Landscape connectivity and conservation prioritization for an old forest species with limited vagility

M. A. Linnell & D. B. Lesmeister

USDA Forest Service, Pacific Northwest Research Station, Corvallis, OR, USA

Keywords
arboreal rodent; Arborimus longicaudus; endangered species; forest patch mosaic; habitat network; red tree vole; multi-generation connectivity; landscape connectivity.

Abstract
Old forests are often patchily distributed in contemporary forested landscapes leading to conservation concerns for species dependent on these forest types. In the absence of broad-scale recovery of old forests, conservation initiatives have emphasized connecting forested landscapes to facilitate movement of genes or individuals. We assessed forest connectivity for a low-vagile arboreal rodent (red tree vole; Arborimus longicaudus), an obligate of old forests within a distinct population segment that is a candidate for listing under the US Endangered Species Act in the northern Oregon Coast Range (USA). Within the distinct population segment, old forests (>80 years old) have contracted by >80% in the previous century, comprise 10.9% of the contemporary landscape and reside in a matrix of young forests (20–80 years old). We combined complimentary graph and circuit theory metrics into spatial conservation prioritization to provide insights into the composition and function of the contemporary forested landscape and to identify potential conservation research priorities for this area. Given average distances from patches of old forests (3.4 km), we predicted that connectivity can only be achieved if red tree voles move and settle iteratively through young forest matrix, which is suboptimal habitat. We found that the top 1% conservation priorities were a series of small, spatially central patches and several large patches located where old forest cover was most extensive. Most of these patches were in protected reserves. Up to 30% of the top 10% prioritization were forests outside of reserves, highlighting the potential for these forests to contribute to landscape connectivity for this low-vagile species that is dependent on old forest.

Introduction
Reduction in forests containing large, old trees poses pervasive conservation challenges because many species depend on trees with complex structural characteristics that take decades or centuries to develop (Banks et al., 2013). What remains of forested landscapes, including the distribution and extent of remnant old-forest patches and intervening cover types, is a primary driver of the capacity of these landscapes to support populations of old-forest dependent species (Lindenmayer et al., 1999; Fischer & Lindenmayer, 2006). Thus, conservation of remnant old forests can be complimented by identification of intervening cover types that may facilitate population-level connectivity.

In the absence of broad recovery of old forests, conservation initiatives have emphasized assessments of forest connectivity or the capacity of forested landscapes to facilitate movement by individuals and genes (Beier et al., 2011). Forest connectivity is species and landscape specific, dependent on animal movement potential (vagility) and forest amount and configuration (Taylor et al., 1993; Prugh et al., 2008; Cushman & Landguth, 2012). Matrix, defined as the majority cover type in which old forest resides on the landscape (Lindenmayer & Franklin, 2002), can affect animal movement depending on its similarity or dissimilarity to old forests (i.e. contrast). The extent of matrix and isolation of remaining old forests can determine whether connectivity is most appropriately a measure of movement of multiple generations through matrix (i.e. as measured by movement of genes) or of individuals (Lindenmayer & Franklin, 2002; Cushman & Landguth, 2012).

Due to a precipitous reduction in old conifer forests (>80 years old) during the 20th century (>80% since 1911) due to timber harvest and large wildfires and subsequent conversion into young, managed forests (<80 years old), a distinct population segment of red tree voles (Arborimus longicaudus; hereafter tree vole) at the northern periphery of their range in the northern Oregon Coast Range (USA) were proposed as a candidate for protection under the US Endangered Species Act (USDI Fish and Wildlife Service, 2011; Forsman et al., 2016; Linnell et al., 2017). Tree voles are small (~30 g) canopy-dwelling arboreal rodents endemic to western Oregon and northwest California and are associated with old conifer forests at the local (i.e. containing one to several home ranges) and landscape scales (Linnell et al., 2017). Occurrence of tree voles in young forest matrix is
predicted to depend on matrix contrast which is closely related to forest age and disturbance, and distance from large patches (>20 ha) of old forest (Forsman et al., 2016; Linnell et al., 2017). Dispersal data are scarce, and of nine subadult tree voles radio-tracked, six dispersed (mean = 56 m, max = 75 m, n = 6; Swingle, 2005). These distances are much shorter than the estimated mean distance from old-forest patches (3.4 km) in the northern Oregon Coast Range (Linnell et al., 2017). Inter-patch connectivity, therefore, is likely to depend on the capacity of tree voles to occasionally colonize and reproduce in young forest matrix (Swingle, 2005; Linnell et al., 2017).

Assessments of connectivity have broadly depended on two approaches, patch-based connectivity that emphasizes identifications of patches which may disproportionately connect landscapes (Bodin & Saura, 2010; Saura et al., 2011) and inter-patch connectivity, including the contribution of the matrix (McRae et al., 2008; Cushman & Landguth, 2012). Both depend on assumptions about animal vagility to identify the contribution of landscape elements and combining them using spatial conservation prioritization mapping may provide resolution to landscape-scale connectivity analyses, particularly in forested landscapes that contain low-contrast matrix and where old forests are scarce (Rayfield et al., 2016; Albert et al., 2017).

To identify potential research and forest conservation priorities including reserve design for tree voles within the distinct population segment we used spatial conservation prioritization mapping to identify forested areas that contribute disproportionately to connectivity. First, we used graph theory to identify discrete meta-population networks (i.e. network components) using old-forest patches as nodes (Bunn, Urban & Keitt, 2000). Second, we used circuit theory to identify pinch-points in the landscape where movement is likely to be limited to one or few pathways (McRae et al., 2008). Finally, we combined metrics derived from graph and circuit theory to identify areas of conservation priority (Moilanen et al., 2005).

Materials and methods

Study area

The study area was defined as an approximately 16 000 km² forested area containing the distinct population segment of tree voles in the northern Oregon Coast Range (Fig. 1). Most forests were dominated by conifers (Pseudotsuga menziesii, Picea sitchensis) that at approximately 80 years old, begin to develop copious complex structural features that tree voles and other species use as nest substrates (e.g. cavities, epicormic branches; Spies & Franklin, 1991). Eighty years old has been used as an ecological and management threshold to identify old forests, to include late-successional (80–200 years old) and old-growth (>200 year old) forests (Spies & Franklin, 1991; Molina, Marcot & Lesher, 2006). Old forests in the study area contracted by >80% in the 20th century, primarily due to timber harvest and four large wildfires (1931–1951) north of the Nestucca River comprising the Tillamook Burn (Highsmith & Beh, 1952). The contemporary landscape comprised 10.9% old forest cover, below the lower bounds of predicted historical range (25–75%; Wimberly et al., 2000; Linnell et al., 2017). Land ownership was highly correlated with forest cover and age with lower amounts of large (old) conifer forests occurring on private lands (Stanfield, Bliss & Spies, 2002; Wimberly & Ohmann, 2004). Regional patterns of ownership within the study area were characterized by land ownership consolidation. Unconsolidated lands comprised either a ‘checkerboard’ pattern of ownership of alternate 2.59 km² sections in public or private ownership, or consolidated blocks consisting of multiple public or private sections.

Following adoption of the Northwest Forest Plan, most old forests on federal lands were protected as late-successional reserves for the northern spotted owl Strix occidentalis caurina and its habitat (old conifer forests), and by extension what were assumed to be reserves for a broad suite of organisms associated with old forests including the marbled murrelet Brachyramphus marmoratus, and many non-vertebrate species (USDA Forest Service & USDI Bureau of Land Management, 1994). On federal lands many species, including the tree vole, were required to be surveyed for before management actions could occur on non-reserve forests >80 years old (Molina et al., 2006). Some state forest lands were managed for old-forest structure within a shifting mosaic over time but contained relatively few set-aside reserves (Oregon Department of Forestry 2010).

Across ownerships, most young forests (<80 years old) were managed as plantations of native conifers for timber production, primarily Douglas-fir P. menziesii. Partial removal harvests (thinning) predominated on federal lands and total removal harvests (i.e. clear-cuts) on private and state owned lands. Harvest rotation periods ranged 40–50 years on private lands and up to 80 years on state and non-reserve federal lands (Adams et al., 2002; Oregon Department of Forestry 2006). Fire return intervals in these temperate forests were estimated to be 230 ± 30 years (mean ± sd) during the previous millennium, exceeding the contemporary 40–50 year harvest rotation periods (Long et al., 1998).

Study organism and habitat suitability map

Tree voles consume a diet of conifer needles and build their nests and forage almost exclusively in the forest canopy (Forsman et al., 2016). Several factors have been hypothesized to contribute to their close association with old forests (e.g. predation, lack of nest substrates), and a recent study found evidence that availability of nest substrates in the canopy limited abundance of tree voles in young forests 22–44 years old (Linnell et al., 2018). In addition to supporting the ecological conditions that tree voles require, many old forests were protected in federal reserves and were most likely to remain on the landscape assuming timber harvesting continued to be the most prevalent disturbance.
Minimum patch size requirements for tree voles, and other temperate forest-dwelling vertebrates, are frequently unknown (Bunnell et al., 1999). Linnell et al. (2017) identified >20 ha as a biologically relevant old-forest patch size estimated to support a small tree vole population of ~30 animals based on indices of tree vole abundance: 1.0 (Maser, 1966) and 1.9 ± 1.0 (mean ± 1 se; Marks-Fife, 2016) tree voles per ha. Although 30 animals is well below suggestions for viable populations in isolation over multiple generations (Frankham, Bradshaw & Brook, 2014), we assumed that 20 ha was sufficient in size to remain occupied for several years if isolated and thus considered it a conservative estimate of minimum patch size. We used >20 ha old-forest patches as nodes in network analysis and our study area comprised 1274 nodes.

We used the habitat suitability index (HSI) map (30 × 30 m resolution) produced by Linnell et al. (2017) to create a resistance surface to assess movement connectivity using circuit theory. The HSI map was produced using a presence-only model trained and tested using machine learning in program Maxent (Phillips, Anderson & Schapire, 2006) and forest cover covariates derived from light detection and ranging (lidar) and Landsat data collected 2006–2016. Model fit for the four-covariate final model (percentage old forest, recent disturbance, distance from old-forest patch >20 ha and hardwood cover) was estimated to be high with a continuous Boyce index (based on Spearman rank) of 0.95 ± 0.03.

Graph analytical approaches

Graph theory analyses can assess inter-patch connectivity by conceptualizing the landscape as a series of nodes (patches) and links. Graphs are sensitive to assumptions about dispersal distances of focal species (Bunn et al., 2000; Urban & Keitt, 2001). Dispersal and recruitment, however, are difficult to estimate and this information is lacking for many species (Baguette & Van Dyck, 2007; Le Galliard et al., 2012). For low-vagile species inter-patch connectivity is further complicated because it may take multiple generations to link neighbouring patches if patches are dispersed many times further than individual dispersal distances (Barrows, Fleming & Allen, 2011).

Tree voles are low-vagile and old-forest specialists; therefore, we assumed that connectivity (to include gene flow and demographic connectivity) across relevant distances would be a multi-generational process occurring at the population-level, whereby tree voles would need to iteratively move, settle and reproduce within low-contrast matrix to connect old-forest patches. This assumes that matrix supports movement and occasional reproduction, as has been shown for tree voles (Forsman et al., 2016) and for birds in agro-ecosystems (Manning, Lindenmayer & Barry, 2004), but that lack of nest substrates or other factors limit suitability of matrix compared to old-forest patches (Linnell et al., 2018). The limited information regarding tree vole dispersal...
suggests natal dispersal distances of up to 75 m (Swingle, 2005), although Biswell (1994) reported a single instance of a subadult male located 340 m from his natal tree. To incorporate uncertainty of dispersal distance into assumptions of inter-patch connectivity we assessed graph metrics at two distances: (1) 2 km from old-forest patches which was the distance threshold identified in the Linnell et al. (2017) model where HSI transitioned from suitable to unsuitable, and (2) 7 km which represents a maximum expansion scenario.

Although multi-generation connectivity via gene flow has rarely been empirically tested for small mammals, a model of gene flow for a generalist mouse species *Peromyscus leucopus* suggested that several generations of successful dispersal of at least 80 m facilitated gene flow (Marrotte, Gonzalez & Miliën, 2017). Given limited information about dispersal and settlement by tree voles, a plausible first step in assessing connectivity may be to assume a similar scenario: that multiple successive dispersal events facilitate connectivity. In this scenario (maximum expansion scenario), we assumed (1) that tree voles move in a stepwise pattern whereby each generational step was equal to the observed straight-line natal dispersal distance of 75 m (Swingle, 2005), (2) tree voles breed year-round and can produce an estimated 3 litters/generations per year (Forsman, Swingle & Hatch, 2009) and 3) young forest matrix provides habitat for up to 30 years (forest age: 20–50 years old) at the local and landscape scales (continuous forest cover) through 50-year timber harvest rotations. Using these assumptions, tree voles could move a maximum of 75 m x 3 generations/year x 30 years of forest cover = 6750 m in 30 years, which we then rounded to 7 km.

Spatial graphs

Because the forested matrix between old-forest patches was highly variable and dynamic, we used an unweighted (i.e. patches were not expected to contribute to flow/connectivity differently) minimum planar graph (Fall et al., 2007) to represent discrete old-forest patches, assuming that intervening linkages would form and contract as young forests that comprised the matrix aged and then were harvested. We further assumed that tree vole populations would expand directly between patches *i* and *j* such that pairwise inter-patch distances could be represented as the Euclidean distance from the edge of patch *i* to the edge of patch *j*. This represents a conservative estimate of inter-patch distance as it is unlikely that tree voles would have expanded across the shortest linkages between patches or that forest cover was likely to form such direct linkages. To examine the sensitivity of the network to assumed dispersal distances and estimate the number of potential discrete meta-populations, we estimated the number of network components (connected networks) at 1 km intervals formed at each distance threshold and present this area curve (Bunn et al., 2000). Finally, we estimated the connectivity distance at which the slope tangent of the curve approached −1 which indicated the point where the landscape becomes only marginally more connected with longer assumed inter-patch dispersal (Appendix S1).

Graph metrics

We estimated two network metrics, equivalent connected area index (ECA; Saura et al., 2011) and weighted betweenness connectivity (BC) that are predicted to provide complementary information in network mapping (Estrada & Bodin, 2008; Baranyi et al., 2011). ECA explicitly weights the size, in our case more extensive patches have higher weight, and ECA was the total forested area consisting of old forests within the largest connected network in the landscape. To evaluate the contribution of each node to inter- and intra-patch connectivity, we estimated the decrease in habitat area within the network if that node was removed (dECA). Following Rayfield et al. (2016), we set the distance-decay constant, which characterizes the probability of dispersal beyond our assumed dispersal distances (2 km, 7 km), to −0.01 representing a 0.05 probability of tree vole dispersal beyond 2 km or 7 km (see Rayfield et al., 2016). All analyses were performed in program R using the igraph v 1.1.2 and raster 2.6-7 packages (Csárdi & Nepusz, 2006; Hijmans et al., 2015; R Core Team 2018). We used code provided by Rayfield et al. (2016) to estimate dECA.

BC estimates provide information on centrality of node *i* within the network as the proportion of the weighted shortest paths between *i* and *j* that pass through *i* (Freeman, 1978; Bodin & Saura, 2010). Old-forest patches were included in only one network each, and networks were defined by our distance thresholds.

Movement connectivity using circuit theory

We used circuit theory, implemented by program Circuitscape 4.0, to evaluate the potential for inter-patch connectivity within the contemporary landscape (McRae et al., 2008). Circuitscape uses current passed through a landscape to identify paths of least resistance represented by a raster grid whereby each pixel has a conductance value corresponding to ease of movement of the modelled organism. For tree voles, we assumed that circuit flow maps needed to represent the process of multi-generational expansion to link disjunct patches of old forest, including movement, settlement and reproduction, and therefore we used a HSI map (Linnell et al., 2017) to estimate conductance at each pixel. Higher conductance values represent pixels that are hypothesized to provide habitat for tree voles. Conductance and habitat suitability values in our analysis should therefore be highly correlated because they are based on the same underlying values. Circuit flow, however, provides a metric of least resistance connectivity for the entire landscape, providing information unique to HSI values at the pixel-level. To estimate circuit flow across the study area we used the tiling approach outlined by Peletier et al. (2014) to create an omnidirectional circuit flow map (Appendix S2). To evaluate correlations between HSI and circuit flow as well as the other metrics used in analysis (dECA, BC), we estimated Pearson correlation for all pairs of metrics (Appendix S3).
Spatial conservation prioritization in ZONATION

We used spatial conservation prioritization software (Zonation v 4.0; Moilanen et al., 2005) to identify spatial conservation priorities using four metrics represented spatially as raster maps (HSI, dECA, BC, circuit flow; Fig. 2). We considered each raster map as plausibly contributing unique and equal information to the analysis and so used equal weights for each in our analysis (Lehtomäki & Moilanen, 2013). Each pixel was ranked using the additive benefit function that prioritizes pixels that contribute highly to all four connectivity metrics (features), and lowest ranked pixels were iteratively removed to produce spatial priorities. We compared the performance and sensitivity of the product of spatial prioritization, which we henceforth refer to as prioritization maps, to the assumptions we made for each metric (Appendix S4).

Results

Values for HSI and circuit flow had a Pearson correlation coefficient 0.69, indicating that these two features contributed similar information to the conservation prioritization analysis. Graph metrics (dECA, BC) were moderately correlated with Pearson correlations of 0.49 (Appendix S3) with BC more pronounced where old-forest patches were more sparsely distributed between the Yaquina and Nestucca Rivers (Figs 1 and 2). Circuit flow primarily occurred on federal lands with some linkages forming on private and state lands south of the Nestucca river albeit temporarily (Figs 2b and 4d). Most circuit flow north of the Nestucca River occurred on the flanks of state forest lands in the area of the historic Tillamook Burn (Fig. 2b).

Prioritization maps produced at 2 and 7 km distances had high overlap of conservation rankings (Appendix S4). This indicates broad agreement in prioritization despite the difference in assumptions about tree vole movement capacity. Given overall conservation prioritization results were similar between the two distance thresholds (Appendix S4), we mainly reported results from the 7 km distance.

Spatial rankings on the top 1%, assuming 7 km dispersal capability, indicated conservation priorities consisted primarily of large patches comprising extensive reserve areas near the Nestucca River and south of the Yaquina River and small, highly central patches between those rivers (Fig. 3). At 5%, maps incorporated some young forests primarily located north of the Yaquina River. For 2 km dispersal, ranking of small, central patches was slightly lower (top 5%) compared to the 7 km prioritization. Circuit flow was highly concentrated through consolidated private lands forming impermanent forest corridors whereas in unconsolidated checkerboard flow was concentrated at corners of 2.59 km² sections (Fig. 4b).

Although overall prioritization results were similar at our two dispersal distances, the spatial graph network demonstrated a rapid increase in connectivity (decrease in number of network components) as assumed dispersal distances increased between 1 and 4 km (Appendix S1). At 1 km the spatial graph was composed of 1170 network components and at 5 km, 29 components. The tangent of the slope curve approached −1 between 3 and 4 km, indicating that at >4 km, the number of network components decreased much more slowly (Fig. S1 in Appendix S1).

Discussion

Herein, we identified three conservation and research priorities: (1) small, highly central old-forest patches between the Nestucca and Yaquina Rivers, (2) large patches within the two largest clusters of extensive old forests on federal lands and (3) linkages provided by young forests. Of these, linkages were dynamic, likely only to provide spatial connectivity on brief time-scales (i.e. <30 years) due to the highly dynamic landscape that results from short-rotation timber harvests (Fig. 4c,d). Assuming that maintaining gene flow is a priority and that tree voles can traverse young forests at relevant distances, small patches south of the Nestucca River appear to be central nodes with high spatial priority value, potentially able to maintain connectivity in a highly dynamic portion of the landscape.

Spatial aggregation of patches affects individual- and population-level processes such as connectivity and involves conservation trade-offs when a limited area can be set aside in reserves (Lindenmayer & Fischer, 2006). Highly clustered large forest patches provide extensive refugium for imperiled forest specialists but large, severe, stochastic (and contagious) threats, such as wildfires or disease, can eliminate populations and habitat in highly connected refugia (Turner, 1989; Hess, 1994). The existence of multiple large refugium may therefore be required to mitigate risk of extirpations, especially in forests with regimes of infrequent but severe wildfires that can potentially eliminate extensive reserve areas, such as in the northern Oregon Coast Range (Long et al., 1998). Small, isolated patches, in contrast, may disperse risk from severe and contagious threats, but limited gene flow caused by isolation may limit both genetic diversity and population viability (Mills & Allendorf, 1996). In general, the top 5% of spatial prioritization of our analysis identified patches at the extreme: moderately clustered and large, or isolated and small. Given that tree voles move and occasionally breed in young forest matrix, moderate clustering with short inter-patch distances (i.e. short enough for occasional multi-generational immigration) may be sufficient to maintain gene flow and potentially allow for recolonization of areas suffering patch-level extirpation. Many portions of the landscape, however, are outside a single-generation dispersal step, below minimum recommended tolerances to maintain genetic diversity (Mills & Allendorf, 1996). Ultimately, retention of large patches may need to be complemented by moderate and small patches that provide functional connections among more extensive old-forest refugium (Lindenmayer & Fischer, 2006).

Reserve design and connectivity-based conservation are often constrained by land ownership and economic trade-offs therein (e.g. Murphy & Noon, 1992). In the distinct
population segment, reserves on federal lands provide primary habitat for tree voles. Additions to those reserves could be informed by spatial prioritization mapping. For example, several small patches are highly central but isolated; increasing the extent of these patches could increase their potential value as population refugia in a highly dynamic portion of the landscape. This could be achieved by allowing young forests to age on non-reserve federal lands. Conservation on private timber lands is constrained to a greater degree than federal or state lands by economic considerations as harvest rotation periods are driven by market forces and yield targets. Young forests on private lands are likely limited to providing short-term linkages consisting of low-contrast young forest matrix (Calkin et al., 2002; Franklin & Lindenmayer, 2009). Highest prioritization on these lands were late rotation (i.e. >20 year-old) forests that provide structural linkages between reserves on federal lands. Increasing harvest rotation period and implementing landscape-scale planning of harvests could extend linkage duration and extent. For example, focused conservation efforts at the corners of checkerboard ownership would likely have a disproportionately positive effect on connectivity of the landscape for old-forest species. The current management of young forests on federal lands (i.e. thinning) has short-term negative effects at the stand-level and uncertain long-term effects on arboreal rodent populations although landscape context may mitigate short-term stand-level effects if sufficient suitable habitat is located adjacent (Wilson & Forsman,
tree voles have been detected there (Kuussaari et al., 2009; Forsman et al., 2016). Although many forests have recovered north of the current distribution (Forsman et al., 2016), including 16% of the top 10% of conservation priorities (Fig. 3), tree voles remain absent. If inter-patch distances are too great for natural recolonization, assisted dispersal (translocations), although economically expensive and uncertain to succeed (Perez et al., 2012), could provide the only alternative for tree voles to once again inhabit much of the northern extent of the distinct population segment. Ideally assisted dispersal would occur concomitant with managing for linkages to facilitate movement outside of the current distribution. Maintaining short inter-patch distances and connectivity could help preclude future translocations in the inevitable event of additional large wildfires where tree voles are most common south of the Nestucca River. Conservation of extant populations may therefore need to be complimented by actions that provide broader resiliency to relatively short- (e.g. timber harvest) and long-term (e.g. climate change) shifts in habitat suitability.

We recognize several caveats that can affect potential conservation decisions based on our findings. First, matrix contrast, and by extension conductance through the landscape, can shift spatially over relatively short time frames because young forests are primarily managed for timber production. This highlights the need to implement conservation actions soon after analyses because linkages are unlikely to remain static in dynamic landscapes. Second, we conceptualized connectivity as a population-level process extending up to several thousands of meters, particularly if ‘keystone’ elements such as large old trees are available to reduce matrix contrast (Sillett et al., 2000; Manning et al., 2004; Doerr, Doerr &}

Figure 3 Final map showing red tree vole conservation priorities consisting of the top 1, 5, 10 and 20% of pixels within the northern Coast Range of western Oregon (USA). Map shown includes all connectivity metrics assuming that connectivity occurred between patches up to 7 km apart. Red polygons indicate the current distribution of tree voles in the northern Oregon Coast Range.
Davies, 2011). Additional connectivity analyses of species (e.g. lichens) where dispersal is even further limited (i.e. tens of meters), but may be able to use old trees as stepping stones (Sillett et al., 2000) would complement work already done for high-vagile (e.g. northern spotted owls; Carroll et al., 2009) and low-vagile species (this study).

Maintaining population-level processes, such as gene flow, depends on connecting landscapes at multiple scales relevant to target species. Forest management, however, often occurs at much finer scales than those relevant to landscape-scale connectivity. For tree voles, connectivity depended on forest age, inter-patch distances and spatial aggregation of patches.

Figure 4 Examples of multi-ownership landscape connectivity, as depicted by a circuit flow map, within matrix in areas containing different levels of consolidation in the northern Coast Range of western Oregon (USA). (a) shows landscape ownership patterns within the distinct population segment of red tree voles, (b) concentrated flow through unconsolidated checkerboard with alternating federal and privately managed lands where flow is concentrated through 1 mile² (2.59 km²) section corners, (c) mostly consolidated private lands where flow is concentrated around non-forest forming temporary forested corridors whereby connectivity was estimated using data layers from 2012, (d) updated panel showing recent forest disturbances (clear-cuts) digitized from a more recent aerial photo (August 2016) demonstrating the short-term duration of forested corridors through consolidated private lands in our study area (Aerial photo image data: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community).
Finally, by identifying specific areas where finer-scale restoration can complement broader recovery of old forests our connectivity analysis can contribute to multi-scale conservation planning.

Acknowledgements

Funding for this research was provided by the USDA Forest Service, Pacific Northwest Research Station. We thank the many agencies and field biologists that made nest location data available, and land management agencies that provided access to lidar data. We appreciate the thoughtful comments of three anonymous reviewers that greatly improved the manuscript. This publication represents the views of the authors, and any use of trade, firm or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

References

Biswell, B.L. (1994). Intertree movement and spatial distribution of nest trees occupied by individual red tree voles: implications for conservation [Poster]. In 75th anniversary meeting of the Society of Mammalogists: Washington, DC.

M. A. Linnell and D. B. Lesmeister

Landscape connectivity for an old-forest species

Prugh, L.R., Hodges, K.E., Sinclair, A.R.E. & Brashares, J.S. (2008). Effect of habitat area and isolation on fragmented...

Supporting information

Additional supporting information may be found online in the Supporting Information section at the end of the article.

Appendix S1. Number of connected networks at different distance thresholds.

Appendix S2. Omnidirectional circuit flow map.

Appendix S3. Correlations between raster layers used in analysis.

Appendix S4. Comparison of two different dispersal assumptions.