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Abstract. Conservation planning for wildlife species requires mapping and assessment of habitat suit-
ability across broad areas, often relying on a diverse suite, or stack, of geospatial data presenting multidi-
mensional controls on a species. Stacks of univariate, independently developed vegetation layers may not
represent relationships between each variable that can be characterized by multivariate modeling tech-
niques, leading to inaccurate inferences on the distribution of suitable habitat. In this paper, we examine
the role of variable combining in mapping multiple dimensions of greater sage-grouse (Centrocercus uropha-
sianus, GRSG) habitat as a basis for GRSG conservation in the great basin ecoregion within southeastern
Oregon. We compare two modeling approaches: a univariate random forest regression model (RF regres-
sion) and a multivariate random forest nearest neighbor (RFNN) imputation model , across an array of
variables. These include five GRSG habitat descriptor variables: percent cover of trees, juniper, sagebrush,
and GRSG food forbs, and the proportion of grasses that are exotic annuals. We also model species distri-
butions of 51 common species in the sage steppe and combine these predictions to estimate alpha diversity.
Our results show that RF regression and RFNN can yield univariate predictions with similar performance,
but RF regression predictions tend to contain slightly more bias at broader spatial scales. Stacking univari-
ate predictions from RF regression yields covariance errors that manifest as logical errors (juniper
cover > tree cover), biases in estimates of GRSG habitat area, and biases in estimates of alpha diversity.
Combining variables from the RFNN model does not introduce covariance errors. We conclude that multi-
variate modeling approaches are better suited to map multidimensional habitat niches at broader spatial
scales, and also better suited to provide information for defining multivariable adaptive management trig-
gers at the population level or above.
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INTRODUCTION

Sage-steppe vegetation in the western United
States dominates many arid and semi-arid

landscapes, but land use and land cover change
have reduced the capacity of many of these
ecosystems to support species of conservation
importance, like the greater sage-grouse (GRSG;
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Davies et al. 2011). Threats to GRSG habitat
include expansion of western juniper woodlands
(Cook 2015) and exotic annual grass invasions
(Arkle et al. 2014). In order to assess key ecosys-
tem attributes across scales, natural resource
management and conservation planning for
GRSG habitat require spatially explicit vegeta-
tion assessment (i.e., mapping). However, major
challenges remain in producing maps of vegeta-
tion attributes, such as cover by life-form,
let alone species. Classified maps of vegetation
types, such as LANDFIRE (Rollins 2009) or the
USGS GAP vegetation layer (Gergely and
McKerrow 2013), can provide useful information
on GRSG habitat across its range (Knick et al.
2013, Doherty et al. 2016), but these data are too
thematically coarse to fully represent the details
needed to thoroughly characterize habitat (there
are only six classes of sagebrush vegetation rep-
resented in Oregon). Therefore, improved vege-
tation mapping in arid and semi-arid landscapes
is needed to address the management challenges
of the sage steppe.

Vegetation mapping efforts designed to inform
GRSG habitat designation in arid and semi-arid
landscapes must confront significant challenges.
Greater sage-grouse habitat is defined by a
hyperdimensional niche (sensu Hutchinson
1957). Realistic covariation between many vege-
tation attributes is a crucial component for illus-
trating that hyperdimensional niche. Fine-scale
studies of GRSG habitat indicate that they
respond to a variety of vegetation attributes,
including the cover of tall grasses that are used
for hiding cover, Wyoming big sagebrush, low
sagebrush, the absence of invading juniper trees,
and the presence of those forbs that are favored
by juvenile birds during the brood rearing season
(Peterson 1970, Sveum et al. 1998). Juniper trees
serve as perching sites for predators, a landscape
feature that has the strongest detrimental effect
on grouse in the spring and early summer
months while chicks are small. Exotic annual
grasses that compete with native species (Rod-
house et al. 2014) directly affect habitat quality.
They also lead to larger, more frequent fires
(Balch et al. 2013), and wildfires can negatively
impact GRSG habitat by reducing sagebrush
cover (Davis and Crawford 2015). In addition to
the multidimensionality of the GRSG niche, fine-
scale structural variation in woodlands,

shrublands, and grasslands caused by small indi-
vidual plant canopies and phenological variation
complicates vegetation mapping (Asner and Hei-
debrecht 2002). For example, mapping the abun-
dance of different grass species, guilds such as
the native bunchgrasses, or even simply grass
abundance, has been challenging at fine spatial
resolutions (Rodhouse et al. 2014, Ali et al.
2016).
Recent research has made substantial progress

in mapping vegetation relevant to GRSG habitat.
In particular, maps of grouse-relevant variables
(e.g., sagebrush cover, shrub height, cover of
herbaceous vegetation, and bare ground) have
been constructed across Wyoming and more
recently the sage-steppe habitat of the western
United States (Homer et al. 2012, Xian et al.
2015, Jones et al. 2018). Still, some key vegetation
attributes describing GRSG habitat quality have
yet to be mapped (e.g., cover of native bunch-
grasses, measures of sagebrush cover that are
species-specific, and the cover of those native
forbs that provide food to young grouse). There-
fore, continued research in vegetation mapping
in sage-steppe landscapes remains an active field
of study.
Despite these recent advances, the use of

many related but independently modeled vege-
tation attributes for wildlife habitat modeling
has potential pitfalls. These hazards are exempli-
fied by inference on communities utilizing spe-
cies list predictions based on multiple univariate,
independently fitted species distribution models,
otherwise known as stacking (Dubuis et al. 2011,
Di Febbraro et al. 2018). Errors in species distri-
bution modeling results are often amplified in
maps of species richness as more layers are
included (Ferrier and Guisan 2006). When spe-
cies distribution maps are biased against
absences, species presence is over-mapped and
diversity estimates are inflated when those maps
are stacked (Pottier et al. 2013, Calabrese et al.
2014, Henderson et al. 2014). Univariate model-
ing ignores innate covariation in attributes,
potentially leading to unrealistic joint predic-
tions, such as co-occurrence of species never
observed together (Ovaskainen and Soininen
2011, Henderson et al. 2014, Pollock et al. 2014).
Calabrese et al. (2014) also postulate that miss-
ing environmental covariates can lead to charac-
teristic biases in both individual species
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distribution and macroecological models.
Regardless of the source, errors in individual
models propagate through stacked species distri-
bution models (SDMs). The accuracy of multi-
variate predictions can also suffer from missing
environmental covariates, but these errors do
not compound when variables are recombined.
Furthermore, multivariate models can account
for some prediction biases for community com-
position, such as joint species distribution mod-
els that model residual covariation in presence–
absence data which can represent both biotic
interactions and missing environmental predic-
tors (Pollock et al. 2014, Copenhaver-Parry and
Bell 2018). Efforts to constrain estimates of com-
position derived from stacked SDMs have had
some success (Guisan and Rahbek 2011, D’Amen
et al. 2015, Del Toro et al. 2019). We have not
seen an analogous framework that was designed
for the process of combining multiple continuous
vegetation descriptor variables describing habi-
tat, although D’Amen et al.’s (2015) work com-
bining SDMs with macroecological models
describing plant functional traits comes close.

Within the vegetation mapping community,
both univariate and multivariate methodologies
have attracted substantial interest. Random for-
est (RF) regression models are well-suited for
mapping vegetation attributes because of their
ease of use and flexibility with mapping uni-
variate responses (Prasad et al. 2006, Mutanga
et al. 2012). They suffer from some constraints
with respect to bias. Low and high values are
consistently under-represented in model predic-
tions, because standard RF regression model
predictions are generated as an average of the
predictions of all of the internal regression trees
within the ensemble. Fortunately, these biases
can be corrected by altering and tuning how
the array of values predicted by the members of
the RF ensemble are combined into a single
summary (Roy and Larocque 2012). For multi-
variate modeling, k nearest neighbor (kNN)
imputation with k = 1 approaches, such as the
gradient nearest neighbor (Ohmann and Gre-
gory 2002), have garnered interest because they
restrict multivariate predictions in vegetation
maps to only those value combinations
observed in the data, such that unreasonable
pixel-scale combinations of vegetation attributes
cannot occur. For example, stacked univariate

RF models for species occurrence and abun-
dance in the Western Cascade ecoregion of Ore-
gon, USA, overestimated average plot-level
species richness by 29% and 621%, respectively,
while a nearest neighbor approach produced
estimates no different than plot data on average
(Henderson et al. 2014). For habitat mapping
that depends on distinct combinations of multi-
ple vegetation attributes, error accumulation
with variable stacking could be problematic,
implying a need for joint modeling of species or
vegetation attributes. However, little is known
about how these types of multivariate models
behave as they are transferred from closed-
canopy, coniferous forest ecosystems where they
perform well (Ohmann et al. 2011) to arid and
semi-arid landscapes. Arid and semi-arid land-
scapes pose different mapping challenges, such
as short-term temporal variability (Ali et al.
2016) and high spatial heterogeneity in their
structure (Mishra and Crews 2014). Sparsity of
observational data is sometimes cited as a moti-
vation for remote sensing of vegetation in arid
lands (Lawley et al. 2016), but the scarcity of
data also poses a challenge to successful map-
ping in these regions. Fortunately, this situation
is improving, with the inception of the Assess-
ment Inventory and Monitoring (AIM) program
within the Bureau of Land Management (BLM;
Taylor et al. 2014).
In this study, we leverage both satellite and

aerial remote sensing to map vegetation vari-
ables often used in defining GRSG habitat, as
well as the distributions of 51 common species
and an associated measure of alpha diversity
across arid and semi-arid landscapes of south-
eastern Oregon. Specifically, our objectives
were to (1) assess the performance of univariate
(i.e., RF regression) and multivariate (i.e., near-
est neighbor imputation) vegetation mapping
approaches and (2) examine the potential conse-
quences of these different modeling approaches
for habitat classification. We frame our discus-
sion in the context of generating maps of diver-
sity, species co-occurrence, and habitat classification
to reflect the maps’ utility to the study of GRSG
habitat. The concepts discussed apply generally
to applications requiring information on vegeta-
tion community condition, which require infor-
mation on many, non-independent variables
simultaneously.
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METHODS

Location
Our study area encompasses 11 million hec-

tares in southeastern Oregon, which includes the
majority of the sage-steppe vegetation in the state
(Fig. 1). Vegetation types range from salt desert
in the rain shadow of the Steens Mountain to the
edge of the semi-arid forests and woodlands of
the Blue Mountains to the North, and eastern
Cascades Mountains to the West. The climate in
this region is arid and continental, with hot, dry
summers, and cold winters with some snow.

Data
Plot.—Our vegetation dataset for this analysis

contains 2709 plots from four different sources.
Most of these plots (2531) were drawn from three
Bureau of Land Management rangeland monitor-
ing programs. These included 1318 plots from
BLM’s AIM program, and 981 from their Land-
scape Monitoring Framework (LMF) program
(Toevs et al. 2011), and 232 from the Ecological
Site Inventory program (Habich 2001). In addi-
tion, we included 313 50-m line-intercept tran-
sects collected for the BLM by colleagues within
the Institute for Natural Resources, placed to
illustrate the effects of recent large fires in the

area. AIM and LMF plots are line-intercept tran-
sects and species lists, while ESI survey data are
ocular estimates within plots that are configured
to represent homogeneous patches of vegetation.
Although the survey methods differ among the
data sources, all are of a ground configuration
that is reasonable for use in mapping to 30-m
pixels. Plot sizes and transect lengths generally
fit within a 3 9 3- or 4 9 4-pixel window, or
they are configured to fit within small patches of
consistent vegetation on the ground.
Our dataset contained plots collected across a

wide range of dates, but we only used recent
plots (2009–2017) in order to reduce imagery-plot
date mismatches, and also because this project
aims to represent current vegetation conditions.
Most plots (93%) were surveyed between 2012
and 2017. Older plots were included to ensure
adequate representation of western juniper
(Juniperus occidentalis). This dataset was neither
fully random nor regular in its design (although
the AIM sub-dataset does have a stratified ran-
dom design). However, the collection of plots
was large enough and well-enough distributed
in space to support this analysis.
We performed a manual quality control screen

on all of these plots, inspecting the data along
with current airphoto imagery to identify plots
that appear to mismatch the information in the
imagery, either due to an intervening distur-
bance, noticeable growth in woody vegetation,
or due to possible coordinate errors.
Raster.—Our explanatory variables included

raster data layers containing information on
topography, climate, soil, and remote sensing
data (Table 1). Optical remote sensing provided
direct measurement of vegetation across all por-
tions of the study area. We used two forms of
optical remote sensing: bands and transforma-
tions of a normalized mosaic of Landsat 7
(ETM+) imagery showing conditions in 2013 and
texture summaries of National Agriculture Ima-
gery Program (NAIP) imagery from 2016. Land-
sat imagery’s 30-m pixels are much larger than
the dominant plant functional types in arid and
semi-arid landscapes, namely shrubs, grasses,
and forbs. For this reason, we also utilized 1-m
NAIP imagery that was summarized using tex-
ture analysis to describe fine-scale variability
(Nielsen and Noone 2014) at the 30-m scale to
match Landsat imagery. Thus, optical remote

Fig. 1. Study area boundary in southeast Oregon
(inset), plot locations (gray), and hexagons used for
accuracy assessment summaries (black).
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sensing was used to measure both average 30-m
spectral properties (Landsat) and sub-pixel-scale
variation (NAIP).

Topographic, climate, and soil data layers were
also included in order to represent environmen-
tally mediated vegetation variation along with
the remote sensing data (sensu Ohmann and Gre-
gory 2002). Topography descriptors included ele-
vation and aspect (Gesch et al. 2002). We derived
climate descriptors from 30-yr normals in the

PRISM climate data (Daly et al. 2008). The soil
raster layers were downsampled from 90 m with
bilinear interpolation to 30 m from an array of
modeled soil properties’ surfaces (Chaney et al.
2019). Due to the large number of raw variables
for both the NAIP imagery and also POLARIS
soil data layers, variable reduction was per-
formed with principal components analysis to
collapse the information content of each set of
data layers into fewer raster layers. All raster
explanatory variables were extracted at all known
plot locations and were available for the entire
study region (i.e., full coverage). The data matrix
containing both vegetation and explanatory vari-
ables formed the basis for subsequent modeling
and model assessment. The full list of available
variables was reduced with a stepwise reverse
selection procedure, removing variables based on
a permutation variable importance measure from
conditional inference forests (R package party;
Strobl et al. 2008) built from each y-variable
described above for random forest nearest neigh-
bor (RFNN). Conditional inference forests were
chosen for variable selection because they tend to
produce more robust estimates of variable impor-
tance than ordinary RFs when response variables
are highly correlated (Strobl et al. 2007). See
Table 1 for a full list and description of raster data
variables that were used in all models.

Analysis
Overview.—We modeled vegetation variables

using two approaches: (1) univariate RF regres-
sion models (one model per response variable)
and (2) one multivariate imputation model (one
model for all response variables). We assessed
the strength of our results for each variable inde-
pendently and then assessed the covariance of
the response variables by recombining them and
assessing joint predictions for variable pairs, as
well as aggregated predictions of alpha diversity.
Finally, we created mapped aggregate predic-
tions of GRSG habitat. Our analysis was con-
ducted within the R Statistical Programming
environment (R Core Team 2018). For reference,
we provide a diagrammatic representation of our
modeling and mapping workflows (Fig. 2).
Response variables.—We built univariate and

multivariate model predictions for an array of
response variables. The response variables

Table 1. Predictor variables used for modeling and
mapping.

Variable, by group Source

Imagery—Landsat
Landsat 7 ETM+ (image date: 2013)
band 2, 3, 4 and 5

Spectral
reflectance (1)

Tasseled cap (TC) brightness and
greenness

TC (2)

Other indices: Normalized Difference
Forestness Index, Normalized
Difference Moisture Index,
Normalized Difference Snow
Index, Normalized Difference
Shortwave Index, and
Normalized Difference
Vegetation Index

Other indices (3)

Imagery—National Airphoto Inventory Program
Principal components axes no.
1, 4, 6, 8, 9, 11, 12, 14, 16, 17, 18,
23, 25, 29, 33, 34, and 37, derived
from 98 NAIP Nested Texture
Metric (NTM) data layers
(image date: 2016)

NTM (4)

Soil properties
Principal components no.
1, 2, 4, 5, 6, and 7, derived from
10 soil properties, over six depth
horizons. (properties: available
water holding capacity, bulk
density, CaCO3 content, cation
exchange capacity, base saturation,
organic matter, pH, percentage of
clay, percentage of silt, and
percentage of sand. Depth horizons:
0–5, 5–15, 15–30, 30–60, 60–100, and
100–200 cm)

POLARIS (5)

Climate
Average annual precipitation, average
annual temperature, August
maximum temperature, growing
season precipitation (JJA), growing
season temperature (JJA)

PRISM (6)

Topography
Elevation, percent slope National Elevation

Dataset (7)

Notes: NAIP, National Agriculture Imagery Program.
Sources are (1) Landsat-7 (ETM+) imagery courtesy of the
U.S. Geological Survey; (2) Crist and Cicone (1984); (3) Niel-
sen et al. (2013); (4) Nielsen and Noone (2014); (5) Chaney
et al. (2019); (6) Daly et al. (2008); and (7) Gesch et al. (2002).
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include five variables that describe aspects of
GRSG habitat, and percent cover for all posi-
tively identified species with greater than 2% fre-
quency in our input dataset (51 species).
Predicted values from the single-species model
predictions were aggregated after modeling to
provide predictions of species richness. Four of
the habitat-relevant variables describe the com-
bined cover of multiple species: all tree species,
all sagebrush species (genus Artemisia), the pro-
portion of all grass cover that is exotic annual
species (variable hereafter referred to as “exotic
annual grass”), and the percent cover of all likely
food forbs for GRSG. The list of likely food forbs
for GRSG was estimated from the literature (Kle-
benow and Gray 1968, Peterson 1970, Drut et al.
1994, Sveum et al. 1998; see Appendix S1). The

fifth GRSG habitat variable was percent cover of
western juniper.
Random forest regression.—Random forest mod-

els are a machine learning ensemble approach,
forming a single prediction by aggregating many
predictions from an array of internal classifica-
tion or regression trees (Breiman 2001). We gen-
erated univariate predictions of continuous
variables with the random forest algorithm in
regression mode (hereafter, RF regression), creat-
ing one model for each response variable. Ran-
dom forest models are most often used as a
classifier in vegetation mapping (Lawler et al.
2006, Evans and Cushman 2009, Rodriguez-
Galiano et al. 2012, Belgiu and Dr�agut� 2016), but
RF regression can also be a flexible method for
prediction of continuous variables (Prasad et al.

Fig. 2. Modeling and mapping workflow for (a) random forest (RF) regression and (b) random forest nearest
neighbor (RFNN) approaches.
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2006, Beck et al. 2011, Mutanga et al. 2012, Gess-
ner et al. 2013). Unfortunately, RF regression pre-
dictions often fail to encompass the full range of
observed values (Roy and Larocque 2012) and
are also biased against predicting absences (Sav-
age et al. 2015). Some studies have used single
regression trees to predict sage-steppe vegetation
summaries (Homer et al. 2012, Xian et al. 2015).
These predictions under-represent low and high
values (see Fig. 5 in Homer et al. 2012). Recently,
RF regression models have built rangewide maps
of sage-steppe indicator variables. The biases
against low and high values are also evident in
these new maps (see Fig. 5 in Jones et al. 2018).
In this section, we describe our workflow, apply-
ing bias corrections to RF regression models.

We fit RF regression models to plot data and
geospatial predictors (Table 1) using the quan-
tregForest function (Meinshausen 2017;
Fig. 2a.ii). We set the number of explanatory
variables tested for each regression tree split
equal to 13 (the default) and used 1000 trees in
each model. These choices were based on
exploratory data analysis of four common spe-
cies (Poa secunda, Bromus tectorum, Artemisia tri-
dentata var. wyomingensis, and J. occidentalis).

After initial model fitting, we used two correc-
tion procedures, adjusting both range and abun-
dance (Fig. 2a.iii). We extracted two predictions
from each RF ensemble, which were corrected and
combined: (1) average value predicted by all
regression trees in the ensemble and (2) an absence
probability (the proportion of regression trees pre-
dicting zero). We applied a linear correction to the
average-value prediction (Legendre 2018) describ-
ing the relationship between observations and pre-
dictions for those average-value predictions that
were above zero. Corrected values were truncated
at zero to avoid unrealistic negative values. After
the linear correction, we estimated likely absences
from the absence-probability prediction. We iden-
tified one absence-probability threshold for each
model that balanced false-positive and false-
negative errors using the precision-recall f-mea-
sure (Sing et al. 2005), and used those thresholds
to create binary layers. The corrected average-
value predictions were constrained by the binary
layers to yield absence-corrected abundance pre-
dictions (Fig. 2a.iv).

Random forest nearest neighbor imputation.—We
used a nearest neighbor imputation approach

that leverages information extracted from RF
models to build multivariate predictions (Crook-
ston and Finley 2008). The forestry community
has used multivariate maps to illustrate forest
structure over large areas for many years
(Tomppo 1991, Ohmann and Gregory 2002,
Hudak et al. 2006, Zald et al. 2014). Imputation
has been a mainstay for forest inventory and
monitoring precisely because it generates unbi-
ased multivariate predictions (when k = 1) that
maintain the covariance structure of the input
data (Tomppo 1991, Eskelson et al. 2009,
Ohmann et al. 2011, 2012).
Imputation models generate predictions in a

different way from RF regression models. Ran-
dom forest regression models summarize all pre-
dicted values from many regression trees within
the RF ensemble, while imputation models sum-
marize predicted values from chosen source
observations. When only one source observation
is used (k = 1), response variable values are sim-
ply the values present in the chosen source obser-
vation (our approach, illustrated in Fig. 2b.iv, v).
In its simplest form, a Euclidean distance

matrix defined by the values of all explanatory
variables is used to select source observations
(kNN; Tomppo 1991). The distance matrix can
also be more complex, sometimes constructed
from ordination models (e.g., MSN, GNN;
Moeur and Stage 1995, Ohmann and Gregory
2002), or from the nodes matrices of one or more
random forest models (our approach, hereafter
referred to as RFNN, using R package yaImpute;
Crookston and Finley 2008).
Our distance matrix was constructed from two

RF models predicting categorical vegetation
summaries. One categorical y-variable indicated
plant community composition, and the other rep-
resented vegetation structure (Fig. 2b.ii). The
first was constructed from a species by cover
matrix (Wisconsin, square-root transformed, R
package: vegan; Oksanen et al. 2018). We con-
structed the classes with agglomerative hierar-
chical clustering, and Ward’s linkage method,
applied to a distance matrix derived from the
species 9 cover matrix (R package: cluster;
Maechler et al. 2018). The second y-variable was
created with the same general approach, creating
a distance matrix from a cover by life-form
matrix, to inform the clustering approach
described above.
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Each internal RF model contained 1000 classifi-
cation trees. We tested six variables at each split
in each tree, the default (Fig. 2b.iii). As with the
RF regression, we used the full suite of geospatial
predictors (Table 1).

Assessment
To compare RF regression and RFNN, we per-

formed a series of univariate and multivariate
assessments of model performance. For both
methods, we extracted predictions of all response
variables. For RFNN, we extracted the second
nearest neighbor plot for all of our input plots,
roughly equivalent to, but dramatically more
computationally efficient than, a leave-one-out
cross-validation strategies (Ohmann and Gre-
gory 2002). For RF regression, we extracted
model predictions for our input plots using the
out of box predictions for each plot. All assess-
ments were based on these extracted predictions.

Individual response variables.—We assessed the
accuracy of the five GRSG habitat summary vari-
ables through regression modeling describing
geometric mean functional relationships (GMFR;
Ricker 1984, Riemann et al. 2010). We reported
three statistics derived from the model predic-
tions for the plot data: unsystematic agreement
coefficient (AC_uns), systematic agreement coef-
ficient (AC_sys), and agreement coefficient (AC).
To characterize precision, AC_uns describes scat-
ter, or noise, around the regression line between
observations and predictions (analogous to R2).
To characterize bias, AC_sys describes how clo-
sely the modeled regression line matches a 1:1
relationship between observations and predic-
tions. To assess overall performance, AC inte-
grates information from the two statistics to give
an indication of prediction quality. For AC_uns,
AC_sys, and AC, values closer to one indicate
less noise, less bias, and greater overall agree-
ment, respectively. These metrics convey a well-
rounded understanding of the nature of different
model strengths and weaknesses in vegetation
mapping predictions (Wilson et al. 2012,
Ohmann et al. 2014). We also constructed sum-
maries of our observations and model predic-
tions across larger hexagons in order to estimate
the map’s accuracy at two spatial scales (Fig. 1),
following the methods described by Riemann
et al. 2010. Selected hexagons for assessment
summaries contained at least three plots. For

each assessment hexagon, we calculated the
average value for the observations and predic-
tions for all plots falling within that hexagon and
then generate AC_uns, AC_sys, and AC metrics.
To assess the capacity of the differing models

to predict species occurrence patterns, we calcu-
lated sensitivity, specificity, and true skill statis-
tics (Fielding and Bell 1997, Allouche et al. 2006)
for presence and absence predictions of 51 com-
mon plant species. For all of the accuracy statis-
tics reported, values approaching one indicate
perfect model performance, while values near
zero indicate model failures. We examined the
differences in model performance for binary pre-
dictions with paired t tests comparing the suite
of statistics grouped by the two modeling
approaches across all 51 species.
Species richness.—Additionally, we assessed

model performance at estimating the commu-
nity-level attribute of species richness from the
51 species mentioned above. We calculated pre-
dicted and observed species richness by sum-
ming the number of species observed or
predicted as present at each plot. Relationships
between the observations and predictions were
characterized by AC_uns, AC_sys, and AC.
Multivariate habitat classifications.—We explored

how modeling technique affected the classifica-
tion of habitat based on multiple predicted vege-
tation attributes (i.e., joint distributions) with
density difference plots. These plots were con-
structed by calculating two 2-variable histograms
(modeled and original data) and subtracting one
from the other, allowing us to examine differ-
ences in the joint distributions of predictions. We
chose variable pairings to highlight (1) the possi-
bility of logical errors in the model predictions
(i.e., tree cover < juniper cover) and (2) the rela-
tionship of three pairings of GRSG habitat vari-
ables as they relate to conditions that are
favorable to GRSG habitat (variables included
juniper, sagebrush, exotic annual grasses, and
food forbs). For the GRSG habitat variables, we
selected threshold values delineating likely habi-
tat based on the literature (Table 2). To summa-
rize the overall model performance in
multivariate classification, we calculated the pro-
portional difference (hereafter referred to as the
relative percent difference, or RPD) between the
observed (o) and predicted (p) number of plots
meeting each criteria as (p � o) 9 o � 1 9 100.
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Mapping
We also examined the effect of stacking all four

habitat variable maps. We used the stacked maps
to show differences in how each modeling
approach might represent GRSG habitat, as
defined by the thresholds for each variable. Each
stacked habitat map (one for each modeling
approach) indicated areas meeting all criteria for
GRSG habitat. We summarized the stacked all-
criteria maps across GRSG Priority Areas for
Conservation (PAC, U.S. Fish and Wildlife Ser-
vice 2013), calculating the proportion of each
PAC that met all GRSG habitat criteria.

RESULTS

Single-variable results, GRSG-relevant variables
At the plot scale, RFNN and RF regression

showed similar performance for juniper (Fig. 3a,
b), tree cover (Fig. 3e, f), food forbs (Fig. 3i, j),
and exotic annual grasses (Fig. 3q, r). For sage-
brush cover (Fig. 3m, n), the RFNNmodel predic-
tion was somewhat stronger (RFNN: AC = 0.17,
RF regression: AC = �0.07), although both pre-
dictions contained significant noise (RFNN:
AC_uns = 0.17, RF regression: AC_uns =�0.04).

At the broader scale of summary, RFNN gener-
ally out-performed RF regression. For juniper,
the RFNN model prediction had a strong correla-
tion (AC_uns = 0.64) and was also unbiased
(AC_sys = 1.00; Fig. 3c), while RF regression’s
prediction was slightly weaker in both aspects

(AC_uns = 0.57, AC_sys = 0.96; Fig. 3d). We
observed a similar pattern for tree cover (Fig. 3g, h).
For food forb predictions at the broader spatial
scale (Fig. 3k, l), correlations were of similar
strength between the two models (RFNN:
AC_uns = 0.21, RF regression: AC_uns = 0.22),
but the RFNN prediction was less biased (RFNN:
AC_sys = 0.99, RF regression: AC_sys = 0.91).
For sagebrush cover (Fig. 3o, p), both models
had slight biases at the broad scale of summary
(RFNN: AC_sys = 0.96, RF regression: AC_sys =
0.97), but RFNN had a greater correlation
(RFNN: AC_uns = 0.36, RF regression: AC_uns =
0.16). For exotic annual grasses (Fig. 3s, t), RF
regression had amuch greater correlation (RFNN:
AC_uns = 0.13, RF regression: AC_uns = 0.31),
but also a slightly larger bias (RFNN: AC_sys =
1.00, RF regression: AC_sys = 0.97).
The two modeling approaches also differed in

the percentage of plots with predicted values that
met our criteria for GRSG-suitable habitat
(Table 3). For single-variable, RFNN-based esti-
mates of GRSG-relevant habitat summaries, dis-
crepancies in estimated habitat percentage were
quite small. The absolute difference between
observed and predicted percentage of the obser-
vations that meet individual habitat criteria for
RFNN was always less than 3%. Single-variable,
RF regression-based estimates of GRSG habitat
showed larger divergences from GRSG habitat
estimates indicated by the observations. Most
notable, for food forbs, the RF regression model
showed an 8.35% increase over the observations
in the percentage of plots with predictions meet-
ing the habitat criterion. For the combined esti-
mates of habitat, RFNN’s estimate was 4.46% less
than the plot-based estimate, while RF regres-
sion’s estimate was 5.02% greater than the plot-
based estimate.

Species presence/absence and richness
The two modeling approaches differed in their

capacity for discerning species presence and
absence at the plot and 50,000-ha scales (Fig. 4),
with the greatest differences observed at the
50,000-ha scale. At the plot scale, paired t tests
(2-tailed) indicated that plot scale true skill statis-
tics (mean difference = 0.14, P < 0.001) and sen-
sitivities (mean difference = 0.22, P < 0.001)
were greater for RFNN than for RF regression,
but specificities were slightly greater for RF

Table 2. Variable thresholds used to estimate conditions
that are favorable to greater sage-grouse habitat.

Variables
Threshold
for habitat

Literature source
for threshold

Tree cover <5% U.S. Bureau of Land
Management (2015)

Sagebrush cover 5–50% U.S. Bureau of Land
Management (2015)

Exotic annual grass
Proportion
(of all grass)

<0.5%† Sage-Grouse
Conservation
Partnership (2015)

Food forb cover >2.5%‡ Sveum et al. (1998),
Connelly et al. (2000)

† We used a definition for this variable threshold from
early drafts of the document cited. Currently, this variable is
defined to identify habitat when the ratio of invasive annual
grass to perennial grass is less than one.

‡ Literature supports the importance of food forbs for
summer grouse habitat, but no threshold is currently indi-
cated. We have adopted a low threshold to show areas where
their presence is more than incidental.
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Fig. 3. Geometric mean functional relationships between observed and predicted values for five greater sage-
grouse habitat descriptor variables, comparing the two modeling approaches. The solid gray lines show a 1:1
line, while the dotted blue lines show the GMFR regression line describing the relationship between the observa-
tions and predictions. Panel labels along the left margin apply to all panels in the row. Axis names for panel m
apply to panels a through m, while axis names in panel q apply to q through t.
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regression than for RFNN (mean difference =
�0.08, P < 0.001).

At the 50,000-ha scale, the same pattern held
true. Random forest nearest neighbor was stron-
ger overall (mean difference true skill statis-
tics = 0.11, P < 0.001), and with respect to
sensitivity (mean difference = 0.35, P < 0.001),
but the RF regression models yielded higher
specificities (mean difference = �0.25, P < 0.001).

Predictions of species richness showed a
related pattern. At the plot scale, the aggregated
prediction of species richness from the 51 RF
regression models performed better in terms of
AC and AC_uns than RFNN, but RF regression
predictions were more biased than RFNN
(RFNN: AC_sys = 1.00, RF regression: AC_sys =
0.49; Fig. 5a, b). RF regression had a tendency to
underestimate species richness at both scales
(Fig. 5b, d). At the 50,000-ha scale, the RF regres-
sion’s prediction had a greater correlation
(RFNN: AC_uns = 0.50, RF regression: AC_uns =
0.90), but RFNN prediction of species richness
performed better overall than the RF regression
prediction due to its lack of bias (Fig. 5c, d). Ran-
dom forest regression consistently underesti-
mated species richness.

Joint distributions and covariance in GRSG habitat
variables
Our examination of the joint distributions

began with a comparison of total tree canopy
cover and tree cover attributed to western juni-
per. This analysis showed that RFNN more clo-
sely mirrored our observations than RF
regression (Fig. 6). The two-dimensional his-
togram for the joint RFNN prediction showed
frequency divergences from the two-dimensional
histogram of the observations of �16 to 11,
whereas RF regression prediction frequency
divergences ranged from �65 to 17. Additionally,
RFNN never predicted juniper > tree cover,
whereas RF regression predicted juniper > tree
cover on 5.8% of the plots (a logical error since
we calculated tree cover as the sum of all species
that potentially reach tree stature). Most of these
logical errors were of small magnitude (95% of
the errors were of <7% difference). Similarly, the
range in frequency divergences shown in the
two-dimensional difference histograms for GRSG

Table 3. Percentage of plots that meet criteria for greater sage-grouse habitat (relative percent difference between
observations and predictions indicated in parentheses).

Variables Tree < 5%

Exotic annual
grass/

grass < 50% 5% < Sagebrush < 50% Food forb > 2.5% All criteria

Observed 94.0 72.4 67.7 45.0 26.5
RFNN 93.6 (�0.4) 72.2 (�0.3) 67.7 (+0.0) 43.8 (�2.7) 25.3 (�4.5)
RF regression 92.2 (�1.9) 71.9 (�0.6) 68.8 (+1.6) 48.8 (+8.5) 27.8 (+5.0)

Notes: RF, random forest; RFNN, random forest nearest neighbor.

Fig. 4. Boxplots describing the distribution of values
of binary accuracy statistics for 51 species models for
binary transformations for the random forest nearest
neighbor (RFNN) and random forest (RF) regression
predictions at the plot (a), and 50,000 ha (b) scales.
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habitat variables for RFNN was less than that for
RF regression, especially in cases where one of
the two response variables equaled zero (i.e.,
along the x-axis or y-axis; Fig. 7).

When we aggregated these divergences based
on GRSG habitat thresholds (Table 2), we found
that RF regression overestimated and RFNN
underestimated the number of plots meeting all
GRSG habitat criteria (Table 3). The two-variable
aggregated percent divergences ranged from
�3.5% to 1.0% for RFNN and �1.4% to 10.1% for
RF regression (Fig. 7). Despite the over-predic-
tions by the variable pairings shown here, aggre-
gated RF regression model predictions still
showed a relatively small absolute difference in
the plot-based estimates of GRSG habitat (RF
regression classified an extra 1.3% plots as habi-
tat than were present in the source observations,
which is a 5.02% relative difference; Table 3).
Random forest nearest neighbor, on the other

hand, underestimated the percentage of plots
meeting all habitat criteria (1.2% fewer plots pre-
dicted as habitat than were observed, which is a
�4.46% relative difference; Table 3).

Mapped distributions of GRSG habitat
We found substantial differences between the

maps generated by RFNN and RF regression for
individual variables, and the stacked GRSG habi-
tat maps. Maps of tree cover indicated broadscale
agreement between the two methods. The RFNN
and RF regression maps of tree cover <5% were
the most similar of all habitat variables consid-
ered. Random forest nearest neighbor and RF
regression maps indicated that 76% and 66%
(respectively) of the landscape met this criterion
(Fig. 8a, b). The two maps agreed on the tree cri-
terion over 87% of the landscape (Fig. 8c). For
the sagebrush maps, RFNN and RF regression
indicated that 62% and 73% (respectively) of the

Fig. 5. GMFR regression assessment of species richness predictions at the plot and 50,000-ha scale for random
forest nearest neighbor (RFNN) (a, c), and stacked random forest (RF) regression models (b, d). Species richness
calculations only include the 51 species that were modeled for this paper.
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landscape met the sagebrush criterion for GRSG
habitat (Fig. 8d, e). The two maps were in agree-
ment over 72% of the landscape (Fig. 8f). For the
remaining 28%, lands were mapped as habitat
by one approach, but not the other. These areas
of disagreement were generally interspersed
within the areas mapped as habitat for both
models. The RFNN and RF regression maps of
the areas with food forb cover >2.5% differed
more noticeably than those describing the tree
and sagebrush criteria. The RFNN map of food
forbs showed small patches of habitat scattered
throughout the landscape (49% of the map;
Fig. 8g). The RF regression map showed larger
regions where predicted food forb cover
exceeded the habitat threshold (74% of the map;
Fig. 8h). These larger regions were concentrated
at higher elevations. The two maps agreed about
the food forb habitat criterion over 67% of the
landscape (Fig. 8i). The two mapping
approaches also yielded differing pictures of
exotic annual grasses in the landscape. Both
maps show the majority of the region meeting
the GRSG habitat criterion for exotic annual
grasses (76% for RFNN; Fig. 8j, and 71% for RF
regression; Fig. 8k). The two maps were in
agreement about the exotic annual grass crite-
rion over 77% of the landscape (Fig. 8l) as a
whole. Differences were especially noticeable

through the eastern half of the map where RF
regression showed much less area meeting this
criterion.
When the maps of all four GRSG habitat criteria

were stacked, the resultant habitat maps showed
different amounts of habitat present in the land-
scape (20%, and 25% for RFNN and RF regres-
sion, respectively), and it was mapped to
noticeably different locations (Fig. 9). The stacked

Fig. 6. Joint-difference histograms comparing original
data, and modeled predictions for total tree cover and
western juniper cover for RFNN (a), and RF regression
(b). Legend indicates the difference in the number of plots
thatwere predicted to each cell in the joint ranges from the
predicted data to the original data. Negative values (red)
indicate under-prediction within a cell, while positive val-
ues (blue) indicate over-prediction in a cell. Numbers indi-
cate the percentage of model predictions that fall within
each half of the graph, as delineated by the 1:1 dotted line.

Fig. 7. Joint-difference histograms for greater sage-
grouse (GRSG) habitat variables, comparing original
data, and predicted values for RFNN (a, c, e), and RF
regression (b, d, f). Legend indicates the difference in
the number of plots falling within each joint histogram
cell between the model predictions, and original data.
Dotted lines delineate conditions corresponding with
published literature defining GRSG habitat (Table 2).
Relative percent difference (RPD) numbers within
boxes indicate the percent difference between the
number of plots predicted and observed that fall
within the delineated variable-space rectangle.
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GRSG habitat maps for RFNN and RF were in
agreement over 76% of the map. In the northeast-
ern corner of the region, RFNN mapped far more
habitat than did RF regression, while in the

northwestern quarter of the map, RF regression
indicated more habitat than did RFNN.
In general, both RF regression and RFNN map

the most GRSG habitat in the PACs located in

Fig. 8. Single-variable maps describing potential greater sage-grouse habitat for random forest nearest neigh-
bor (RFNN; yellow; a, d, g, j), random forest regression (RF; blue; b, e, h, k), and both (green; c, f, i, l).
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the northeast, northwest, and southwest corners
of the region. The RF regression-based habitat
map consistently showed more GRSG habitat
throughout all of the PACs (average absolute dif-
ference: 14%). Differences in the spatial distribu-
tion of mapped habitat between the two
methods were highlighted by zonal summaries
of the proportion of area within each PAC that
met all four habitat criteria in the maps (Fig. 10).

DISCUSSION

This study highlighted a common challenge
for modeling vegetation to support applications
where multiple descriptor variables are needed:
Independently modeled vegetation attributes
inherently ignore the correlated nature of vegeta-
tion attributes. The correlated nature of vegeta-
tion is relevant to many practical uses of the
vegetation map, such as habitat mapping as we
have illustrated here. We further discuss the
implications of small attribute biases, and errors
in attribute covariance in the context of mapping
to support conservation planning and land-man-
agement policy.

When single variables were considered inde-
pendently, multivariate imputation (RFNN) often
out-performed univariate models (RF regression)
by a small to modest margin at fine spatial scales
(Fig. 3). The small biases identified for RF

Fig. 9. Unified map showing areas that meet all four
criteria from Fig. 8 according to each model type. The
combination of yellow and green shows areas high-
lighted by random forest nearest neighbor (RFNN) as
potential habitat in panels a, d, g, and j from Fig. 8. The
combination of blue and green shows areas highlighted
as potential habitat in panels b, e, h, and k in Fig. 8.

Fig. 10. Proportion of each Priority Areas for Con-
servation that is potential greater sage-grouse habitat,
based on the four maps in Fig. 8, as mapped by ran-
dom forest nearest neighbor (RFNN) (a), random for-
est (RF) regression (b), and the difference between the
two estimates (RFNN � RF regression, c).
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regression became important when they coin-
cided with GRSG habitat threshold values. This
was most evident in the food forb variable. The
RF regression models often inflated small values
enough to cross the habitat threshold. This pat-
tern may have stemmed from a combination of
three factors: (1) The statistical distribution of
raw values for this variable (zero-inflated, with a
few large values), (2) missing relevant explana-
tory variables (e.g., competition, facilitation, or
very recent fluctuations in rainfall), and (3) the
resultant weak correlation in the raw model pre-
diction may have performed poorly with our cor-
rection procedure. Regardless of the cause of the
bias, the net effect is that the RF regression bin-
ary prediction of habitat based on the food forb
variable yielded an inflated area estimate for
suitable habitat in this dimension.

When RF regression model predictions were
combined, covariance errors often emerged in
the joint predictions. This did not happen with
the RFNN predictions. The difference between
the two techniques with respect to error aggrega-
tion was most effectively shown with the exam-
ple of species richness. Species richness was
underestimated by the stacked RF regression
models, but not by RFNN (Fig. 5). Aggregation
errors were also evident in occasional illogical
joint predictions of tree and juniper cover (ju-
niper cover > tree cover) for the RF regression
model, while this error never occurred in the
RFNN model (Fig. 6).

Despite similar point-based accuracy metrics
for broadscale model performance (Fig. 3), we
still observed noticeable differences between the
two modeling approaches in the broadscale pat-
terns that emerged in three of the four GRSG
habitat variables (Table 3, Fig. 8f, i, l). Unsurpris-
ingly, those discrepancies were also evident in
the stacked GRSG habitat maps (Table 3, Fig. 9).
These trade-offs (precision, accuracy, threshold
performance, and the capacity for post-modeling
variable recombination) hold implications for the
utility of vegetation maps for different applica-
tions. Maps of sage-steppe vegetation are needed
to support a variety of activities, including habi-
tat suitability modeling, conservation reserve
design, and rangewide conservation programs
for GRSG. Features that define a good map vary
from application to application. Recent advances
in change detection mapping for rangelands at

very large spatial scales are very encouraging
(Jones et al. 2018), but careful consideration of
the error and bias structure is vital for determin-
ing how maps such as these can inform a plan-
ning and regulatory framework.
For vegetation data underlying habitat model-

ing, strong correlations between observations
and predictions can be quite important (Hines
et al. 2005). This need is balanced by other priori-
ties, such as the availability of relevant variables
(Johnson and Gillingham 2005) and accurate
depiction of spatial configuration (Johnson and
Gillingham 2005, Rondinini et al. 2006) at appro-
priate spatial scales (Graf et al. 2005, Timm et al.
2016). For example, much work has been done in
PNW forests to describe habitat for the Northern
Spotted Owl, where the array of variables avail-
able in multivariate maps of forest condition
have supported several studies mapping habitat
across the region (McComb et al. 2002, Davis
et al. 2011, Ackers et al. 2015). Published studies
of regional-scale GRSG habitat mapping have
relied heavily on classified vegetation maps such
as LANDFIRE (Knick et al. 2013), on unclassified
remotely sensed imagery (Donnelly et al. 2016),
or on stacked univariate layers (Fedy et al. 2014).
The multivariate approach to vegetation map-
ping that we used here expands the vegetation
summaries that can be made available as
explanatory variables to inform habitat models.
For example, currently available broadscale data
include information on tree and sagebrush cover
(Xian et al. 2015), 250-m maps of herbaceous
annual cover (grass; Boyte and Wylie 2018), and
most recently, 30-m maps of percent cover of
annual forbs and grasses, perennial forbs and
grasses, shrubs, and bare ground over the west-
ern United States (Jones et al. 2018). In contrast,
our joint modeling with RFNN can provide
increasingly refined structural and compositional
data. Here, we presented just five vegetation
summary variables and diversity derived from
presence/absence predictions for 51 plant taxa.
However, other indicators of rangeland health
(e.g., those described by Pyke et al. 2002) can
also be summarized and mapped to the RFNN
raster layer without the need for generating a
new model and map. New variables can be for-
mulated, shown spatially, and assessed indepen-
dently of the RFNN modeling and mapping
process. Covariance between new and old
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variables will remain consistent with the input
plot data. The current study reiterates the impor-
tance of joint vegetation modeling for applica-
tions requiring species- or taxon-specific
information to describe habitat, as is the case for
GRSG. Our multivariate maps do contain a fair
amount of fine-scale noise, a property shared
with their forested cousins (Bell et al. 2015), but
that noise dampens at broader spatial scales
(Ohmann et al. 2014; Fig. 5). Greater sage-grouse
respond to vegetation at local and landscape spa-
tial scales (Doherty et al. 2010, Arkle et al. 2014),
and thus map performance across multiple scales
merits consideration.

For conservation reserve design, geographi-
cally marking variations in composition and
diversity may be important (e.g., conservation of
diversity hotspots, Myers et al. 2000). Species
richness is a community-level metric that can be
useful in this context. It is also a useful avenue
for illustrating the hazards of aggregating predic-
tions from many models. Our finding that
stacked univariate models underestimated diver-
sity is unusual in the literature. Many studies
that map diversity by stacking multiple species
distribution models find that species richness is
overestimated (Dubuis et al. 2011, Guisan and
Rahbek 2011, Pottier et al. 2013, Henderson et al.
2014), a pattern we observed in predictions pro-
duced by stacked, uncorrected RF regression
models (data not shown). In this paper, the
under-prediction of species richness with the RF
models was likely due to a consistent bias in
favor of species’ absences in our RF regression
model predictions (indicated by lower model
sensitivity; Fig. 4), which stems from our bias
correction procedure. The binary correction that
we used to generate our responses was unbiased,
but the model II regression correction that we
used to stretch the range of predicted values
introduced a few additional absences to each pre-
diction. Compared to stacked univariate models
that may substantially over- or underpredict spe-
cies richness, the multivariate RFNN approach
can provide a less biased estimation of diversity.

Habitat assessment and adaptive management
for GRSG in Oregon

The work we present here was conducted
while building an imputed vegetation map to
support GRSG conservation efforts in the state of

Oregon. In Oregon, GRSG conservation efforts
and plans have been facilitated by the Sage-
Grouse Conservation Partnership, a collaborative
group that includes the BLM and other federal
agencies, state agencies, county-level entities, and
conservation organizations and industry groups
as well as other stakeholders. Through this part-
nership, the state adopted the Oregon Sage-
Grouse Action Plan (Sage-Grouse Conservation
Partnership 2015), which outlined a vision for
cross-ownership cooperation in the state related
to sage-grouse conservation, including assessing
and mapping GRSG habitat. The Habitat Assess-
ment Framework, developed by the BLM, and
the western association of fisheries and wildlife
agencies, was designed to facilitate understand-
ing GRSG habitat across four spatial scales of
understanding: species range, populations,
home-range, and seasonal habitats/daily move-
ments (Stiver et al. 2015). The BLM Approved
Resource Management Plan outlines additional
strategies for monitoring and managing GRSG
habitat on Oregon’s federal land (U.S. Bureau of
Land Management 2015). All of these efforts rely
on high-quality GIS data describing GRSG habi-
tat, and effective management is hindered when
these datasets are unavailable. Several relevant
variables are not used in federal frameworks for
addressing GRSG habitat because consistent and
accurate maps describing them are unavailable
across the GRSG’s full range. Instead, derivatives
from classified vegetation maps are often used
(Chambers et al. 2017).
Our work is unique in that it provides detailed

habitat information that is relevant to seasonal
habitats in a spatially consistent way across the
full range of GRSG in Oregon. BLM’s adaptive
management framework requires information
from just two vegetation attributes within man-
agement areas for making strategic decisions
(sagebrush canopy cover and tree canopy cover).
The Oregon Sage-grouse Action Plan calls for the
use of additional layers of information (e.g., exo-
tic annual grasses and native grasses; Sage-
Grouse Conservation Partnership 2015), because
they are available in an imputed dataset much
like the one created for the research presented
here (created by the primary author to support
region-wide modeling of landscape resources;
Halofsky et al. 2014, Creutzburg et al. 2015). In
both the rangewide and the within-Oregon
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context of GRSG monitoring and conservation,
quantitative data layers are generally threshold-
transformed to binary and then combined into a
single layer to provide information for making
decisions. For example, the BLM defines their
adaptive management triggers as multivariate,
threshold-based decisions that are based on two
data layers (e.g., a soft trigger is described:
“When the area with at least 5% sagebrush canopy
cover and less than 5% tree canopy cover drops
below 65% of the sagebrush capable area within an
individual Oregon PAC, but remains above 30%,”
U.S. Bureau of Land Management 2015:
Appendix D). When conditions described by a trig-
ger are met, management and conservation mea-
sures that are prescribed to the land in question
become more protective of GRSG habitat.

Our analysis shows how aggregations of
threshold-defined data layers can be quite sensi-
tive to small response variable biases (e.g., food
forbs and exotic annual grasses see Table 3 and
Fig. 7e, f), yielding highly biased binary maps.
When biased binary maps are combined, those
biases accumulate. These discrepancies were
clearly manifest at the scale of GRSG PAC, espe-
cially in terms of habitat amount (Figs. 9, 10). The
differences in the aggregate map predictions were
likely driven by the difference in the two mapped
predictions for food forbs and exotic annual
grasses (Fig. 8g–l), our weakest variables. Reliabil-
ity of combined estimates of habitat location and
quantity are crucial components of adaptive man-
agement or regulatory frameworks.

CONCLUSIONS

As a foundation for wildlife habitat mapping
and species conservation planning, the multivari-
ate RFNN approach had clear advantages over uni-
variate RF regression. At fine spatial scales, for
single-variable predictions, the two approaches
had comparable performance. At coarser spatial
scales, both approaches had comparable precision,
but RF regression often contained more bias.
Recombination errors were consistently observed
in stacked RF continuous regression maps, but not
RFNN. For food forbs and exotic annual grasses,
the most biased portions of predicted values from
RF regression corresponded with habitat definition
thresholds, yielding biased predictions of habitat
quantity that were amplified when the two

variables were combined. Because of its perfor-
mance with respect to bias and the absence of
covariance errors, we conclude that RFNN is well-
suited to inform mid- to broadscale strategic con-
servation/management decisions.
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