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Abstract: Data describing aircraft position and attitude are essential to computing return positions
from ranging data collected during airborne laser scanning (ALS) campaigns. However, these data are
often excluded from the products delivered to the client and their recovery after the contract is complete
can require negotiations with the data provider, may involve additional costs, or even be infeasible.
This paper presents a rigorous, fully automated, novel method for recovering aircraft positions using
only the point cloud. The study used ALS data from five acquisitions in the US Pacific Northwest
region states of Oregon and Washington and validated derived aircraft positions using the smoothed
best estimate of trajectory (SBET) provided for the acquisitions. The computational requirements of
the method are reduced and precision is improved by relying on subsets of multiple-return pulses,
common in forested areas, with widely separated first and last returns positioned at opposite sides
of the aircraft to calculate their intersection, or closest point of approach. To provide a continuous
trajectory, a cubic spline is fit to the intersection points. While it varies by acquisition and parameter
settings, the error in the computed aircraft position seldom exceeded a few meters. This level of error
is acceptable for most applications. To facilitate use and encourage modifications to the algorithm,
the authors provide a code that can be applied to data from most ALS acquisitions.
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1. Introduction

Airborne laser scanning (ALS), or light detection and ranging (LiDAR) as this technology is
alternatively known, has been used, and often relied upon [1], to generate detailed and precise
digital descriptions of ground surfaces [2], model hydrologic systems [3], assess forest above-ground
biomass [4], map snow depth [5], monitor powerlines [6], and measure terrain displacement induced
by seismic events [7]. Over urban landscapes, ALS has been used to delineate road networks [8],
detect impervious surfaces [9], identify and describe individual trees [10,11], biomass [12], estimate leaf
area index [13], identify and assess trees damaged by extreme weather [14], assess the photovoltaic
potential of residential buildings [15,16], and in many other applications.

Many ALS data analyses and applications, including some of those mentioned above, require or
benefit from information describing the range and pulse angle associated with each return or echo.
Range, the 3D distance from the sensor to each return, is typically used to normalize recorded return
intensity, a parameter associated with the backscattering attributes and ultimately characteristics of
targets illuminated by laser pulses [17–19]. For a given beam divergence setting of the laser instrument,
the calculated range to a return also provides the precise footprint of the pulse incident upon a target.
The term pulse angle, defined here as the three-dimensional, angular deviation from a pulse directed
perpendicularly to a horizontal plane [13], is calculated by fitting a 3D line connecting the first and
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last returns of the pulse. The first and last return are identified as a pair across all returns by their
shared GPS time [20]. As pulses are diverted by an oscillating or rotating mirror, or other hardware
component, across the trajectory of the laser instrument and airborne platform, the pulse angle changes
rapidly and continuously during an acquisition. Over forested landscapes, the pulse angle is known
to affect the computation of tree height, leaf area index, gap fraction, and canopy cover [21–24],
all important parameters for forest resource assessment and planning. This is primarily because
as the angle increases, the length of the pulse trajectory intersected by a tree crown also increases,
and with it, the probability for a crown return. Conversely, the probability of a ground return decreases.
This phenomenon, manifested as a horizontal displacement of ground returns with respect to returns
from the canopy, is sometimes referred to as ‘LiDAR shadow’ and it is more pronounced with trees
featuring a high leaf area index [13].

Unlike pulse angle, scan angle is defined as the angular deviation from a pulse directed
perpendicularly to the plane of the laser instrument and its magnitude is independent of platform
attitude. The scan angle pertaining to a return is a required field in all American Society for
Photogrammetry and Remote Sensing (ASPRS)-compliant ALS data files (LAS) [25,26] and is recorded
as a char (1-byte element) with, by convention, positive values for pulses oriented towards the port and
negative values towards the starboard side of the aircraft. The latest LAS 1.4 format contains a provision
for an extension of the scan angle field to 2 bytes to provide finer angle resolution. On a perfectly level
flight, pulse and scan angles are theoretically identical. Discrepancies are introduced as the aircraft
attitude changes during data collection.

In a typical ALS flight, the directional vectors of the airborne platform and, hence, those of the
laser instrument, are recorded by an inertial measurement unit (IMU). A high-end Global Positioning
System (GPS) device records positions which are improved during a post-processing phase using data
from a nearby, strategically placed, ground GPS station operating during the flights. This information
and the pulse directional vectors relative to and recorded by the laser instrument are combined to
calculate the trajectory of each emitted pulse. The time that elapses between pulse emission and
interception of backscatter pulse photons determines the range and the 3D coordinates of each return
associated with a pulse. A detailed description of the process is available in [27].

The data collected during ALS operations and available as a potential deliverable includes the
GPS location and IMU attitude information. These data, collectively called the aircraft trajectory,
are recorded at high frequencies (~200 Hz) and are essential for the production of a point cloud
from the range data recorded by the laser scanner. At this recording rate, each position represents
a change of only about 30 cm along the aircraft trajectory assuming a speed of 220 km/h (119 knots).
Position information in the trajectory is typically referenced in GPS week time (number of seconds
from the beginning of the week, resetting, or rolling over, at 12:00 AM each Sunday). This presents
challenges for acquisitions lasting more than one week because identical time stamps could refer to
more than one platform position. To overcome this challenge, GPS time is typically replaced with the
Adjusted GPS Time (number of seconds that have passed since the beginning of GPS time: midnight
between 5 January and 6 January 1980, minus one billion seconds).

While critical for ALS data generation, platform trajectory data are not always included in data
deliverables, primarily due to the absence of relevant clauses in acquisition specifications. This is
the case, for example, with acquisitions supporting the United State Geological Survey (USGS) 3D
Elevation Program (3DEP) [28], a substantial initiative aiming at generating high-resolution digital
terrain models (DTMs) across the continental United States. A survey of data from nearly 100 ALS
acquisitions stored in a portal hosted by Oregon State University (ftp://lidar.engr.oregonstate.edu,
last accessed on 31 July 2019) showed that only about one in three contained platform trajectory data.
Even lower, often much lower, percentages are reported in personal communications with analysts
elsewhere in the United States, Canada, and Europe.

Even when trajectory data are included in deliverables, they are not necessarily in the projection of
the raw return data. Many vendors have an established data processing workflow based on a projection
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of choice that is applied across their entire area of operations. All intermediate data products are
organized in the preferred projection and are converted to the projection desired by the client just
prior to delivery. Reprojection of the trajectory data to match the rest of the deliverables is often
neglected. In the absence of adequate documentation regarding the registration of intermediate
products, projection discrepancies can be challenging to resolve, especially when they involve datum
shifts and other somewhat esoteric parameters. In addition, retrieval of trajectory data after, often long
after, delivery can be logistically complicated, time consuming, and costly. Vendors may charge fees
for copies of archived data, the archive could be missing, or the vendor could have ceased operations.

The goal of this study is to develop and present a new method that computes the trajectory of the
laser instrument using the point cloud. We evaluate the resulting trajectories using ALS data from five
acquisitions across different biomes in the United States Pacific Northwest region and compare the
computed trajectory to the trajectory recorded during the data acquisition.

2. Materials and Methods

2.1. Study Area and Airborne Laser-Scanning (ALS) Data

We used ALS data from five acquisitions in the US Pacific Northwest region states of Oregon
and Washington (Figure 1), titled Colville, Deschutes, McKenzie, Tillamook, and West Metro.
Each represents a distinct biome. All selected data sets contained airborne platform trajectory
information provided by the vendor. GPS time was recorded in the weekly format except for McKenzie,
where the adjusted format was used. McKenzie was acquired with a dual laser instrument configuration
and had a platform trajectory file in a projection different from the one used for the raw laser data.
The Tillamook area is representative of the temperate rainforests and topography of the coastal Oregon
mountain range. It is subject to intense forest management. West Metro contains portions of the cities
of Portland, Beaverton, and Hillsboro, with moderate tree cover over hills and low housing density in
the northeastern section, gradually leveling off to plains with sporadic trees and high housing density
towards the west. The McKenzie area contains the eastern portions of the City of Springfield to the
west, followed by agricultural land, and then high tree canopy cover forests to the east towards the
Cascade mountain passes. The Deschutes area, part of a much larger acquisition, is located at the
eastern foothills of the Cascade mountains on rolling terrain and is characterized by open stands
with medium to low tree canopy cover. The Colville area is in the northeastern part of the State of
Washington. It is within the Northern Rockies ecoregion and is dominated by dry highland forests [29].
Descriptive statistics of each study area are shown in Table 1. Elevation and slope metrics were
calculated using 1 m digital terrain models (DTMs) generated from the ALS data. Tree canopy cover
calculations used a 2 m above-ground return height cutoff value as an indicator of tree returns and,
for McKenzie and West Metro, a prior elimination of returns classified as ‘building’ by a GlobalMapper
20 LiDAR module [30]. Acquisition specifications are shown in Table 2. Across all areas, pulse density,
and therefore return density, is high, exceeding 7 pulses per square meter. The field-of-view, or
bilateral scan angle, is lower and sidelap is higher than what is common in ALS acquisitions elsewhere.
The specifications for acquisitions selected for this study are similar to those used by the Forest
Service, the Oregon Department of Geology and Mineral Industries (DOGAMI), and other partners
collaborating on ALS acquisition in the region. They are considered optimal for minimization of
artifacts such as the laser shadows mentioned earlier.
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Figure 1. Spatial distribution of study areas, each featuring National Agriculture Imagery Program
(NAIP) panchromatic imagery co-temporal to the ALS data acquisition and a digital terrain model
generated from the laser data with superimposed platform trajectory lines displayed in red. Scale varies
across the five study areas.

Table 1. Physiographic metrics of study areas.

Study Area Area (km2) Elevation (m) Mean Slope
(percent/sd)

Mean Tree Canopy
Cover (percent/sd)

Min Max Mean

Colville 425.3 390.8 2167.7 1219.2 32.8 (21.9) 58.8 (17.3)
Deschutes 358.9 584.7 1582.3 1048.9 21.7 (21.6) 37.8 (19.1)
McKenzie 572.3 136.3 1631.7 530.4 33.9 (24.1) 82.5 (17.0)
Tillamook 115.6 67.1 1046.1 549.3 49.8 (21.7) 77.3 (15.1)

West Metro 369.8 34.1 328.1 78.4 8.3 (10.3) 24.4 (8.6)

Table 2. Timing and instrument specifications of ALS acquisitions.

Study
Area Year Instrument

(s)
Density

(pulses/m2)

Nominal
Above-Target

Platform
Height (m)

Bilateral
Field of

View
(degrees)

Pulse
Rate

(kHz)

Scan
Rate
(Hz)

Nominal Scan
Swath

Sidelap (%)

Colville 2008 Leica
ALS50 7.62 1 900 28 105 52.2 50

Deschutes 2010 ALS50/ASL60 9.30 900/1300 28 105 52.2 50
McKenzie 2016 ALS80 12.49 1500 30 2 × 189 58.4 1 55
Tillamook 2012 ALS50/ALS60 9.72 900 30 96/105 61.2 1 60

West
Metro 2012/13 ALS60 8.13 900/1500 30 150 1 61.2/63.3 60

1 Values calculated from the return cloud data. No relevant information was present in respective delivery reports.

2.2. Pulse Returns to Ray Convergence

A laser pulse incident upon an opaque object yields a single return. When incident upon
a non-solid object, such as a tree crown, each pulse will typically generate more than one return.
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Multiple returns can be generated from solid objects as well, if the pulse direction is nearly parallel to
the object’s surface. An example for the latter case would be a pulse skimming the side of a building
with one return located near the top, and one or more returns at different heights on the building’s side.
As stated earlier, return coordinates are calculated using the parent pulse’s directional vectors and the
position of the aircraft when the pulse is emitted. This implies that all returns generated by a single
pulse should be located exactly on a 3D ray starting at the instrument and directed towards the target.
Also, that the equation of the pulse ray can be reconstructed from the coordinates of returns, provided of
course that there are two or more. It is a trivial exercise to confirm, however, that intermediate returns
of a pulse yielding more than two are not located exactly on the ray defined by the first and the last
because coordinates are stored with finite precision, usually rounded to a centimeter or equivalent
unit fraction in non-metric systems. Coordinate precision issues propagate to the coefficients of the
calculated ray equation and induce noise to the location of the ray. Noise levels increase in magnitude
proportionally as the distance from the midpoint between the first and last pulse returns increases.
At a kilometer away, the typical distance between returns and airborne platform location, the effects of
return coordinate precision on pulse ray positioning can be substantial. We quantify those effects via
simulation below.

Let two pulses P1 and P2 intersecting at scanner location S that is positioned at height HT above
the ground. The coordinates of the last (P1L, P2L) and first returns (P1F, P2F) define the 3D equation of
each pulse ray and the distance D between them (Figure 2). P2 is set to be perpendicular to a horizontal
plane so that the angle θ it forms with P1 at location S is also the pulse angle of P1. Next, we add noise
to the coordinates of P1L, P1F, P2L, and P2F of magnitude that follows the distribution of precision
reduction introduced when real numbers are rounded to two decimal digits, the typical level of
precision in ALS deliverables. It can be shown that the resulting per-dimension coordinate error term
induced by the rounding has range [−0.005, 0.005] and is distributed ~U(0,2.88675*10−3).
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Figure 2. Spatial arrangement of two pulse rays defined by their first (P1F and P2F) and last (P1L,
P2L) returns, forming angle θ, and intersecting at S and above-ground height HT (left). The closest
points of approach (CPAs) of non-intersecting ray pairs resulting from jittering all four returns are
denoted as green dots enveloping the original intersection point (S). The histograms in blue denote
CPA distributions along the X and Y axis. E3D denotes the mean 3D distance of CPAs from S (right).
Please see text for a detailed description.
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With all four return coordinates displayed in Figure 2 jittered from their original position, the two
pulse rays no longer intersect at S. We identify on each jittered pulse ray the point that is closest to the
jittered instance of the other pulse ray. A third point located exactly on the middle of the line segment
that connects these two closest, one on each ray, points is often called the closest point of approach
(CPA). It can be computed using calculus [31]. We adopted an alternative, more geometric approach
described in [32]. The 3D distance between the CPAs and S (Figure 2) quantifies the effect of return
coordinate precision on ray convergence.

We considered 9600 combinations of HT, distance D between first and last return, and pulse angle
θ. The values considered for each parameter are displayed along the axes of each panel in Figure 3.
For each combination, we run one million coordinate jittering instances, calculating for each the distance
of the corresponding CPA to S and the distribution moments of that distance. All computations were
performed in R [33] with embedded C code for gains in computational efficiency. The error mean
across parameter combinations ranged from 0.092 m to 134.128 m, with median 0.786 m, mean 2.193 m,
and standard deviation 5.522 m. We finally regressed the three parameters, HT, D, and θ, after applying
a natural log transform to their values, against the natural log of the error means (see Supplementary
Materials). The resulting regression formulation was:

ln(3DError) = −2.283 + 1.010 ∗ ln(HT) − 1.006 ∗ ln(D) − 0.829 ∗ ln(θ) (1)

with R2 = 0.9942. Equation (1) confirms that the error increases with platform height above the targets
and decreases as the distance between pulse returns and the pulse angle increase. It implies that within
a set of multi-return pulses of various angles and first to last return distances, we can identify those
conducive to a more precise estimate of pulse convergence location and, therefore, of the position of
the laser instrument onboard the airborne platform. We provide the code that performs the simulation
so that variants of Equation (1) can be calculated for parameter values representative of a specific ALS
data set.
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Figure 3. Distribution of 3D error computed using Equation (1) as discrepancy between the location
of two intersecting pulses and their closest point of approach calculated after noise is added to the
coordinates of returns that define each pulse ray. The error is displayed as function of the above-ground
pulse intersection height HT, distance D between the first and last return of each pulse, and angle θ
formed between the two originally intersecting pulses. In each of the three panels, one of the three
parameters has a fixed value, the other two display their entire value range.

With pulse repetition rates ranging from tens to hundreds of thousands per second and a nominal
above-target flight height between hundreds and a few thousand meters, the position of the laser
instrument onboard the airborne platform can be considered practically stationary during the time
it takes to emit pulses within a single scan line, or, equivalently, a full swing of the oscillating or
rotating mirror of the laser instrument. By calculating the ray equations of multi-return pulses from the
coordinates of their first and last returns, we can estimate the location of the instrument as the centroid
of all CPAs between them. The exhaustive computation of CPAs across all multi-return pulses emitted
within a single scan line is logistically infeasible though. Consider, for example, an instrument with
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150 kHz pulse repetition frequency, 60 Hz mirror (scan) rate, and±30 degrees scan angle, operating over
a forested landscape. Assume also that, owing to customer-preferences, pulses with absolute scan angle
higher than 20 degrees are filtered out prior to delivery. Within 16.7 ms, the time it takes for a full mirror
swing, 2500 pulses will be transmitted. After removing one-third of them as exceeding the scan angle
specifications and another one-half expected to yield single returns, we are left with 833 multi-return
pulses. The pairwise combinations of those 833 pulses are 346,528 per 16.7 ms or 20,791,680 s−1.
For a scanning swath generated during 10 min of instrument operation, the pulse combinations are
more than 12 billion (1.2475 × 1010), along with an equal number of CPAs, the calculation of which
comes with substantial computational cost. Further, an exhaustive computation will include many
near parallel pulse ray pairs that would generate CPAs positioned at larger distances from the actual
platform position. According to Equation (1), for HT = 1000 m, D = 10 m, both common settings, and θ
= 0.1 degrees (near-parallel pulse rays), the expected CPA error is 72.8 m, a large distance. We have
confirmed experimentally that CPA outliers emerging during a single scan swing are not distributed
uniformly around the true platform position and thus bias its estimation calculated as the centroid,
or other similar metric, across all CPAs for the scan swing in question. We thus adopted an alternative,
selective rather than exhaustive approach that identifies specific pulse pairs to use for CPA calculation.
The selective approach is computationally efficient.

Raw ALS data are typically delivered organized in tiles of rectangular planar extent. Each tile
contains returns from multiple adjacent scan swaths. In our application, the tile files must first be
reorganized into individual swaths. We provide a program that supports the reorganization process.
Our program assumes the swath identifier is stored in the “point source ID” field in LAS files (see
Supplementary Materials) and only works with LAS formats up to version 1.2 [26]. Similar capability is
also available in LAStools using the lassplit program. LAStools supports all versions of the LAS format
and data compressed using the LAZ format [34]. The scan swaths are then processed sequentially.
Each is queried to identify and remove single return pulses and the intermediate returns of multi-return
pulses. For the remaining pulses, the 3D distance between the first and last return and the pulse
angle are calculated and entered in Equation (1) to generate pulse-specific estimates of the expected
error in pulse ray convergence to the actual airborne platform location. The computed estimates are
treated as pulse-specific weights. The sign of scan angle pertaining to each pulse, recorded in the
raw laser file, is applied to the weight, resulting in positive values towards one side of the swath and
negative towards the other. Although the number of weights that must be computed can still be large,
approximately 3 × 107 in the 10-min swath given as an example above, it is approximately three orders
of magnitude smaller than what it would be required for an exhaustive calculation of CPA across pulse
pairs. In addition, the calculations embedded into Equation (1) are a linear scaling of tabular values,
namely pulses angle and the distance between first and last return, calculated previously and are thus
performed efficiently.

Next, we specify a time interval ∆t that must be at least equal or larger than the time it takes
to complete a full swing of the laser instrument’s mirror. ∆t is used to assign swath pulses into
contiguous, in terms of GPS time, groups, henceforth referred to as time blocks. The reciprocal of the
scan rate, usually mentioned in data delivery reports, can be used to determine the minimum value of
∆t. Then the weights of the pulses in each time block are queried. The two with the extreme values are
identified and the CPA of their rays is calculated. Henceforth, they are referred to as the optimal pulses
in the time block, in the sense that they their CPA is expected to be the closest among all other pulse
pairs of the time block to the actual trajectory of the laser scanner. The top panel of Figure 4 shows
an example with the spatial distribution of the first returns of pulses selected for CPA calculation for
each time block. The bottom panel details the rays of the two selected pulses within the return cloud of
a single time block. The collection of calculated CPAs, one for each time block and each carrying a GPS
time reference, represents the trajectory of the airborne platform location for the scan swath.
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Figure 4. (Top) Perspective view of an ALS scan swath, showing return membership to 1s time intervals
(blocks) colored by alternating intensity (gray-scale) and red-green-blue (RGB) values. Superimposed
pairs of red and blue dots, one per time block, show first returns of pulses identified as optimal for
determining the platform’s position. The aircraft was moving from right to left. Owing to variability in
the speed and attitude of the airborne platform, block width varies. (Bottom) Profile of returns in a time
block displayed perpendicular to the airborne platform trajectory, the calculated pair of optimal pulses,
and their rays as colored lines. The width of the scan swath is approximately 250 m in both panels.

2.3. Closest Points of Approach (CPAs) to Platform Trajectory

The form of a CPA set calculated for a scan swath using the methodology described above can
vary, depending on the characteristics and spatial distribution of the objects illuminated by the laser.
In general, CPA sets appear as linear features, and thus conducive to a detailed and precise extraction
of the actual airborne platform trajectory via interpolation. A closer inspection, however, often reveals
discontinuities, primarily along the Z axis, and noise, sometimes of substantial magnitude. To prevent
serious issues with trajectory interpolation, CPA outliers must be removed. We do this using an iterative
process that relies on fitting cubic splines [35,36] to each CPA set. We define a vector of distance
thresholds sorted in descending order, and CPA points with residuals from the spline fit exceeding the
threshold that is effective for the iteration in question are removed. The 3D distance thresholds used in
the five study areas were 500, 300, 200, 150, 100, 75, 50, and 25 m respectively. The cubic spline fit in the
last iteration becomes the estimated platform trajectory. The formulation of the spline uses the GPS
time as an independent variable. For a given time, it provides an estimate of the [X, Y, Z] vector of the
laser instrument.

Cubic splines are a specific type of polynomial interpolation techniques. Unlike them, standard
methods apply an nth degree polynomial to a set of n + 1 unique values with yi = f(xi), (i = 0, . . . ,
n), where xi represents the observed values and yi the interpolation estimates. A major deficiency of
these methods is that as the number of observations increases, so does the degree of the polynomial,
leading to overfitting and oscillatory polynomial behavior particularly towards the ends of the observed
value series. Splines attempt to overcome the overfitting issue by utilizing several, instead of just one,
low degree polynomials Pi(x), each fit in the interval between xi-1 and xi. The degree of the polynomials
defines the spline type. Cubic splines S(x) utilize third order polynomials with formulation that ensures
continuity and smoothness. Continuity implies that any two consecutive polynomials yield the same
value estimate, or ‘connect’, at joint value xi, and Pi(xi) = Pi+1(xi). Smoothness requires that they
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have the same derivative at their joint value, or Pλ
i (xi) = Pλ

i+1(xi), where λ is a smoothing parameter.
Larger values of λ induce more smoothing. The objective function of a cubic spline is:

min(
1
n

n∑
i=1

(
yi − Pi(xi)

)2
+ λ

∫
P′′ (x)2dx) (2)

where P” is the second derivative of the polynomial effective at value x. The first component of
the objective function represents the typical standard error between observed and predicted values.
The second component is known as the smoothing operator and determines the curvature of the
spline. If the interpolation is exact, the spline is forced to pass through each of the observed values yi,
the standard error component of Equation (2) is zero, and the curvature of the spline could be rather
pronounced, mimicking the oscillatory polynomial behavior mentioned earlier, thereby inflating the
overall value of the objective function. Conversely, if λ = 0 no smoothing is applied, often leading to
a standard error component of large value, especially if the xi values contain substantial amounts of
noise. The optimization of the objective function is achieved iteratively, within predefined bounds
of λ. Alternatively, the optimization can be applied to a subset of the observed xi values. Given the
arrangement of a CPA set in space, the optimization is carried is each dimension separately. We fit
cubic splines to all CPA sets using the smooth.spline function in the R stats base package considering
the CPA parent pulse weights. The value of parameter λ is implicitly constrained within [−1.5, 1.5].

We investigated systematically the effects time block duration (∆t) and CPA intensity, defined as
the time interval between points considered in the cubic spline optimization process detailed above,
have on airborne platform trajectory estimates obtained for flight lines in each of the five study areas.
We used ∆t values from 0.01 s to 0.05 s at 0.01 s intervals and from 0.05 s to 1 s at 0.05 s intervals
(total 24) and CPA intensity ranging from 1 point per second to 1 point every 10 s of flight time, at 1 s
intervals. A total of 240 cubic splines were calculated for each scan swath. To assess goodness of fit,
each spline was compared to the recorded platform trajectory, using the GPS time values present in
the latter as reference. Finally, we evaluated how the discrepancies between estimated and observed
trajectory lines propagate to the calculation of pulse angles and the relationship between pulse and
scan angles recorded in the raw laser data.

3. Results

3.1. Scan Swath Completeness

Nearly one third (32.4%) of the laser scan swaths across the five study areas had a portion missing
(Table 3), owing to trimming of the return clouds prior to data delivery to within client requested
acquisition boundaries (Figure 5). The ratio was highest in the Deschutes area and the lowest in West
Metro. A scan swath was considered trimmed if more than 10% of its planar area was removed by
postprocessing prior to data delivery. The trimming sometimes led to two or more discontinuous scan
swath parts, as in Figure 5, or removed a section of the swath along one of its sides. Except those with
ends perpendicular to the acquisition boundary, all other scan swaths had localized, end-of-swath,
trimming. The west end of the swath depicted with red color in Figure 5, shows the effects of the
localized trimming, with the swath end truncated to a wedge. For the scan swath depicted in blue
color the end trimming is less pronounced. To account for the effects induced by the end-trimming,
all scan swaths were processed a second time, after removing 3 seconds of data from either end.
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Table 3. Number of complete vs. spatially trimmed laser scan swaths in each study area. Quantities in
parenthesis denote study area percentages.

Individual Scan Swaths

Study Area Complete Trimmed Total

Colville 53 (64.6) 29 (35.4) 82
Deschutes 123 (56.2) 96 (43.8) 219
McKenzie 52 (60.5) 34 (39.5) 86
Tillamook 131 (79.4) 34 (20.6) 165

West Metro 85 (81.0) 20 (19.0) 105

Grand Total 444 (67.6) 213 (32.4) 657
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Figure 5. Example of complete (blue) and trimmed (red) scan swaths in the West Metro area
superimposed on panchromatic NAIP imagery. Polygons with yellow outline denote data delivery tiles.

3.2. Spline Fit Evaluation

Figure 6 shows the distribution of residuals for the spline fit results to CPAs across the study
areas, as a function of time block duration ∆t and time interval between CPAs (intensity) respectively.
Spline fit is quantified by the magnitude of the residuals. The 10th percentile of fit as function of
∆t decreases very slowly across study areas, except for Colville, where it decreases faster. The 25th
percentile fit decreases at a higher rate compared to the 10th. The fit improves slightly from the shortest
∆t considered (0.1 s) to about 0.5 s, after which it increases again. End-of-swath 3 s trimming does not
affect the fit. The best per study area median (50th percentile) fit is approximately 3 m, except for West
Metro where is twice as much, 6 m. Spline fit residuals increase monotonically as a function of CPA
intensity and their relationship has a sigmoidal form with flex points at 1.5 s and 7 to 9 s. The smallest
residual median ranges between 2 and 3.5 m (6 m for West Metro). As with ∆t, end-of-swath trimming
has little effect.
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either end.

Results analogous to those presented in Figure 6 are shown in Figure A1 (Appendix A), only this
time the swaths are organized into two categories, one with minimal trimming by the acquisition
boundary, the other with substantial. The form of spline fit relationship as function of ∆t and CPA
intensity have remained largely the same as observed previously (Figure 6), but the magnitude of the
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residual difference between categories varies. The 10th residual percentile across time block duration
for Colville shows little difference between trimmed and complete swaths. The 25th percentile for
trimmed swaths, however, is 50% higher than for complete ones. The median residual is almost double
for trimmed swaths and short ∆t, but slowly converges to that observed for complete swaths for higher
∆t values. In Deschutes, the trimmed swaths have lower 10th percentile residuals than the complete
swaths, as it is also the case, although of much smaller magnitude, in Colville, Tillamook, and West
Metro. The sigmoidal relationship of residuals as a function of CPA intensity persists (Figure A1,
bottom), and the residual offsets are regular for all percentiles shown, except for the Deschutes area.
As with ∆t, for shorter time intervals between CPAs, the residual percentiles for complete swaths are
higher than for trimmed ones in the Deschutes, and WestMetro areas; the order is reversed for larger
time intervals between CPAs.

Figure 7 shows the spline fit to recorded laser instrument positions as a function of ∆t and CPA
intensity, quantified as the root mean square of the 3D distance, or 3D error (RMSE), between estimated
and actual positions. It is evident that the magnitude of the error increases practically linearly with
∆t across all study areas. End-of-swath trimming reduces the error by a small margin in Tillamook
and West Metro, or not at all in Colville, at least for the lower distribution percentiles. The 10th error
percentile for ∆ts shorter than 0.4 s is below 1 m for all study areas and approximately 1 m for West
Metro. For the shortest ∆t considered (0.1 s) the 10th error percentile is about 30 cm while the median
error is under 2 m (under 4 m for West Metro). Examined as a function of CPA intensity (Figure 7,
bottom), the form of the error varies. It increases monotonically for lower distribution percentiles,
except for West Metro where there is very little variability. End-of-line trimming has practically no
effect for lower distribution percentiles and is moderate for higher ones. The median error is lowest for
CPA intervals in the 3 to 5 s range, while in West Metro the lowest error median is observed for larger
intervals, 6 to 10 s.

The effects of acquisition boundary trimming are shown in Figure A2 (Appendix A). Unlike what
was observed for the spline fit to CPA sets, the fit to the actual locations of the laser instrument across
∆ts is substantially worse for trimmed swaths, especially for higher error distribution percentiles.
For most study areas, the median error for trimmed swaths is double that for complete. Note that
the Y axis of panels in Figure A2 includes discontinuities aiming at preserving enough detail where
the error rates are low, while including the higher error values. For any given error percentile,
the error values corresponding to ∆t values for trimmed swaths are occasionally rather different than
those for neighboring ∆ts. For example, in the Colville area, the value of the 10th error percentile
for ∆t = 0.75 s is 3.15 m but only 1.30 m for ∆t = 0.70 s. No similar anomalies were observed for
complete swaths. The relationship between RMSE and CPA intensity (Figure A2, bottom) is complex.
For complete swaths the 10th percentile of error distribution is increasing monotonically but at a low
rate, with the rate increasing for larger intervals between CPAs or it is practically stationary (West
Metro). For trimmed swaths the 10th error percentile is about 20 cm higher than for complete ones
in Colville, 50 cm in McKenzie, and 150 cm in West Metro. In Deschutes, the error metric has the
same value for CPA intervals between 4 and 7 s for both complete and trimmed swaths. For higher or
lower CPA interval values, the error of the trimmed swaths is higher. In Tillamook, the 10th percentile
of the fit error is lower for trimmed than for complete swaths when the CPA intervals exceeds 7 s.
For higher RMSE distribution percentiles, the fit is much worse for trimmed swaths than for complete.
The maximum median RMSE for trimmed swaths is 8 m in McKenzie (CPA interval is 10 s) and more
than 40 m in WestMetro for CPA interval equal to 1s. Across study areas the 25th RMSE percentile for
trimmed swaths rivals in magnitude or exceeds the median RMSE for complete swaths.
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Figure 7. Distribution of error percentiles in splines fit to flight line-specific CPA sets across study
areas as function of time block duration (top) and time intervals between CPAs used in the fitting
(bottom), calculated using recorded platform positions. Crosses indicate the entire CPA set was used
for each flight line; dots denote CPAs trimmed by 3 s on either end, to reduce effects induced by
acquisition boundaries.
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These findings suggest that for most of the 444 scan swaths examined, shorter time block duration
values tend to provide the best spline fit to the actual laser instrument location. The effects of CPA
intensity are less clear, however, given that the lowest 25th and 50th RMSE percentile values (best fit)
often occur for larger intervals (Figure 7). Based on these observations, we selected a pair of parameter
values, ∆t = 0.1 s and CPA interval of 4 s, expected to yield near optimal results for most scan swaths,
and then examined the corresponding fit values across study areas and swath processing options
(Figure 8). For the parameter values selected, the spline fit residuals per study area are robust against
swath processing options. Median spline fit residual is lowest for Tillamook and Colville and highest
for West Metro. McKenzie exhibits the highest variability. Within each study area, the median residual
is the smallest when considering only complete swaths and applying a 3 s trimming on either end,
followed by complete swaths with no end-trimming applied.

The residuals are the largest when considering all swaths and applying no end trimming.
The residual differences across options for the same study area are very small, ranging from 2 to 15 cm.
Note that the maximum range between 25th and 75th percentile for residuals in West Metro across
swath processing options is only 27 cm, even though the residual median is 5.20 m. For the rest of the
study areas, the error median spline fit residual ranges between 2 and 4 m.

The spline fit error, however, is much lower, 1 m or less, except for West Metro. Unlike the
residuals of the spline fit to CPA sets, the fit error (against recorded platform locations) varies more
within each study area (Figure 8, bottom). In the Deschutes study area, for instance, the lowest error
median is observed for complete swaths with end trimming applied (62 cm), followed by all swaths and
end trimming (66 cm). The error range is also the lowest for those options, 29 and 33 cm respectively.
When no swath-end trimming is applied, the error range is much larger, 87 cm for complete swaths
and no end trimming and 150 cm for all swaths and no trimming. The 25th to 75th percentile error
range for West Metro is much larger, up to 11.5 m. As a reminder, the spline fit results shown in
Figure 8 are for time block duration and CPA intensity setting believe to yield near optimal results.
For other combinations of fitting parameter choices, the error levels are much higher, and the fit metrics
calculated are volatile (results not shown).

Figure A3 (Appendix A) illustrates the spline fitting process to a CPA set for a Colville scan
swath, with the recorded trajectory of the laser instrument superimposed. The right half of the CPA
set corresponds to an area with dense, continuous canopy forest, except the very end which is over
water. At the right half there is very little variability in the positioning of the CPAs and the spline
matches precisely the recorded trajectory. The left half is over sparse forest and mostly large patches of
short vegetation. The CPA set is less compact there, yet there is still close correspondence between the
recorded and estimated trajectory. The left end of the swath is trimmed by the acquisition boundary and
has fewer multiple-return pulses, on which our process relies, and those represent only one side of the
scan swath. The resulting large spacing between CPAs, and the positional noise they contain, leads to
a spline fit that deviates substantially from the actual positions. It should be noted that the RMSE
values computed for the planar dimensions are much larger than for the vertical dimension. Also,
that although the fit of the cubic spline has submeter precision for 85% of the scan swath, the deviations
observed near its two ends inflate the overall 3D RMSE value.
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As stated in Section 2.2, the weights used to determine the optimal pair of pulses for a given
time block, were obtained via simulation which uses the nominal above-target height as a controlling
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parameter. Table 2 shows the nominal heights retrieved from the vendor data delivery reports.
Altering the nominal height changes the pulse pair selected per time block, the ensuing CPAs, and the
spline formation and fit. Table 4 shows changes in the mean RMSE calculated using all swaths with 3 s
end-trimming for the West Metro and McKenzie study areas. In both study areas, the actual nominal
height was the one yielding the lowest (best) RMSE.

Table 4. Cubic spline fit error against recorded laser instrument positions for selected above ground
heights. Height is used to calculate pulse weights that, in turn, determine the selection of time block
pulses participating in the formulation of CPAs. The nominal height effective for laser data acquisition
in each study area is in bold. All swaths were used in the computations, with 3 s end trimming applied.
Spline fit is represented as Root Mean Square Error (RMSE).

Tillamook McKenzie

Height (m) Median spline fit RMSE (m) Height (m) Median spline fit RMSE (m)

500 1.01 1000 1.26
700 0.90 1250 1.14
900 0.84 1500 1.08

1100 0.89 1750 1.17
1300 0.96 2000 1.30

An advantage associated with deriving the laser instrument trajectory from the return cloud, when
the actual one is missing from the laser data deliverables, is manifested in Figure A4 (Appendix A).
The figure pertains to a Colville area scan swath over steep terrain and shows the discrepancies between
the scan angle recorded by the laser instrument and the corresponding pulse angle calculated from
the recorded trajectory. For a little over 58 million returns, the angular discrepancy is greater than
5 degrees for 37.7% of them; and greater than 10 degrees for a 6.1%. It suggests that the precision,
and likely the accuracy, of analyses that rely on pulse angles can be benefited from their estimates
obtained by using the process introduced herein, rather than relying on the recorded scan angles.

4. Discussion

The approach introduced in this study can retrieve the trajectory of an airborne laser instrument
by exploiting the spatial arrangement of multiple return pulses it generates. Over forested areas the
retrieval is accurate and precise, provided that recommended values for parameters which control the
process are applied. In the presence of continuous canopies, time block duration under 0.5 s, and time
interval between CPAs not exceeding 5 s, submeter precision should be expected (Figure 7). In such
conditions, the estimated trajectory obtained by using our approach should be considered practically
equivalent to the actual trajectory with a degree of precision adequate for most uses. The error rates
observed over forested areas ensure that efforts to calibrate the raw recorded return intensity using the
range (distance) and angle between the instrument and individual returns will require adjustments
that are no more than 1 unit, for intensity quantified in the 0–255 range, different from those obtained
by using the actual trajectory. Differences between estimated and recorded pulse angles will not
exceed a few mrad. Even with suboptimal parametric choices, the trajectory estimation error should
be expected to not exceed a few meters. The observed performance was achieved by applying our
approach to dense return clouds (>7.5 pulses m−2). For optimal performance in acquisitions with
much lower pulse densities, time block duration and CPA interval might need to be adjusted.

Our methodology partitions individual scan swaths into continuous, non-overlapping sections
(time blocks), and for each section it identifies the pair of pulses believed to be optimal for assessing the
position of the laser scanner. These provisions reduce the overall computation load and expedite the
process. Our approach performs best where multi-return pulses are present in all time blocks and swath
parts. Sporadic departures from this ideal arrangement are usually tolerated quite well (Figure A3).
Where, however, there is a paucity of multiple return pulses across several consecutive time blocks
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or where the multi-return pulses are concentrated in a specific part of the swath, performance is
suboptimal and the estimation error higher. Agricultural land and urban areas with limited tree cover
belong to this category. Both discrete and waveform laser data sets restrict identified returns to be
no closer than a threshold distance along the pulse trajectory. In the five study areas this threshold
was between 1.5 and 2 m. The implication is that vegetation shorter than the threshold, the usual case
over agricultural crops, will be represented only by single return pulses that are removed in an early
stage of our process because they do not permit the calculation of the pulse’s ray. In urban areas,
the majority of targets are opaque to the pulse photons and yield only one return. Buildings often
completely occlude trees and tall plants or limit their exposure to the scanning instrument from limited
viewing directions. Similarly, pulses with multiple returns from building sides and other manmade
structures are concentrated to a narrow strip underneath the airborne platform where their angles to
the vertical are narrow. In such conditions, and as implied by Equation (1), the CPAs generated can
have large location errors. This is manifested in the West Metro area where the estimation errors are
much larger than all the other study areas. Results from the same area suggest that in the presence of
lower density and lack of uniformity in the spatial distribution of multiple returns, the value of the
CPA interval parameter should be higher than those over forested areas.

We explored many alternatives and scenarios aiming at improving the scanner trajectory estimation
for scan swaths containing large areas with few multiple returns or with multiple return pulses
concentrated to a particular section but were unable to identify a consistent solution for those
challenging circumstances. The alternatives explored included, but were not limited to, conditioning
the directional vectors of the estimated trajectory to parallel the ground surface, locally replacing the
cubic with a linear spline, or using dynamic, instead of fixed, time block duration adjusted to the spatial
distribution of multi-return pulses. Each of these alternatives was found to improve the estimation
precision for a selected subset of swaths but reduced it in most others. The approach detailed here had
the most consistent performance.

At the design phase of an ALS acquisition, flight lines are drafted to minimize flight time and,
therefore, cost. Longer flight lines are usually preferred (Figure 1), often positioned in approximate
alignment to physiographic features such as watersheds. The exact spatial extent of data deliverables
in the US pacific northwest, however, is often determined by land ownership (Figure 5). The resulting
trimming of the return clouds usually affects several swaths proximal to the acquisition boundary and
thus our ability to retrieve the scanner trajectory precisely. Trimming along the side of the swath leads
to much higher error levels than trimming at the ends. Post-trimming pulses tend to be concentrated
to smaller sections of the original swath and their converging rays form acute angles. The simulation
results mentioned in Section 2.2 suggest that in such conditions calculated CPAs carry much higher
positional uncertainty compared to those of complete swaths. Our analyses with actual data have
corroborated this assumption. The acute angle formed between a pair of pulses identified as optimal
within a time block, coupled with return coordinates rounding to two digits, occasionally yield CPAs
that are kilometers higher than the true position of the laser instrument. At other times, the CPA
of a pulse pair is below ground! The iterative fitting of cubic splines is very effective in eliminating
outlier CPAs, but it also removes a few legitimate ones, especially where the airborne platform pitch
changes rapidly, an event that occurs quite frequently over mountains with alternating ridges and
valleys. To quantify the swath trimming effects, we presented our results separately for pulses with
and without substantial boundary trimming and/or end trimming. The metric used (3D RMSE) to
evaluate performance is the standard applied to performance assessments of models that have spatial
components. It is, however, sensitive to outliers. As documented in Figure A3, trajectory estimation
errors corresponding to a small part of the swath processed, even for a few seconds on either of its
ends, inflate the overall error. To mitigate this sensitivity, we used percentiles as metrics of 3D RMSE
distribution in our presentation of analysis results.

An analyst applying our methodology can only evaluate the residuals of the spline fit to CPAs
(Figures 6 and A1) as indicator of method performance. A typical residual median should be expected
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to be in the 2 to 4 m range over forested areas, and perhaps twice as large elsewhere (Figure 8).
Our results indicate that the actual trajectory estimation error (3D RMSE) would likely be much smaller,
about one fourth of the spline fit residual median over forests, and half elsewhere. Although not
common, and despite efforts to avoid it, the residuals of the spline fit to CPAs can be zero. This implies
an exact fit, with the spline intersecting every CPA, and that the value of the smoothing parameter λ in
Equation (2) is near the bounds specified, [−1.5, 1.5] in our analyses. In such occurrences, the sinuosity
of the spline is pronounced and the trajectory estimation error large. It is suggested that for the rare
cases of swaths with exact spline fit and zero residuals, the time block duration (∆t) and/or the CPA
intensity settings are altered slightly and the fitting process is repeated.

Our process was designed to be fully automated so that it can be applied effortlessly to acquisitions
of any size. Manual adjustments of ∆t and CPA interval coupled with visual assessment of the cubic
spline fit will likely improve the trajectory estimation precision for most swaths with the problematic
multiple-return pulse distribution characteristics mentioned above. Manual adjustments can also
improve the estimation precision for swaths trimmed with the acquisition boundary. For example,
the trimmed swath depicted in red in Figure 4 can be split into three sections. While the split will not
improve the spline fit of the two shorter sections, it will reduce by more than half the 3D RMSE for
the longer, as compared to the error for the entire swath, before the split. Manual interventions by
an analyst may be realistic for a data set comprising a small number of swaths. For larger acquisitions,
however, as the five used in this study, data processing involving multiple iterations and substantial
analyst involvement can be economically and logistically infeasible.

The implementation of our approach requires two passes over the raw return cloud files, one to
reorganize the tiled data into swaths, and a second for the derivation of the scanner’s trajectory.
Reorganizing the tiled data into swaths is a simple, fully automated task if each return is furnished
with a unique flight identifier. Alternatively, the GPS time data can be used to identify swaths, but
the process can be complicated if time is recorded in the standard format and the acquisition has
lasted more than a week. In such cases, different swaths can have overlapping time intervals and
spatial extents. In rare cases, the reorganization process may require several passes over the data
and analyst’s supervision. While tile size is controlled by the data vendor to a manageable size,
files generated from the reorganization into individual swaths can be very large. In this study, there
were many swaths more than 40 km long, with compressed file size [34] larger than 3GB. Processing
of very long swaths may necessitate the use of computers with compatible hardware configuration
(enough memory). Otherwise the long swath must be first split into chunks with a few seconds of time
overlap, followed by processing of each chunk separately to identify time blocks and to calculate CPAs,
and finally fuse the chunk CPAs, prior to fitting the cubic spline.

In the event that the nominal above-target height of the scanner cannot be established from the
data delivery report or otherwise, a tentative value can be used to compute the vertical distance
between the derived platform trajectory and the corresponding terrain elevation for a subset of the
scan swaths. The resulting approximate mean above-target height can then be used with the entire
data set. As documented in Table 4, discrepancies between actual and approximate nominal heights
have limited impact on the overall precision of the estimated scanner trajectory. Achieving the highest
attainable precision would require the process to be repeated twice. Once following the standard
approach to calculate an initial trajectory, and a second time using time block-specific scanner heights
calculated as the vertical difference between individual returns and the initial trajectory. The extra
effort may be warranted in data acquisitions over mountainous terrain where departures from the
nominal above-target height can be frequent and substantial.

The coefficients of pulse angle and distance between first and last return are used as weights to
determine the pair of pulses present in a time block that is optimal for assessing the location of the laser
scanner. They can be computed via simulation for a range of pulse angles and nominal scanner height
above the target. The code provided for this purpose assumes that the only source of imprecision in
the coordinates of returns is rounding to two decimal points. However, return coordinates stored
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with limited decimal precision in an intermediate system favored by the data vendor and reprojected,
using the same level of precision, to the coordinate system requested by the client just prior to delivery
carry positional uncertainty that is not anticipated by the code provided. The simulation settings must
be adjusted to account for reprojection conditions, before being used to calculate pulse weights.

It is often stated that the scan angle recorded per individual return in raw laser files (see
Supplementary Materials) is an adequate surrogate of the pulse angle for analyses that require the
latter. Our calculations in each of the five study areas did not support this claim. As shown in the
example of Figure A4, a considerable portion of returns exhibited substantial discrepancies between
scan and pulse angle. After examining thousands of kilometers or recorded scanner trajectories in the
US Pacific Northwest, we determined that these discrepancies emerge primarily from instability in
the airborne platform’s pitch. Roll was much more stable. All aircraft used for laser data acquisition
in our study areas maintained an upward pitch of about −5 degrees (electronic supplement). This is
necessary to ensure adequate air lift. As a result, pulses are nominally directed forward instead of
nadir. Larger discrepancies between pulse and scan angles are observed where the airborne platform
dives or climbs abruptly, in response to local atmospheric instability or in an attempt to maintain
nearly constant distance to the targets, especially over mountainous terrain. It should be noted that for
gyrostabilized laser instruments, scan and pulse angular difference are expected to be minimal.

The technique described can be applied to data acquired with unmanned aerial systems (UAS),
provided that they fly in approximately linear trajectories, can record at least two returns per
pulse, and have return GPS time recorded with precision conducive to identifying individual pulses.
Calculated UAS trajectories may be more precise than those computed from airborne systems because
their above-target height is much lower and return coordinates are typically recorded with 3 digits of
precision. Unlike UAS-based laser data, return clouds from Geiger mode or photon-counting systems
are incompatible with our approach owing to fundamentally different data organization in a cubical
tessellation with each ‘return’ representing backscattered photons from more than one pulse.

5. Conclusions

The goal of this study was to develop and present a new method that computes the trajectory of
the aircraft and thus the laser instrument using the point cloud. Our method is robust and produces
trajectories that compare well to those recorded as part of the original data collection effort. While error
varies by acquisition, the error in the computed aircraft position seldom exceeded a few meters.
In general, the resulting trajectories are sufficient for all applications requiring them. However,
success of the method relies on data where pulses have at least two returns. Our main area of interest
is in forested areas where the vegetation height and gaps in the canopy between trees, between
branches on the same tree, or between leaves or needles result in multiple returns for a substantial
proportion of the laser pulses. Our method may not work well with data collected for areas with little
or no vegetation.

At first glance, reconstruction of aircraft trajectories may seem like a trivial exercise given that
aircraft position data are an essential part of the data collected during an ALS campaign. However,
because trajectory data are not typically needed for analyses involving the terrain surface or point cloud,
they are often not included as a deliverable. Once the need for the trajectory data is realized, often months
or years after the data have been delivered, it may be costly or impossible to obtain. Our work aims to
facilitate analyses of ALS data that, for whatever reason, do not include trajectory information.

Supplementary Materials: Supplementary materials are available online at http://www.mdpi.com/2072-4292/11/
19/2258/s1. C program LAS_Tile2Swath.exe: Rearranges tiled ALS data to swaths. Supports LAS versions up to 1.2.
R program cmp_trj.R: Implements the methodology described in the text. R program cmp_trj_functions.R: includes
functions used by cmp_trj.R. 64-bit C library cmp_trj.dll: contains functions called by cmp_trj.R. Please contact the
authors if you need a 32-bit version. R program calc_pulse_weights.R: implements the simulation described in the
text to compute pulse weights that are required by cmp_trj.R. Video ALS_platform_pitch_and_roll_demo.mp4: real
time animation based on actual smoothed best estimate of trajectory (SBET) and ALS data. Documents variability
in airborne platform pitch which induces substantial discrepancies between scan and view pulse angles.

http://www.mdpi.com/2072-4292/11/19/2258/s1
http://www.mdpi.com/2072-4292/11/19/2258/s1
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Figure A1. Distribution of residuals in splines fit to flight line-specific CPA sets across study areas as 
function of time block duration (top) and time intervals between CPAs used in the fitting (bottom). 
Dots/Xs pertain to CPA sets from scan swaths free of/affected by substantial trimming with 
acquisition boundaries respectfully. Note scale discontinuities along the Y axes. 

Figure A1. Distribution of residuals in splines fit to flight line-specific CPA sets across study areas as
function of time block duration (top) and time intervals between CPAs used in the fitting (bottom).
Dots/Xs pertain to CPA sets from scan swaths free of/affected by substantial trimming with acquisition
boundaries respectfully. Note scale discontinuities along the Y axes.



Remote Sens. 2019, 11, 2258 21 of 24

Remote Sens. 2019, 11, x FOR PEER REVIEW 21 of 25 

 

 
Figure A2. Distribution of error percentiles in splines fit to flight line-specific CPA sets across study 
areas as function of time block duration (top) and time intervals between CPAs used in the fitting 
(bottom), calculated using recorded platform positions. Dots/Xs pertain to CPA sets from scan 
swaths free of/affected by substantial trimming with acquisition boundaries respectfully. Note scale 
discontinuities along the Y axes. 

Figure A2. Distribution of error percentiles in splines fit to flight line-specific CPA sets across study areas
as function of time block duration (top) and time intervals between CPAs used in the fitting (bottom),
calculated using recorded platform positions. Dots/Xs pertain to CPA sets from scan swaths free
of/affected by substantial trimming with acquisition boundaries respectfully. Note scale discontinuities
along the Y axes.
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Figure A3. Example of spline fitting (red line) to a CPA set (points) and the recorded laser instrument 
trajectory, with each dimension present separately. The Z dimension is featured in larger scale to 
convey fit detail. 

  

Figure A3. Example of spline fitting (red line) to a CPA set (points) and the recorded laser instrument
trajectory, with each dimension present separately. The Z dimension is featured in larger scale to convey
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Figure A4. Two-dimensional histogram of a scan swath from the Colville area, depicting 
correspondence between recorded pulse scan angle and computed pulse angle. 1:1 line in black. 

Figure A4. Two-dimensional histogram of a scan swath from the Colville area, depicting correspondence
between recorded pulse scan angle and computed pulse angle. 1:1 line in black.



Remote Sens. 2019, 11, 2258 23 of 24

References

1. Næsset, E. Airborne laser scanning as a method in operational forest inventory: Status and accuracy
assessments accomplished in Scandinavia. Scand. J. Forest Res. 2007, 22, 433–442. [CrossRef]

2. Liu, X. Airborne LiDAR for DEM generation: Some critical issues. Prog. Phys. Geog. 2008, 32, 31–49.
[CrossRef]

3. Barber, C.; Shortridge, A. LiDAR elevation data for surface hydrologic modeling: Resolution and
representation issues. Cartogr. Geogr. Inf. Sci. 2005, 32, 401–410. [CrossRef]

4. Sheridan, R.D.; Popescu, S.C.; Gatziolis, D.; Morgan, C.L.S.; Ku, N.-W. Modeling forest aboveground biomass
and volume using airborne LiDAR metrics and forest inventory and analysis data in the Pacific Northwest.
Remote Sens. 2015, 7, 229–255. [CrossRef]

5. Deems, J.S.; Painter, T.H.; Finnegan, D.C. Lidar measurement of snow depth: A review. J. Glaciol. 2013, 59,
467–479. [CrossRef]

6. Jwa, Y.; Sohn, G.; Kim, H.B. Automatic 3D powerline reconstruction using airborne LiDAR data. In Proceedings
of the Laser Scanning, Paris, France, 1–2 September 2009; Bretar, F., Pierrot-Deseilligny, M., Vosselman, G., Eds.;
IAPRS: Paris, France, 2009; pp. 105–110.

7. Huallpa, L.A.M.; Yamazaki, F.; Liu, W.; Chiba, T. Calculation of coseismic displacement from lidar data in
the 2016 Kumamoto, Japan, earthquake. Nat. Hazards Earth Sys. 2017, 17, 143–156. [CrossRef]

8. Soilán, M.; Truong-Hong, L.; Riveiro, B.; Laefer, D. Automatic extraction of road features in urban
environments using dense ALS data. Int. J. Appl. Earth Obs. 2018, 64, 226–236. [CrossRef]

9. Weng, Q. Remote sensing of impervious surfaces in the urban areas: Requirements, methods, and trends.
Remote Sens. Environ. 2012, 117, 34–49. [CrossRef]

10. Goodwin, N.R.; Coops, N.C.; Tooke, T.R.; Christen, A.; Voogt, J.A. Characterizing urban surface cover and
structure with airborne lidar technology. Can. J. Remote Sens. 2009, 35, 297–309. [CrossRef]

11. Höfle, B.; Hollaus, M.; Hagenauer, J. Urban vegetation detection using radiometrically calibrated
small-footprint full-waveform airborne LiDAR data. ISPRS J. Photogramm. 2012, 67, 134–147. [CrossRef]

12. He, C.; Convertino, M.; Feng, Z.; Zhang, S. Using LiDAR data to measure the 3D green biomass of Beijing
urban forest in China. PLoS ONE 2013, 8, e75920. [CrossRef] [PubMed]

13. Alonzo, M.; Bookhagen, B.; McFadden, J.P.; Sun, A.; Roberts, D.A. Mapping urban forest leaf area index with
airborne lidar using penetration metrics and allometry. Remote Sens. Environ. 2015, 162, 141–153. [CrossRef]

14. Rahman, M.T.; Rashed, T. Urban tree damage estimation using airborne laser scanner data and geographic
information systems: An example from 2007 Oklahoma ice storm. Urban For. Urban Green. 2015, 14, 562–572.
[CrossRef]

15. Jochem, A.; Höfle, B.; Rutzinger, M.; Pfeifer, N. Automatic roof plane detection and analysis in airborne lidar
point clouds for solar potential assessment. Sensors 2009, 9, 5241–5262. [CrossRef] [PubMed]

16. Santos, T.; Gomes, N.; Freire, S.; Brito, M.C.; Santos, L.; Tenedório, J.A. Applications of solar mapping in the
urban environment. Appl. Geogr. 2014, 51, 48–57. [CrossRef]

17. Korpela, I.; Ørka, H.O.; Hyyppä, J.; Heikkinen, V.; Tokola, T. Range and AGC normalization in airborne
discrete-return LiDAR intensity data for forest canopies. ISPRS J. Photogramm. 2010, 65, 369–379. [CrossRef]

18. Gatziolis, D. Dynamic range-based intensity normalization for airborne, discrete return LiDAR data of forest
canopies. Photogramm. Eng. Remote Sens. 2011, 77, 251–259. [CrossRef]

19. Yoga, S.; Bégin, J.; St-Onge, B.; Gatziolis, D. Lidar and multispectral imagery classifications of Balsam fir tree
status for accurate predictions of merchantable volume. Forests 2017, 8, 253. [CrossRef]

20. Zhao, K.; Popescu, S.C. Lidar-based mapping of leaf area index and its use for validating GLOBCARBON
satellite LAI product in a temperate forest of the southern USA. Remote Sens. Environ. 2009, 113, 1628–1645.
[CrossRef]

21. Holmgren, J.; Nilsson, M.; Olsson, H. Simulating the effects of lidar scanning angle for estimation of mean
tree height and canopy closure. Can. J. Remote Sens. 2003, 623–632. [CrossRef]

22. Morsdorf, F.; Frey, O.; Meier, E.; Itten, K.I.; Allgöwer, B. Assessment of the influence of flying altitude and
scan angle on biophysical vegetation products derived from airborne laser scanning. Int. J. Remote Sens.
2008, 29, 1387–1406. [CrossRef]

23. Hopkinson, C.; Chasmer, L. Testing LiDAR models of fractional cover across multiple forest ecozones.
Remote Sens. Environ. 2009, 113, 275–288. [CrossRef]

http://dx.doi.org/10.1080/02827580701672147
http://dx.doi.org/10.1177/0309133308089496
http://dx.doi.org/10.1559/152304005775194692
http://dx.doi.org/10.3390/rs70100229
http://dx.doi.org/10.3189/2013JoG12J154
http://dx.doi.org/10.5194/nhess-17-143-2017
http://dx.doi.org/10.1016/j.jag.2017.09.010
http://dx.doi.org/10.1016/j.rse.2011.02.030
http://dx.doi.org/10.5589/m09-015
http://dx.doi.org/10.1016/j.isprsjprs.2011.12.003
http://dx.doi.org/10.1371/journal.pone.0075920
http://www.ncbi.nlm.nih.gov/pubmed/24146792
http://dx.doi.org/10.1016/j.rse.2015.02.025
http://dx.doi.org/10.1016/j.ufug.2015.05.008
http://dx.doi.org/10.3390/s90705241
http://www.ncbi.nlm.nih.gov/pubmed/22346695
http://dx.doi.org/10.1016/j.apgeog.2014.03.008
http://dx.doi.org/10.1016/j.isprsjprs.2010.04.003
http://dx.doi.org/10.14358/PERS.77.3.251
http://dx.doi.org/10.3390/f8070253
http://dx.doi.org/10.1016/j.rse.2009.03.006
http://dx.doi.org/10.5589/m03-030
http://dx.doi.org/10.1080/01431160701736349
http://dx.doi.org/10.1016/j.rse.2008.09.012


Remote Sens. 2019, 11, 2258 24 of 24

24. Korhonen, L.; Korpela, I.; Heiskanen, J.; Maltamo, M. Airborne discrete-return LIDAR data in the estimation
of vertical canopy cover, angular canopy closure and leaf area index. Remote Sens. Environ. 2011, 115,
1065–1080. [CrossRef]

25. American Society for Photogrammetry and Remote Sensing. LIDAR Data Exchange Format Standard,
Version 1.0, 9 May 2003. Available online: https://www.asprs.org/wp-content/uploads/2010/12/asprs_las
(accessed on 31 July 2019).

26. American Society for Photogrammetry and Remote Sensing. LAS Specification Version 1.4—R13, 15 July 2013.
Available online: https://www.asprs.org/wp-content/uploads/2010/12/LAS_1_4_r13.pdf (accessed on
31 July 2019).

27. Gatziolis, D.; Andersen, H.-E. A Guide to LIDAR Data Acquisition and Processing for the Forests of the
Pacific Northwest; General Technical Report PNW-GTR-768; US Department of Agriculture, Forest Service,
Pacific Northwest Research Station: Portland, OR, USA, 2008; 32p.

28. Archuleta, C.M.; Constance, E.W.; Arundel, S.T.; Lowe, A.J.; Mantey, K.S.; Phillips, L.A. The National Map
Seamless Digital Elevation Model Specifications: U.S. Geological Survey Techniques and Methods; US Geological
Survey: Reston, VA, USA, 2017; 39p. [CrossRef]

29. Clarke, S.E.; Bryce, S.A. Hierarchical Subdivisions of the Columbia Plateau & Blue Mountains Ecoregions, Oregon &
Washington; General Technical Report PNW-GTR-395; US Department of Agriculture, Forest Service, Pacific
Northwest Research Station: Portland, OR, USA, 1997; 114p.

30. Blue Marble Geographics. GlobalMapper 20 LiDAR Module. Available online: http://bluemarblegeo.com
(accessed on 31 July 2019).

31. Eberly, D.H. 3D Game Engine Design; Elsevier: Amsterdam, The Netherlands, 2007; 1040p, ISBN 9780080917993.
[CrossRef]

32. Sunday, D. Distance between 3D Lines & Segments. Available online: http://geomalgorithms.com/a07-
_distance.html (accessed on 31 July 2019).

33. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing:
Vienna, Austria, 2016; Available online: https://www.R-project.org/ (accessed on 31 July 2019).

34. Isenburg, M. LA Stools—Efficient Tools for LiDAR Processing. Available online: http://lastools.org
(accessed on 31 July 2019).

35. Hastie, T.J.; Tibshirani, R.J. Generalized Additive Models, 1st ed.; CRC: Boca Raton, FL, USA, 1990; 352p,
ISBN 9780412343902.

36. Chambers, J.M.; Hastie, T.J. Statistical Models; CRC: Boca Raton, FL, USA, 1992; 624p, ISBN 9780412830402.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.rse.2010.12.011
https://www.asprs.org/wp-content/uploads/2010/12/asprs_las
https://www.asprs.org/wp-content/uploads/2010/12/LAS_1_4_r13.pdf
http://dx.doi.org/10.3133/tm11B9
http://bluemarblegeo.com
http://dx.doi.org/10.1016/B978-0-12-229063-3.50005-4
http://geomalgorithms.com/a07-_distance.html
http://geomalgorithms.com/a07-_distance.html
https://www.R-project.org/
http://lastools.org
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Study Area and Airborne Laser-Scanning (ALS) Data 
	Pulse Returns to Ray Convergence 
	Closest Points of Approach (CPAs) to Platform Trajectory 

	Results 
	Scan Swath Completeness 
	Spline Fit Evaluation 

	Discussion 
	Conclusions 
	
	References

