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A B S T R A C T

In an Area Based Approach (ABA) to forest inventories using Airborne Laser Scanning (ALS) data, the sample plot
size may vary or the cell size may differ from the plot size. Although this resolution mismatch may cause bias and
increase in prediction error, it has not been thoroughly studied. The aim of this study was to clarify the meaning
of resolution dependence in ABA, and to further identify its causal factors and quantify their effects. In general, a
number of factors contribute to resolution dependence in ABA forest inventories, including the varying point
density of the ALS data, the type of response variable, how the predictor variables are computed, and the
properties of the prediction model. For quantification, we used field plots with mapped tree locations, which
enabled the generation of different sized sample plots inside a larger plot. Plot level above ground biomass (AGB)
was the response variable employed in all the models. The error rate seemed to increase when the prediction
plots were larger than the fitting plots, and vice versa. The maximum BIAS was 1.50% and the maximum change
of RMSE compared to its value in native resolution was 0.97% when there was a 4-fold difference in resolution.
This indicates that the resolution effect is small in most real-world use cases, however, resolution effect should be
carefully considered in ALS-assisted large area inventories that target unbiased estimates of forest parameters.

1. Introduction

1.1. Resolution dependence

The construction of a spatial model often involves the specification
of input parameters at some chosen spatial scale, i.e. resolution. The
resolution may vary with model predictions and may be different from
that used in the model construction. This is quite typical in remote
sensing and a large number of studies have addressed this issue from
different point of views (e.g. Strahler et al., 1986; Turner et al., 1989;
Raffy, 1992; Marceau and Hay, 1999; Simic et al., 2004; Chasmer et al.,
2009). In general, the conversion from a high resolution to a lower
resolution is called upscaling and the conversion from low resolution to
a higher resolution is analogously called downscaling (Liang, 2004).
Several authors have proposed frameworks in order to solve scaling
problems and compensate for scaling effects (Wu and Li, 2009).

The terms scale and resolution refer to different concepts that depend
on the context, discipline, and author. In ecology, for example, the

concept of scale often refers to the extent and the concept of resolution to
grain size, but there is not necessarily a connection between the grain
size and spatial resolution. In some studies, however, spatial scale refers
to the grain size or the grain size is assumed to be equal to the spatial
resolution, i.e. pixel size. Correspondingly, scale invariance and resolu-
tion invariance are interpreted differently depending on the circum-
stances. In this study, we will use the term resolution to refer to grain
size, although in some previous remote sensing studies the term scale
was used to refer to more or less the same concept (e.g. Zhao et al.,
2009). We will explain later in greater detail what resolution means in
the context of our study.

1.2. Area-based approach to forest inventory

Forest inventories employing Airborne Laser Scanning (ALS) data
have become common in many countries (Nilsson et al., 2017). The
ALS-based forest inventory methods (Hyyppä et al., 2008) can be di-
vided into two groups: the area-based approach (ABA) (Means et al.,
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2000; Næsset, 2002; Magnussen et al., 2013) and single-tree detection
(Hyyppä et al., 2001; Koch et al., 2006; Lähivaara et al., 2014). Op-
erational forest inventories employing ALS data are most often im-
plemented with the ABA (Maltamo et al., 2014, chapters 11–13). In
ABA, metrics used as predictor variables are calculated from the ALS
returns within a plot or grid cell. Using training plots with field-mea-
sured stand attributes, a model is formulated between the stand attri-
butes and ABA metrics. This model is then used to predict the stand
attributes for each grid cell. A model is typically based on linear
(Næsset, 2002) or non-linear regression (Packalén et al., 2011), but
non-parametric regression techniques, such as k nearest neighbor
(Hudak et al., 2008) and artificial neural networks (Niska et al., 2010),
have also been used. A large proportion of studies have focused on
forest management inventories (e.g. Næsset, 2004; Packalén and
Maltamo, 2007), but a large number of studies have also focused on
statistical inference and sampling designs (e.g. Chirici et al., 2016;
Gregoire et al., 2016). In forest management inventories, cell level
predictions are typically aggregated to the stand level (Næsset, 2004),
whereas in large area strategic inventories, cell level predictions may be
used as auxiliary information either in sampling design or in the esti-
mation phases (Grafström et al., 2017; Strunk et al., 2012).

Several factors that affect the performance of ABA have been stu-
died, such as the number of sample plots (Junttila et al., 2013), plot
positioning error (Gobakken and Næsset, 2009), ALS echo density
(Thomas et al., 2006), ALS sensor and flying configurations (Keränen
et al., 2016), and seasonal effects (Næsset, 2005). The effect of sample
plot size has also been addressed in many studies (Gobakken and
Næsset, 2008; Frazer et al., 2011; Ruiz et al., 2014). In general, a re-
duction in prediction error with larger plot sizes is expected due to
spatial averaging of errors (Goetz and Dubayah, 2011). Chen et al.
(2016) showed within a coherent framework that AGB prediction error
decreases as plot size increases, and determined the relative contribu-
tions of each error source.

Resolution issues in ABA originate from the use of non-constant size
plots and/or cells. The most convenient option is use the same sized
plots and cells, but this is not always possible. There are several reasons
why an analyst may have a need to deal with data at different resolu-
tions:

1) Sample plot sizes vary. It is common to measure sample plots of dif-
ferent sizes in a range of forest types to maximize the efficiency of
field work – small plots in young or homogeneous forests, and large
plots in sparse, mature or heterogeneous forests. A similar approach
is used in some ABA inventories.

2) Cell sizes vary. It may be desirable to split cells (corresponding plot
size) into pieces and merge them with neighboring cells. This ap-
proach is useful if we want to avoid “mixed” cells in stand borders in
order to reduce prediction errors on borders. For example, grid cells
located on the border between a sapling and a sawlog stand may
greatly overestimate timber volume or mean diameter in the sap-
lings.

3) Sample plot size is different to cell size, although plots are of similar
size and cells are of similar size. For instance, an end user may re-
quire a certain grid cell size, but an existing set of sample plots or
measurement protocols must be used e.g. for economic reasons.

4) A combination of cases 1, 2 and 3.

The effect of varying resolution in the ABA arena is an almost un-
explored field of study. Zhao et al. (2009) developed methods for the
scale-invariant estimation of forest biomass using functional regression
models. The models are called functional regression models because the
predictors, namely canopy height distribution (CHD) and canopy height
quantile functions (CHQ), are themselves functions or functional data.
The CHD and CHQ were computed from a ALS-derived canopy height
model (CHM) rather than from the ALS point cloud. There are also ABA
studies that address resolution or scale but from an entirely different

viewpoint than this study. For example, Magnussen et al. (2016) de-
monstrated a statistical method for upscaling ABA predictions in cases
where the response variable is not additive, whereas Chen et al. (2016)
proposed a new uncertainty analysis method built on model-based in-
ference that can characterize biomass uncertainty across multiple spa-
tial resolutions. Our study is distinct from the previous research because
we clarify the factors that cause resolution issues in a typical ABA, and
with an empirical setting, we evaluate how serious the consequences
might be if the requirements of resolution invariance are violated.
There is a need to understand more thoroughly the resolution depen-
dence in the ABA arena. For instance, we did not find any studies that
discuss the resolution issues that originate from the irregular point
pattern of ALS data.

1.3. Regular or irregular point spacing?

We examine resolution effects in the context of ABA wherein me-
trics are computed from an ALS point cloud, in contrast to the majority
of remote sensing studies where resolution issues are addressed in the
context of raster images. This distinction is important: an image is a
regular tessellation whereas ALS data are irregularly spaced in a hor-
izontal domain. When metrics are computed from images, the number
of observations (i.e. pixels) is constant per unit area. In an irregular
point pattern, such as ALS data, the point density per unit area varies.
The implication of areas with higher and lower point densities is that
areas with higher point density are more heavily weighted than areas
with lower point density. For example, let us assume that the left side of
a rectangular grid cell has a double point density compared to the right
side and a computed metric is e.g. the mean height of points. The mean
value of the metric over the cell area is then equal to:

× + ×
+

mean height of the left side mean height of the right side2 1
2 1 (1)

However, there is no reason to assume that areas with a higher point
density are more important than areas with a low point density. The un-
equal weighting is simply an undesirable consequence of irregularities
in the data acquisition process that can result, for example, from scan
pattern, varying scanning angle, or overlapping flight lines. The effects
of variable point density on ABA inference are also resolution depen-
dent because the weighting scheme for points within cells also changes
as the resolution changes. For example, when the resolution becomes
finer, areas with low point density are less likely to be combined with
high point density areas.

2. Objectives

The overall aim of this study is to clarify the meaning of resolution
dependence in the context of ABA, to identify the underlying causal
factors, and to quantify their effects. Our study design enables us to
examine the effects of using up to nine-fold differences in plot and cell
sizes. Specific objectives are:

• To identify requirements for resolution invariance.
• How do the bias and error rates behave when the requirements of
resolution invariance are violated?
• What is the direction and magnitude of bias with the commonly
used ALS height percentiles when the resolution is changed?
• To present a simple approach to achieve resolution invariance in
ABA by considering varying point density.

3. Theoretical background

3.1. Definition of resolution invariance

Consider a situation where a predictive model based on field plots is
used to make prediction for a large area. In principle, we examine two

P. Packalen, et al. Remote Sensing of Environment 224 (2019) 192–201

193



alternatives to compute the prediction for the area: (1) Divide the area
to cells of a certain size (e.g. 15× 15m), compute the predictors for
each cell and use them for predictions, and average or sum the cell-level
predictions over the cells. (2) Compute the predictors directly for the
whole area and apply them for the whole area as if it were one cell. We
define resolution invariance in ABA to mean that both approaches will
yield an identical prediction. In this study, we focus on resolution dis-
crepancy common in practice due to a resolution mismatch between the
plot area used in model fitting and the area covered by a cell from an
ALS-derived predictor grid. We do not assume that the least squares
model coefficients are identical when fitted at the different resolutions,
but instead look at the behavior of predictions when fitted at one re-
solution and used for predictions at a different resolution. In this study,
we only consider continuous response variables, although the theory
and findings partly apply to categorical response variables as well.

3.2. Resolution invariant ABA model

Consider a situation where spatial resolution affects the values of
ALS-derived metrics only through the number of ALS echoes, which is
fixed and proportional to cell size. This is true in a grid where the
number of ALS echoes per grid cell is the same for all cells of a given
size. Obviously, this is not the case in most real world applications,
because ALS data consist of irregularly spaced echoes in horizontal
space.

Consider a case where the cells of area ai (e.g. 625m2 in Fig. 1, left
panel) are formed by ki non-overlapping subcells of areas aij (e.g.
156.25m2 in Fig. 1, mid panel or 69.44 in the right panel), so that
ai=∑j=1

kiaij. The forest attribute for cell i is yi and for its subcell j it is
yij. Variable y is said to be additive if aiyi=∑j=1

kaijyij. The measures of
mean or total quantity per area unit: total volume, above ground bio-
mass, basal area and number of stems, are additive. Measures of mean
or total quantity per tree: dominant height, mean height or mean dia-
meter, for example, are not additive. There are, however, special cases
when the mean diameter or height of trees is additive, this happens
whenever the number of trees per area unit is constant.

Consider a metric xij, which is based on the ALS measurements of
the canopy on subcell j within the larger cell i. It is typically the mean of
echo heights, a certain quantile of the echo heights, or proportion of
echoes above, below, or between fixed heights. A metric is said to have
a resolution invariant mean if the (optionally) weighted mean of subcell
metrics is equal to the metric computed for the entire cell i:

=
=

w x x ,
j

k

ij ij i
1 (2)

where weights wij is rescaled subcell area aij, scaled such that subcell-
level weights sum to one at cell-level:

=
=

w
a

a
ij

ij

j
k

ij1 (3)

Assuming a grid where the number of ALS echoes per cell and
subcell is constant, aij can be alternatively the number of echoes per
subcell. Some ALS metrics satisfy the condition of a resolution invariant
mean, such as the mean height of echoes without any height threshold
and many metrics of proportion above, below, or between certain fixed
heights. Height quantiles are an example of ALS metrics that are not
resolution invariant as they are not unbiased for the corresponding
population parameters: upper sample quantiles produce an under-
estimation of the corresponding population quantiles and lower quan-
tiles produce an overestimation. The biases are greatest for the extreme
quantiles (Reiss, 1989), and are affected by the shape of the underlying
distribution of ALS echoes, as well as by the number of ALS echoes. In
the ALS arena, quantiles are typically called percentiles and hereafter
we will follow this convention.

Consider an ABA forest inventory, where the prediction is based on
the model:

= +y f x e( ; ) ,i i i (4)

where xi is the vector of ALS metrics in the larger cell i and the residual
ei has a mean of zero. Let us assume that the parameter vector β is fixed
and known so that:

=E y f x( ) ( ; ),i i (5)

which is the expected value of yi. The model is called resolution in-
variant if the weighted sum of subcell-level predictions equals the cell-
level prediction:

=
=

E y w f x( ) ( ; )i j

k
ij ij1 (6)

Under the linear model, this yields:

= + = +
= = =

E y w x w w x( ) [ ]i
j

k

ij ij
j

k

ij
j

k

ij ij
1

(1) (2) (1)

1

(2)

1 (7)

Assuming that xij have a resolution invariant mean (Eq. (2)), this
yields

= +E y x( ) ,i i
(1) (2) (8)

which is exactly the same as the direct prediction at the cell level. Eqs.
(7) and (8) generalize to multiple linear models as well.

The additivity of the response variable is usually not achieved if
nonlinear transformations are used in the predictors. For example,
ai ln (yi) is not equal to ∑j=1

kiaij ln (yij). One might consider overcoming
this problem by using back-transformed predictions from a linear model
of transformed y, but the right-hand side of the prediction model would
not be a linear function of predictors. In addition, the treatment of the
back-transformation bias of such models would be an additional issue in
such an approach.

To summarize, resolution invariance in ABA is obtained at least
when all of the following four conditions are met:

Fig. 1. Plot setting.
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1) ALS echoes are regularly spaced in the horizontal dimension.
2) the forest variable (y) of interest is additive.
3) the ALS-based metrics (x) have a resolution invariant mean.
4) a linear model is used without nonlinear transformations in y.

Condition 1 has not received much attention in the literature thus
far because the literature on this topic tends to deal with regularly
spaced data. Condition 2 is not always satisfied because some inventory
attributes are not additive in nature. Commonly used metrics in ABA do
not satisfy condition 3, but in principle, some ABA metrics are sa-
tisfactory provided condition 1 is also satisfied. Condition 4 can be
satisfied, for example, with a classical linear regression model (Searle,
1971).

4. Material

4.1. Field data

The study area is a boreal managed forest area in eastern Finland
(62°31′N, 30°10′E). Field measurements were carried out in the summer
of 2010 and sample plots were deliberately placed to represent the tree
size and species variation for the study area. The allocation of field plots
was based on the development stage of the forest and the dominant tree
species. Scots pine (Pinus sylvestris L.) is the dominant tree species re-
presenting about 75% of the volume and the remainder consists of
Norway spruce (Picea abies [L.] Karst.) and a mixture of native decid-
uous species. We used field measurements from 58 sample plots
(25× 25m).

For trees with either a diameter at breast height (DBH) exceeding
4 cm or height exceeding 4m, the DBH, height, and tree species were
recorded. The DBH of each tree was estimated as the average of the
maximum diameter and the diameter perpendicular to the maximum
diameter. The above ground biomass of the individual trees was cal-
culated as a function of DBH and tree height using the species-specific
models developed by Repola (2008) and Repola (2009).

Each 25×25m plot was divided into four 12.5× 12.5m plots and
nine 8.33×8.33m plots (Fig. 1). Delineation of sub-plot boundaries
was feasible because the tree locations were known. For a more detailed
description of tree location determination see Packalen et al. (2015). In
total, there were 58 25×25m plots, 232 12.5× 12.5m plots and 522
8.33×8.33m plots. Hereafter, we refer to these as 25.0m, 12.5m and
8.33m resolutions. Plot level biomass per hectare (AGB Mg·ha−1) for a
plot (or a sub-plot) was computed as the sum of tree biomass on a plot
(or a sub-plot), expanded by the ratio of one hectare over the plot area.
A summary of AGB by plot size is provided in Table 1.

4.2. ALS data

ALS data were collected on June 26, 2009 using an Optech ALTM
Gemini laser scanning system. The nominal pulse density was ap-
proximately 12 pulses per square meter. The test site was scanned from
an altitude of approximately 600m above ground level, with a field of
view of 26° and side overlap between transects of 55%. Pulse repetition
frequency was set to 125 kHz. A Digital Terrain Model (DTM) was

constructed by first classifying points as ground and non-ground hits
according to the approach described by Axelsson (2000). A raster DTM
of 0.5 m spatial resolution was then obtained by interpolation using
Delaunay triangulation. Heights above ground (dZ) for ALS echoes were
calculated by differencing their elevations above the ellipsoid from
corresponding DTM elevations. Hereafter, we refer to dZ as echo height.

5. Methods

5.1. Predictor variables

The ALS metrics used as predictor variables were computed in the
same way for each plot at different resolutions. The metrics were
computed with either first or last echoes. First echoes contain original
echo categories “first of many” and “only” and last echoes contain “last
of many” and “only”. Subscript f denotes that a predictor variable was
computed using a set of first echoes and correspondingly subscript l

denotes that last echoes were used. Regression models contain the
following predictor variables:

• Height percentiles [h5f, h10f, h20f, h30f, h40f, h50f, h60f, h70f, h80f,
h90f, h95f and h95l] using echoes with dZ at least 2m. These vari-
ables do not have resolution invariant means.
• Mean height [havgf] of echoes. This variable has a resolution in-
variant mean assuming the number of echoes per plot is constant.
• Mean height [havgf>2m] of echoes with dZ at least 2m. This vari-
able does not have a resolution invariant mean except if the echo
density above 2m is constant, or the varying echo density is taken
into account in some other way (see LLS-RXN).
• Proportions of echoes below the fixed height thresholds of 2m
[p2mf] and 10m [p10ml] in relation to all echoes of the same echo
category. For instance, if the total number of echoes of the same
echo category (e.g. first echoes) within a plot is 100 and 40 of these
are below 2m, then p2mf is assigned a value of 0.4. These variables
have resolution invariant means assuming the number of echoes per
plot is constant.
• Proportions of echoes below the varying height threshold of havgl
[pavgl] in relation to all echoes of the same echo category. For in-
stance, if the total number of echoes of the same echo category (here
last echoes) within a plot is 100 and 60 of these are below the height
defined by havgl (e.g. 15m), then pavgl is assigned a value of 0.6.
This variable does not have a resolution invariant mean.

Broadly similar predictor variables have been used in previous ABA
studies and operational inventory projects (see e.g. chapters 1, 11 and
12 in Maltamo et al., 2014).

5.2. Model forms

We formulated a set of regression models to reveal the effect of
changing resolution. Plot level AGB was the response variable in all the
models. AGB is an additive response variable and no transformations
were carried out. Predictor variables and model forms were selected
such that they represent a realistically wide variety of model options in
ABA. We examined two types of models; linear (LLS) and nonlinear
(NLS). Regression models contain two types of predictor variables;
those that have resolution invariant mean (XR) and those that have not
(XNR). Note that the predictor variables categorized here as XR have
the property of a resolution invariant mean in the statistical sense but
are not resolution invariant in the ABA arena because of the non-regular
pattern of ALS echoes and/or threshold value used to compute the
metric. The name of the equation depicts the type of model and pre-
dictors, for instance, LLS-XR denotes that a model is linear and that the
predictor variables have a resolution invariant mean.

= + + +AGB havg p10m ,0 1 f 2 l (LLS-XR, 9)

Table 1
Mean, standard deviation, minimum and maximum above ground biomass
(AGB) by plot size.

Plot size

8.33m 12.5m 25.0m

Mean AGB (Mg·ha−1) 109.2 109.2 109.2
Std AGB (Mg·ha−1) 59.2 45.8 37.1
Min AGB (Mg·ha−1) 0.0 25.0 50.6
Max AGB (Mg·ha−1) 541.2 310.5 212.0
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= + + +AGB h95 pavg ,0 1 f 2 l (LLS-XNR, 10)

= ++ +AGB e ,( havg p2m )0 1 f 2 l (NLS-XR, 11)

= ++ +AGB e ,( h95 pavg )0 1 l 2 l (NLS-XNR, 12)

where β0,… , β2 are coefficients to be estimated from data, ε the re-
sidual vector and λ that forces a zero mean of residuals. When λ is
omitted, the NLS-XR and NLS-XNR models provide a slightly non-zero
mean of residuals because there is no intercept in the selected model
form. The calibration factor is used for convenience because we require
the NLS models to provide a zero mean of residuals when model fitting
and prediction are done at the same resolution.

In addition to the four models described above, we constructed a
model that is entirely resolution invariant. This model makes an im-
plicit assumption that areas with a higher point density are more im-
portant than areas with a low point density. This cannot be avoided if
resolution invariance is desired and metrics are computed directly from
ALS echoes. Resolution invariance is obtained by taking into account
the varying number of echoes per unit of area while computing pre-
dictor variables. The model resembles the LLS-XR except that the mean
height of ALS echoes was computed from above 2m echoes. The pre-
dictor variable havgf>2m was rescaled as follows:

= > >n(havg ) havg ,f mf 2 f 2m (13)

where nf>2m is the number of first echoes having dZ at least 2m per
area unit (e.g. per square meter) in a plot or subplot. The predictor
variable p10ml was rescaled as follows:

= n(p10m ) p10m ,ll l (14)

where nl is the number of last echoes per unit area in a plot or subplot.
Note that rescaling is always conducted using the number of echoes that
are used to compute the metric in question, i.e. height threshold must
be taken into account if applied before computing a metric. Thus, the
resolution invariant model is as follows:

= + + +>AGB (havg ) (p10m ) ,0 1 f 2m 2 l (LLS-RXN, 15)

where RXN denotes that XN type predictor variables were rescaled. We
also fitted a set of HPERC models to demonstrate the bias properties for
the commonly used predictor variable h[5...95]f (height percentile
computed by excluding echoes near to the ground) when combined
with another common predictor p2mf (proportion of echoes below 2m).
HPERC models have the form:

= + + +AGB p2m h[5...95] ,0 1 f 2 f (HPERC, 16)

where height percentile varies between 5 and 95. The model form was
selected such that it fits well with all the percentiles.

5.3. Model fitting, prediction and validation

We fitted the models at the resolutions of 8.33m, 12.5m and 25.0m
with the method of least squares using lm and nls functions available in
the R environment (R Development Core Team, 2011). Then we pre-
dicted at all resolutions with every model. The performance of models
was assessed by cross-validation. First, one 25m plot was excluded and
a model was fitted with other plots either at 8.33m, 12.5m or 25.0m
resolution. Then the prediction was made to the excluded 25m plot,
either at 8.33m, 12.5m or 25.0m resolution. Thus, each model was
fitted three times (× 58 considering cross-validation) and was then
used to predict at its native resolution and two other resolutions. This
was repeated with models that violate the resolution invariance con-
ditions (LLS-XR, LLS-XNR, NLS-XR, NLS-XNR) and, as a proof-of-concept,
with the proposed resolution invariant model (LLS-RXN). All the pre-
dictions were aggregated to the 25.0m level by computing the mean
value of sub-plots. The example in Fig. 2 describes a model that is first
fitted at the 12.5m resolution, then used to predict at the 8.33m re-
solution, and finally predictions are aggregated to the 25.0m

resolution. This setting enables an analysis of resolution effect when a
plot size is either smaller or bigger in model fitting than in prediction.

The purpose of HPERC models is to demonstrate the bias properties
for the commonly used predictor variable h[5...95]f when combined
with another common predictor p2mf. This was done by fitting HPERC
models at resolutions of 8.33m and 25.0m. For each height percentile,
the 8.33m model was used to directly predict at a resolution of 25.0 m,
whereas the 25.0m model was used to predict to a resolution of 8.33m
and the predictions were then aggregated to the 25.0m resolution.

We assess the performance at the 25.0 m resolution using the esti-
mated relative BIAS and RMSE.

= × =

y
RMSE % 100 ,i

n y y
n1

( )i i 2

(17)

= × =

y
BIAS % 100 ,i

n y y
n1

( )i i

(18)

where yi is the predicted value in plot i, yi is the observed value in plot i,
n is the number of plots, and y is the mean of observed values.

6. Results

6.1. Error rate

The RMSE values and the change of RMSE compared to its value in
native resolution are presented in Table 2. The RMSE decreased if the
prediction resolution was higher than the fitting resolution, and con-
versely, the RMSE increased if the prediction resolution was lower than
the fitting resolution. This trend was obvious but not consistent in every
case. The effect of varying resolution was slightly stronger when fitting
at high resolution and predicting at low resolution than vice versa. In
most cases, the lowest error rate was obtained when a model was fitted
at the largest resolution and prediction was carried out at the finest
resolution. The resolution effect tended to be much smaller with pre-
dictor variables that had a resolution invariant mean (LLS-XR and NLS-
XR) than with variables that did not have this property (LLS-XNR and
NLS-XNR). The model type (LLS or NLS) did not have any apparent
effect. The resolution invariant LSS-RXN model had a constant RMSE
value under different resolution predictions when the regression coef-
ficients were fixed (i.e. they are solved at a certain resolution). This was
due to the exact same predictions at different resolutions. In this in-
stance too, the error rate decreased as the fitting resolution became
lower. The RMSE values ranged from 16.74 to 20.73%.

6.2. Bias

The BIAS values for the different models and resolutions are pre-
sented in Table 3. The resolution effect with respect to BIAS was smaller
with predictor variables that had a resolution invariant mean (LLS-XR
and NLS-XR) than with variables that did not have this property (LLS-
XNR and NLS-XNR). If the prediction resolution was lower than the
fitting resolution it resulted in an overestimation, and conversely, if the
prediction resolution was higher than the fitting resolution it produced
an underestimation. However, the direction of BIAS was different in
NLS-XR than in the other cases. There was no clear difference in terms
of BIAS between the linear (LLS) and non-linear (LLS) models. The LLS-
RXN models showed small BIAS, which was consistent with the same
model at different resolutions. This small BIAS is due to cross-valida-
tion; without cross-validation the LLS-RXN models show zero BIAS.

Fig. 3 shows the effect of using varying height percentile on pre-
diction BIAS (HPERC models). A clear trend in the opposing directions
was observed. Fitting with the 8.33m resolution and predicting with
the 25.0m resolution led to a positive BIAS with low percentiles and a
negative BIAS with high percentiles, while fitting with the 25.0m re-
solution and predicting with the 8.33m resolution led to a negative
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BIAS with low percentiles and positive BIAS with high percentiles. The
more extreme the percentile, the more serious the BIAS; the highest
BIAS was 2.8%.We can interpolate between the nodes in the graph and
estimate that (in this case) unbiased predictions could be obtained with
the 43th percentile.

7. Discussion

The main findings of the behavior of RMSE and BIAS with respect to
differing fitting and prediction resolutions are summarized in Fig. 4.
The RMSE value increases when the prediction resolution is lower than
the fitting resolution and decreases when the fitting resolution is lower
than the prediction resolution. The direction of BIAS was not consistent
across all models. In most cases, however, the result was an over-
estimation when the prediction resolution was lower than the fitting
resolution, and vice versa. This indicates that the direction of BIAS also
depends on the model form. Predicting at resolutions lower than the
fitting resolution leads to an overestimation with low height percentiles
(h[low]) and an underestimation with high height percentiles (h
[high]), while predicting at resolutions higher than the fitting resolu-
tion leads to an underestimation with low percentiles and an over-
estimation with high percentiles. This is due to the bias of sample
percentiles as estimators of population percentiles. The sample per-
centiles overestimate low population percentiles and underestimate the
high percentiles (Hyndman and Fan, 1996).

Our results indicate that the lowest error rate is obtained when a
model is fitted at the lowest resolution and when prediction is done at
the highest resolution. A reason for this may be that the metrics com-
puted from larger plots lead to regression coefficients that are closer to
the true value than those obtained with small plot sizes. This may be
due to larger measurement errors in predictions that use smaller plots
(Gobakken and Næsset, 2009), which reduce regression coefficient es-
timates towards zero (Lappi, 1993; Carroll et al., 2006), or because the
edge tree effect, which is similar to a measurement error, is greater in
the smaller plots (Packalen et al., 2015). However, as there is a tradeoff
between plot size and the number of plots it is not obvious which plot
size is optimal given the need for sufficient numbers of plots as well as
sufficiently large plots. In the real world, resources available for field
measurements are typically limited, and increasing the plot areas would
result in a fewer numbers of plots.

The level of BIAS in this study seems to be quite low even if several
conditions of resolution invariance are violated at the same time. The
maximum bias of 3.03% is observed when the resolution is changed 9-
fold. When the resolution is changed 4-fold, the maximum bias is
1.50%. In a real world scenario, the change of resolution is hardly ever
as high as 4-fold. The effect of resolution on BIAS is smaller with pre-
dictor variables that have a resolution invariant mean than with vari-
ables that do not have this property. In the case of the linear model and
predictor variables with a resolution invariant mean (LLS-XR), the

Fig. 2. An example of model fitting, prediction and aggregation workflow. For the simplicity, cross-validation is not shown in the figure.

Table 2
RMSE values (%) for the different models and resolutions. Fitting resolution is
by rows and prediction resolution by columns. The change of RMSE compared
to its value in native resolution (diagonal) is shown in parenthesis. Absolute
RMSE values (Mg·ha−1) are in appendix A1.

Predict

Model Plot size 8.33m 12.5m 5.0m

LLS-XR Fit 8.33m 17.38 (0.00) 17.54 (0.16) 17.53 (0.15)
12.5 m 16.81 (−0.10) 16.91 (0.00) 16.91 (0.00)
25.0 m 16.74 (−0.05) 16.80 (0.01) 16.79 (0.00)

LLS-XNR Fit 8.33m 19.90 (0.00) 20.46 (0.56) 20.73 (0.82)
12.5 m 19.01 (−0.34) 19.35 (0.00) 19.50 (0.15)
25.0 m 19.18 (−0.21) 19.35 (−0.04) 19.39 (0.00)

NLS-XR Fit 8.33m 18.37 (0.00) 18.32 (−0.05) 18.40 (0.03)
12.5 m 17.49 (−0.03) 17.52 (0.00) 17.58 (0.06)
25.0 m 17.24 (−0.10) 17.28 (−0.06) 17.34 (0.00)

NLS-XNR Fit 8.33m 19.01 (0.00) 19.98 (0.97) 20.25 (1.24)
12.5 m 18.07 (−0.57) 18.64 (0.00) 18.67 (0.03)
25.0 m 18.27 (−0.33) 18.63 (0.02) 18.61 (0.00)

LLS-RXN Fit 8.33m 17.77 (0.00) 17.77 -(0.00) 17.77 (0.00)
12.5 m 17.75 (0.00) 17.75 -(0.00) 17.75 (0.00)
25.0 m 17.68 (0.00) 17.68 (0.00) 17.68 (0.00)

Table 3
BIAS values (%) for the different models and resolutions. Fitting resolution is by
rows and prediction resolution by columns. Negative values denote an under-
estimation and positive values an overestimation (Eq. (18)). Absolute RMSE
values (Mg·ha−1) are in appendix A2.

Predict

Model Plot size 8.33m 12.5m 25.0m

LLS-XR Fit 8.33m −0.03 0.12 0.21
12.5m −0.16 −0.02 0.07
25.0m −0.21 −0.09 −0.01

LLS-XNR Fit 8.33m −0.03 1.46 3.03
12.5m −1.36 0.00 1.45
25.0m −2.60 −1.35 0.01

NLS-XR Fit 8.33m −0.02 −0.71 −1.48
12.5m 0.56 0.05 −0.55
25.0m 0.97 0.55 0.05

NLS-XNR Fit 8.33m −0.02 1.50 2.61
12.5m −1.32 0.06 1.08
25.0m −2.26 −0.94 0.07

LLS-RXN Fit 8.33m −0.13 −0.13 −0.13
12.5m −0.11 −0.11 −0.11
25.0m −0.12 −0.12 −0.12
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Fig. 3. Behavior of BIAS using fixed p2mf

variable and varying height percentile h
[5...95]f (HPERC models). Line depicts the
case where a model is fitted at the resolution of
8.33m and the prediction is done at the re-
solution of 25.0m. Line depicts the opposite;
a model is fitted at the 25.0m resolution and
the prediction is done at the 8.33m resolution.

Fig. 4. Main findings of the study with respect to lower vs. higher fitting and prediction resolutions. Overestimate and underestimate in brackets denotes that the
direction of BIAS was not consistent across all models, but in most cases it was as depicted. h[low] and h[high] refer to low and high height percentiles, respectively.
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maximum bias is only 0.21% when the resolution is changed 9-fold.
However, it should be noted that it is not exactly a resolution invariant
because the number of ALS points per cell varies.

The Pearson correlation coefficient between the BIAS (Table 3) and
change of RMSE (Table 2, figures in parenthesis) is 0.78 when all 54
cases are considered. This is expected behavior because
RMSE2=BIAS2+ variance. There is a trend that BIAS is positive when
RMSE increases with respect to the native resolution, and vice versa
when it decreases. The NLS-XR model was an exception: under-
estimation increased and overestimation decreased RMSE with respect
to the native resolution. We can conclude that the decrease or increase
of RMSE values with respect to native resolution does not depend on the
sign of BIAS but depends on model form and predictor variables.

Resolution invariant prediction is feasible with LLS-RXN. The main
idea is to rescale predictor variables in order to take into account the
varying number of echoes per unit of area (Eq. (13)–(14)). Otherwise,
LLS-RXN is the same as LLS-XR. “Resolution invariance” means that
prediction BIAS is always exactly zero, although there is a tradeoff in
terms of RMSE. LLS-RXN has consistently higher RMSE values than LLS-
XR, because the weighting does not contribute to the relationship be-
tween response and predictor values – they simply enforce a desired
condition of resolution invariance. Therefore, a greater RMSE is the
price to be paid for exact resolution invariance. It is also debatable
whether weighting with the number of echoes per unit area makes
sense. LLS-RXN corrects for the effects of irregular point density re-
sulting from variability in the ALS data acquisition process. Conse-
quently, areas with a higher point density receive higher weighting
than areas with lower point density – where in practice, we are equally
interested in every location. An alternative approach to revise irregular
point density would be to standardize ALS point density per area unit
by interpolating a continuous surface and computing metrics from this
surface, instead of computing them directly from the ALS echoes. A
canopy height model (CHM) is an example of this kind of surface:
condition 1 is fulfilled if plots and cells are arranged such that the
number of pixels per unit area is the same in every plot and cell. Zhao
et al. (2009) used this approach to derive canopy height distributions.
Chirici et al. (2016) studied the decrease in accuracy if CHM metrics are
used instead of echo metrics in the estimation of forest aboveground
biomass. They found that the R2 decreased from 0.58 to 0.56 with a
linear model, and from 0.54 to 0.48 with the k-NN technique. Un-
doubtedly, the use CHM metrics increases the prediction error but this
trade-off may be acceptable. On the other hand, if unbiasedness is not a
strict requirement, the effect of a slight imbalance in the number of
echoes per unit area may not have very much practical significance.

Note that the LLS-RXN model accounts for the effect of varying
point density both within and between plots (and cells). In classical
ABA, between plots (or cells) variation in point density is not an issue
because the value of metrics do not depend on the number of points per
plot. However, an intrinsic property of the classical ABA is that higher
point density areas within a plot get more weight than lower point
density areas within a plot. The use of a continuous surface, such as
computing metrics from the CHM, does not have an issue with either
within a plot or between plots variation in point density.

It is possible to use only ALS metrics that fulfill the condition of a
resolution invariant mean, but there are several commonly used metrics
that do not obey this condition. Height percentile is the most common
category of this type and is frequently used because there is a strong
relationship between upper percentiles and the main attributes of in-
terest in forest inventories (Næsset, 2002). It is also common practice to
include only vegetation echoes when computing height metrics. Typi-
cally, this is implemented by excluding echoes below 1–2m (Næsset,
2004; Vauhkonen et al., 2012; Chen et al., 2016). The application of a
height threshold makes the situation even more difficult from a re-
solution viewpoint, because it causes the number of echoes considered
by a metric to vary considerable cell by cell. Fig. 3 demonstrates the
behavior of BIAS with a linear model mimicking a real world use case

when the resolution is changed 9-fold. The model contains one cover
metric and varying height percentiles 5…95 computed with a height
threshold of 2m. This shows that bias increases more or less symme-
trically towards the extreme percentiles. If resolution bias is of concern,
then it can be mitigated to some degree by simply avoiding extreme
percentiles.

Drawing absolute conclusions with regard to the level of BIAS or
RMSE is difficult when resolution invariance conditions are not met and
the resolution is changed. For example, one may use a non-linear model
form that is exceedingly sensitive to resolution, or a predictor variable
that may be extremely sensitive to resolution, such as maximum echo
height. In cases when forest inventory attributes that are not additive in
nature, such as Lorey's Height (mean height weighted by basal area) or
DGM (diameter of the basal area median tree), resolution invariance
cannot be achieved with the methods examined here, and the ob-
servations made here with regard to BIAS and RMSE do not apply.

The use of 3D remote sensing data is becoming increasingly wide-
spread and different point cloud generation approaches are now
available. Point cloud reconstruction from image pairs is currently the
most common alternative (St-Onge et al., 2008) to ALS and also new
Lidar techniques have emerged (Swatantran et al., 2016). The ob-
servations made in this study apply partly to image point clouds but
there are differences that must be taken into account. For example,
some image point cloud software produces a regularly spaced surface
model instead of a true point cloud, in which case varying point density
is not an issue.

8. Conclusions

A number of factors contribute to resolution dependence in ABA
forest inventories. These include the varying point density of the ALS
data, the type of response variable used, how the predictor variables are
computed, and the properties of the model. Complete resolution in-
variance is feasible using the LLS-RXN approach, or by computing
metrics from a continuous surface interpolated with ALS data (i.e.
CHM) and by meeting other conditions too.

The maximum BIAS was 1.50% and the maximum change of RMSE
compared to its value in native resolution was 0.97% when there was a
4-fold difference in resolution. This indicates that the resolution effect
is small in most real-world use cases, especially as the difference in plot
or cell size is usually considerably smaller than the 4-fold. The effect of
resolution on BIAS and change of RMSE compared to its value in native
resolution was much smaller with XR than XNR type metrics. Therefore,
if resolution effect is of concern, XR type metrics are recommended,
although they are not resolution invariant in an ABA context because
the number of ALS echoes per unit area is not constant. In this study,
the model type (LLS or NLS) did not have any clear effect on BIAS or
change of RMSE.

Unbiasedness is not a strict requirement in most stand level forest
management inventories. In that case, resolution invariance may be of
limited practical importance, particularly because at the stand level the
error rate will typically greatly exceed the level of bias caused by the re-
solution invariance. For strategic inventories that cover large areas, the
importance of resolution invariance is greater. In a model-based or model-
assisted approach to estimation over large areas, it is assumed that model
residuals are an unbiased sample of the deviations that would be observed
between predictions and observations. In the case of resolution differences
between the fitting and prediction datasets, this property does not hold,
and the bias may be large relative to the sampling variation. Attention to
resolution dependence will thus be most relevant when large area in-
ferences are made from ALS-assisted inventories.
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Appendix A. Appendix

Table A1
Absolute RMSE values (Mg·ha−1) for the different models and resolutions. Fitting resolution is by rows and prediction resolution by columns. The change of RMSE
compared to its value in native resolution (diagonal) is shown in parenthesis.

Predict

Model Plot size 8.33m 12.5m 25.0m

LLS-XR Fit 8.33m 18.98 (0.00) 19.16 (0.17) 19.15 (0.17)
12.5m 18.35 (−0.11) 18.47 (0.00) 18.46 (0.02)
25.0m 18.28 (−0.06) 18.35 (0.01) 18.34 (0.00)

LLS-XNR Fit 8.33m 21.74 (0.00) 22.34 (0.61) 22.63 (0.90)
12.5m 20.76 (−0.37) 21.13 (0.00) 21.30 (0.17)
25.0m 20.94 (−0.23) 21.13 (−0.04) 21.17 (0.00)

NLS-XR Fit 8.33m 20.06 (0.00) 20.01 (−0.06) 20.10 (0.03)
12.5m 19.10 (−0.03) 19.13 (0.00) 19.19 (0.06)
25.0m 18.83 (−0.11) 18.87 (−0.07) 18.94 (0.00)

NLS-XNR Fit 8.33m 20.76 (0.00) 21.82 (1.06) 22.11 (1.35)
12.5m 19.73 (−0.62) 20.35 (0.00) 20.39 (0.04)
25.0m 19.95 (−0.36) 20.34 (0.02) 20.32 (0.00)

LLS-RXN Fit 8.33m 19.40 (0.00) 19.40 (0.00) 19.40 (0.00)
12.5m 19.38 (0.00) 19.38 (0.00) 19.38 (0.00)
25.0m 19.31 (0.00) 19.31 (0.00) 19.31 (0.00)

Table A2
Absolute BIAS values (Mg·ha−1) for the different models and resolutions. Fitting resolution is by rows and prediction resolution by columns. Negative values denote
an underestimation and positive values an overestimation (Eq. (18)).

Predict

Model Plot size 8.33m 12.5m 25.0m

LLS-XR Fit 8.33m −0.03 0.13 0.23
12.5m −0.18 −0.02 0.07
25.0m −0.23 −0.09 −0.01

LLS-XNR Fit 8.33m −0.04 1.59 3.31
12.5m −1.48 0.00 1.59
25.0m −2.84 −1.47 0.02

NLS-XR Fit 8.33m −0.02 −0.77 −1.61
12.5m 0.61 0.06 −0.60
25.0m 1.06 0.60 0.05

NLS-XNR Fit 8.33m −0.03 1.63 2.85
12.5m −1.44 0.06 1.18
25.0m −2.47 −1.03 0.08

LLS-RXN Fit 8.33m −0.14 −0.14 −0.14
12.5m −0.12 −0.12 −0.12
25.0m −0.13 −0.13 −0.13
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