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Abstract Biomass mapping is used in variety of applications including carbon assessments, emission
inventories, and wildland fire and fuel planning. Single values are often applied to individual pixels to
represent biomass of classified vegetation, but each biomass estimate has associated uncertainty that is
generally not acknowledged nor quantified. In this study, we developed a geospatial database of wildland
fuel biomass values to characterize the inherent variability within and across major vegetation types of the
United States and Canada. For vegetation types that had sufficient quantification of biomass by fuel type
(e.g., canopy, shrub, herbaceous, fine downed wood, coarse downed wood, and organic soil layers), we
developed empirical distribution estimates. Based on available data, fitted distributions will be useful for
informing the first‐generation biomass mapping that incorporates variability in loading by vegetation and
fuel type and to evaluate potential errors in point estimates given in current map products. Because
combustible biomass is a common input in fire and smoke models, variability estimated for fitted
distributions can be used to inform data input uncertainty in predictions of wildland fuel consumption and
emissions and to provide stochastic inputs of biomass to ensemble simulation models.

Plain Language Summary The mass of live and dead vegetation, termed biomass, is used in
variety of applications including carbon mapping, wildland smoke emission modeling, and fire
management. In many mapping projects, single biomass values are often used to represent classified
vegetation types. However, in reality, the biomass of grasslands, shrublands, and forests is extremely
variable, and mapped values are associated with a high degree of uncertainty. In this study, we developed a
database of wildland fuel biomass by major vegetation type in the United States and Canada. For well‐
studied vegetation types we developed mathematical models that statistically represent the distribution of
biomass observations. Based on available data, fitted distributions will be useful for informing the first‐
generation biomass mapping that incorporates uncertainty estimates by major vegetation type to evaluate
potential errors in current map products. Because biomass is a common input in fire and smoke models,
fitted distributions can be used to evaluate the uncertainty in predicted wildfire emissions.

1. Introduction

Raster maps of vegetation and biomass are increasingly used in wildfire hazard assessments (Rollins, 2009;
Scott et al., 2013), emission inventories (e.g., US EPA, 2017), carbon mapping (Blackard et al., 2007; Pan
et al., 2011), and local to regional wildland fire and smoke management (Peterson et al., 2018).
Traditionally, single biomass values have been assigned to mapped pixels, often based on broadly classified
vegetation type and assignment using look‐up tables or nearest‐neighbor imputation (e.g., Keane et al., 2013;
McKenzie et al., 2007; Pierce et al., 2009; Riley et al., 2016; Rollins et al., 2004). Ideally, biomass estimates
would be based on highly replicated and accurate field measurements to calibrate relationships with remo-
tely sensed imagery and include estimated variability. In reality, biomass is composed of living vegetation
(i.e., trees, shrubs, and herbs) and dead material (i.e., dead wood, litter, and organic soils) that is highly
dynamic and variable across time and space (Keane et al., 2012). This inherent variability generally makes
it impractical to collect enough measurements to represent the broad geographic and structural diversity
of biomass in wildland environments.
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Biomass mapping generally relies on classifications based on mapped vegetation or interpretation of remo-
tely sensed imagery rather than measured values (Keane et al., 2013). Many maps of combustible biomass,
generally termed as wildland fuels for fire and smoke management, employ crosswalks from vegetation type
(McKenzie et al., 2007; Raymond et al., 2006) to estimated biomass. LANDFIRE (https://www.landfire.gov)
provides a central repository of mapped data for fuels and fire planning across the United States including
surface and canopy fuel characteristics. Fuelbeds from the Fuel Characteristics Classification System
(Ottmar et al., 2007), fuel loading models (Lutes et al., 2009), fire behavior fuel models (Anderson, 1982),
and canopy characteristics are derived from vegetation classifications from remote sensing imagery and
other data layers (Peterson et al., 2015; Rollins, 2009). Wildland fuel maps generally include estimates of bio-
mass per area by major fuel type (e.g., canopy, shrub, herbaceous, downed wood by size class, and organic
soil layers including litter and duff). For emission inventories (e.g., McKenzie et al., 2012; Peterson et al.,
2018; US EPA, 2017) biomass estimates are summarized at relatively coarse scales (1‐km pixels) by aggregat-
ing finer‐scale variability in wildland fuels (French et al., 2011).

Multispectral remote sensing imagery (e.g., Landsat) is useful for characterizing upper canopy fuels of dense
forests and shrublands but is not valid for surface fuel characterization (e.g., understory vegetation, downed
and dead wood, and organic soil layers). Advances are being made to map three‐dimensional forest and
shrubland canopy biomass through airborne and terrestrial light detection and ranging (lidar) data sets
(Andersen et al., 2005; Skowronski et al., 2011), but these approaches are still under development and would
offer only partial characterization of surface fuels. Because surface fuels are highly variable and are not easily
predicted from canopy characteristics, there are generally high misclassification rates when canopy fuels are
used to predict surface fuels (Jakubowski et al., 2013). In addition, the bulk of combustible biomass of sur-
face fuels is within the first 10 cm of the fuelbed and often composed of intermixed live and dead vegetation
that is difficult to quantify from remotely sensed imagery (Bright et al., 2016) and requires direct, ground‐
based measurement.

Uncertainty in biomass estimates underlies any wildland fuel mapping and is generally not acknowledged,
much less quantified (Congalton et al., 2014; Urbanski, 2014). Regional assessments typically use point‐
based estimates as inputs to model applications and to inform management. However, whether the biomass
is empirically estimated or modeled, estimates assigned to eachmapped pixel have inherent sampling or pre-
diction error (e.g., Krasnow et al., 2009; Thurner et al., 2013) due to the underlying variability in biomass. To
avoid false precision in biomass estimation and resulting model predictions, it is necessary to quantify this
variability in biomass for mapped values. When a mapped value is used as a data input into predictive mod-
els, this variability can then be used to inform plausible bounds on biomass input data. If the biomass value is
not directly measured, then these plausible bounds represent a range of uncertainty for what biomass is actu-
ally on the ground—this allows the user to explore how this uncertainty is propagated through predictive
models (see French et al., 2004).

Quantifying the variability in wildland fuels has important consequences for how biomass values are used in
model applications. For models that require biomass as data input, it is important to understand how uncer-
tainty in values propagates to uncertainty in model predictions (Hanna, 1988). There are multiple sources
that contribute to the total uncertainty in model prediction, which can be classified broadly into four groups:
model structure uncertainty, parameter estimation uncertainty, data input uncertainty, and natural variabil-
ity over space and time (Beck, 1987; O'Neill & Gardner, 1979; Turley & Ford, 2009). Characterizing a pixel as
a single point estimate masks the underlying variability in the data input, resulting in false precision in
model predictions. A credible estimate of the variability in biomass associated with a given pixel or location
requires knowledge of the likely statistical distribution of the input data. For example, with sufficient repli-
cation, field‐based inventories of site estimates can be used to quantify an interval for total biomass. Absent
direct measurement of biomass at a given time and space, such an interval can then be used to obtain a dis-
tribution of reasonable input values for a given model application. This would be an estimate of the uncer-
tainty in the input value for the purposes of model prediction. A model prediction interval then can be
obtained from the distribution of plausible input biomass values.

Evaluation of map accuracy in representing wildland fuels must also consider issues of scale and resolution.
When we consider the quality of current continental‐scale biomass, carbon, and wildland fuel maps, it is not
appropriate to attempt to validate the estimate of an individual pixel against plot‐level data. Plot‐level data
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are subject to sampling error and may not represent the pixel—such a validation will inevitably fail (Keane
et al., 2013). Although point estimates represent our best estimate for an individual pixel, it does not match
the on‐the‐ground value. Wildland fuels are variable at multiple spatial and temporal scales (Keane et al.,
2012), and to improve the quality of our mapped products, we must harness this variability to understand
the uncertainty in biomass estimation underlying each mapped point value. Note that for this study we
focus on the component of data input uncertainty represented by the distribution of biomass values—we
do not incorporate other sources of uncertainty such as the propagation of EVT classification error. This
would likely add to total prediction uncertainty.

For wildland fuel applications, mapped biomass estimates have important consequences for smoke model-
ing and estimating emissions of air pollutants such as fine particulate matter (PM < 2.5 μm, PM2.5). High
concentrations of PM2.5 have been linked to serious public health issues (Reisen et al., 2015); PM2.5 emis-
sions from wildfires are carefully monitored and are also commonly modeled for prescribed burn planning
and to estimate wildfire smoke impacts (Liu et al., 2017). Errors in mapped biomass estimates that are either
at the extreme low or high ranges of probable distributions can cascade into large errors in modeled smoke
emissions (Larkin et al., 2012).

The primary goal of this study was to characterize the inherent variability in wildland fuels and facilitate
uncertainty analysis in modeling applications. To do this, we developed the North American Wildland
Fuel Database, a geospatial database of quantified biomass values over major vegetation types of the
United States and Canada (http://nawfd.mtri.org). For vegetation types that had sufficient biomass records
by fuel type we fit empirical distributions by fuel type. Published distributions will be useful for informing
the first‐generation biomass and wildland fuels mapping that incorporates uncertainty estimates by major
category. Results of this study also will help inform future sampling needs to better represent the biomass
of wildland fuels. Because biomass is a common input in fire and smoke models (Ottmar, 2014), data input
intervals informed by our database can be used to better understand uncertainty in predictions of wildland
fuel consumption and emissions and in regional to national mapping applications for biomass, carbon and
emission inventories. As part of our analysis, we demonstrate sample distributions and how they can be used
to evaluate mapped biomass estimates and modeled PM2.5 emissions.

2. Approach and Methodology

The North American Wildland Fuel Database developed in this study stores existing dry‐weight biomass
observations by major fuel type across the United States. Our team began by compiling existing databases
and importing wildland fuel biomass in a standard unit of measure (Mg/ha). Existing databases, including
the source data for fuel loading models (Lutes et al., 2009) and LANDFIRE public source reference database
(LFRDB; https://www.landfire.gov/lfrdb.php) were compilations of published literature and plot data
(Table 1). We next conducted a literature review of biomass, fuel characterization and fuel consumption lit-
erature, and added observations from over 150 individual references. Minimum standards for including
observations in the database were that they (1) contained a source reference such as FIA inventory plot
and sample year or journal article citation, (2) had an identifiable vegetation type, and (3) relied on field
measurements as opposed to photo monitoring sites or other visual estimations.

Table 1
Data Sources Within the North American Wildland Fuel Database, With a Total of 26,620 Records

Name Source N

FIA loadings database Forest Inventory and Analysis Program (2010), compiled and summarized
by David Chojnacky, Virginia Tech University

13,964

Public LFRDB The LANDFIRE Reference Data Base (LFRDB; LANDFIRE, 2012) 8,017
FLM database Source data for the fuel loading model development (Lutes et al., 2009) 1,442
FOFEM fuels Old database compiled to inform FOFEM fuel loading profiles (D. Lutes,

personal communications)
917

Digital Photo Series database Online database of natural fuels photo series sites (Wright & Eagle, 2007) 463
FFS database Fire and fire surrogates (McIver et al., 2009) 339
Other Published literature 1,478
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To group wildland fuel biomass observations, a standard mapping classification is needed. LANDFIRE is a
widely used mapping source of geospatial fuels and vegetation containing over 640 existing vegetation types
within 198 existing vegetation type groups (EVT Groups; Table 2). Given that the objective of the database
was to quantify the distribution of fuel loads within vegetation types, we opted to use the more generic
EVT group vegetation classification, provided within the LANDFIRE (2014) EVT layer, to ensure adequate
sample sizes within each vegetation group. Using EVT group also reduced uncertainty in assigning vegeta-
tion type to each record compared to assignment by a more specific EVT. Most records within the database
had a general description of vegetation, a listing of major species, a Society of American Foresters or Society
of Rangeland Management cover type, or a more general Forest Type (e.g., FIA plots). We developed cross-
walk tables to convert cover and forest types to EVT groups. For records that had only a general vegetation
description, we individually assigned a vegetation type.

As the database was assembled, we performed a series of quality‐assurance and control measures. We first
screened any records that were not georeferenced. For each of these records, we attempted to assign a geos-
patial location and standardized existing location data into latitude and longitude (decimal degrees). In some
cases, it was necessary to assign site locations based on site descriptions. Many records (n = 2,470) had geos-
patial location but no associated vegetation type or information. For these, we overlaid record locations with
the EVT Groups layer in ArcGIS and assigned a likely EVT Group based on spatial location. Due to the
potential errors incurred by spatial assignment, we tagged each of these records as having spatially assigned
EVT group. In many instances, simple summations were required to create summary inputs (e.g., herb load
was calculated as the sum of forb and graminoid biomass and total coarse woody debris (CWD) is the sum of
all sound and rotten coarse wood classes).

The database includes data from 271 sources from existing databases and scientific literature. Field defini-
tions are provided in Table S1 in the supporting information. Entries from existing databases were presumed
to be quality checked by the source agency and were not rechecked. As part of data entry and QA/QC, source
references were carefully reviewed to ensure that they were not repeat values and not duplicative. We
obtained the source reference and included a full citation for every record that had a published source refer-
ence. For quality assurance and quality control, we subsampled 30% of all source references and confirmed
that entered data were accurate by cross checking entries with published values. Errors were uncommon; of
records with data entry errors, most were simple rounding errors and were corrected. In a few cases, some
fuel categories were missing from the inputs and were added from the published source. In other cases, fuel
categories were inaccurate and corrected within the database entries. We also flagged any extreme outliers in
the database as observations in an EVT group (see section 2.5). These individual records were checked from
the source data and any errors in recording were corrected. Otherwise the outliers were retained in
the database.

As the database was compiled, supported database fields were expanded to accommodate varied studies and
approaches. Many fuel categories are sparsely populated but are included because they are important within

Table 2
Terms and Acronyms Use in This Paper

Term Acronym Definition

First Order Fire Effects Model FOFEM Software application used to predict fuel consumption, smoke emissions,
soil heating, and tree mortality.

CONSUME n/a Software application used to predict fuel consumption and smoke emissions
Coarse woody debris CWD Coarse downed wood particles >7.6 cm in diameter.
Existing Vegetation Type group EVT Group Field within LANDFIRE (LINK) that classifies vegetation based on

bioregional vegetation types at a broader grouping than Existing Vegetation Types.
Fuel Characteristic
Classification System

FCCS Software application used to summarize and classify wildland fuels, predict
surface fire behavior, and calculate fuel loadings. FCCS fuelbeds are mapped within LANDFIRE.

Fuel Loading Model FLM Field within LANDFIRE that assigns a predicted surface fuel loading based on
existing vegetation type and canopy layers.

Fuel type n/a Type of wildland fuel (canopy, shrub, herbaceous, fine downed wood, coarse
downed wood, and organic soil layers) used to summarize biomass observations
within the North American Wildland Fuel Database.
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particular EVT groups. For example, moss and ground lichen are important in many boreal and subboreal
vegetation types but are relatively rare in other ecosystems and associated EVT groups.

2.1. Biomass Distributions

Database values were clustered by LANDFIRE EVT group for estimation of biomass distributions and
included all observations across the entire geographic range of that EVT group. All analyses were conducted
in the R statistical program (Version 3.4.1; R Core Team, 2017), and distributions were estimated using the R
fitdistrplus package (Delignette‐Muller & Dutang, 2015). To identify candidate distributions for individual
fuel categories, we conducted an exploratory data analysis on select EVT groups with substantial representa-
tion (>1,000 entries). Histograms, box plots, and normal quantile‐quantile plots were used to understand
prominent distribution shapes and to assist in QA/QC of the database. This exploratory data analysis showed
that many of the fuel types had a high proportion of values that were 0, and the biomass distributions tended
to be right‐skewed rather than symmetric. Due to these features, we used hurdle estimation, described in the
next section.

2.2. Hurdle Distribution Fitting

It is common in empirical studies of biomass (or, more commonly, abundance) for there to be high occur-
rence of zero values (Lecomte et al., 2013; Welsh et al., 1996). Often the nonzero part of the distribution is
skewed to the right, implying that a distribution such as the lognormal or the gamma distribution is more
appropriate than the normal distribution (Lecomte et al., 2013). One method to contend with high density
at zero is to estimate two models for the data, one that predicts the probability of observing a zero, and a sec-
ond that models the distribution of nonzero values (Lachenbruch, 2002; Welsh et al., 1996). It can be shown
that the maximum likelihood estimate for the two‐part model can be obtained by finding maximum likeli-
hood estimates for each part individually (Duan et al., 1983; Welsh et al., 1996). By using this two‐step pro-
cedure, we take advantage of robust maximum‐likelihood estimation, which has to be approximated in a
zero‐inflated model. Such a two‐stage (two‐part) estimation procedure has been called by many names,
but we will use the nomenclature of a “hurdle model.” Qualitatively, the hurdle to be crossed is having a
nonzero value, and once that hurdle is crossed (x > 0) a continuous distribution is estimated for the data.
The density function for the jth fuel type in the kth EVT group (fkj(x)) can be written as (Lachenbruch, 2002)

f kj x; dð Þ ¼ πkj
1−d 1−πkj

� �
hkj xð Þ� �d

; (1)

where h(x) is the estimated continuous distribution function (in this case, gamma or lognormal) for x > 0, d
= 1 if x nonzero, 0 if x 0, and π is the probability of observing a zero. For this distribution, the expected value
is

E xð Þ ¼ 1−πð ÞE h xð Þð Þ (2)

For the continuous portion of each fuel type in each EVT group we estimated and compared lognormal and
gamma distributions. The lognormal probability distribution function, with parameters μ, σ, is written as

h xð Þ ¼ 1

σx
ffiffiffiffiffiffi
2π

p e−
lnx−μð Þ2
2σ2 x>0 (3)

where σ is the standard deviation of ln (x) and μ is the mean of ln(x). The expected value of the lognormal
distribution is

E xð Þ ¼ eμþ
σ2
2 (4)

The gamma probability distribution function, with parameters α, β, and gamma function Γ is written as

h xð Þ ¼ 1
βαΓ αð Þ x

α−1e−
x
β x>0 (5)

with expected value
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E xð Þ ¼ αβ (6)

Estimation of the hurdle distribution occurs in two steps. Let nkj be the total number of entries in the data-
base for a particular fuel type (j) in a particular EVT group (k), and xkji be the ith value for fuel type j in EVT
group k. Then

1. Estimateπkj ¼
∑I xkji ¼ 0

� �

nkj
where I is an indicator function that takes a value of 1 if the entry has a value

of 0, 0 otherwise and πkj is the estimation probability of 0.
2. For the remaining nonzero entries (x), use the fitdistr function in the R fitdistrplus package to find the

maximum likelihood estimates of distribution parameters for the lognormal and gamma distributions.

For initial distribution fitting we decided on aminimum of 30 nonzero entries required for a distribution to be
estimated. This balanced our ability to estimate more distributions with the uncertainty in estimating distri-
butions for small sample sizes. With 95% confidence n = 30 is expected to obtain an estimated distribution
with cumulative distribution function (cdf) at most 0.25 away from the true cumulative distribution
(Massart, 1990). For example, if the theoretical cdf at some quantile X is 0.5, then we can estimate the empiri-
cal distribution within 0.25 of 0.5 at that value X.

2.3. Assessing Distribution Estimates

There are 30 total fuel types and a total of 134 EVT groups in the current database. In general, it is best prac-
tice to assess distribution fits graphically, but this is untenable with so many individual distributions to be
estimated in the database. Instead, we use several goodness of fit quantities to evaluate the distribution fits.
2.3.1. Kolmogorov‐Smirnov Test
The Kolmogorov‐Smirnov (KS) test is used for the null hypothesis that a given data set follows a specified
theoretical distribution. In general, it is designed for situations where the full theoretical distribution is spe-
cified a priori and performs poorly if distribution parameter values estimated from the data are used to spe-
cify the distribution for the KS test (Lilliefors, 1967). We use a Monte Carlo procedure to estimate the p value
for the estimated distribution against the data (following Lilliefors, 1967). In general, a smaller p value (e.g.,
p < α) gives evidence against the data following the estimated empirical distribution.

In the Monte Carlo procedure, we calculate the KS statistic for observed distribution relative to “theoretical”
distribution at estimated parameter values. Then for 5,000 replicates we take n (n = number of observed
values in original distribution fit) random draws from the theoretical distribution at estimated parameter
values. For each of these, we estimate the same theoretical distribution, then perform KS test of random
to theoretical distribution at estimated parameter values. This generates 5,000 KS values when the null
hypothesis is true; thus, a “null” distribution. The p value is then calculated as

1−
∑
nmc

i¼1
I dobs>dið Þ
nmc þ 1

(7)

where nmc is the number of MC replicates in the null distribution (5,000), di is the value of the KS statistic for
Monte Carlo replicate i, and dobs is the observed value of the KS statistic. I is an indicator function that takes
a value of 1 if the observed statistic is greater than the simulated, 0 otherwise. The sum tallies the number of
simulated statistics that are smaller than the observed statistic. We divide by nmc+1 because we have nmc+1
total statistics (including dobs). We can then evaluate, against some α level of significance (α = 0.05), which
distributions are “fail‐to‐reject.”

For an application like this, interpretation of the KS test suffers from two issues related to sample size. At low
sample sizes the test has insufficient statistical power to reject the null hypothesis; in these instances, result
fail‐to‐reject does not necessarily provide evidence in favor of the estimated distribution (the null hypoth-
esis). A large sample size presents the opposite problem—as sample size increases, the effect size necessary
to reject the null hypothesis decreases. At large sample sizes this means that although the observed data are
statistically different from the estimated distribution, the difference may not be of practical significance. For
these reasons, we use equivalence tests to aid our interpretation of the goodness of fit between observed data
and estimated distributions.
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2.3.2. Equivalence Tests
Robinson and Froese (2004) recommend an equivalence test to compare empirical data to model predictions
using a two one‐sided t test. In equivalence testing a maximum allowable error (or error tolerance) is
defined, and the null hypothesis is that the observed distribution is outside of the error tolerance relative
to a theoretical distribution. If the observed distribution is seen to be within the maximum error (or error
tolerance; ε), then the null hypothesis is rejected and the observed data are judged to be “equivalent” to
the theoretical distribution (within the error tolerance). Therefore, equivalence is in the alternative rather
than the null hypothesis. Here we use t tests to assess adequate matching between our observed empirical
cumulative distribution of fuel type and the theoretical cumulative distribution function associated with
each candidate distribution. Let x(i) be the ith quantile of the empirical data distribution, and x ið Þ be the

ith quantile of the theoretical distribution. Then the difference between the observed and theoretical cumu-
lative distributions (xdi) is

xdi ¼ x ið Þ−x ið Þ (8)

We then calculate x¯d as the mean distance between observed and theoretical cumulative distributions and
use t tests to determine statistically if the observed and theoretical distributions differ by more than a speci-
fied error tolerance ε. This requires an error tolerance to be specified, which for our application would be a
relatively arbitrarily defined threshold.

Prichard et al. (2014) used a similar equivalence procedure to evaluate the uncertainty of the fits of observed
fuel consumption relative to those predicted by empirical consumption equations. For their analysis, rather
than choosing a single arbitrary error threshold, they repeated the equivalence test with increasing ε until
the first epsilon at which the equivalence test null hypothesis was rejected. This then defined the bound
of uncertainty for that fuel type. We adapt their approach here, repeating the equivalence test for increasing
error thresholds between observed and theoretical distributions for distributions estimated both with zeroes
(and an offset), and distributions estimated for only values >0. We then compare the minimum ε that rejects
the null hypothesis to assess the uncertainty in the distribution estimates.

For assessing distribution estimates, the best fits are considered fuel types with a KS p value >α, and a small ε
value for the equivalence procedure outlined above. We assign broad goodness of fit classifications based on
these two goodness of fit metrics (Table S2) in combination with the sample size. A fit is considered excellent
if it is based on ≥100 entries, associated with a nonsignificant KS p value, and an ε value ≤0.05. A fit is con-
sidered good if it is based on≥30 entries, has a nonsignificant KS p value, and 0.05 < ε≤ 0.15; alternatively, a
fit is considered good if it has >30 entries, and a significant KS p value associated with an ε ≤ 0.05. A fit is
considered poor if it has ≥30 entries, associated with a significant KS p value and a large (>0.15) ε value.
The distribution is not estimated for any fuel type X EVT group combination with <30 entries, and assigned
an NA here.

2.4. Uncertainty in Distribution Estimates

Finally, we use a bootstrap procedure to estimate a standard deviation for estimated distribution parameter
values and to generate a 95% confidence interval for each distribution parameter value. The bootstrap esti-
mates are generated using the bootdist function in the fitdistrplus package in R. In general, the observed data
are resampled with replacement and the distribution parameters estimated for each resampling of the boot-
strap. This is repeated 5,000 times to generate a distribution of parameter values. From this distribution a
standard deviation of each estimated parameter can be calculated, and a 95% confidence interval as the
0.025 and 0.975 quantiles of the distribution.

2.5. Outliers

As part of our quality assurance effort, we identified extreme outliers in the database as any value >Q3 + 4 *
IQR, where Q3 is the third quartile for the empirical distribution and IQR is the interquartile range (Q3–Q1).
First, we determined if the outlier was due to an error in rounding, units or data entry. For those values that
were not entered in error, we estimated distributions both with and without the value of the identified out-
lier. Below we give results for distributions estimated without extreme outliers. All distribution estimates,
both with and without outliers, are presented in the supporting information.
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2.6. Sample Distributions

For the purposes of demonstrating comparisons of distributions among
fuel types and EVT groups we present contrasting examples of EVT
groups: eastern mixed hardwood forests (682 yellow birch‐sugar maple,
655 beech‐maple‐basswood, and 666 eastern floodplain) and conifer for-
ests (683 peatland, 631 ponderosa pine, and 625 Douglas‐fir, ponderosa
pine, and lodgepole pine). These were chosen because they represent
major EVT groups across the continental United States and because they
also had sufficient representation of the chosen fuel types to estimate dis-
tributions. For these EVT groups we present biomass distributions for
total aboveground biomass of trees, coarse woody debris (downed wood

>7.6‐cm diameter), duff, and litter.

To place the biomass distributions in the context of mapped biomass values for smoke management and
emission estimation, we made use of existing mapped surface fuel type values (CWD, litter, and duff) within
LANDFIRE (LANDFIRE, 2008) and compared them to fitted distributions for three common existing vege-
tation type groups in the eastern United States and three in the western United States and Alaska. These EVT
groups were selected based on having good to excellent distribution fits for CWD, litter, and duff. From bio-
mass estimates, we used Consume version 5.0 algorithms (Prichard et al., in prep) to calculate fuel consump-
tion and emissions of fine particulate matter less than 2.5 μm (PM2.5). Mapped values were obtained for
sample study areas for each EVT group (Table S3) by selecting an area that was dominated by a single
EVT Group (e.g., Harvard Forest, MA for 682 Yellow birch‐sugar maple and Loomis State Forest, WA for
625 Douglas‐fir‐ponderosa pine‐lodgepole pine forest) and selecting the most common Fuel Characteristic
Classification System (FCCS) fuelbed and fuel loading model (FLM) that was crosswalked to that EVT
group. Emissions were modeled in Consume using a dry fuel moisture to represent high availability of fuels
for burning (15% for CWD, 11% for litter, and 30% for duff). We then compared the mapped FCCS and FLM
estimates and associated emission values to a 75% prediction interval using the distribution estimate from
the database.

3. Results

Of the 198 LANDFIRE (2014) EVT groups, the database contains records for 134 EVT groups. A total of 68
EVT groups had sufficient entries to estimate at least one fitted distribution of a fuel type (Table S3). Based
on broad physiognomic or land use category, the largest percentage of land area in the United States is clas-
sified as forest and woodland (32%) followed by shrublands (19%), agriculture (17%), and nonvegetated pix-
els (16%). However, the percentage of EVT groups with sufficient record counts for distribution fitting is
overrepresented by forest and woodland EVT groups (70%) with only 22% and 13% of shrubland and grass-
land EVT groups represented by at least one fitted distribution (Table 3). Of the forest and woodland EVT
groups there was higher representation of coniferous forests (78%) than broadleaf forests (68%) and mixed
forests (63%) for the fitted distributions. Mapped locations of records within the database reveal much higher
record availability in forested regions of the United States and fewer records for nonforested regions, includ-
ing much of the Central United States (Figure 1).

3.1. Empirical Distributions

To evaluate the ranges of observed biomass in different ecosystems, we present six representative EVT
groups (three for eastern hardwood and three for mixed conifer) and fuel types (Figure 2). The example fits
presented are all classified as “good” or “excellent.” A common characteristic of many distributions is the
high proportion of zero values and high coefficients of variation (CV). The results of all estimated distribu-
tions are given in Table S3 in the supporting information.

The empirical distributions of biomass compare well to estimated density functions (Figures 3 and 4). Note
that in Figures 3 and 4 the histograms give the empirical distribution, with the associated estimated density
function overlaid. The density axis is scaled to the histogram bin width so that the total area across each his-
togram is 1. In Figures 3 and 4 the location of the distribution mode as well as the density in the tail is well‐
represented by the density function.

Table 3
Percentage of Total U.S. Land Area by Physiognomic Class or Agriculture
and the Percentage Representation of Each Class With at Least One Fitted
Fuel Loading Distribution

% area % representation

Agriculture 17 0
Barren/developed/water 16 0
Forest and woodland 32 70
Grassland and tundra 13 13
Shrubland 19 22
Wetland and marsh 2 13

10.1029/2019JG005083Journal of Geophysical Research: Biogeosciences

PRICHARD ET AL. 3706



Figure 1. Mapped locations of fuel loading records grouped by number of observations in the conterminous United States
and Alaska. An online, dynamic version of this map is at http://nawfd.mtri.org.

Figure 2. Box plot comparison fuel loading ranges by Existing Vegetation Type (EVT) group.White boxes are hardwood forests, grey boxes conifer forests. For some
fuel categories, distributions are very similar (e.g., trees and litter), and for others there are some differences in distributions (CWD, duff). There is high variability
regardless of EVT group. EVT groups include 655 = beech‐maple‐basswood forest; 682 = yellow birch–sugar maple forest; 666 = eastern floodplain forest;
683 = peatland forest; 631 = ponderosa pine forest and woodland; 625 = Douglas‐fir, ponderosa pine, and lodgepole pine forest. Points give mapped values from
sample areas within the LANDFIRE, 2008 Fuel Characteristic Classification System (FCCS) and Fuel Loading Model (FLM) layers.

10.1029/2019JG005083Journal of Geophysical Research: Biogeosciences

PRICHARD ET AL. 3707

http://nawfd.mtri.org


Figure 3. Empirical (histogram) and estimated density function (solid line) for biomass distributions (Mg/ha) for aboveground trees (Tree), coarse woody debris
(CWD), and organic soil layers (Duff and Litter) of three sample eastern mixed hardwood Existing Vegetation Type groups. Note that histogram bin widths are
determined by the default R setting—for heavily skewed data with large outliers this results in fewer bins of larger width. The density y axis is scaled so that the total
area in the histogram is one, and is not comparable between graphs. The estimated density function is scaled so it matches the histogram scaling. Graphs are
adapted from the denscomp function in the fitdistr R package.
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Figure 4. Empirical (histogram) and estimated density function (solid line) for biomass distributions (Mg/ha) for aboveground trees (Tree), coarse woody debris
(CWD), and organic soil layers (Duff and Litter) of three sample western conifer Existing Vegetation Type groups. Extreme outliers are excluded from the data-
base distributions. Note that histogram bin widths are determined by the default R setting—for heavily skewed data with large outliers this results in fewer bins of
larger width. The density y axis is scaled so that the total area in the histogram is one, and is not comparable between graphs. The estimated density function is
scaled so it matches the histogram scaling. Graphs are adapted from the denscomp function in the fitdistr R package.
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For common forest types in the continental United States, total aboveground biomass distributions are best
represented by a gamma distribution (with nearly no zero values). Observed values range from near 0 to near
500 Mg/ha, with variability depending on EVT group (Table S4). Median tree total aboveground biomass is
comparable for mixed hardwood sites, ranging from 71 Mg/ha in eastern floodplain forests to just above 120
Mg/ha in yellow birch and sugar maple (YB‐SM) forests and high standard deviations and coefficients of var-
iation. Tree biomass ranges from 0 to 500 Mg/ha for conifer forests with highest median (Q2) biomass value
in Douglas‐fir/ponderosa pine/lodgepole pine (DF‐PP‐LP) forests (108Mg/ha) compared to 75Mg/ha for the
other forest types.

Biomass of CWD is particularly variable across records and contributes to high coefficients of variation in
distribution estimates. For example, in the three sample mixed hardwood forest distributions (Figure 3),
CWD ranges from 0 to 50 Mg/ha (Table 4), and the proportion of zero values is 5.6% in YB‐SM distributions,
14% in beech‐maple‐basswood forests, and nearly half of all records for eastern floodplain forests (47%).
Median CWD biomass values are quite similar across all mixed hardwood sites as are the shapes of the dis-
tributions. In the three conifer forest distributions highlighted here (Figure 4), CWD ranges from 0 to nearly
150 Mg/ha, and the proportion of records with a zero value ranges from 8% to 21%. Median CWD is greatest
in DF‐PP‐LP forests and lowest in peat forests. In each case, standard deviations meet or exceed estimated
median values.

Duff biomass also has relatively high variability, and records have a relatively low proportion of zero values
(4.4% to 7.3%) compared to CWD. Presence of duff is more variable in the three sample mixed hardwood

Table 4
Empirical Distribution Summaries for Example Fuel Types and Existing Vegetation Type (EVT) Groups

ID Group name Fuel Prop 0 n Q1 Q2 Q3 CV

655 Beech‐maple‐basswood forest
Tree TAB 0 159 76.1 121.69 169.55 0.51
CWD 0.142 139 2.45 6.34 12.89 0.98
Duff 0.148 138 2.3 5.69 17.01 1.21
Litter 0.018 161 6.47 9.32 13.28 0.52

682 Yellow birch‐sugar maple forest
Tree TAB 0 387 87.23 127.16 176 0.52
CWD 0.056 370 3.53 7.42 13.44 1.05
Duff 0.045 378 6.22 17.93 33.69 0.9
Litter 0.005 400 5.85 8.85 12.7 0.53

666 Eastern floodplain forest
Tree TAB 0.003 1,513 32.34 71.3 129.44 0.86
CWD 0.474 813 1.89 4.69 11.66 1.63
Duff 0.23 1,164 2.3 3.45 7.75 1.7
Litter 0.039 1,453 3.15 6.95 11.7 0.82

683 Peatland forest
Tree TAB 0 68 40.62 75.15 104.48 0.59
CWD 0.162 57 1.57 4.26 7.84 1.09
Duff 0.049 58 25.56 58.72 86.26 0.87
Litter 0.016 60 3.55 7.11 11.58 0.89

631 Ponderosa pine forest and woodland
Tree TAB 0.013 301 31.59 66.85 105.4 0.75
CWD 0.211 946 3.58 9.95 19.38 1.38
Duff 0.044 475 4.55 10.65 21.45 1.07
Litter 0.003 578 3.67 6.34 11.83 1.41

625 Douglas‐fir, ponderosa pine and lodgepole pine forest
Tree TAB 0.043 90 61.84 108.34 190.28 0.85
CWD 0.081 763 7.54 17.2 36.64 1.6
Duff 0.073 178 6.56 14.59 30.05 0.87
Litter 0.013 153 4.67 7.32 12.57 0.92

Note. Prop 0 gives the proportion of entries with a value of zero loading for that fuel and EVT group. n gives the number
of entries >0 in the database for that fuel and EVT group. Quartiles (Q1, Q2, Q3; 25th, 50th, and 75th percentiles, respec-
tively) are given in Mg/ha and represent those quantities for all entries >0 for that fuel and EVT group. CV is the coeffi-
cient of variation, calculated as the standard deviation divided by the mean value for all entries >0 for that fuel and EVT
group. TAB = total aboveground biomass, CWD = coarse woody debris.
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forests than conifer forests with the proportion of records without duff ranging from 4.5% to 23%. Median
duff biomass ranges from 3 to 17 Mg/ha in mixed hardwood EVT groups, and standard deviations either
exceed or are close to the estimated median value. Duff biomass ranges widely from 0 to 250 Mg/ha in peat-
land forests and 0 to >100 Mg/ha in the other sample conifer forests. Median duff biomass is markedly
higher in peatland forests (59 Mg/ha) compared to the other conifer forests (11–15 Mg/ha), and as with
CWD, standard deviations are high.

Litter is consistently present across the six forest types with less than 5% of records with zero values in the
database records. Median values are markedly similar in eastern hardwood forests (7–9 Mg/ha), with mod-
erate to high coefficients of variation. In mixed conifer forests, median values are comparable (6–7 Mg/ha)
and have slightly higher CV than eastern hardwood forests.

3.2. Comparison With Mapped Estimates

Mapped biomass values from FCCS and FLMs across the six representative forest types often fall within
fitted distributions but with notable exceptions. For CWD, FCCS estimates match median distribution fits
for eastern hardwoods but are high for peatland forests, exceeding the Q3 value, and are also high for pon-
derosa pine forests (Figure 2). In contrast, the FCCS CWD estimate for Douglas‐fir‐ponderosa pine‐
lodgepole pine forests falls below the Q1 value for that EVT group. CWD values for mapped FLMs are
low across all EVT Groups, either at or below the Q1 value.

When translated into PM2.5 emissions under a dry fuel moisture scenario, mapped FCCS values produce
similar emission estimates to the median (Q2) distribution fit for the eastern hardwoods but are high for
peatland and ponderosa pine forests and low for Douglas‐fir‐ponderosa pine‐lodgepole pine forests
(Figure 5). The FLM CWD estimate generally underpredicts emissions relative to fitted distributions. For
example, for the Douglas‐fir‐ponderosa pine‐lodgepole pine EVT group, using the mapped FCCS value to
estimate emissions would predict 292 versus 78 kg/ha from the FLM mapped value and 696 kg/ha for the
median fitted distribution (Q2) value. Mapped FCCS and FLM estimates of litter generally are much lower
than Q1 values for the six representative forest types. However, the FLM estimate for peatland litter nearly
matches the Q3 value. Because mapped litter estimates are generally lower than even the Q1 values of fitted
distributions, they are likely to underestimate PM2.5 emissions for these forest types. Eastern hardwood for-
ests have little duff, reflected in fitted distribution values, andmapped FCCS and FLM values. Mapped FCCS
and FLM biomass values for ponderosa pine and Douglas‐fir‐ponderosa pine‐lodgepole pine forests are both
well within the range of distributions. However, the FCCS value for peatland forests is nearly 4 times that of
the Q3 loading value. The FLM value also exceeds the Q3 value but is still within the fitted distribution.
Because duff emission factors are much higher than for CWD and litter, the consequences of errors in bio-
mass estimates are also greater. This is revealed for the peatland forests with even greater disparities in PM2.5

emissions than in the actual biomass values.

4. Discussion

Wildland fuel information and maps are used as inputs to numerous models, including consumption and
emission models such as the First Order Fire Effects Model (Reinhardt et al., 1997) and Consume
(Ottmar, 2014; Prichard et al., 2014), wildland fire behavior prediction tools such as FLAMMAP (Finney,
2006), and smoke‐dispersion models and frameworks such as the Wildland Fire Emissions Information
System (French et al., 2014) and BlueSky (Larkin et al., 2014). For manymodeling studies of biomass, carbon
fluxes, and climate, the importance of incorporating uncertainty is the foundation of simulations. For exam-
ple, coarse‐scale dynamic vegetation models draw inputs from probability distributions in order to model
stochastic processes of fire and climate (Quillet et al., 2010; Shankar et al., 2018). Bootstrapping is also used
to understand the effect of sampling variability on model predictions; for example, Gregg and Hummel
(2002) used bootstrapped tree lists to evaluate impacts on Forest Vegetation Simulator projections.
However, to date, distributions of mapped fuels have not been available for simulating fire behavior, fire
effects, and smoke production. Despite the acknowledged variability of fuels at multiple spatial scales
(Keane et al., 2012), there are currently no products that incorporate variability in estimating the biomass
of wildland fuels in North America.
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The database offers a compilation of existing data sources on surface and canopy fuels for the United States
and Canada and is designed to be expandable to include values from Mexico and new studies. As expected,
we observed a wide range in biomass by major fuel type (aboveground tree biomass, shrubs, herbs, CWD,
litter, and duff). Distributions were generally best fitted with either a gamma or lognormal distribution.
Of the 134 EVT groups supported in the database, we are able to estimate at least one fitted distribution
for 64 EVT groups (48%). Fitted distributions can be used to provide stochastic draws from the distributions
or stratified samples across percentiles, including the 25th, 50th, and 75th percentile values presented in
this paper.

Because biomass and carbon are most commonly mapped using crosswalks between a vegetation classifica-
tion and assigned values, we chose to classify biomass observations by vegetation type, using the LANDFIRE
EVT Group layer. However, the observed variability is so high within EVT groups that it suggests that an
even broader grouping variable by biophysical setting and physiognomic type might be warranted. Based

Figure 5. Boxplot of calculated PM2.5 emissions compared between database distributions and mapped values for that Existing Vegetation Type (EVT) group,
obtained from sample areas within the LANDFIRE, 2008 Fuel Characteristic Classification System (FCCS) and Fuel Loading Model (FLM) layers. Extreme out-
liers are excluded from the database distributions. EVT groups include 655 = beech‐maple‐basswood forest; 682 = yellow birch–sugar maple forest; 666 = eastern
floodplain forest; 683 = peatland forest; 631 = ponderosa pine forest and woodland; 625 = Douglas‐fir, ponderosa pine, and lodgepole pine forest.
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on this finding, we are planning to add a broader classification to the database that will contribute to coarser
scale biomass mapping. Database development also revealed substantial bias in data collection toward forest
types versus nonforest types (Table 3). Given that forests have been intensively measured for timber
resources and other forest‐management goals, this is not particularly surprising. However, because of the
potential importance of these data sets for informing uncertainty in carbon mapping and emission inven-
tories, the data gaps revealed in this study justify field‐based fuel characterization in nonforest vegetation
types and inform future sampling. Some of the grassland and shrubland EVT groups may have low record
counts because vegetation descriptions were insufficient for specific group assignments. For example, of
the five most common shrubland types, we had sufficient records to provide distribution fits for big sage-
brush and mesquite shrublands; salt desert, willow, and developed upland shrubland EVT groups are all
sparsely represented in the database. Agricultural EVT groups constitute a large percentage of U.S. land area
and are not currently represented in the database. In particular, for biomass and carbon mapping applica-
tions, records are needed to represent pasturelands, row crops, and wheat fields. Of the major forest types,
plantations and white spruce forests and woodlands lack sufficient records to support fitted distributions.
Another issue with low representation of many EVT groups is the lack of specification in vegetation types
and associated descriptive data. Of the six most common grassland types (developed, shortgrass prairie,
mixed grass prairie, upland herbaceous, and tussock tundra and grassland), only mixed grass prairie and
grassland EVT groups are currently supported in the database. There are over 500 generic grassland records,
and a major improvement to the database would be to refine the specificity of these records so that they
could be binned within specific grassland EVT groups. In some cases, this might be possible by additional
geospatial analysis of plot locations and assignment of most likely vegetation.

It is also possible that there are smaller‐scale sources of variability in measured biomass such as local abiotic
conditions. Evaluating these sources of variability is beyond the scope of this current study. Future sampling
efforts should also identify representative local abiotic conditions for a given grouping so any potential bias
in those conditions can be identified.

Even with substantial data gaps identified in this study, the fuel loading data set should be immediately use-
ful for applications including carbon accounting, fire hazard assessments, and emission inventories. The
database has been constructed to facilitate data entry as additional data sets become available, making this
a “living” database. As such, it offers guidance on where additional field inventories and fuel characteriza-
tion would be particularly beneficial. Fitted biomass distributions and the underlying database currently
allow for three major advances in fuel characterization:

• By using distributions of fuel loading for a vegetation type rather than a point‐based map estimate, a cred-
ible interval of emission estimates for carbon accounting can be generated. The ability to calculate uncer-
tainty bounds on model predictions provides users with a plausible range of model outputs rather than a
single point estimate.

• The distributions of fuel loading for major vegetation types can also be used to evaluate potential errors in
point estimates given in current map products. Mapped values can be assessed by comparing them to dis-
tribution estimates to determine if the mapped values are representative of known EVT distributions. For
example, mapped values based on FCCS and FLM layers within LANDFIRE generally fall within the
observed distribution of the total aboveground biomass of trees, CWD, litter, and duff. This finding con-
firms that the pixel‐based estimates of biomass are within the observed range and would provide a reason-
able point estimate of fuel consumption and PM2.5 emissions. However, the FCCS mapped duff value for
peatland forests is clearly not in the center of the distribution estimated here and has large consequences
for predicted PM2.5 emissions (Figure 4). Given this discrepancy, we would recommend that the represen-
tative FCCS fuelbed (FB279: Black spruce‐larch‐northern white cedar forest) be modified to a more rea-
sonable estimate such as the reported Q2 value for peatland forests. Additional comparisons may
inform other improvements in mapped products.

• Providing distribution fits by major fuel type can also help inform sensitivity and uncertainty analysis of
fuels as inputs for evaluating specific management objectives. For example, we can use the distribution
estimates to understand how uncertainty in fuel loadings propagates to uncertainty in wildfire emissions.
For a given EVT group, a sensitivity analysis of fuel‐loading inputs to emission models can identify the
fuel types that contribute most to uncertainty in model predictions (e.g., coarse wood or duff). By
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identifying the most sensitive fuel‐loading types, improved quantification can be prioritized for these fuel
types.

5. Conclusions

This study presents the first uncertainty estimates in biomass inputs commonly used in carbon inventories,
fire hazard analysis, and emission estimation. The use of point estimates of wildland fuel biomass for model
applications is problematic. Individual point estimates are unlikely to be absolutely correct, but they repre-
sent the best value for a given pixel at a given time. With all efforts in estimation, it is best to provide both a
point estimate and a credible interval around that estimate. In this study, we found that even with the best
available data sets there is tremendous variability in biomass values, which propagates to uncertainty in
associatedmodel applications. Model predictions that use point estimates of wildland fuel biomass are there-
fore vastly underrepresenting the uncertainty associated with those model predictions.

Even with the large number of records in the North American Wildland Fuel Database (n = 26,620), there
are substantial gaps in measured fuel loadings by vegetation type and region with notable gaps in many non-
forest EVT groups. When compiling the database we considered grouping the observations by EVT but
quickly realized there was insufficient coverage of observations to estimate distributions by vegetation type.
This led us to aggregate by EVT group, but we find substantial variability in fuel loading when data are
grouped at this level. Increased coverage of observations by vegetation type would likely reduce the variabil-
ity in loading and associated prediction uncertainty.

The database is a work in progress and will benefit from additional records, particularly for underrepre-
sented fuel types. Fitted distributions for 65 EVT Groups will be useful to assessing how representative exist-
ing mapped estimates of fuel loadings are, calculating variability in fuel‐loading estimates, and providing
estimates of potential wildland fire emissions and carbon stores and associated uncertainty.
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