi-
zootics simply because of differences in timescales rather
than because of differences in spatial scales.
To correct for the difference in timescales, we fit a sim-

plified version of our SEIRmodel to the experimental data,
to estimate the transmission rate in the experiment. We
then used the resulting estimates of the average transmis-
sion rate �n and the heterogeneity in transmission param-
eter C in the full model, and we compared the model pre-
dictions to the epizootic data as we described above. This
approach allowed us to compare transmission rates at the
two spatial scales in a way that corrected for the difference
in temporal scales.
To simplify the full model, we first assumed that trans-

mission stochasticity was negligible during the short time-
scale of the experiment. This allowed us to eliminate the
dependence on t in equations (1)–(4). Also, the mesh
bags that enclosed the experimental branches prevented
the emigration of larvae and the breakdown of the virus,
and the experiment was short enough that no larvae be-
came infected and died during the experiment. The den-
sity of infectious cadavers on the experimental branches
was therefore constant after the experiment began, so
the density of particles P was constant during the exper-
iment. This latter simplification allowed us to solve equa-
tion (1) for the fraction of hosts i that have become in-
fected by the end of the experiment as a function of the
initial (and constant) virus density P0 (Dwyer et al. 1997).
When we compare the model to the experimental data,

it is useful to write the expression for the fraction infected
in terms of the log of the fraction uninfected (12 i):

2 log(12 i) p
1
C2 log(11 C2�nP0 t̂r): ð8Þ

Here, t̂ is the time larvae were exposed to virus on foliage,
which was 7 days. The ratio parameter, r, is included be-
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cause an implicit assumption of the SEIR model is that all
larvae are in the fourth instar, but the infectious cadavers
in our experiment were in the first instar. The parameter r
therefore scales the transmission rate so that it is expressed
in terms of fourth-instar cadavers. We also considered a
model in which host heterogeneity C is negligible:

2 log(12 i) p nP0 t̂r: ð9Þ
To estimate average transmission �n and heterogeneity

C from the experimental data, we used the Bayesian infer-
ence software JAGS (http://mcmc-jags.sourceforge.net/)
via the rjags package in R. We assumed vague priors for
�n and C and an experimentally derived prior for the ratio
parameter r, as we will describe below. To avoid biases in
the parameter estimates, we explicitly allowed for error in
the cadaver densities P0 in the statistical model. We then
used WAIC to compare the ability of different models to
explain the data (see the supplemental PDF, available
online, for the definition ofWAIC). Example code for this
fitting routine is provided in the supplemental PDF.1

On seven of our 91 experimental branches, all of the
initially uninfected larvae died as a result of desiccation.
Desiccation is a common source of natural mortality in
Douglas-fir tussock moth populations (Mason and Tor-
gersen 1983), but it may have been slightly worse in our
case because the mesh bags can elevate temperatures (Páez
et al. 2017). We therefore excluded these seven branches
fromour analyses.We also excludeddesiccated larvae from
the data from the other branches, partly because desic-
cated larvae were too dry to be autopsied but more impor-
tantly because desiccated larvae were unlikely to have been
infected.
Because the transmission rate �n is scale dependent, we

measured the foliage area of the branches in our experi-
ment. This area ranged from 0.09 to 0.28 m2 (mean, 0.15).
After we corrected for branch area, the cadaver densities
for the low-density treatment (10 cadavers per branch)
ranged from 38.49 to 112.58 cadavers per square meter
of foliage (mean, 70.58), while the densities for the high-
density treatment (40 cadavers per branch) ranged from
142.38 to 426.98 cadavers per square meter of foliage
(mean, 254.41).

Estimating Speed of Kill 1=d and Ratio r from Experimen-
tal Data.We also used an experiment to estimate the aver-
age speed of kill, which in the model is equivalent to 1=d,
the inverse of the death rate. In this experiment, we infected
larvae by allowing them to feed on Douglas-fir foliage that
was contaminated with a sprayed virus solution (supple-
mental PDF). For logistic convenience, this experiment
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was carried out in the laboratory. Because speed of kill is af-
fected by temperature, we held the larvae at temperatures
typical of field conditions (Polivka et al. 2017).
To estimate the ratio parameter, r, we again infected lar-

vae in the laboratory, but in this case we infected both
hatchlings and fourth instars (supplemental PDF). We
held these larvae in the laboratory until death or pupation,
and we counted the number of occlusion bodies per dead
larva for each instar, using a hemocytometer under a light
microscope.
The Epizootic Data

Our epizootic data came both from naturally occurring
epizootics and from pest management programs that used
the virus as an environmentally benign insecticide to re-
duce tussock moth defoliation. Our data set included
seven unsprayed control plots and five sprayed treatment
plots, with both data from the literature (Otvos et al.
1987) and data that we present here for the first time. Al-
though it is at least possible that the TMB-1 isolate used
in the spray formulation is phenotypically different than
wild-type virus, fittingmodels with different transmission
rates for spray and control plots showed that the trans-
mission rates of sprayed and wild-type virus are effectively
indistinguishable.
In spray programs, managers typically establish control

plots in the same general area as spray plots but far enough
away to prevent sprayed virus from drifting into the con-
trols. Data fromWashington State, for example, were from
a spray program in 2010 in which all plots were at least
10 km apart. This distance is far enough that drift of the
virus spray was highly unlikely. The data from British
Columbia were similarly from a spray program in 1982
(Otvos et al. 1987), but some plots were only a few hun-
dred meters apart. In the control plots in British Colum-
bia, however, the epizootics started 3–4 weeks later than
in the treatment plots. Given that sprayed virus typically
decays within a few days (Polivka et al. 2017), this time lag
suggests that drift of the spray was again minimal.
At the beginning of the larval period at each site, initial

host and pathogen population densities were estimated us-
ing standardmethods. These initial densities provided ini-
tial conditions for themodel (supplemental PDF). Because
initial virus densities in sprayed treatment plotsweremuch
higher than those in unsprayed control plots, the two types
of epizootic data together encompass a broader range of
initial pathogen densities than either type of epizootic data
alone. This is important because a broad range of densities
often increases statistical power when ecological models
are fit to data (Pascual and Kareiva 1996).
The data then consist of the fraction of larvae infected,

estimated at intervals of roughly a week, for up to 50 days,
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typically from mid-June to mid-August. In the sprayed
plots, insects were collected within 7 days of the applica-
tion of the virus, but in the control plots the start of col-
lections wasmore variable, particularly at sites where there
was no concurrent spray project. Insects were reared and
diagnosed as in the field transmission experiment.

Model Fitting and Model Selection. To fit models to the
epizootic data, we compared the fraction infected in the
data to the fraction infected in themodel. In themodel, in-
fected (but not yet dead) larvae are represented by the ex-
posed classes Em. The fraction of larvae infected is thenP

EmP
Em 1 S

:

For the transmission data we used a binomial likeli-
hood function, but for the epizootic data a binomial like-
lihood function was unlikely to be sufficient. Use of the
binomial distribution rests on the assumption that indi-
vidual hosts are independent (McCullagh and Nelder
1989), which likely held in our field experiment, as in sim-
ilar field experiments (Elderd et al. 2008), but the environ-
ment in which epizootics occur is muchmore complicated.
For example, the density of hosts may have been clumped
within the forest, and this clumping could cause the vari-
ance in the infection risk to be substantially higher than
the variance of the corresponding binomial, a phenome-
non known as overdispersion. It was therefore important
to allow for the possibility of overdispersion.
In the absence of direct information on the level of

overdispersion, a useful approach is to use a beta binomial
distribution (Cox and Snell 1989). In a beta binomial, the
binomial probability of an infection p follows a beta distri-
bution, which describes quantities like p that vary between
0 and 1. The beta binomial then has two parameters as op-
posed to the single parameter of the binomial, making it
possible to increase the variance of the likelihood as needed
to explain the lack of fit of themodel to the data (by includ-
ing stochasticity in transmission, we also allowed for the
possibility that the lack of fit was due to stochasticity). As
parameters of the beta binomial, we used a p peg and
b p (12 p)eg, where p is the model prediction of the frac-
tion infected and g is an inverse measure of the overdis-
persion. As we will show, overdispersion levels were mod-
erate but not excessive.
Because our epizootic models allow for stochastic fluc-

tuations in transmission, we integrated values of the like-
lihood over many realizations of the models. This ap-
proach is equivalent to integrating out the values of the
stochasticity ϵt to produce an average likelihood:

�L p

ð
L(ϵ1, ϵ2, ::: , ϵD)f (ϵ1, ϵ2, ::: , ϵD)dϵ1dϵ2 ::: dϵD: ð10Þ
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Here, �L is the average likelihood, and D is the number of
days in an epizootic. Thus, D is the number of days for
which we drew values of ϵt. The function f (ϵ1, ϵ2, ::: , ϵD)
is the probability density of the ϵt’s, where each integer,
1, 2, ::: ,D, indicates a different day.
Numerical integration of the model is computationally

expensive, and using numerical quadrature to calculate
the integral in equation (10) is therefore impractical. Ac-
cordingly, we instead usedMonte Carlo integration (Ross
2002). This meant that we drew values of the ϵt’s, and then
we estimated the average likelihood according to

�̂L p
1
R

XR

jp1

L(ϵj1, ϵ
j
2, ::: , ϵ

j
D): ð11Þ

Here, R is the number of realizations, and ϵj1 is the value of
ε1—meaning the stochastic term on day 1, in the jth real-
ization, and so on for ϵj2 ::: ϵ

j
D. According to the weak law of

large numbers, as R → ∞, �̂L → �L (Ross 2002).
To reduce computing time, it was important to ensure

that �̂L approached �L for a reasonably small number of
realizations. For this purpose we used the MISER Monte
Carlo integration algorithm. This algorithm uses recur-
sive, stratified sampling to estimate the average likelihood
while minimizing the number of realizations. In brief, the
algorithm works as follows (the code that we use is from
the GNU Scientific Library, but for a clear explanation of
how the algorithm works, see Press et al. 1992). As equa-
tion (11) shows, in calculating an estimate of the average
likelihood �̂L we are sampling over a D-dimensional space
of stochasticity parameters ϵt. Within this parameter
space, it is likely that there are subspaces within which
the variance in �̂L is higher than in other subspaces. In es-
timating �̂L across the entire space, it turns out to be more
efficient to sample more frequently in subspaces within
which the variance is higher. There is a formal proof of
this proposition, and so the process of subsampling forms
the basis of the MISER algorithm, as follows.
The algorithm is given a quota of R realizations. Some

fraction of these realizations—in our case, 0.1—is devoted
to sampling uniformly across the entire space. Based on
this initial sample, the algorithm recursively divides the
overall sample space into subspaces of high and low vari-
ance. In using the remaining realizations, the algorithm
samples more intensively in subspaces of high variance.
The end result is an estimate of �̂L that minimizes the var-
iance. Initial trials with this algorithm showed that 150 real-
izations was usually sufficient to produce reliable estimates
of �̂L. Using a larger number of realizations only reduced the
variance in �̂L by a small amount.
We then used our likelihood in Bayes’s theorem:

P(vjD) ∝ p(v)L(vjD): ð12Þ
This content downloaded from 170.14
All use subject to University of Chicago Press Terms 
Here, P(vjD) is the posterior probability distribution of
the parameters v of our model, which we fit to the data
D. The symbol p(v) is the prior probability of the param-
eters, and L(vjD) is the likelihood of the parameters. Be-
cause posterior probabilities are generally only used for
comparison purposes, we only need to calculate the poste-
rior probability up to a constant of proportionality, and so
we use the proportion symbol ∝.
To create priors from our experimental data, we used

the data to construct lognormal prior distributions for
transmission �n, heterogeneity C, and ratio r. To do this,
we used themarginal posterior samples generated from fit-
ting themodel to our transmission data. On a log scale, the
marginal posterior samples were well described by normal
distributions, so we used lognormal priors withmeans and
standard deviations calculated from the posterior samples.
In the case of the heterogeneity parameter C, we instead
estimated k p 1=C2, because k has a distribution that is
closer to normal than C after being log transformed.
We similarly used our speed of kill data to construct a

lognormal prior on the death rate parameter d. Because in
the model the variance in the speed of kill is determined
by the number of exposed classesm, in principle it should
be possible to estimate m from the observed variance in
the speed of kill in experimental data. In practice, how-
ever, the variance in the speed of kill in experimental data
is usually very low (Dwyer 1991). Meanwhile, our prelim-
inary efforts to estimate m from the epizootic data were
unsuccessful. Accordingly, instead of estimating m, we
set m p 200. Fixing m at this value ensured that the var-
iance in the speed of kill was realistically low without the
necessity of estimating the uncertainty in m.
The model parameters that we fit to the epizootic data

were the decay rate m, the stochasticity parameter j, and
the overdispersion parameter g. For these latter parame-
ters, we used uniform probability distributions as vague
priors, so that effectively all possible parameter values
were equally likely, up to some high upper limit. The pa-
rameters j and g in particular determine the process error
and the observation error, respectively (Bolker 2008), and
are thus effectively nuisance parameters. The only biolog-
ically interesting parameter that was unconstrained by
the epizootic data was therefore the cadaver decay rate m.
By using Bayes’s theorem, we allowed for the possibility

that the likelihood would dominate the experiment-based
priors, and it was therefore possible that our fitting rou-
tine would produce posterior parameter estimates that
were far from the values calculated from our experiments.
For the model with experiment-based priors, however,
the posterior median values of the parameters were not
that far from themedians calculated from our experiments.
This could have happened because the experiment-based
priors provide an excellent fit to the epizootic data, but it
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could also have happened because the epizootic data did
not provide much information about the model and its
parameters. In practice, both phenomena were operating,
in the sense that the experiment-based priors provide a rea-
sonable fit and that the epizootic data provided only amod-
erate amount of information about the model parameters.
To show this, we compare the parameter values for the

model with experiment-based priors to a model in which
the corresponding parameters have vague priors. Differ-
ences in the posterior distributions of the parameters
for the two models then indicate first that the experimen-
tal data did indeed constrain the posterior estimates of the
parameters for the model with experiment-based priors.
As we will show, for the heterogeneity parameter C, the
ratio parameter r, and the death rate parameter d, the pos-
terior medians for the model with vague priors were close
to the posterior medians for the model with experiment-
based priors, but the posterior median of the transmission
rate �n was meaningfully different from the median for the
model with experiment-based priors.
It is also important to remember that the model with all

vague priors is the model that we use as a proxy for more
complex models that take into account processes above
and beyond the processes that take place on a single branch.
From this perspective, the difference in posterior median
transmission rates between the model with experiment-
based priors and the model with all vague priors is impor-
tant because the transmission rate �n reflects the scale at
which interactions occur. Partly for this reason, �n is in units
of per infectious cadaver per square meter per day.
To compare the fit of the model with all vague priors to

the fit of the model with experiment-based priors, we first
calculated the coefficient of determination r2 for each
model. To define r2, we first define SStot to be the total sum
of squared errors across all observations in our data set:

SStot p
Xn

ip1

(Di 2 �D)2: ð13Þ

Here, n is the total number of observations of the fraction
infected in the epizootic data, Di is data point i, and �D is
the average fraction infected across all epizootics. Thus,
SStot is the total variation in the data set. Also, SSres is the
residual sum of squares, defined as

SSres p
Xn

ip1

1
R

XR

jp1

(Di 2Mi,j)
2: ð14Þ

Here, we are averaging across R p 500 model realiza-
tions. Thus, SSres measures the error between the model
and the data, which is the extent to which the model re-
produces the data. We then define r2 according to
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r2 p 12
SSres
SStot

: ð15Þ

We thus use r2 to calculate the fraction of the variance in
the data that is explained by the model or, alternatively,
the extent to which the model produces better predictions
of the epizootic data than a simple prediction that the frac-
tion infected at each time point in each population is equal
to the average fraction infected across the entire data set.
Because the model with vague priors was fit only to the

epizootic data, its r2 value was guaranteed to be as good or
better than the r2 value for the model with experiment-
based priors. As we mentioned, however, the improve-
ment in the r2 value turned out to bemodest. An additional
important question is, therefore, how much better is the
fit of the model with vague priors than the fit of the model
with experiment-based priors? That is, does the model
with vague priors provide a meaningfully better explana-
tion for the data than the model with experiment-based
priors? To consider which processes in particular are poorly
described by our experiments, we also considered models
that allowed for experiment-based priors on only some of
the parameters for which we had experimental data.
We then used statistical model selection to compare the

ability of the different models to explain the epizootic data.
Because Bayesian statistical techniques are fundamental to
our approach, we chose between models using the WAIC,
a Bayesian version of the more familiar AIC (Gelman et al.
2014). In most applications of model selection, the models
being compared differ in structure, but in our case the
model structure, as defined by the random ODEs in equa-
tions (1)–(4), is the same for all models. Because WAIC is
a type of Bayesian information criterion, it allowed us to
choose between models that differed only in their prior
probability distributions. We are thus carrying out model
selection in an unconventional way, but to our knowledge
there is no established method of choosing between mod-
els with different priors. This is true even though estimat-
ingmodel parameters at a smaller scale than the test data is
a common procedure in disease ecology. Using small-scale
data to construct priors is one way to estimate model pa-
rameters at a smaller scale than the test data in a way that
allows for parameter uncertainty (Elderd et al. 2006). We
therefore argue that WAIC is useful for testing whether
small-scale data can explain large-scale data.
As we will show, the results of our WAIC analysis con-

firm the results of our comparisons of posterior parameter
estimates. That is, models with experiment-based priors
on the transmission parameter fit the epizootic data sub-
stantially worse thanmodels with vague priors on the trans-
mission parameter.We therefore conclude that the dynam-
ics of the baculovirus are partly affected by processes at
larger scales than the scale at which individual hosts interact.
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Results

Experiments

For two of the three virus strains that we tested, the overall
best-fit model is clearly nonlinear (fig. 1), showing the in-
fluence of host heterogeneity in infection risk. Figure 1
also shows that the three isolates differed strongly, such
that the NM isolate had much higher heterogeneity in
transmission, while the WA isolate had much lower het-
erogeneity in transmission. These effects are reflected in
the median posterior estimates of heterogeneity C for the
three isolates (tables 1, 2).
In the gypsy moth baculovirus, there is a positive cor-

relation between the average and the coefficient of varia-
tion of transmission (Fleming-Davies et al. 2015). Table 1
at least suggests that such a correlation may similarly oc-
cur in the tussock moth baculovirus, but with only three
isolates we cannot reach general conclusions. More im-
mediately, the variation across isolates is important be-
cause, in the epizootic data, we have no information about
the isolates that were present. In constructing informative
priors from our experimental data, we therefore allowed
for variation across isolates by pooling the marginal pos-
terior distributions for the three isolates and inflating the
pooled variance slightly (supplemental PDF).
Comparing Models to the Epizootic Data

In the epizootic data, initial infection rates in control pop-
ulations were low but increased slowly over the larval pe-
riod (fig. 2), takingweeks to reachhigh levels. Sprayedpop-
ulations, in contrast, received an initial inundation of the
pathogen, and so their infection rates increased within a
This content downloaded from 170.14
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week or two after the spray application. Host population
collapse was therefore rapid in the sprayed sites, leading
to weaker effects of initial host density as opposed to ini-
tial virus density.
The model with experiment-based priors generally

does a good job of reproducing the epizootic data (fig. 2),
with r2 p 0:68, while the model with vague priors im-
proves on the fit only modestly (fig. 3), with r2 p 0:75.
The posterior estimates of the model parameters, however,
show that the models provide quite different explanations
for the dynamics of epizootics.
For both models, the posterior distributions of the het-

erogeneity parameter C, the ratio parameter r, and the
speed of kill parameter d strongly overlap with the pos-
teriors from the experimental data (fig. 4). For models
with intermediate numbers of experiment-based priors,
the posterior distributions of these three parameters also
strongly overlap with the experimental posteriors (fig. 5).
These results suggest that our experimental estimates of
heterogeneity C, the ratio parameter r, and the death rate
parameter d are all reasonably accurate, compared with
estimates that take into account epizootic data.
For both the unconstrained model and the model with

experiment-based priors, however, the posterior median
value for transmission �n is very different from the exper-
imentalmedian.For themodelwithexperiment-basedpri-
ors, the posterior median is roughly an order of magni-
tude higher than the experimental median, and there is
no overlap in the 95% credible intervals on �n in the two
cases. For the model with all vague priors, the posterior
median is almost two orders of magnitude higher than the
experimental median, and there is no overlap in the 95%
credible interval on �n for that model with the 95% credible
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Figure 1: Results of the field transmission experiment with the WA isolate (a), TMB-1 (b), and the NM isolate (c). In the figure, the solid
lines represent the median model predictions, while the gray dashed lines represent bootstrapped 95% credible intervals. The large black
points with error bars represent the mean and the standard error of the data.
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interval on �n from the experimental data or with the 95%
credible interval on �n for themodel with experiment-based
priors (fig. 4). For models with experiment-based priors on
parameters other than �n, the posterior medians of �n are
similarly higher than the experimental median or the pos-
terior medians for any models with experiment-based
priors on �n (fig. 5).
For the models with experiment-based priors on trans-

mission, the posterior distributions of transmission are
thus concentrated at much lower values than the corre-
sponding posteriors for the models with vague priors on
transmission. This effect occurs because of the constrain-
ing effects of the experiment-based prior on transmission.
The same models, however, are also strongly constrained
by the epizootic data, and so their posterior distributions
of transmission parameters are concentrated at much
higher values than the prior itself. The posterior distribu-
tions of transmission rates for these models thus reflect
the combined influence of the priors and the likelihood.
Part of the reason why models with experiment-based

priors on transmission still fit the epizootic data reason-
ably well has to do with the effects of stochasticity on in-
fection rates. As we show in the supplemental PDF, high
stochasticity can also increase overall transmission. Be-
cause the experiment-based priors on the transmission
rate �n are centered at low transmission rates, models that
use experiment-based priors on transmission attempt to
explain the epizootic data using high stochasticity. The
reasonably high r2 value for the model with experiment-
based priors on most parameters is therefore due to high
levels of transmission stochasticity. Although it may be
that baculovirus epizootics in nature are indeed strongly
affected by stochasticity, a more parsimonious explana-
tion is that there is a mechanism operating in epizootics
that is not in the model.
Comparison ofWAIC scores then shows that themodel

with vague priors provides a much better explanation for
the data than the models with experiment-based priors
on the transmission rate (table 3), with DWAIC 1 5 in
all cases. We therefore conclude that in this pathogen
small-scale transmission is insufficient to explain large-
scale epizootics.
This content downloaded from 170.14
All use subject to University of Chicago Press Terms 
That is not to say, however, that individual-level mech-
anisms do not play a role in epizootics. Evidence in sup-
port of the role of individual-level mechanisms comes
from models with experiment-based priors on parame-
ters other than transmission. For these models, DWAIC
scores were less than 3, indicating that the fit of these
models is effectively indistinguishable from the fit of the
model with all vague priors. In the supplemental PDF,
we show that the visual fit of these models to the data is
very similar to the visual fit of the best model, for which
all priors were vague.
Of particular note is that the posterior medians for the

model with all vague priors and for the models with
experiment-based priors on heterogeneity but not on
transmission are close to the posterior median for hetero-
geneity from our experimental data. We therefore con-
clude that individual heterogeneity in transmission plays
a key role in the dynamics of the baculovirus.Overall, then,
our results show that processes beyond the branch-scale
affect epizootics but that branch-scale processes also play
an important role.
An important feature of host-pathogen models with

high heterogeneity is that they predict lower infection
rates at high host density, because of the dominating ef-
fects of resistant individuals, and higher infection rates
at low host density, because of the presence of at least a
few highly susceptible individuals (Dwyer et al. 1997).
In figures 2 and 3, infection rates were high across a broad
range of densities in both the data and the models, consis-
tent with these effects. Also because of these effects, mod-
els that do not account for heterogeneity provide poor fits
to data from populations at either very low or very high
densities (table 3; also see the supplemental PDF).
Taken together, these results provide a complicated an-

swer to our original question: Are interactions between
individual hosts on single branches sufficient to explain
baculovirus epizootics in entire forests? The large differences
in posterior values of transmission �n between the model
with all vague priors and the models with experiment-based
priors on transmission, as well as the worse WAIC scores
of models with experiment-based priors on transmission,
suggest that there are processes affecting epizootics be-
sides interactions between hosts on single branches and
thus that the answer to our question is no. The ability of
models with experiment-based priors on heterogeneity in
Table 1: Best-fit transmission parameters (average transmis-
sion, �n, and heterogeneity, C) for three viral isolates
Isolate
 Average transmission, �n
 Host heterogeneity, C
WA
 .006 (.003–.010)
 .60 (.05–1.52)

TMB-1
 .012 (.004–.030)
 1.52 (.25–2.51)

NM
 .076 (.005–3.104)
 4.11 (2.15–6.45)
Note: Values are posterior medians with 95% credible intervals. Units for
�n are per infected cadaver per square meter per day. Heterogeneity is the
squared coefficient of variation of the distribution of infection risk; it is
therefore scale free.
Table 2: Model selection for the transmission experiment
Model type
4.214.078 on Ap
and Conditions (h
WA isolate
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TMB-1
/t-and-c).
Overall
C 1 0
 175.53
 179.48
 165.06
 520.07

Cp 0
 174.28
 199.11
 168.45
 541.84
Note: Boldfaced Watanabe-Akaike information criterion (WAIC) scores
highlight the best model, based on DWAIC 1 3.
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transmission nevertheless emphasizes that branch-scale pro-
cesses also play a key role.
Discussion

The assumption that interactions between individual hosts
at a small scale determine infection and parasitization rates
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has been fundamental to studies of host-pathogen and
host-parasitoid interactions for decades (Varley et al. 1973;
Anderson andMay 1979). A common approach to under-
standing pathogen or parasite dynamics is therefore to es-
timate transmission rates from small-scale data or labora-
tory data (Buhnerkempe et al. 2011; George et al. 2011;
Blackwood et al. 2013). Our results for the baculovirus
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Figure 2: Stochastic realizations of the model with informative priors on �n, C, r, and d versus the data (black points with 95% binomial
confidence intervals as error bars). The labels C and T stand for control and treatment (meaning treated with virus spray), respectively,
and are followed by the year of observation. The initial larval host density is also shown. Note that for the Colorado site (C3-2015), the
initial larval host density was estimated from the data. Here and in subsequent figures, for two of the populations (C3-2015, C4-1987)
we show the model’s predictions after the last data point was collected to illustrate the overall dynamics of the pathogen.
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of the Douglas-fir tussock moth instead show that esti-
mating transmission from small-scale data provides a
meaningfully worse fit to large-scale data than if trans-
mission was estimated from the large-scale data alone.
Our work therefore suggests that small-scale interactions
between hosts are insufficient to explain the dynamics of
this pathogen.
Direct tests of general models require specific biological

systems, but we nevertheless argue that our results are of
general significance. The basis of our argument is that,
This content downloaded from 170.14
All use subject to University of Chicago Press Terms 
among animals, environmentally transmitted pathogens
may be the rule rather than the exception (Cory andMyers
2003; Rohani et al. 2003; Duffy and Sivars-Becker 2007;
Mihaljevic et al. 2018). Our results then suggest that, for
such diseases, models that include only small-scale inter-
actions between hosts may often be insufficient.
Our work does not definitively identify spatial struc-

ture as the missing mechanism in our models, but the fail-
ure of models that rely on branch-scale estimates of trans-
mission at least suggests that the missing processes in our
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models operate at larger scales than the scale of our exper-
iment. Moreover, there are several important factors that
likely affect the pathogen but that are not included in our
models, and each of these factors involves spatial struc-
ture or environmental heterogeneity.
First, Douglas-fir tussockmoth larvae can grow and de-

velop on multiple different host tree species, and forest
tree-species composition varies strongly across the insect’s
range (Shepherd et al. 1988). In British Columbia, Douglas-
fir is the dominant host tree species, while Abies species
predominate in California and Nevada, with intermediate
frequencies in other parts of the western United States.
This is important because previous work showed that the
transmission of the gypsymoth baculovirus can be strongly
affected by variation in plant foliage chemistry (Elderd et al.
2013). If similar effects occur in the tussock moth baculo-
virus, differences in forest tree species composition may
havemodulated epizootics in a way that was not accounted
for in the model with experiment-based priors.
Second, although all three of the baculovirus isolates in

our experiments were of the multicapsid (or OpMNPV)
morphotype, in which viral capsids occur in clumpswithin
occlusion bodies, there is a second, unicapsid (orOpSNPV)
morphotype that occurs in tussock moth populations in
nature, in which viral capsids occur singly within occlu-
sion bodies (Hughes and Addison 1970). The frequencies
of the two morphotypes appear to vary latitudinally, with
high frequencies of OpMNPV in British Columbia, high
frequencies of OpSNPV in NewMexico, and intermediate
frequencies inWashington, Oregon, Idaho, and California
(Williams et al. 2011). Although not much is known about
differences in phenotypes between the morphotypes, phy-
logenetic analyses have shown that the two are at least
moderately diverged (Jakubowska et al. 2007), and it there-
fore seems likely that the phenotypes of the two morpho-
types differ. This seems especially likely given that we ob-
This content downloaded from 170.14
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served meaningful differences in transmission parameters
even within the threeOpMNPV strains that we used in our
experiment. Variation in morphotype frequency is thus
a second possible missing mechanism in the model with
experiment-based priors, while interactions between mor-
photypes and host-tree species provide yet a third possible
missing mechanism.
Finally, tussock moth larvae are often observed to be at

higher densities near the tops of trees, and this aggrega-
tion may increase infection rates relative to our experi-
ments (Dwyer and Elkinton 1993). Superficially, it seems
unlikely that this mechanism plays a key role, because our
estimates of overdispersion levels are modest, but theory
has shown that modest clumping can sometimes have
strong effects (Bolker and Pacala 1999). Clumping is there-
fore a final possible missing mechanism in the model with
experiment-based priors.
Likely explanations for the missing mechanisms in the

model thus have largely to do with spatial structure. We
therefore advocate the further development of spatial theory
in disease ecology. In particular, spatial models in disease
ecology have often focused on traveling waves and other
dramatic spatial phenomena (Dwyer 1992), reflecting the
focus of spatial models in ecology as a whole (Murray
1989). Our work, in contrast, suggests that an unresolved
question is, How do spatial patchiness and environmental
heterogeneity together drive temporal dynamics? This is
a long-standing problem in ecology (Bolker and Pacala
1999), but our work suggests that solutions to the prob-
lem may have practical applications in pest control.
There are also two ways in which our work emphasizes

the importance of stochasticity in pathogen dynamics.
First, all of our models invoke substantial stochasticity to
fit the epizootic data. The models with experiment-based
priors on transmission have particularly high posterior
estimates of stochasticity, not only because randomness
Table 3: Watanabe-Akaike information criterion (WAIC) model selection for observational data
Experiment-based
priors on
Average likelihood:P
2 log(�̂L )
4.21
and C
Penalty score:
pWAIC2
4.078 on April 29, 202
onditions (http://www
WAIC
0 11:20:22 AM
.journals.uchica
DWAIC
No parameters
 2197.33
 5.95
 406.58
 0

d
 2197.05
 6.34
 406.79
 .21

C, r, d
 2197.77
 7.00
 409.52
 2.94

C
 2197.09
 7.71
 409.61
 3.03

r
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�n
 2199.20
 7.08
 412.57
 5.99
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No parameters, C p 0a
 2208.62
 No convergence
Note: Models for which DWAIC ! ≈3 are considered to be indistinguishable from the best model and are therefore
shown in boldface.

a Because the model with no heterogeneity in transmission (C p 0) did not converge, the average likelihood for that
model is a rough estimate based on nonconverged Markov chain Monte Carlo samples.
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helps those models better fit the epizootic data but also be-
cause higher stochasticity by itself increases infection rates
(in the supplemental PDF, we prove this assertion). This
effect occurs because increased stochasticity in transmis-
sion increases the frequency of both very low and very high
transmission rates, but higher transmission rates have dis-
proportionately stronger effects on the infection rate. For
themodels with experiment-based priors on transmission,
the fitting routine therefore attempted to fit the epizootic
data using high levels of stochasticity. This leads to more
uncertain predictions, which is part of the reasonwhy those
models have larger (worse) WAIC scores.
Second, it is not clear that our models include the cor-

rect type of stochasticity. To explain this, we note that be-
cause we fit a separate value of stochasticity to each popu-
lation, it is possible to consider how stochasticity varied
with host density. In the unsprayed populations in par-
ticular, the median posterior values of stochasticity were
smaller in populations with higher initial host densities
(supplemental PDF). The stochasticity associated with
small population sizes, known as “demographic stochas-
ticity” (Bolker 2008), may therefore have been more im-
portant than the environmental stochasticity that we in-
cluded in our models. Because similar effects did not
occur in the sprayed populations, we suspect that any such
demographic stochasticity has do to with low initial den-
sities of the pathogen rather than low initial densities of
hosts. Moreover, it seems likely that any such demographic
stochasticity is compounded by the effects of space because
the number of occlusion bodies on a branch is, of course,
much smaller than the total number of occlusion bodies
in a forest.
In making these points, we are not arguing that a lack

of consideration of demographic stochasticity means that
our results were flawed because we suspect that allowing
for demographic stochasticity instead of environmental
stochasticity would have given similar results. Our larger
point is instead that further development of spatial mod-
els should also include careful consideration of the effects
of stochasticity and how stochasticity is compounded by
spatial structure.
Although branch-scale transmission is insufficient to

explain the dynamics of the Douglas-fir tussock moth
baculovirus, it is important to remember that models with
experiment-based priors on heterogeneity in transmis-
sion fit the data nearly as well as the model with vague
priors. Individual-level mechanisms thus also play a key
role in the dynamics of this pathogen. In disease ecology,
host heterogeneity is typically only invoked in studies of
sexually transmitted infections of humans (Keeling and
Rohani 2008), but our work suggests that host variation
may have effects in many systems. Detecting such effects,
however, may require a consideration of individual-scale
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All use subject to University of Chicago Press Terms 
data, as emphasized by Murdoch et al. (2005). Although
individual data are unavailable in many host-pathogen
systems, recent work has used measurements of antibody
kinetics in individual hosts to estimate the force of infec-
tion (Pepin et al. 2017). A similar approach may allow for
estimation of heterogeneity in host transmission.
Our estimates of heterogeneity C are also relevant to

insect-pathogen population cycles. Asfigure 4 shows, a sub-
stantial fraction of our posterior estimates of C are greater
than 1, and for the model with vague priors the lower
bound on the 95% credible interval is above 1. This is im-
portant because in simple, long-termmodels of insect out-
break cycles, values of heterogeneityC 1 1 guarantee a sta-
ble point equilibrium (Dwyer et al. 2000). In such models,
however,C 1 1 can instead allow cycles if resistance is her-
itable, so that selection by the virus drives fluctuations in
resistance (Elderd et al. 2008). Given that there is over-
whelming evidence that Douglas-fir tussock moth popula-
tions have cyclic outbreaks (Mason 1996), our estimates of
heterogeneity suggest that selection plays a role in tussock
moth population cycles, much as selection plays a role in
gypsy moth population cycles (Páez et al. 2017).
Our Bayesian approach allowed us to show that our

small-scale experimental data are not sufficient to explain
the dynamics of the tussock moth baculovirus at large
scales even though the model with experiment-based
priors fits the data fairly well. We therefore echo the argu-
ment of Restif et al. (2012) that Bayesian methods can al-
low for deep insights into disease dynamics. Moreover, in
ecology mechanistic model fitting and high-performance
computing are typically applied only to observational data
(Ionides et al. 2015). This is problematic partly because a
reliance on observational data alone can lead to flawed
inferences (Cobey and Baskerville 2016) but more broadly
because mechanistic model fitting is rarely used in ex-
perimental field ecology. By using model fitting and high-
performance computing to synthesize experimental and
observational data, we hope to have shown that such tools
can indeed be useful in experimental field ecology. The
computational methods that we present here may there-
fore be of general usefulness.
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