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• eDNA can evaluate management effects
on biota or delineate fish-bearing
streams.

• eDNA can monitor wastewater treat-
ment performance and evaluate effluent
effects.

• Fish and invertebrates are well-
represented by targeted and
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• Sensitive species are least studied with
eDNA, but are important to forestry.
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Environmental DNA (eDNA) is an emerging biological monitoring tool that can aid in assessing the effects of for-
estry and forest manufacturing activities on biota. Monitoring taxa across broad spatial and temporal scales is
necessary to ensure forest management and forest manufacturing activities meet their environmental goals of
maintaining biodiversity. Our objectives are to describe potential applications of eDNA across the wood products
supply chain extending from regenerating forests, harvesting, and wood transport, to manufacturing facilities,
and to review the current state of the science in this context. To meet our second objective, we summarize the
taxa examined with targeted (PCR, qPCR or ddPCR) or metagenomic eDNA methods (eDNA metabarcoding),
evaluate how estimated species richness compares between traditional field sampling and eDNAmetabarcoding
approaches, and compare the geographical representation of prior eDNA studies in freshwater ecosystems to
global wood baskets. Potential applications of eDNA include evaluating the effects of forestry and forest
manufacturing activities on aquatic biota, delineating fish-bearing versus non fish-bearing reaches, evaluating ef-
fectiveness of constructed road crossings for freshwater organism passage, and determining the presence of at-
risk species. Studies using targeted eDNA approaches focused on fish, amphibians, and invertebrates, while
metagenomic studies focused on fish, invertebrates, and microorganisms. Rare, threatened, or endangered
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species received the least attention in targeted eDNA research, but are arguably of greatest interest to sustainable
forestry and forestmanufacturing that seek to preserve freshwater biodiversity. Ultimately, using eDNAmethods
will enable forestry and forest manufacturing managers to have data-driven prioritization for conservation ac-
tions for all freshwater species.

© 2018 Elsevier B.V. All rights reserved.
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1. Introduction

Environmental DNA (eDNA) has been shown to be effective for iden-
tifying organisms from freshwater ecosystems, and shows promise for
forestry and forest manufacturing managers to identify the presence
of sensitive species, invasive species, pathogens, or to quantify biodiver-
sity in natural or effluent waters. eDNA refers to any DNA that is col-
lected from an environmental sample rather than directly from an
organism, originating in cells from the body or waste products (saliva,
urine, feces) of organisms (Taberlet et al., 2012). Estimating the pres-
ence of single-species using eDNA has been well-vetted in research
(Bohmann et al., 2014; Deiner et al., 2017; Doi et al., 2017; Keck et al.,
2017; Thomsen andWillerslev, 2015), and has many potential benefits
including: achieving high detection probabilities for low abundance
species, non-invasive sampling that may be particularly important for
threatened or endangered species, reduced permitting requirements
because organisms are not handled, sampling of locations that are un-
safe or difficult to access with traditional methods, and identification
of target organisms using uniform, reproducible criteria that are accu-
rate over different life stages.

Despite the rapid expansion of techniques for identifying and quan-
tifying eDNA in recent years (e.g., Deiner et al., 2017; Doi et al., 2017;
Keck et al., 2017), limitations and challenges remain in field sampling,
lab processing, and analyzing and interpreting results (Thomsen and
Willerslev, 2015; Trebitz et al., 2017). These challenges include potential
contamination of samples in the field or lab leading to false positive re-
sults, false negative results (e.g., inhibition of DNA amplification, field
detection; Jane et al., 2015), occurrence of “zombie” DNA (detection of
eDNA from dead, rather than live individuals), and difficulty in estimat-
ing species abundance or biomass (Thomsen and Willerslev, 2015;
Trebitz et al., 2017). Currently, eDNA is used for identifying the presence
of taxa over space and time, estimating species assemblages of a specific
environment, and estimating relative abundance of taxa. However,
eDNA has not yet been broadly used as amanagement tool for industrial
applications. To incorporate eDNA as an applied tool to address the en-
vironmental needs of the forest industry, forestry and forest
manufacturingmanagers need access to the current state of the science
for this rapidly-evolving technique and refined knowledge of the cir-
cumstances when eDNA can complement or replace traditional sam-
pling approaches, to evaluate logistics of obtaining eDNA results, and
to understand the limits of eDNA sampling.

Forests supply ecosystem services by protecting water supplies, and
providing erosion control, flood mitigation, and habitat conditions suit-
able for freshwater species (FAO, 2015). Freshwater biodiversity
hotspots also are centered on regions with high forest cover (Abell
et al., 2008; FAO, 2015; Mittermeier et al., 2015), yet freshwater biodi-
versity is declining globally mainly due to habitat degradation and de-
clines in water quality (Hoffmann et al., 2010; Reid et al., 2013; Stuart
et al., 2004). In the forest industry, each step along the supply chain
from active land management, harvesting, and wood transport, to
manufacturing, can potentially affect freshwater habitat and biodiver-
sity. Primary concerns for freshwater habitat and biota due to forestry
and forest manufacturing activities include the alteration of light, tem-
perature, sediment, organicmatter,flow regimes, aquatic organismpas-
sage, or water chemistry (e.g., effluent discharges, fertilizer, herbicide,
or fire retardant; Cristan et al., 2016; Kovacs et al., 2005; Warrington
et al., 2017). For example, pulp and paper mill wastewater discharged
into natural waters, can increase organic matter (color) and conductiv-
ity (Hall et al., 2009), affect macroinvertebrate biomass and assem-
blages (Culp et al., 2000; Culp et al., 2003), or alter fish physiology
(Hewitt et al., 2008) while harvesting and associated road building
can increase water temperature (Brown and Krygier, 1970), discharge
(Bosch and Hewlett, 1982), or sediment delivery to streams (Croke
and Hairsine, 2006). Contemporary forest practices and water treat-
ment technologies are effective in reducing or eliminating many of
these adverse effects (Cristan et al., 2016; Flinders et al., 2009a, 2009b,
2009c; Martel et al., 2008; Warrington et al., 2017). Nevertheless,
cost-effectivemonitoring of species responses across space and time re-
mains essential tomeet voluntary certification goals and environmental
regulations that seek to preserve biodiversity and freshwater resources.

Biotic monitoring priorities for forestry and forest manufacturing
managers include at-risk species (declining, threatened, or endan-
gered), as well as fish and macroinvertebrate assemblages because
well-established biocriteria methods focus on these taxonomic groups



Table 1
Potential benefits and limitations of using environmental DNA techniques in forestry and
forest manufacturing research and monitoring of freshwater systems.

Potential benefits Potential limitations

Sampling numerous species with a
single technique

Initial costs and time to develop primers
and genomic library

Increased sample sizes and geographic
breadth of sampling with single
approach

Does not provide information on
population structure (biomass,
abundance, reproductive status, or
health)

Field sampling requires limited training,
no animal handling permits, and
single set of equipment. Ease of
sampling could allow for increased
public engagement via community
science campaigns that facilitate
sampling of broad spatial areas.

Potential for field and lab
contamination or zombie DNA leading
to false positives, or misinterpretation
of data.
Limited information on how
environmental metrics that may vary
with forestry or manufacturing
activities (e.g., temperature, UV
radiation, streamflow, trophic state)
affect DNA persistence and detectability

Noninvasive method to document
presence, abundance, and genetic
diversity of common, rare, and cryptic
species

Positive control tissue samples may be
difficult to obtain for rare species and
obtain limited information on
reproductive status, health,
morphology, or age of individuals

Genomic library builds upon itself and
may reduce long-term costs

Meta-barcoding approach requires
developing data pipeline and
bioinformatics

Well-suited to occupancy analysis
framework
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(Barbour et al., 1999; Karr, 1981; Kerans and Karr, 1994; Ziglio et al.,
2006). Adherence to biocriteria standards,whether voluntary or regula-
tory, includes the conservation of at-risk species in forested streams or
receivingwaters (U.S. EPA, 2010), andmonitoring of macroinvertebrate
or fish assemblages as indicators of water quality (Environmental
Canada, 2010; Fortino et al., 2004; Walker et al., 2002). Furthermore,
regulatory or voluntary best management practices (BMPs) often rely
on whether fish are present or absent in streams to determine riparian
management practices (e.g., how close harvest can occur to a stream;
Cristan et al., 2016; Warrington et al., 2017), and greater forest harvest
restrictions can occur when at-risk species are present (e.g., salmon,
Steelhead, and Bull Trout streams in Oregon; Oregon Department of
Forestry 2018). Current field methods to monitor biota are often time-
consuming and labor-intensive, and their application can be limited
by resources (in the collection and/or analysis of samples), accessibility
and permitting for sampling locations, and ability to capture/quantify
target organisms. As such, eDNA may be a useful tool for these and
other applications for forestry and forest manufacturing activities.

In this review, our primary objectives are to: 1) describe potential
applications of eDNA as a tool for managers in forestry and wood prod-
uct manufacturing and 2) review the current state of the science in this
context. For objective 2, we also present a systematic review of studies
that used eDNA from freshwater ecosystems to: identify the geograph-
ical representation of freshwater eDNA studies in the literature, summa-
rize eDNA species targets using different analysis techniques (i.e.
polymerase chain reaction (PCR), quantitative PCR (qPCR), or digital
droplet PCR (ddPCR) (targeted eDNAmethods), and evaluate how esti-
mated taxa richness compares between traditional field approaches and
eDNA techniques using metagenomic methods. Finally, given the rapid
development and adoption of eDNA approaches, we summarize the
geographic extent of prior eDNA sampling to aid managers in assessing
whether eDNAmethods have been developed for the geographic range
of interest and to identify where gaps may overlap with forested
landscapes.

2. Potential applications for forest management and considerations
for study designs

2.1. Biodiversity and biological monitoring of silvicultural and forest man-
agement activities

The conservation of biological diversity across landscapes is a central
tenet of sustainable forest management, and developing effective and
efficient tools to estimate species presence and species richness is criti-
cal for assessingwhether forest practices achieve this goal.Withinman-
aged forest landscapes, freshwater systems (streams, rivers, wetlands)
often serve as centers of biodiversity, yet many knowledge gaps remain
regarding the effects of forest management on presence, distribution,
and abundance of freshwater species. eDNA may be a useful tool to ad-
dress a broad range of potential applications across forestry and
manufacturing activities, although the limitations of this approach war-
rant consideration (Table 1).

Environmental effects of forestry activities and BMPs often are ex-
amined at small watershed scales (e.g., headwaters) where watersheds
can be controlled and experimentally manipulated (Bateman et al.,
2018; Gravelle et al., 2009; Stednick, 2008), but these scales may not
be representative of the broader river network that is also influenced
by upstream activities. Key species of concern, such as Salmonids, fresh-
water turtles, or aquatic salamanders, may occur downstream of forest
management activities in larger streams or rivers. Monitoring biotic re-
sponses across broad areas and along longitudinal river networks, how-
ever, is often limited by sampling time, effort, and cost affiliated with
traditional field techniques. For example, electrofishing or kicknetting
to monitor fish and macroinvertebrates are feasible for small, shallow
streams, but may be unsafe, difficult, or expensive in larger, non-
wadeable, or remote rivers, which limits large-scale replication. Thus,
sampling for eDNA may be particularly useful for estimating biodiver-
sity of multiple taxonomic groups across spatial and temporal scales
that are not feasible with traditional techniques, and facilitate increased
spatial replication and sub-sampling. Further, developing accurate and
contemporary geographic distributions for at-risk freshwater species
ensures that policy decisions on conservation status are based on the
best available science. As a complementary approach, eDNA may en-
hance the understanding of species distribution, but estimates of spe-
cies presence do not provide other information that can be measured
with an organism in hand (e.g., abundance, size, reproductive status,
health assessments).

Sustainably managed forests provide a wide range of habitat condi-
tions to support freshwater biodiversity (Johnson et al., 2016; Jones
et al., 2010; O'Bryan et al., 2016; Richman et al., 2015) and protect
water quality, but a direct link of species richness or persistence to im-
plementation of forestry BMPs is lacking. For example, the southeastern
United States is a global biodiversity hotspot for fish, crayfish, amphib-
ians, and reptiles, and this region coincides with one of the largest
wood baskets in the world (Jenkins et al., 2015). Sustainable forestry
certification programs, which cover 440.3 million hectares globally
and have broad participation in North America (51% of total certified
forest area by regional share) (Kraxner et al., 2017), include objectives
to maintain and/or enhance biological diversity. However, data demon-
strating a positive influence of these objectives on biodiversity is
lacking, due in part to high costs of monitoring and small unrepresenta-
tive sampling sizes (Sheil et al., 2010). Increased understanding of the
hypothesized positive impact of voluntary, third-party sustainability
certification on freshwater biodiversity on managed forest land is criti-
cal to continual improvement in standards and forest practices, and
informing policy. Biodiversity objectives in certification programs are
adaptive and integrate new science. Thus, incorporating multispecies
eDNA approaches could provide essential data to assess effects of sus-
tainable forest management practices on freshwater biodiversity, ad-
vance knowledge of freshwater community responses to sustainability
certification, and improve management practices to achieve biodiver-
sity goals.

Evaluating biological responses to forest management using eDNA
could focus on diverse activities: forest harvest, herbicide application,
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fertilizer application,manipulation of riparian vegetation, or road build-
ing and maintenance. An important consideration when using eDNA in
an experimental framework to evaluate large-scale manipulation re-
sponses must consider how other environmental characteristics may
be altered by forest management and how these changesmay influence
eDNA results. For example, forest harvest has been shown to alter dis-
charge (Bosch and Hewlett, 1982), temperature (Brown and Krygier,
1970), light availability (Kaylor et al., 2016), organic matter concentra-
tion (Cawley et al., 2014), and substrate (Scrivener and Brownlee,
1989). In turn, these changes could affect the shedding or degradation
rates of eDNA (Robson et al., 2016; Strickler et al., 2015) or longitudinal
transport of eDNA (Jane et al., 2015; Wilcox et al., 2016). Additionally,
the feasibility of eDNA as a tool to monitor biodiversity hotspots (e.g.
southeastern U.S.) requires a clear understanding of eDNA's ability to
classify resident taxonomic groups that include diverse taxa such as am-
phibians, reptiles, fish, and macroinvertebrates at multiple life stages.
Further, much of the current eDNA research has been conducted in
low-turbidity headwater streams or lakes. Slow-moving, high turbidity
waters from riverine systems in the Gulf Coastal Plain of the southeast-
ern U.S. present sampling challenges from long filtering times, and in-
teractions between DNA, sediment, and filter media (Hinlo et al.,
2017b; Williams et al., 2017).

Beyond conventional freshwater organisms, eDNAmay also provide
an effectivemeans to identify the presence of plant or animal pathogens
of concern (Catalá et al., 2015; Mohiuddin and Schellhorn, 2015). For
Phytophthora species, a fungal pathogen of concern to forest industry
and public forest lands, greater species diversity was identified with
eDNA collected from streams and rivers (35 species) than from soil
(13 species) (Catalá et al., 2015). Identifying pathogens in freshwater
samples is beneficial due to the reduction in pre-processing procedure
times as compared to soil samples (Catalá et al., 2015). In addition,
multiplexed metabarcoding approaches can include screens for patho-
gen DNA as part of routine eDNAmonitoring programs for fish, amphib-
ians, or invertebrates. Other tree pathogens of concern, including foliar
diseases (e.g., Phaeocryptopus gaeumanni), blister rust (e.g., Cronartium
ribicolais) or root rots (e.g., Phellinus pini), can also be detected with
eDNA methods. Likewise, pathogens that affect amphibians (Hall et al.,
2015; Hartikainen et al., 2016; Huver et al., 2015; Mohiuddin and
Schellhorn, 2015), reptiles, or fish (Carraro et al., 2017; Hartikainen
et al., 2016; Mohiuddin and Schellhorn, 2015) such as chrytrid fungus,
ranavirus, snake fungal disease, or myoxozoans may all be detected
using eDNAmethods. Because early and widespread detection of path-
ogen presence can aid in minimizing their future impact, the use of
eDNA to monitor the increasing threat of emerging infectious diseases
affecting vegetation and wildlife is likely to expand significantly in the
future.

2.2. eDNA as a tool for assessing riparian management

In some jurisdictions, the distance froma stream that forestmanage-
ment activities occur differs based onwhether the stream is fish bearing
or non-fish bearing. Similarly, BMPs and some regulations (e.g., Road
Maintenance and Abandonment Plan; Washington, U.S.A) ensure im-
proved road construction and maintenance on forested lands allow
fish passage across forest roads via culverts, bridges, or other crossings.
Accessible fish passage is particularly important for anadromous fish
that migrate from freshwater streams to marine environments and
then return to spawn. Several anadromous fish are federally listed
under the US Endangered Species Act or the Committee on the Status
of Endangered Wildlife in Canada (e.g., Coho Salmon or Chinook
Salmon). Passage is also important for freshwater taxa of concern, in-
cluding mussels with fish hosts, aquatic amphibians, or darters.

Currently, many forest managers rely on habitat-based delineations
of fish habitat (e.g., presence of a fish-blockingwaterfall, steep gradient)
or field verification of fish presence with electro-shocking. Here, eDNA
may also provide a powerful tool to document occupancy offish species,
to delineate the boundary between fish bearing and non-fish bearing
reaches of a stream network, or to evaluate the effectiveness of up-
streampassage. eDNA techniquesmay be particularly effective for iden-
tifying the seasonal presence of spawning anadromous fish, which may
have the added benefit of informing protection and rehabilitation ef-
forts for endangered anadramous species (e.g., Laramie et al., 2015).
Others have shown that eDNA can be used to identify spawning sites
for Mekong Giant Catfish (Eva et al., 2016), Bigheaded Carp (Erickson
et al., 2016), Macquarie Perch (Bylemans et al., 2017), and to identify
which salmon species constructed a given redd (Strobel et al., 2017).
However, challenges in using eDNA approaches to determine anadro-
mous fish passage may include differentiating eDNA between adults
and young of the year residing in the stream, or the location of sampling.
For example, sampling in the water column versus in interstitial spaces
in sediment may be important in identifying spawning species (Strobel
et al., 2017). Detecting the presence of fish in a water sample indicates
that fish are present somewhere upstream of the collection point. How-
ever, because downstream distance traveled and eDNA detection can
vary with discharge (Jane et al., 2015) and organism density (Pilliod
et al., 2014), seasonal conditions in the stream systemmay be an impor-
tant factor in interpreting eDNA results. Despite potential challenges in
using eDNA approaches in forestry applications, a careful study design
that considers the current state of knowledge of eDNA benefits and lim-
itations will allow for achievement of management and research goals.

3. Potential applications for forest products manufacturers

3.1. Dischargers to natural waters

As dischargers of industrial wastewaters, eDNA approachesmay be a
valuable tool to augment or improve biomonitoring data collected by
forest products manufacturers to comply with their discharge permit
(regulated in the US through the National Pollutant Discharge Elimina-
tion System, NPDES). For example, water bodies that receive mill efflu-
ent are monitored for changes in species assemblages as a response to
treatment system upgrades (Kovacs et al., 2003, 2010), studied to un-
derstand potential discharge-related effects to aquatic biota (Flinders
et al., 2009a, 2009b, 2009c), and evaluated to measure the response of
process modifications on freshwater assemblages (Burgess, 2015). Sim-
ilarly, mills with temperature-related conditions in their discharge per-
mits (i.e. Section 316(a) variances) may also be required to confirm
“balanced, indigenous” biological populations associated with thermal
discharges as mandated by the U.S. Clean Water Act (e.g., Peredo-
Alvarez et al., 2016). The ability of eDNA to detect numerous species
with a single sample may reduce the resources necessary to gather
these data, which often include multiple taxa groups. Additionally,
mills may be required to demonstrate that no sensitive species or vul-
nerable life stages occur near water intake structures or effluent dis-
charges. This may include freshwater mussels (which are the most
endangered animals in the US; Williams et al., 1993), and threatened/
endangered fish that have specific thermal requirements during early
life stages (e.g., salmonids, sturgeon; Chapman and Carr, 1995; Sauter
et al., 2001). As a noninvasive method to document presence of rare
and cryptic species, eDNA may be a particularly valuable tool.

Because most U.S. pulp and paper mills discharge into large rivers
(Strahler Stream Order ≥ 6; NCASI data, unpublished) or impound-
ments, eDNA methods may be effective for sampling water bodies
where traditional techniques are logistically difficult or ineffective. For
example, bioassessment programs used by state and other agencies
often evaluate fish, macroinvertebrates, and/or periphyton (e.g., U.S.
E.P.A.) using sampling protocols designed for shallow streams
(Barbour et al., 1999). Although agencies and researchers have devel-
oped modified sampling protocols to address the logistic, safety, and
data quality concerns associated with sampling biota in deeper rivers
(e.g., Di Sabatino et al., 2015; Flotemersch et al., 2006a, 2006b; Ultrop
and Fisher, 2006), eDNA may be a more effective tool for obtaining
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these data. However, replacing traditional techniques with eDNA may
not be feasible for dischargers requiring information on population
structure such as biomass or relative abundance, which is a current lim-
itation of eDNA (Table 1).

3.2. Monitoring efficiency and effectiveness of wastewater treatment

Mill personnel also may use eDNA to assess and monitor the effi-
ciency and effectiveness of wastewater treatment in manufacturing op-
erations. The treatment of wastewater produced by mills is an integral
component for meeting water quality targets mandated by the Clean
Water Act. A variety of engineering designs have been developed (aer-
ated stabilization basins; activated sludge) to treat organic materials
and other contaminants used in the manufacturing process. Regardless
of process type,wastewater treatment relies on the biochemical activity
of bacterial assemblages to reduce, remove, or transform suspended
solids, and toxic compounds through oxidation or uptake for cellular
process (e.g., growth, reproduction), all of which reduce biological oxy-
gen demand (BOD). Historically, bacterial species comprising treatment
systems assemblages were largely unknown, but increasing use of mo-
lecular techniques to identify bacterial assemblages may have applica-
tions as a monitoring, assessment, and diagnostic tool within the
wastewater treatment systems.

The composition of bacterial assemblages in treatment systems and,
by extension, system performance, is influenced by environmental con-
ditions such as temperature, pH, dissolved oxygen, and nutrient concen-
trations, as well as the type and concentration of organic and inorganic
compounds. Forest manufacturing managers often use metrics such as
ammonia concentrations, BOD, and suspended solids tomonitor perfor-
mance, and deviation from metric targets may indicate system upset
and reduced treatment efficiency. Troubleshooting the cause(s) of treat-
ment system underperformance in any wastewater treatment system
can be challenging, and often relies on microscopic examination of
treatment systemwater samples. Although thismethod can be informa-
tive, microbe identification is typically limited to those that are
culturable on traditional media or have unique morphology, and this
typically represents a fraction of bacteria present (Gilbride et al.,
2006).Molecular techniques to characterize bacterial assemblage diver-
sity, temporal variation, and functional roles and relationships to envi-
ronmental conditions have improved wastewater treatment processes
and optimization of system operations (e.g., Cydzik-Kwiatkowska and
Zielińska, 2016; Forster et al., 2003;Moura et al., 2009). At present, com-
paratively little is known about microbial assemblages from pulp and
paper mill treatment systems. Pulp and paper mill treatment systems
have been examined using traditional microscopy (e.g., Fulthorpe
et al., 1993; Liss and Allen, 1992). Molecular assessments derive from
‘pre-genomics era’ evaluations (Gilbride and Fulthorpe, 2004), and
these show relatively consistent bacterial assemblages over time
under normal operating conditions, with similarities in a fraction of
the assemblage across mills even though treatment systems and pro-
cesses differ.

The advancement of metagenomic eDNA analyses to develop base-
line databases of treatment system bacteria and assemblage-condition
relationships may offer a powerful approach for addressing treatment
system challenges inwood productsmanufacturing facilities. For exam-
ple, documenting treatment system bacterial assemblages under base-
line and upset conditions (e.g., following an unintended release of
spent pulping chemicals) may provide an early indication of a decrease
in treatment system efficiency, and identify the source of treatment sys-
tem upsets (e.g., presence of certain type of indicator bacteria for spe-
cific effluent constituents). This approach has been described for
municipal wastewater treatment plant effluents to diagnose the source
of a common treatment system upset (Rosso et al., 2018) and could be
expanded to develop operational decision trees formanaging treatment
system performance. While prior research focused on a single problem
common to activated sludge aeration basins (foaming), the framework
is applicable to other treatment system operation issues and has the po-
tential to be tailored to address site-specific concerns. Examples of this
include identifying the presence of organisms that may contribute to
adverse outcomes in regulatory whole effluent toxicity assays
(e.g., cyanobacteria), and validating the presence and/or tracking the
source of positive enterococci indicator tests in treatment systems
(e.g., Silva and Domingues, 2015).

4. Current state of the science in the context of forestry and forest
manufacturing applications

4.1. Systematic review methods

We identified peer-reviewed publications for our review with Web
of Science (https://login/webofknowledge.com; Clarivate Analytics,
Philadelphia, PA, USA) and searched for “eDNA” and either: 1) “stream”
2) “river” 3) “wetland” 4) “pond” 5) “lake” 6) “freshwater” 7) “aquatic”
in the topic field, which searches within the title, abstract, author key-
words, and keywords plus. We supplemented our search by examining
bibliographies of selected publications and citations of those with Goo-
gle Scholar (https://scholar.google.com). For our analysis, we only in-
cluded data from publications focused on eDNA collected from surface
water in freshwater ecosystems, or on eDNA from a freshwater organ-
ism in an experimental system (e.g., mesocosm studies). We excluded
eDNA studies from marine ecosystems and from sediment in freshwa-
ter, marine, or terrestrial ecosystems. The literature search was com-
pleted on November 17, 2017 with the oldest citation being from
2005 and data were extracted from previously published manuscripts.

We categorized articles based on study design (literature review,
laboratory experiment,field study, ormesocosm). Our synthesis focuses
on using eDNA to understand biological and ecological responses and
does not synthesize laboratory procedures and methodology, which
have been the subject of previous reviews (e.g., Creer et al., 2016;
Diaz-Ferguson and Moyer, 2014; Goldberg et al., 2015; Goldberg et al.,
2016). Thus, we excluded studies that solely examined laboratory
methods, and only included publications that incorporated environ-
mental sampling (lab + environment). We included field studies that
sampled freshwater systems across time, space, location, or compared
eDNA methods to traditional sampling techniques to gain knowledge
about species in natural habitat types. Mesocosm studies included ex-
periments conducted in containers to simulate lentic or lotic freshwater
environments.

Freshwater eDNA generally is analyzed by collecting water samples
(usually 500 mL to 5 L), filtering samples to capture fine particles and
cells (pore sizes of 0.45 μm to 5 μm), extracting DNA from the captured
material, and testing the DNA for the presence of one or a few species of
interest (targeted eDNA) or for all representatives of broad taxonomic
or functional groups (e.g., teleost fish, Chironomidae, zooplankton)
using eDNA metabarcoding. There are multiple eDNA methods, each
with varying taxonomic resolution, that can be used to address a variety
of management objectives including: qPCR, ddPCR, metabarcoding,
multiplex metabarcoding, and shotgun sequencing (Table 2). qPCR
and ddPCR methods amplify a region of DNA from a target species (or
group of closely related species) and measure the amount of amplified
DNA produced, usually through the use of a fluorescent reporting mol-
ecule. Metabarcoding methods amplify an informative region of DNA
from a target taxonomic group, and the amplified fragments are then
sequenced. Based on its sequence, each fragment is classified against a
reference database to determine which member of the taxonomic
group it came from.Multiplex metabarcodingmethods allow for the si-
multaneous measurement of multiple DNA targets and multiple sam-
ples. Shotgun sequencing attempts to directly sequence the DNA
fragments obtained from the environmental sample, which in most en-
vironmentswill be dominated by bacterial and viral genomes.Multiplex
metabarcoding and shotgun sequencing formacrofauna are still in early
stages of development.

https://login/webofknowledge.com
https://scholar.google.com


Table 2
Summary of typical analyses and expected taxonomic resolutions for different eDNA methods, and potential for addressing different management objectives. Methods run from lowest
complexity (qPCR) on the left to highest complexity (shotgun DNA sequencing) on the right, and include considerations for the number of species resolved, requirements for the assay,
and potential for outsourcing. An assay is characterized as quantitative if it has the potential of correlating signal strength with the abundance of target molecules in the sample provided
for the assay; see the text for discussion of why the target DNA abundance in the assaymay be decoupled from the abundance of the target organism in the environment. (qPCR= quan-
titative PCR, ddPCR = digital droplet PCR).

Target species quantity 1 2 - several Many (10s–100s)

Methods available qPCR ddPCR Metabarcoding Multiplex metabarcoding Shotgun sequencing

Detection method DNA fluorescence DNA fluorescence + flow cytometry DNA sequencing DNA sequencing DNA sequencing
Quantitative? Y Y Y Y ?
Genetic diversity? N N Y Y Y
PCR-bias? Low-high Low Low-high Low-high None
Information required to design assay? High High Medium Medium Low
Complexity bioinformatics? Low Low Medium Medium High
Complexity - methodological? Low Low Medium High Medium
Possible to outsource? Y ? N N Y
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To quantify which species were the focus of targeted eDNA ap-
proaches, we categorized species into one of three groups: (1) invasive
or nonnative, (2) rare (but not invasive or nonnative), threatened or en-
dangered, or (3) common, native (but not rare or invasive), or unspec-
ified based on descriptions and location of the study. Species were not
dually classified. Finally, we examined the subset of literature using
metagenomic techniques, and quantified the number of studies focused
on taxonomic groups. To compare estimated taxa richness between tra-
ditional field approaches and eDNA techniques using metagenomic
methods, we extracted data from 8 studies for fish and 6 studies for in-
vertebrates (Supplemental Table 1). To determine the difference be-
tween taxa richness we subtracted taxa richness of traditional field
methods (single year) from taxa richness determined from eDNA
methods (single year) for each site. Then the difference across sites
was determined to examine the overall effect sizes. Similarly, historical
taxa richness (multiple years) was subtracted from eDNA richness or
traditional field method richness (single year) for each site.

We included all studies (except for review articles) with geographi-
cal locations to determine the global representation of eDNA research
and how they relate to global wood baskets. Global production of forest
products in 2016 were obtained from the United Nations' Food and Ag-
riculture Organization (FAO) (http://www.fao.org/forestry/statistics/
80938/en/) and were displayed as a percentage of global production
by country. Production was separated into two groups with wood
representing the sum of production of roundwood, sawnwood, and
wood based panels, and pulp and paper representing the sum of pulp,
paper, and pellet products.

4.2. Review of the current state of the science

Prior to implementing eDNA into applications for forestry and forest
manufacturing, managers must understand how species ecology and
environmental factors may affect interpretation and detection of
eDNA and utilize prior information to develop study designs that meet
monitoring objectives. In particular, understanding the interplay
among forestry activities and environmental conditions that affect
eDNA detection, transport, or degradation is critical. Here, we review
the literature in this context to aidmanagers in designing robust studies
based on the current state of knowledge of eDNA detection and we in-
tegrate the results of our critical review into this discussion. Based on
our review criteria, we identified 214 peer-reviewed publications fo-
cused on freshwater eDNA, including 21 review articles (Fig. 1) and
193 studies; an additional 10 opinion articles or replies to editors
were identified, but excluded (Supplemental Table 1; Supplemental
Fig. 1).

Our review of 163 studies using targeted eDNA approaches demon-
strates that rare, threatened, or endangered species have received the
least research focus overall (Fig. 2a), but are likely of greater interest
for forestry and manufacturing professionals because management
activities seek to provide adequate protections for species of greatest
conservation concern. In contrast, invasive and nonnative species of
fish, invertebrates, reptiles, and aquatic vegetation received themost at-
tention (Fig. 2a). Collectively, these publications targeted 157 species
with the primary focus on fish (46%), invertebrates (19%), and amphib-
ians (14%) (Fig. 2a; Supplemental Fig. 2). Seven species (6 fish species, 1
amphibian species) had N1 classification status. For example, depending
on the location of the study, Brown Trout (Salmo trutta) was either clas-
sified as an invasive species (Carim et al., 2016; Clusa et al., 2017) or na-
tive, but not rare or invasive (Gustavson et al., 2015). However, within a
single study an organism was not given dual classification
(e.g., threatened species were not also included as native). Thus, a
total of 157 species were identified, while dual classification allows for
Fig. 2a to depict 164 species (Supplemental Table 2). Only 40 species
were targeted in more than one study and the remaining 117 species
were limited to individual studies.

4.3. eDNA persistence and water temperature

eDNA from lentic and lotic ecosystems show a wide range of degra-
dation rates that can varywith temperature, UV exposure, pH,microbial
communities, or trophic state (Barnes et al., 2014; Eichmiller et al.,
2016; Lance et al., 2017; Maruyama et al., 2014; Strickler et al., 2015;
Tsuji et al., 2017). The range of eDNA half-lives reported in prior studies
extend from as short as 2.8 h (0.12 days) for Ayu Sweetfish (Plecoglossus
altivelis altivelis) and CommonCarp (Cyprinus carpio)when incubated at
30 °C (Tsuji et al., 2017) to 48.7 to 332.6 h (6.8 to 46 days) for American
Bullfrog (Lithobates catesbeianus) incubated at a range from 5 to 35 °C
(Strickler et al., 2015). A wide range in degradation rates have also
been reported for a single species. For Common Carp, eDNA half-lives
ranged from 2.8 h to 20.5 h when exposed to different environmental
conditions, but at temperatures of 20 or 25 °C half-lives were restricted
to ~5 and 7 h across studies (Eichmiller et al., 2016; Strickler et al., 2015;
Tsuji et al., 2017).

In lentic ecosystems, eDNA detection is considered to reflect rela-
tively current species assemblages because of the short persistence of
eDNA typically lasting from 4 days to a month (Barnes et al., 2014;
Dejean et al., 2011; Huver et al., 2015; Piaggio et al., 2014; Thomsen
et al., 2012). eDNA was detectable for as few as 4 days for Burmese Py-
thon (Python bivittatus) and Common Carp, 1 to 2 weeks for amphib-
ians, 3 weeks for the trematode Ribeiroia ondatrae, and up to one
month for freshwater vertebrates (Barnes et al., 2014; Dejean et al.,
2011; Huver et al., 2015; Piaggio et al., 2014; Thomsen et al., 2012).
Studies of fish carcasses have found eDNA was detectable N1 month
for Bigheaded Carp (Hypophthalmichthys molitrix and H. nobilis)
(Merkes et al., 2014) and N35 days but b70 days for Northern Pike
(Esox lucius) (Dunker et al., 2016). Given the range in the persistence
in eDNA, study designs that incorporate temporal eDNA sampling
from manufacturing holding ponds or from natural ponds or lakes

http://www.fao.org/forestry/statistics/80938/en
http://www.fao.org/forestry/statistics/80938/en


Fig. 1. Timeline of eDNA literature review and synthesis papers published between 2011 and 2017 that consider biological monitoring in freshwater ecosystems.
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should carefully consider the sampling intervals and inferences regard-
ing species presence in relation to eDNA degradation.

Interpreting patterns of eDNA in lotic systemsnecessitates anunder-
standing of factors affecting eDNA transport in flowing water. The
downstream distance that eDNA is detected varies with flow (Jane
et al., 2015) and substrate (Shogren et al., 2017), and may also vary by
species (Jerde et al., 2016; Shogren et al., 2017) and density (Pilliod
et al., 2014). However, the upper limit of transport distance is likely
on the order of kilometers (Civade et al., 2016; Deiner and Altermatt,
2014; Jane et al., 2015; Sansom and Sassoubre, 2017). For example,
eDNA was detected at 0.24 km (greatest distance sampled) for Brook
Trout (Jane et al., 2015), 0.96 km for Atlantic Salmon (Balasingham
et al., 2016), and 2–3 km for various freshwater fish (Civade et al.,
2016). Transport distance of freshwater mussel eDNA was even greater
with up to 10 km for Unio tumidus (Deiner and Altermatt, 2014), and
4.3–36.7 km for Lampsilis siliquoidea (Sansom and Sassoubre, 2017). In
additional to abiotic factors, species densitymay also affect downstream
transport of eDNA, with higher densities of species leading to detections
further from the source (Pilliod et al., 2014).

Both flow and substrate have been shown to influence the distance
downstream that eDNA is detected. eDNA counts monitored down-
stream from caged fish declined with increasing distance at the lowest
flows, yet remained elevated under high flow conditions (Jane et al.,
2015) suggesting that eDNA travels greater distances under elevated
discharge. Using Common Carp eDNA in a series of experiments de-
signed to quantify transport, retention, and resuspension rates and dis-
tances, Shogren et al. (2017) found that a finer, homogenous substrate
removed eDNA more quickly, resulting in shorter transport distances
than cobble. However, a similar experiment using Largemouth Bass
(Micropterus salmoides) and Bluegill (Lepomis macrochirus) eDNA
showed no difference in eDNA transport with substrate type (Jerde
et al., 2016). Increased runoff and stream discharge (Andreassian,
2004; Abdelnour et al., 2011; Bosch and Hewlett, 1982; Surfleet and
Skaugset, 2013) and changes in substrate composition (Scrivener and
Brownlee, 1989) may occur following forest harvest or other
management activities. Limited information exists on the scope ormag-
nitude of forest management activities necessary to affect eDNA trans-
port, but improved understanding of the potential for these variables
to affect downstream transport of specific species will be important
when interpreting differences in eDNA due to forestry activities.

Water temperature may affect the shedding of eDNA from organ-
isms (Robson et al., 2016), and thus the availability of eDNA for detec-
tion (Strickler et al., 2015). This may be relevant to consider in
forestry applications because stream temperatures may exhibit a small
short-term increase after forest harvest, but these are typically mini-
mized by incorporating riparian buffers of unharvested trees next to
streams (Brown and Krygier, 1970; Warrington et al., 2017). In a
study of Mozambique Tilapia with three temperature regimes (23, 29,
and 35 °C), more DNA was shed into the environment at 35 °C than
the lower temperatures, and resulted in a longer duration of eDNA de-
tection (Robson et al., 2016). The authors suggested that the higher
shedding rate at 35 °C may be due to increased metabolism or thermal
stress. However, studies examining similar temperature ranges for Big-
headed (Klymus et al., 2015) and Common Carp (Takahara et al., 2012),
and a much narrower temperature range (b2 °C) for a multi-species as-
semblage (Seymour et al., 2018), did not find a temperature-related dif-
ference in eDNA shedding. Although it is unlikely finer scale differences
in temperature, such as that expected from an adjacent forest harvest,
might influence eDNA shedding and subsequent detectability, more in-
formation is needed.

Temperature can also affect degradation rates of eDNA with greater
rates observed at warmer temperatures (Eichmiller et al., 2016; Tsuji
et al., 2017 but see Robson et al., 2016). At 5 °C, degradation rates of bull-
frog and common carp eDNAwere significantly lower than at tempera-
tures of 20 °C and 35 °C (Strickler et al., 2015) or 15 °C, 25 °C, or 35 °C
(Eichmiller et al., 2016). These studies suggest that slight increases in
temperature due to forest harvest may have a minimal effect on eDNA
degradation rates, but that larger seasonal changes between winter
and summer temperatures could have a pronounced effect. Forest har-
vest increases light availability onto surface waters, and this could



Fig. 2. a) Total number of species represented by class summarized from a literature
review of 163 studies that used targeted eDNA approaches and b) Total number of
metabarcoding studies examining each class from a review of 34 studies. For targeted
eDNA approaches species were categorized as invasive or nonnative, and rare,
threatened, or endangered based on author descriptions for each study. All other species
were classified as native, common (but not rare or invasive), or unspecified.

1164 A.A. Coble et al. / Science of the Total Environment 649 (2019) 1157–1170
increase eDNA degradation rates due to increased exposure to ultravio-
let radiation (e.g., Strickler et al., 2015).

4.4. eDNA and trophic state, microbial communities and organic matter

Trophic state and microbial community composition can influence
eDNA degradation rates. Bacteria use DNA as a food source, enhancing
its degradation (Finkel and Kolter, 2001), and dissolved organic matter
(DOM) can bind to DNA, protecting it fromdegradation (Saunders et al.,
2009; Stotzky, 2000). Because themicrobes responsible are often nutri-
ent limited, the nutrient status of an ecosystem can influence the break-
down of DOM. Increases in microbial load or changes in microbial
assemblage can increase eDNA degradation rates (Lance et al., 2017)
andmay explainwhy eDNAhas been observed to breakdownmore rap-
idly in natural systems than inmesocosms, or when natural pondwater
is added to mesocosms (Dejean et al., 2011; Lance et al., 2017). eDNA
decay rates measured across different lake trophic states were greatest
in oligotrophic (low nutrient availability; eDNA half-life = 7.1 h) and
eutrophic (high nutrient availability; eDNA half-life = 9.8 h) lakes,
and lowest in dystrophic (high DOC concentration; eDNA half-life =
25.2 h) lakes and well water (eDNA half-life = 20.0 h; Eichmiller
et al., 2016). In another study, relatively small variations in nitrogen
concentration were not significantly related to eDNA degradation
rates (Seymour et al., 2018). Collectively, these studies suggest that
the quantity of DOM rather than the quantity of nutrientsmay influence
eDNA degradation.

Additionally, eDNA degradation rates and PCR inhibition can be
greater in the presence of organic matter (Jane et al., 2015) or under
acidic environments (Strickler et al., 2015; Seymour et al., 2018), al-
though there are mixed results in the literature on the effect of pH on
eDNA degradation (Lance et al., 2017; Seymour et al., 2018; Strickler
et al., 2015). Strickler et al. (2015) found that pH was most influential
on eDNA decay via interactions with other environmental variables
such as temperature and ultraviolet radiation. Lance et al. (2017)
noted that pH had a relatively minor effect on eDNA degradation rates
in their study, but reported less eDNA degradation at low (pH = 6.5;
eDNA half-life = 96 h) than at high pH (pH = 8; eDNA half-life =
62 h). In contrast, Seymour et al. (2018) found that acidic environments
increased eDNA degradation.

DOM concentrations and composition in surface waters can change
with forestry activities (Cawley et al., 2014; Eckley et al., 2018; Lee
and Lajtha, 2016; Yamashita et al., 2011) or as a result of DOM or pH
changes following treatment in mills. Although effluent is treated to
meet specificwater quality targets (e.g., color) prior to release in natural
waters, changes inDOMconcentrationmay still be an important consid-
eration for monitoringwith eDNA. Nutrient concentrations, particularly
nitrate, may increase following forest harvesting (Gravelle et al., 2009),
but nutrients do not appear to have a major impact on eDNA degrada-
tion rates (Eichmiller et al., 2016; Seymour et al., 2018). The interactions
of other environmental factors including DOC concentration, pH,micro-
bial load, or temperature can clearly influence eDNA degradation rates.
Incorporating eDNA methods into environments with high concentra-
tions of organic matter (i.e. in wetlands, fluvial systems in the south-
eastern US, during leaf fall, or in mill effluent) should consider the
potential impacts on the residence time of eDNA in the system, and ac-
count for these environmental changes in study designs.

4.5. Comparisons of eDNA and traditional field sampling techniques

Most studies have found that eDNA approaches are comparable to,
or more effective than, traditional techniques in determining presence
or absence of targeted species, particularly when species are present
in low abundances (e.g., Biggs et al., 2015; Boothyroyd et al., 2016;
Dejean et al., 2012; Doi et al., 2017; Mächler et al., 2014; Matsuhashi
et al., 2016; McKelvey et al., 2016; Pierson et al., 2016; Pilliod et al.,
2013; Smart et al., 2015; Smart et al., 2016; Wilcox et al., 2016). Tradi-
tional survey methods led to greater detection rates than eDNA
methods for Gizzard Shad (Dorosoma cepedianum), Largemouth Bass,
and Bluehead Suckers (Catostomus discobolus and C. discobolus yarrow)
(Perez et al., 2017; Ulibarri et al., 2017), but eDNA and traditional
methods led to divergent results for Redswamp Crayfish (Procambarus
clarkii) (Tréguier et al., 2014). While eDNA is generally comparable to
traditional techniques for species detection, some researchers recom-
mend eDNA as a complementary sampling approach to expand the spa-
tial distribution of surveys (Hinlo et al., 2017a; Lim et al., 2016; Mächler
et al., 2014).

Metabarcoding may be particularly useful for understanding the ef-
fects of forest practices on freshwater biodiversity because of its poten-
tial to provide estimates of taxa richness from a single sampling
technique. However, few studies have compared metabarcoding eDNA
approaches with traditional methods relative to targeted eDNA ap-
proaches, which have been well vetted. We found that metabarcoding
approaches, where high-throughput DNA sequencing occurs simulta-
neously for multiple taxa, were applied in 34 publications (4 of these
studies also used targeted approaches; Supplemental Table 1), with
nearly half of those studies published in 2017. Most metabarcoding
studies examined microorganisms (n = 12), invertebrates (n = 12),
fish (n= 11), or amphibians (n= 6) (Fig. 2b). Mammals (n= 2), rep-
tiles (n = 1), and birds (n = 1) were also identified using
metabarcoding approaches. Twenty-three metabarcoding studies



Fig. 3. Mean difference in fish and invertebrate richness with respect to A. sampling
method (eDNA vs. traditional methods) within a single sampling year (n = 67 and 88
study sites for fish and invertebrates, respectively) and B. sampling method within a
single sampling year relative to a comprehensive historical taxa list (n = 16 and 6 study
sites for fish and invertebrates, respectively). Differences were generated according to
the lowest taxonomic level reported in the study. Traditional fish sampling methods
consisted of electrofishing, beach seining, or gillnetting. Traditional invertebrate
sampling methods included kicknet, emergence traps, or plankton net. Historical
sampling refers to the comprehensive list of species based on multiple years of
traditional sampling monitoring efforts.
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included samples collected from lotic ecosystems and 18 included sam-
ples from lentic ecosystems.

In our review of metabarcoding approaches, estimates of taxa rich-
ness (categorized to lowest taxonomic level - species, genera, or family)
within a single year were qualitatively greater for fish (8 studies, 67
sites) using eDNA methods than traditional methods (gillnetting,
beach seining, or electrofishing) but not for invertebrates (6 studies,
88 sites) (Fig. 3a; Supplemental Table 1). Taxa richness based on com-
prehensive historical species listswere greater than single-year datasets
regardless of sampling method (Fig. 3b). However, single-year eDNA
techniques performed better than single-year traditional field sampling
methods for fish but not invertebrate taxa richness, with eDNA typically
identifying 10 fewer fish taxa than historical records compared to 15
fewer using traditional methods (Fig. 3b). The number of study sites
for comprehensive historical species record comparisons for inverte-
brates (n = 6) was much lower than for fish (n = 16), and may bias
the observed differences. While eDNA and traditional sampling
methods were generally comparable in estimating taxa richness in
freshwater ecosystems, ultimately the estimation of taxa richness by
metagenomic techniques is limited by the reference database because
taxa not represented in the database cannot be identified to species
using operational taxonomic units (OTU) (Elbrecht et al., 2017a; Yang
et al., 2017). The paucity of studies on amphibians and reptiles
prevented us from evaluating the effectiveness of eDNAmetabarcoding
with traditional methods, although others have found eDNA detection
was effective for amphibians and reptiles (Lacoursiére-Roussel et al.,
2016a; Valentini et al., 2016). eDNA metabarcoding is a promising tool
for estimating freshwater biodiversity responses to forest practices
and release of mill effluent into natural receiving waters, particularly
as reference databases expand and methods are refined.

4.6. Estimation of species abundance and biomass using eDNA

While eDNA has been shown to be particularly effective in estimat-
ing presence or absence, there is great interest in using eDNA to esti-
mate relative abundance or biomass. Numerous studies across a range
of taxa have found positive correlations between eDNA concentration
and species abundance (Baldigo et al., 2017; Doi et al., 2015; Doi et al.,
2017; Goldberg et al., 2013; Pilliod et al., 2013; Sansom and Sassoubre,
2017; Secondi et al., 2016; Thomsen et al., 2012; Wilcox et al., 2016;
Baldigo et al., 2017; Doi et al., 2017; Sansom and Sassoubre, 2017) or
biomass (Baldigo et al., 2017; Doi et al., 2015; Doi et al., 2017; Jane
et al., 2015; Lacoursiére-Roussel et al., 2016a, 2016b; Matsuhashi et al.,
2016; Piggot, 2016; Pilliod et al., 2013; Takahara et al., 2012). Most pre-
vious studies used qPCR approaches, but in a method comparison Doi
et al. (2015) found that ddPCR provided better estimates for abundance
and biomass than qPCR. A few studies foundpoor relationships between
eDNA concentration and abundance or biomass, including for Eastern
Hellbender, Great Crested Newt, Rusty Crayfish, Gizzard Shad, and
Largemouth Bass using qPCR (Biggs et al., 2015; Dougherty et al.,
2016; Perez et al., 2017; Spear et al., 2015) and no correlation was
found for the Round Goby using a PCR assay approach (Adrian-
Kalchhauser and Burkhardt-Holm, 2016). With targeted eDNA ap-
proaches (qPCR or ddPCR), site-specific relationships need to be
established to estimate how eDNA concentration relates to abundance
or biomass for taxa of interest. Understanding the age structure of a
population is also important to ensure biomass is not overestimated be-
cause eDNA release rate standardized to fish body weight was greater
for juveniles than adults (Maruyama et al., 2014). For studies that re-
quire the abundance or biomass of a specific organism, traditional tech-
niques need to complement eDNA approaches, and may be useful in
establishing site-specific relationships between eDNA and population
biomass or density.

Metabarcoding read counts have also been examined for relation-
ships with species abundance or biomass with some finding poor or
modest positive relationships based on read counts (Bista et al., 2017;
Elbrecht et al., 2017a; Evans et al., 2016; Lim et al., 2016; Yang et al.,
2017) or ranked read count (Hanfling et al., 2016). However, authors
are cautious in their interpretation of these data because, in addition
to the considerations listed above for targeted eDNA approaches, multi-
ple quantitative biases inmetabarcoding data limit its ability to quantify
taxon abundance. A primary concern is primer bias, which is differential
amplification of a locus among species targeted by the same primer pair
(Elbrecht and Leese, 2015; Leray and Knowlton, 2015; Piñol et al.,
2015). Sequence abundancemay also be related to thebiomass of differ-
ent taxa (Elbrecht et al., 2017b) further complicating interpretation of
relationships between sequence abundance and species abundance or
biomass. Additionally, eDNA from different taxamay behave differently
at any point in the process from its release into the environment until it
is finally sequenced (e.g., differing rates of release, degradation, or cap-
ture by and extraction from filters), so that each taxon has a unique re-
lationship between sequence abundance and species abundance or
biomass. These relationships may also vary by site or by season.

5. Conclusions for incorporating eDNA into forestry and forest
manufacturing

Given the important role of prior development of primers and bioin-
formatics for a given ecoregion in facilitating use of eDNA methods by
managers, it is essential to understand the geographic scope of prior
eDNA studies, and how these relate to the geographic distribution of
global wood baskets. We found that the global distribution of eDNA
studies focused on freshwater ecosystems (n = 188) were conducted
primarily in North America (51% of studies), Europe (25%), and Asia
(15%) with less representation in Australia (6.4%), South America
(1.6%), Africa or Antarctica (0.5% each) (Fig. 4). By country, most fresh-
water research using eDNA methods occurred in the USA (44% of stud-
ies), followed by Japan (12%), Canada (7.4%), Australia (6.4%), and the
UK (6.4%) (Fig. 4). We found there was considerable overlap in coun-
tries that aremajorwood-commodity producerswith countries focused
on eDNA development including the USA, Canada, and Japan (Fig. 4).
Implementation of eDNA methods in other major wood-commodity
producing countries (e.g., Brazil, India, Russia, South Korea, Congo,
Ethiopia, and Nigeria) is currently limited (Fig. 4).Where overlap exists,



Fig. 4. a)Global distribution of studies of freshwater eDNA studies published between 2011 andNovember 2017. Locations represent the country (or region for theUSA and Canada)where
studies were conducted not the location of study sites. b) Global distribution of global production of forest products in 2016 are displayed as a percent of global production (FAO, http://
www.fao.org/forestry/statistics/80938/en/). Only countries with 1% or greater production are shown. Production is separated into two groups:Wood represents the sum of production of
roundwood, sawnwood, and wood based panels (green) and Pulp and paper represents the sum of pulp, paper, and pellet products (red). Both are displayed as a percentage of global
production.
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forestry and forest manufacturing managers can utilize existing primer
development and eDNAmethods to integrate eDNAmethods intomon-
itoring and research studies, but elsewhere use of these methods may
be more limited.

Method cost comparisons are an important consideration for long-
term monitoring of any study. Previous cost comparisons focused on
targeted eDNAapproaches suggest that eDNA can bemore cost effective
than triple pass electrofishing for a single species of fish (Evans et al.,
2017), and vastly less expensive than traditional techniques for species
of turtles, fish, and parasites (Davy et al., 2015; Huver et al., 2015;
Sigsgaard et al., 2015). However, eDNA is not always themost cost effec-
tive, and the costswill depend on the initial effort required to establish a
genetic database and resources (primers or probe development, speci-
men collection, vouchering), sample processing, the method used for
eDNA analysis (e.g., single target qPCR or multitarget metabarcoding),
and the intensity and type of traditional field sampling technique used
(e.g., triple pass vs. single pass electrofishing for fish) (Evans et al.,
2017; Smart et al., 2016). Metabarcoding and other multi-species
eDNA methods are relatively new techniques, and while their per-
sample costs are less well-defined, they are expected to be considerably
higher than traditional quantitative PCRmethods (qPCR, ddPCR) due to
the higher per-sample cost of DNA sequencing. In some cases, this
drawback will be outweighed by the large number of target species
that can be simultaneously evaluated, as the cost per target taxon will
be significantly lower with metabarcoding methods. Few studies have
provided a detailed cost analysis of multi-species eDNA approaches,
but Elbrecht et al. (2017a) reported that the cost of eDNA
metabarcoding was comparable to morphology-based monitoring for
macroinvertebrates.

Currently, incorporating eDNA techniques into monitoring, experi-
mental studies, or other applications requires collaboration with re-
searchers that have laboratories to develop primers and process eDNA
samples, access to expensive instrumentation (e.g., qPCR machines or
massively-parallel sequencers), and a computational infrastructure ca-
pable of modern bioinformatics analysis (in the case of multi-species
approaches). Such collaborations are typically developed with re-
searchers at academic institutions or government agencies (e.g., US For-
est Service, US Geological Survey, state natural resource agencies), and
can involve varying levels of complexity (Table 2). Selection of the
type of eDNA method depends upon the number of species to identify
(one versus many), and whether quantitative data (to estimate abun-
dance) or genetic diversity estimates are a goal for forestry and forest
manufacturingmanagers (Table 2). As demand for eDNAmonitoring in-
creases, commercial genotyping and genome sequencing laboratories
are likely to develop eDNA services, but the ability to completely out-
source this work depends on the eDNA method selected (Table 2).

In the future, two developments are likely to make eDNA studies
more flexible, affordable, and powerful:

(1) First,miniaturization has resulted in the development of portable
field instruments that can amplify, screen, and even sequence
eDNA in remote settings (Russell et al., 2018). Handheld qPCR
devices like the ‘Biomeme two3' (Biomeme, Inc., Philadelphia,
PA, USA) have already been developed to detect the presence of
up to 3 target species in the field. While target species are cur-
rently limited (Coho Salmon, Atlantic Salmon, Brook Trout, etc.;
Biomeme eDNA test kits, Smith-root Inc., Vancouver, WA, USA),
further development of this technology could produce a power-
ful tool for real-time detection of select species in forestry appli-
cations. Portable PCR machines can be combined with newly-
developed nanopore DNA sequencers, such as the ‘MinION’ (Ox-
ford Nanopore Technologies, Oxford, England; Loman and
Watson, 2015), to provide rapid detection of a broad spectrum
of DNA sequences. These cell phone-sized devices have the ca-
pacity to serve as rapid-detection devices and fully-functional se-
quencers, giving them extra capabilities of de novo sequence
discovery and database improvement.

(2) Second, data accumulation from metabarcoding studies will
make it possible to identify and screen diagnostic sequences
using genetic assays that are simpler to execute and interpret.

http://www.fao.org/forestry/statistics/80938/en
http://www.fao.org/forestry/statistics/80938/en
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Assays used for routine genetic analysis of cattle breeds or crop
plant management (such as mass spectroscopy-based methods;
Ragoussis, 2009) are flexible, accurate and easily outsourced to
commercial facilities. Adapting these methods to eDNA applica-
tions would do much to ‘democratize eDNA’, making it possible
for end-users with diverse interests to adapt the power of geno-
mics to their own interests and applications.

Linking these new technologies with traditional field methods used
to estimate population structure, abundance, biomass, or condition of
individuals will do much to enhance the usefulness of eDNA as a tool
for numerous forestry and forest manufacturing applications that seek
to better understand and predict their impacts on the environment.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2018.08.370.
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