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Predicting abundance and productivity of blueberry plants
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ABSTRACT
Unprecedented outbreaks of defoliating insects severely damaged
blueberry crops near Port Graham on the Kenai Peninsula in Alaska
from 2008-2012. The Native people in this region rely heavily on
gathered blueberries and other foods for sustenance and nourish-
ment. Influences of topography and stand structure on blueberry
abundance and fruiting were examined and used to develop spatial
models to predict abundance and productivity of blueberry plants.
Fruiting was associated with decreased canopy density, a low basal
area and southwesterly aspects. Stands with relatively high site
indices have greater abundance of blueberry plants, while the oppo-
site trend was observed with productivity. Results demonstrate the
feasibility of modeling the abundance and productivity of blueberry
plants using easily obtained satellite imagery in conjunction with a
well-organized field data collection system.
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Introduction

The seven tribes of the Chugach Region of Alaska (Chenega Bay, Eyak, Nanwalek, Port
Graham, Qutekcak, Tatitlek, and Valdez) rely heavily on subsistence gathered food for
sustenance and nourishment. Studies by the Alaska Department of Fish and Game
show that a significant portion of the total foods consumed, 375 pounds per person
per year, is from subsistence hunting and gathering. In the traditional Native diet,
fruits from the Alaska blueberry (Vaccinium alaskensis Howell) plant and the salmon-
berry (Rubus spectabilis Prush) are major sources of sweet food; hence are culturally
and nutritionally important (Figure 1; Viereck & Little, 1972).

Alaska blueberry fruits are also an important source of food for many species of
wildlife, including songbirds, game birds, mice, chipmunks, squirrels, raccoons, and
black bears (Viereck & Little, 1972). Twigs and foliage are used as browse by rabbit,
snowshoe hare, bear, goat, elk, and deer (Hanley, Cates, Van Horne, & McKendrick,
1987). Alaska blueberry plants are an important source of winter browse because they are
often found in older stands with shallow snowpack, making them more accessible to
wildlife. Utilization may also increase in early winter in open areas when lower growing
vegetation becomes covered with snow (Matthews, 1992).
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The Alaska blueberry occurs as an understory species in many forest community types
throughout the Cascade Range in northern Oregon and Washington to Prince William
Sound, Alaska (Matthews, 1992). It is most often associated with Pacific silver fir (Abies
amabilis Douglas ex. Loud), western hemlock (Tsuga heterophylla (Raf.) Sarg.), mountain
hemlock (T. mertensiana (Bong.) Carrière), and Sitka spruce (Picea sitchensis (Bong.)
Carr.). The blueberry plant rapidly sprouts from underground stems or establishes by seed
within three years of disturbance from clearcutting, burning, and windthrow (Alaback,
1984). However, as the forest overstory becomes dense (stand age 25–150 years), blueberry
plants decrease drastically in frequency and abundance. As stands continue to mature
(stand age 150–250 years) and begin to self-thin, the frequency and abundance of blue-
berry plants increase again (Alaback, 1984).

Beginning in 2008, an outbreak of native Geometrid moths (Geometridae: Epirrita
undulata (Harrison, 1942) and Operophtera bruceata (Hulst, 1886)) caused widespread
defoliation of salmonberry and blueberry plants in many Native communities in the
Chugach Region, resulting in major berry failures. The outbreak was particularly severe
in Port Graham, Nanwalek, and Seldovia, three villages located in the southern Kenai
Peninsula in Southcentral Alaska (Figure 2). In Seldovia, a tribal for-profit enterprise
based on blueberries was placed in jeopardy because of successive failure of their blueberry
crops. This outbreak continued through 2012 when moth populations collapsed and berry
yields recovered. Although this is the first known Geometrid outbreak in this region, in
other areas of the world where closely related species (e.g., Epirrita autumnata
(Borkhausen, 1794)) are native, outbreaks return in cycles of approximately 10 years
(Berryman, 2002). Future outbreaks of the Geometrid moths are expected in the
Chugach Region.

In this study, we use statistical analysis and spatial modeling to determine how blue-
berries are influenced by topography and forest stand structure. The models are designed

Figure 1. Alaska blueberry (Vaccinium alaskensis Howell) plant.

2 R. M. REICH ET AL.



to facilitate and support tribal communities and their preparation for potential future
impacts from these damaging insects on subsistence berries by suggesting silvicultural
prescriptions aimed at maintaining the health and productivity of blueberry plants.

Methods

Spatial data

Information on the spectral variability of forested vegetation and topography were taken
from satellite imagery and Digital Elevation Model (DEM, 30-m spatial resolution) of the
area surrounding Port Graham, Alaska, which is located at latitude 59°20′52″N and
longitude 151°50′0″W (Figure 2). Two cloud-free Landsat-8 Operational Land Imager
(OLI, 30-m resolution) obtained during March in 2013 and 2014 were obtained from
EROS Data Center (Sioux Falls, South Dakota). The satellite imagery consisted of 11
spectral bands (Table 1). Since band 8 was a panchromatic image at 15-m resolution, this
band was resampled to a 30-m spatial resolution using nearest neighbor techniques
(Muukkonena & Heiskanenb, 2005).

The DEM and all spectral bands associated with the two LandSat-8 OLI were resampled to a
10 m spatial resolution using a three-step process. First, each band was resampled to a 10 m
spatial resolution using nearest neighbor techniques (Muukkonena&Heiskanenb, 2005).A 3×3
windowwas passed over each of the resampled bands generating a surface of average reflectance
values. Each 10-m pixel thus represents the average reflectance of the surrounding 30 m x 30 m
area. Finally, all pixel values were converted to integers for further processing and analysis.

Proper classification of the variability in forest stand structure is an essential require-
ment for designing an efficient sampling method to collect field data for the purpose of
modeling forest stand structure and blueberry plant productivity and abundance (Engman

Figure 2. Location of the study area and five spectral classes derived from March 2013 LandSat-8 OLI
used to characterize forest stand structure in the study area.
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& Gurney, 1991). However, in remote areas surrounding Port Graham, this type of
information is difficult to obtain due to a lack of detailed forest inventories and inacces-
sibility of some areas. Based on previous work that revealed the variability in forest stand
structure as reflected in the spectral variability observed on the LandSat-8 OLI (Reich,
Aguirre-Bravo, & Mendoza-Briseño, 2008), an unsupervised classification method was
used to identify five spectral classes characterizing the forested areas identified on the
resampled 2013 LandSat-8 OLI (Figure 2, Al-Ahmadi & Hames, 2009). The resulting
spectral classes were treated as strata in the field sampling phase of the project. Histogram
equalization, an image enhancement technique (Garg, Mittal, & Garg, 2011), was applied
to individual bands of the resampled 2014 LandSat-8 OLI. A histogram is a graphical
representation of the brightness values that comprise an image. Histogram equalization is
a method that redistributes the image’s intensity distributions in order to produce a
uniform histogram for the image. All negative values in the final predicted surface were
set to zero.

Field data

The data used in this study are from an inventory designed to provide local estimates of
forest stand structure and blueberry plant abundance and productivity in the Port Graham
area. A total of 111 variable radius plots were visited during periods of peak fruit yields
(mid-August) throughout the area using a stratified design that took into consideration
the spectral variability in forest stand structure (Figure 2). At preselected locations along
the main access road, 37 sets of three plots (37 x 3 = 111) were established on each side of
the road. The first plot of each set was established within 15-m of the road and each
subsequent plot was located 30-m apart running perpendicular to the road, if possible.
Plot locations were verified using a Global Positioning System (GPS) with an estimated
accuracy of ± 3 meters.

Table 1. Description of the Landsat 8 spectral bands.†

Band Wavelength
Pixel
Size Application

Band 1 – coastal aerosol 0.43–0.45 30 Coastal and aerosol studies
Band 2 – blue 0.45–0.51 30 Bathymetric mapping, distinguishing soil from

vegetation and deciduous from coniferous
vegetation

Band 3 – green 0.53–0.59 30 Emphasizes peak vegetation, which is useful for
assessing plant vigor

Band 4 – red 0.64–0.67 30 Discriminates vegetation slopes
Band 5 - Near Infrared (NIR) 085.-0.88 30 Emphasizes biomass content and shorelines
Band 6 - Short-wave Infrared (SWIR) 1 1.57–1.65 30 Discriminates moisture content of soil and

vegetation; penetrates thin clouds
Band 7 - Short-wave Infrared (SWIR) 2 2.11–2.29 30 Improved moisture content of soil and vegetation

and thin cloud penetration
Band 8 – Panchromatic .50-.68 15 15-meter resolution, sharper image definition
Band 9 – Cirrus 1.36–1.38 30 Improved detection of cirrus cloud contamination
Band 10 – Thermal Infrared (THIR) 1 10.60 – 11.19 30 100-meter resolution, thermal mapping and

estimated soil moisture
Band 11 – Thermal Infrared (THIR) 2 11.5–12.51 30 100-meter resolution, Improved thermal mapping

and estimated soil moisture

†Source: http://landsat.usgs.gov/best_spectral_bands_to_use.php
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At the center of each plot, a prism (with basal area factor of 40) was used to
estimate the average tree basal area per acre (m2/ha) of the plot. Plots fell in pure Sitka
spruce stands with insignificant basal area contributions from other species (unpub-
lished data from Chugachmiut). A spherical densiometer was used to estimate the
average percent tree canopy closure on each sample plot. Readings were recorded for
the four major cardinal directions and then averaged. A representative tree on each
sample plot was measured for total tree height and height to the base of the live
crown. Height measurements were obtained using both optical and laser-based
hypsometers.

Each variable radius sample plot was divided into four quadrants using the four major
cardinal directions. In each quadrant, the presence (1) or absence (0) of blueberry plants
within 3-m of the center were noted and summed creating five classes of abundance: 0 – trace
to none, 1 – low, 2 – medium, 3 - high, and 4 – very high. All counts were converted to a
proportion by dividing the counts by four. Representative blueberry plants were selected in
each of the four quadrants and rated in terms of the amount of blueberry fruits found on the
plant (e.g., productivity) using a five-point scale: 0 – trace, 1 – below average, 2 – average, 3 –
above average, and 4 – bumper crop. Ratings of plant productivity were averaged across the
four quadrants.

Model development

For each component of forest structure and blueberry productivity and abundance, a
stepwise Akaike information criterion (AIC) procedure (Venables & Ripley, 2002) was
used to identify a subset of independent variables to include in the regression model that
minimized the AIC (Akaike, 1973). Independent variables considered for inclusion in
the regression models included elevation, slope, the sine and cosine of aspect, LandSat-8
OLI bands, and the spectral classes used to design the field sampling. Regression
coefficients and variances were estimated using generalized linear model theory
(McCullagh & Nelder, 1989).

The regression models were developed sequentially starting with percent tree canopy
closure, then tree basal area, followed by the models for total tree height and height to the
base of the live crown, and finally, models for the abundance and productivity of blueberry
plants (Figure 3). Canopy closure was allowed to enter the basal area model as a predictor.
Likewise, in the model for total tree height, both canopy closure and basal area could
potentially enter the models as predictor variable(s). Thus, each subsequent model builds
upon previously developed models. The model for the productivity of blueberry plants was
the last model developed in the sequence, and variables such as percent canopy closure,
basal area, total tree height, height to the base of the live crown and predicted abundance
of blueberry plants were allowed to enter the model as potential predictors.

The small-scale variability (i.e., estimated errors from the regression models) in forest
structure and the abundance and productivity of blueberry plants was modeled using a
regression tree-based stratified design (Reich, Aguirre-Bravo, Bravo, & Mendoza-Briseño,
2011). Independent variables considered in the stratification included elevation, slope, the
cosine and sine of aspect, LandSat-8 OLI bands, the spectral classes or strata used in
developing the field sampling, the predicted values from the linear regression model
associated with the regression tree, as well as the predicted values of dependent variables
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developed in previous steps. A 10-fold cross-validation was performed on each regression
tree to identify the regression tree size that minimized the mean squared error of
prediction. The regression trees were then pruned to the appropriate size. The FIT
statistic, which is defined as the correlation between the observed and predicted values
squared, was used to assess the goodness-of–fit of the final models.

Maps representing the components of forest structure and the productivity and abun-
dance of blueberry plants were generated for the models selected to minimize the error in
estimating the uncertainty in the spatial estimates (Figure 4). This was accomplished by
passing the various spatial layers through the linear regression models and binary regres-
sion trees to produce two new spatial layers representing the large-scale (linear regression)
and small-scale (binary regression tree) spatial variability. These two surfaces were then
added together to produce the final predicted surface. All negative values were set to zero
due to the linear models producing positive as well as negative estimates. Since the linear
regression models cannot avoid negative estimates any negative estimates were set to zero,
while any extreme values were set to the 95th percentile of the estimated values

Results

The abundance of blueberry plants showed a positive relationship with total tree height
and a negative relationship with basal area and height to the base of the live crown, while
blueberry plant productivity showed a negative relationship with total tree height. Stands
with high site indices had significantly greater abundance of blueberry plants than stands
with low site indices, while the opposite trend was observed with respect to the produc-
tivity of the blueberry plants.

Canopy closure, basal area, total tree height, height to the base of live crown, blueberry
abundance, and blueberry production were accurately modeled using remotely sensed data
(Table 2). Some of the distributions for these values were skewed and had no influence on

Figure 3. The sequential approach using regression models of forest structure as potential predictor
variables for each succeeding metric. The regression models were developed sequentially starting with
percent canopy closure, then basal area, followed by the models for total tree height and height to the
base of the live crown, and finally, models for the abundance and productivity of blueberry. (PV =
Predictor Variable).

6 R. M. REICH ET AL.



the final fit of the models. It was not possible to transform the data to sufficiently remove
this skewness. However, residuals plots, plots of predicted v. observed values, showed no
trends and therefore demonstrated the models to be free of bias.

Forest stand structure, blueberry plant abundance, and productivity of blueberries were
linearly correlated with the topographical, land classification and LandSat-8 OLI data, and
these linear relationships varied significantly among the various models (Table 3). Unlike

Figure 4. Predictive model of the a) abundance and b) productivity of blueberry plants as an influence
by forest stand structure and elevation; and model predicted stand structure attributes c) basal areas
and d) canopy closure at an undisclosed location in Port Graham.
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the models developed for modeling the coarse-scale variability, not all the topographic,
LandSat-8 OLI, and land classifications data were used to describe the small-scale varia-
bility in one or more of the regression models.

The overall contribution of forest stand structure and blueberry plant abundance and
productivity varied among models (Table 3). The influence of topography and forest stand
structure on the abundance and productivity of blueberry plants are displayed in Figure 4.
The regression models alone explained 61% (abundance) to 89% (canopy closure) of the
variability observed in the field data. The regression trees accounted for an additional 2%
(height base live crown) to 10% (productivity) of the unexplained variability observed in
the field data (Table 4). Overall model performance ranged from a low of 0.73 (produc-
tivity) to a high of 0.96 (canopy closure). The remaining four models had R2 ranging from
0.73 to 0.84.

Prediction bias was nominal (Table 2) for all models. Minimum, maximum and quartiles
showed that estimated and observed value distribution were similar for all models. The
mean estimation errors did not differ significantly from zero (p-value ≥ 0.05). The mean
absolute errors were smaller than the root mean squared error for all models indicating that,
in general, the models are more accurate in predicting regional or global means than on a
point-by-point basis.

Discussion

This study aims at developing a way to describe where blueberry production could be
enhanced by manipulating forest stand conditions. Predictive models are used to
characterize and quantify stand components associated with blueberry plant abundance
and fruit production. Tribal land managers could use these observations to guide
silvicultural treatments. Results indicate that reduced tree density and low tree basal
area are associated with forested locations that produce abundant berry crops. This
suggests that the abundance and productivity of blueberry plants have an opposite
relationship with the site productivity of the Sitka spruce stands in which they are
established. More berries develop where more light and less competition from

Table 2. Summary statistics of observed and predicted forest stand structure and the abundance and
productivity of blueberry plants on variable radius sample plots around Port Graham, Alaska.

Canopy
Closure (%)

Basal Area(ft2/
ac)

Total Tree
Height (ft)

Height Base Live
Crown (ft)

Abundance
(Scale 0–4)

Productivity
(Scale 0–4)

Variable Obs Pred Obs Pred Obs Pred Obs Pred Obs Pred Obs Pred

N 111 111 111 111 111 111

Mean 61.3 61.3 158.2 160.5 71.7 71.8 16.6 16.6 2.2 2.2 1.2 1.2
s.d. 36.0 33.9 119.1 98.3 39.6 37.3 14.1 11.1 1.5 1.2 1.2 1.0
CV% 58.7 55.2 75.3 61.3 55.3 52.0 84.9 66.7 68.7 53.5 103.8 85.2
Minimum 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
First Quantile 21.65 26.4 40.0 52.0 49.5 59.1 3.5 8.6 1.0 1.6 0.0 0.4
Median 82.3 76.7 200 194.2 85.0 88.5 17.0 18.3 2.0 2.5 1.0 1.1
Third Quartile 86.5 85.5 240.0 235.4 100.0 96.5 23.5 23.3 4.0 3.1 2.0 1.9
Maximum 93.8 96.4 360.0 316.8 126.0 121.4 60.0 42.6 4.0 4.4 4.0 3.8
%Bias 0.0 1.45 0.1 0.0 0.0 0.0
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overtopping trees occur. This relationship suggests that a forest manager would thin
trees to enhance blueberry fruit productivity.

Blueberry plants are unevenly distributed in forests surrounding the village of Port
Graham and are more abundant in some locations than others. Traditionally, locations
where berries are abundant have been determined by casual field observations. In recent
years, plants growing in several of these locations have been damaged by insect defoliators.
During years of heavy defoliation, berry crops have nearly been eliminated. The models
developed in this study predict the spatial distribution of blueberry plant abundance and

Table 3. Variables used in describing the large-scale variable in forest stand structure and the
abundance and productivity of blueberry plants around Port Graham, Alaska.

Independent Variable

Dependent Variable†

PROD PROD PROD PROD PROD PROD

Predicted Variables (RG+RT)
CNPY_ RGRT § + +
BA_ RGRT + -
THT_ RGRT + -
HBLC_ RGRT -
ABUND_ RGRT +

Topography
ELEV + - - -
SLP + + -
COS(ASP) + + - -
SIN(ASP) - + - -
STRATA X X X

Landsat 8 Satellite Bands
BND1 - + -
BND2 + +
BND3 - +
BND4 - - + + -
BND5 - + -
BND6 + - +
BND7 + + - -
BND8 - - +
BND10 - - + -
BND11 + + - - +
BND1H + + -
BND2H - + -
BND3H - +
BND4H - + + -
BND5H - + -
BND6H + - - + + +
BND7H – + + - - -
BND8H + +
BND10H + - + +
BND11H + -
R2_RG 0.886 0.745 0.866 0.618 0.607 0.674
R2_RGRT 0.957 0.839 0.897 0.734 0.802 0.771

The plus (+) or minus (-) sign indicates the direction of the relationship between the independent and dependent variables
while an X indicates the presence of categorical variable in the model.

† CNPY - canopy closure (%); BA - basal area per acre (ft2/acre), THT - total tree height (ft); HBLC - height to base of live
crown (ft); ABUND - blueberry abundance 0- trace to 4 - very high); PROD - blueberry productivity (0 – trace to 5 -
bumper crop); Elev - elevation (m); Slope (%); ASP - aspect (degrees); STRATA -;BNDX/BNDXH- Landsat 8 band, where X
represents the band number (1–11) and the H after the band number indicates the Landsat band was histogram
equalized.

§RGRT – Predicted values based on the regression model (RG) describing the large-scale variability plus binary regression
tree (RT) describing the small-scale variability.
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the productivity of berries in a continuous layer across the entire forest. A complete
knowledge of the spatial distribution of berry plants and their abundance and productivity
would offer a potential hedge against future defoliation and other disturbance events by
specifying alternative harvest locations that might not have been affected.

This modeling approach has several advantages to resource users and managers. It is
more cost-efficient than estimates based solely on field sampling where frequency and
geographic distribution of plots may be limited, especially if stands are difficult to reach,
small in size or irregularly shaped. Furthermore, evaluation of the models indicates that
the estimated variances associated with the point estimates could be used to assess
estimates of uncertainty when applied to non-sampled plot locations. The ability to
calculate estimation uncertainties allows one to develop GIS layers showing the computed
estimation errors and to place confidence intervals around these estimates.

The models assume that similar stands have similar characteristics with respect to stand
structure and berry production. The variable R2-values for some of the models may be due, in
part, to differences in stand structure resulting from past management activities or weather-
related damage. To account for this variability and to improve their overall predictive accuracy,
it may be possible to include past disturbances from both anthropogenic land management
effects (e.g., forest extraction and/or thinning) and other natural disturbances (e.g., storm
damage), or similar sources of error. Other sources of error that could have influenced the
performance of themodels include the sparseness of thefield data, errors in stratifying the forest,
and errors associated with registration of the field plots and satellite imagery.

Inferences from the models developed in this study suggest that silvicultural thinning may
enhance the abundance and productivity of blueberry plants in young even-aged (<100 years

Table 4. Variables used in describing small-scale variability in forest stand structure and the abundance
and productivity of blueberry plants around Port Graham, Alaska.

Independent Variable †

Dependent Variable†1

CNPY BA THT HBLC ABUND PROD

Predicted Residuals from Regression Model (RG)
CNPY_R § x x
BA_R x x
THT_R x
HBLC_R x
PROD_R x

Topography
SIN(ASP) x
STRATA x

Landsat 8 Satellite Bands
BND1 x
BND2 x
BND4 x x
BND5 x x x
BND6 x
BND8 x x
BND10 x
R2_RT 0.071 0.094 0.031 0.016 0.195 0.097
R2_RGRT 0.957 0.839 0.897 0.734 0.802 0.771

†CNPY - canopy closure (%); BA - basal area per acre (ft2/acre), THT - total tree height (ft); HBLC - height to base of live
crown (ft); ABUND - blueberry abundance 0- trace to 4 - very high); PROD - blueberry productivity (0 – trace to 5 -
bumper crop); Elev - elevation (m); Slope (%); ASP - aspect (degrees); BNDX- - Landsat 8 band, where X represents the
band number (1–11

§ _R – Predicted residuals from the regression model (RG) describing the large-scale variability.
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old) stands by opening up the canopy to allow more light to penetrate the forest floor. The
models, however, provide no evidence that would suggest that silivicultural thinnings or
timber harvesting would measurably increase either the abundance or productivity of blue-
berry plants more than that found in old-growth forests. Repeated tree thinning may be
necessary to maintain a high rate of productivity of blueberries in young, even-aged stands,
but collateral damage to the understory would require recovery time. Such activity may
increase wind damage and other associated disturbances by opening the canopy too quickly.
More research would help understand how silvicultural manipulations might create condi-
tions of health for blueberry assemblages found in unmanaged old growth.

Management implications

During this research, two key pieces of information were generated that are directly applicable
to management activities. First, significant blueberry resources are available in clear cuts prior
to canopy closure, but many of these areas are brushy and access is extremely difficult. A tribal
vegetation management program could open up large areas of high-quality berry harvesting
ground by facilitating access. Second, blueberry plants are abundant in high site index mature
stands, but productivity is relatively low. Blueberry production tends to be higher in low site
index stands with open canopies. A vegetation management program could open the canopy
of high site index even-aged stands to increase blueberry yields andmaintain canopy openings
in lower site index stands to sustain blueberry yield.
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