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A B S T R A C T

Rarity and life history traits inform multiple dimensions of intrinsic risk to climate and environmental change
and can help systematically identify at-risk species. We quantified relative geographic rarity (area of occupancy),
climate niche breadth, and life history traits for 114 freshwater fishes, amphibians, and reptiles in the U.S.
Pacific Northwest. Our approach leveraged presence-only, publicly available data and traits-based inference to
evaluate area of occupancy, climate sensitivity (i.e., climate niche breadth), and a Rarity and Climate Sensitivity
(RCS) index of all species across multiple geographic extents, grain sizes, and data types. The RCS index was
relatively stable across extents, grains, and data types, with climate sensitivity differentiating species with
otherwise similar areas of occupancy. We also found that species with sensitivity-associated traits (e.g., long
generation time, low fecundity) were not necessarily the same species identified as at-risk with geographical
approaches (small range size, small climate niche breadth). Many multispecies assessments using coarse-scale
data (e.g., entire range maps or convex-hull approaches) often focus on a single dimension of intrinsic risk;
others rely on data-intensive models only applicable to a few well-studied species. What remains is a need for an
approach that enables multispecies, multidimensional assessment efforts. This is particularly true at regional
scales, where management needs require assessments that are intermediate to coarse- and fine-scale approaches.
We demonstrate that by considering multiple dimensions of intrinsic risk to climate change (range size, climate
sensitivity, and traits), site-specific locality data may offer a pathway for ensuring vulnerable, understudied
species do not go overlooked in conservation.

1. Introduction

With climate change outpacing the rate at which climate vulnerability is
studied and understood for many species, advances in multispecies assess-
ments are critical to identify at-risk taxa (Williams et al., 2008) and to
prioritize conservation efforts. Species vulnerability to climate change is a
complex and multidimensional problem (Foden et al., 2013). Along two
dimensions, vulnerability has been considered in terms of intrinsic sensi-
tivity (capacity of a species to persist in its current range, inclusive of other
intrinsic-biotic factors such as physiology, behavior, or phenotypic plasti-
city) and extrinsic exposure (external drivers of responses related to changes
in climate) (Williams et al., 2008). Adaptive capacity, a third dimension, is
the ability to cope with climate change through dispersal or evolutionary
adaptation (Foden et al., 2013). Whereas these definitions of species vul-
nerability provide much conceptual clarity, operationalizing them in the
form of multispecies risk assessments remains a major challenge.

Multispecies risk assessments have employed rarity- and traits-
based classifications of species to inform sensitivity and adaptive ca-
pacity to climate change. Rare species are typically characterized by
restricted range sizes, specific habitat requirements, and small popu-
lations (Rabinowitz, 1981) – factors that can increase sensitivity to
environmental changes and reduce adaptive capacity (Harnik et al.,
2012). Accordingly, rarity classifications have been used to system-
atically evaluate risk and vulnerability for a variety of taxa, including
herpetofauna (Rey Benayas et al., 1999), plants (Murray et al., 2002),
and freshwater fishes (Olden et al., 2008; Pritt and Frimpong, 2010;
Giam and Olden, 2017). Species' sensitivity and adaptive capacity are
also linked to other attributes such as life history, behavior, phenology,
and genetic traits that modulate population size and dispersal capacity
(Murray et al., 2002; Pacifici et al., 2015). Multispecies, traits-based
assessments of species responses to climate change are growing in ap-
plication (e.g., Rey Benayas et al., 1999; Harnik et al., 2012; Foden
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et al., 2013; Bland et al., 2014; Pacifici et al., 2017). Life history traits
such as generation time, longevity, fecundity, and parental investment
are particularly relevant for multispecies studies because they can be
quantitatively assessed and efficiently compared among species (McGill
et al., 2006). Moreover, traits-based analyses include aspects of both
species' sensitivity and adaptive capacity – two dimensions of vulner-
ability (Pacifici et al., 2015). Thus, these approaches have high po-
tential in assessing risk because together life history traits drive popu-
lation vital rates and modulate the potential and timeframe for
evolutionary response to environmental change (Williams et al., 2008),
providing a proxy for adaptive capacity (Nicotra et al., 2015).

Inclusive multispecies comparisons of rarity and traits may help set
regional priorities for future species management and conservation ef-
forts, both in a general sense and relative to specific threats. To this end,
approaches are needed that accommodate a mix of data types, a
common challenge when multiple rare species are examined simulta-
neously. For example, records of species occupancy may range from
highly detailed (e.g., systematic sampling throughout multiple years in
many locations) to sparse (e.g., few records collected opportunistically),
and may differ in spatial resolution (e.g., summary range maps versus
point occurrence data) and level of verification. Such discrepancies
complicate direct comparisons among species, and approaches are thus
required to compare species for which different types of data are
available.

A combination of both rarity- and traits-based approaches also
provides promise for more meaningful multispecies assessments. Taken
together, life history traits and spatial characteristics of species' ranges
– such as those captured by rarity – may be the most important con-
tributors to species' extinction risk due to climate change (Pearson
et al., 2014). Moreover, life history traits and geographic rarity have
strong interactions that drive species' sensitivity to climate change,
indicating that these two factors together may provide a more com-
prehensive understanding of the multiple dimensions of intrinsic risk to
climate change than if considered independently (Pearson et al., 2014;
Pacifici et al., 2017). For example, multispecies comparisons can help
identify previously overlooked or poorly understood species that may
be vulnerable to climate change (Bland et al., 2014; Jetz and
Freckleton, 2015), and such approaches also can help prioritize allo-
cation of conservation resources (Gerber, 2016).

Multispecies assessments typically leverage existing data and in-
formation about species and their attributes to compare species to one
another and to build predictive frameworks for assessing vulnerability
(e.g., Rabinowitz, 1981; Harnik et al., 2012; Foden et al., 2013). His-
torically, multispecies assessments have used surrogate species (e.g.,
umbrella or flagship species), analyzed species assemblages or guilds,
or focused on specific geographic areas (Caro, 2015). However, these
approaches may overlook rare taxa (Stewart et al., 2017) and may in-
troduce biases such that not all at-risk taxa benefit, particularly when
congruence in taxonomic and biodiversity patterns is low across eco-
system types and regions (Darwall et al., 2011). Furthermore, evidence
is mounting that intrinsic risk to climate change is multidimensional,
with range size, climate niche breadth, species traits, and their inter-
actions contributing in concert to species' sensitivity and adaptive ca-
pacity (Estrada et al., 2015; Saupe et al., 2015).

In this study, we developed a multidimensional, multispecies as-
sessment approach to evaluate intrinsic risk to climate change as a
function of geographic rarity, climate niche breadth (interpreted as a
measure of climate sensitivity), and life history traits. We demonstrated
our approach using publicly available occurrence data for 114 ec-
tothermic vertebrates (freshwater fishes, amphibians, and reptiles) na-
tive to the U.S. Pacific Northwest, a large and climatically diverse re-
gion encompassing 656,000 km2 (Dalton et al., 2013). The study area
includes the intersection of multiple mountain ranges and a latitudinal
gradient in climate resulting in several ecoregions characterized by
forest, desert, montane, valley, and range ecosystems – hence, the study
has potentially broad ecological application. Taxonomically, the area

has numerous endemic species as well as species at the northward edge
of their range – such that the study extent can yield results capable of
distinguishing between different types of rarity: global versus local.
Furthermore, ectothermic vertebrates are highly relevant for climate
change assessments across this region because they rely upon external
sources of heat for body temperature regulation and thus may be par-
ticularly sensitive to changes in environmental temperature across this
vast area with its diverse physical habitat conditions. Also, aquatic
forms are tied to water availability, another highly variable habitat
attribute tied to physiographic and climatic factors.

Our goals were to: 1) develop a Rarity and Climate Sensitivity (RCS)
index that jointly assessed area of occupancy and sensitivity to varia-
tion in climate metrics, and characterize life history traits for this re-
gional species pool; 2) examine the effects of alternative geographic
study extents (i.e., jurisdictional study boundaries versus ecological
boundaries), data types, and grain sizes on RCS classifications to assess
bias and robustness of values under different study designs; and 3)
evaluate geographic rarity, climate sensitivity, and life history traits
within taxonomic groups (fishes, amphibians, and reptiles) and for all
species combined, to characterize multiple dimensions of intrinsic
rarity and determine whether they are redundant at this scale.
Additionally, we examined whether RCS values varied significantly
according to species' primary habitat types (aquatic, semiaquatic, or
terrestrial), their taxonomy (order), or their conservation status at the
state and federal levels. Systematic, regional assessments such as this
provide an important tool for prioritizing monitoring and management
of resources among many species in the face of rapidly changing cli-
mates and biomes.

2. Methods

2.1. Species occurrence data

Baseline data for analyses described below were organized into
different spatial extents and data types. First, to assess the effect of
study area size on rarity classifications, we considered three geo-
graphical study extents in the U.S. Pacific Northwest. We focused on
two jurisdictional delineations: Oregon state (255,000 km2); and
Oregon, Idaho, and Washington (656,000 km2). To assess influence or
bias of arbitrary jurisdictional delineations, we also examined an extent
defined by ecological boundaries that included the full spatial extent of
all Level III Ecoregions that overlapped with Oregon (571,000 km2) and
extended outside the Oregon state boundaries to include portions of
California, Nevada, Washington, and Idaho (U.S. Environmental
Protection Agency, 2005) (Fig. 1).

Species occurrence data were obtained from three sources. First,
museum records for all freshwater fishes, amphibians, and reptiles
collected from 1930 to 2002 within the study extent were compiled
from 43 collections through the publicly available web-based tool
VertNet (Constable et al., 2010; see Table A.1 for list of all collections
and Supplementary Methods in Appendix for additional detail on
VertNet record database assembly). All VertNet data used in this pub-
lication, including updates to taxonomy and filtering of records, are
publicly available via U.S. Geological Survey (Mims and Hockman-
Wert, 2018). Two additional data sources were used for reptile and fish
occurrences. First, we used a comprehensive, multi-state (Oregon,
Washington, and Idaho) reptile occurrence database assembled by the
U.S. Forest Service and U.S. Geological Survey that included occurrence
data from museum records, state databases, and federal databases (data
sources: Table A.1). Second, we used native freshwater fish occurrence
records within the state of Oregon assembled from the Oregon State
University Fish Collection by the Oregon Department of Fish and
Wildlife (ODFW). The ODFW fish database contained records with as-
sociated voucher specimens that were examined and identified by ex-
pert ichthyologists (Table A.1).
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2.2. Rarity and Climate Sensitivity index

Area of Occupancy (AOO) was calculated for each species having a
minimum of 10 occurrence points and represents the total area (km2)
occupied by a species in a given study extent. We selected N=10 as an
arbitrary minimum number of occurrence points to include as many
species as possible while retaining a reasonable representation of cli-
mate conditions across species' localities. AOO is typically calculated by
tessellating a landscape with a uniform grid and summing the total
area, or number of grid cells, occupied by a species. We used a modified
grid-based approached in which we summed the area of buffered circles
centered on each occurrence point. Grain size, or in this case buffer
diameter, is known to influence rarity classifications (Hartley and
Kunin, 2003), and the use of multiple grain sizes can help avoid bias

from use of a single measurement. Buffers that overlapped for a given
species were merged such that heavily sampled areas did not artificially
inflate AOO measures. Additionally, smaller grain sizes offer higher
precision, because AOO and climate-derived niche breadth are closely
coupled with a specific point occurrence. However, smaller grain sizes
more closely approximate the number of observations of a species, and
this may introduce bias when comparing multiple species with poten-
tially different sampling efforts. Therefore, a range of grain sizes can
help account for sampling biases among species as well. We considered
grain sizes of 1 km, 5 km, 10 km, and 20 km buffer diameters. Finally,
the cumulative buffer area (km2) for each species at each grain size was
summed to produce an AOO measure.

Climate niche breadth, in addition to range size, has been linked to
species' extinction risk over geological time scales (Saupe et al., 2015).

Fig. 1. Three geographic study extents analyzed
for native fishes, amphibians, and reptiles of
Oregon, USA, including: (A) the Oregon state
boundary; (B) three-state extent (Oregon,
Washington, Idaho); and (C) Ecoregional
overlap with Oregon. Ectothermic vertebrate
occurrence data for (D) freshwater fishes, (E)
amphibians, and (F) reptiles native to Oregon,
USA. VertNet data are shown in blue (D–F),
Oregon Department of Fish and Wildlife fish
dataset is shown in orange (D), and compre-
hensive tri-state reptile dataset is shown in or-
ange (F). (For interpretation of the references to
color in this figure legend, the reader is referred
to the web version of this article.)
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Climate niche breadth, described here as Climate Sensitivity (CS), was
calculated for each species with a minimum of 10 occurrence points. In
our analyses, CS was a derived metric describing the composite breadth
of historical climate conditions associated with the range size (AOO) of
each species. Historical climate data statistically downscaled to a 30-
second grid of the northwest United States were available for a range of
variables throughout our study extent (Shafer and Bartlein, 2015)
(Table A.2). Variables were selected to capture the magnitude, pre-
dictability, and seasonality of dimensions of precipitation and tem-
perature. We selected six climate variables for analysis, including total
annual precipitation, total annual snowfall snow-water equivalent,
number of frost-free days, mean annual temperature, mean temperature
of the warmest month minus mean temperature of the coldest month
(monthly temperature range), and total monthly precipitation of the
wettest month minus total monthly precipitation of the driest month
(monthly precipitation range) (Table A.2). These variables were in-
tended to capture a range of climate conditions relevant to the species
and the region we studied. The mean and standard deviation of each of
variable were calculated across all years for which data were available
(1901–2002). To retain as many species occurrence records as possible,
we elected to retain all years of available climate data (1901–2002) to
characterize contemporary climate conditions rather than subsetting
climate data to a specific temporal window. This resulted in twelve
climate descriptors. The breadth of historical climate conditions was
assessed per species using the composite areas of their AOO buffers to
extract the standard deviation of each climate descriptor. These were
then relativized on a scale from 0 to 1, and finally subtracted from 1,
such that 1 indicated the highest sensitivity (lowest standard deviation)
for a given group of species and 0 indicated the lowest sensitivity
(highest standard deviation). The mean relative climate breadth of all
variables was then calculated to provide the Climate Sensitivity (CS)
metric for each species at each study extent and grain size (see Ap-
pendix: Supplementary Methods for additional information on CS cal-
culations). Time lags between earlier occurrence records (e.g., 1930s)
and more recent climate conditions (e.g., late 20th century) could
temporally decouple an observation with local climate conditions. This
could be problematic for species distribution models or other ap-
proaches that evaluate species' exposure to a changing climate or en-
vironmental conditions. However, we did not use these occurrence data
to evaluate range shifts, expansions, or contractions, but rather used
them to estimate species' putative, contemporary ranges. Our aim was
then to characterize overall climate niche breadth (using standard de-
viations of climate conditions) throughout that range. For that reason,
we retained all years of climate data available for this study to estimate
climate niche breadth (CS).

Finally, AOO and CS were combined to create a spatially derived
rarity metric, the Rarity and Climate Sensitivity index (RCS). All AOO
values were subtracted from 1 and then averaged with CS values, such
that resultant RCS values near 1 indicated species with small AOO and a
low range of climate variables found within their range (rare species);
and values near 0 indicated species with large AOO and a large range of
climate variables found within their range (common species). RCS va-
lues were produced for each species, study extent, data type, and grain
size (N=2360 values). The mean and standard deviation (SD) of spe-
cies-specific RCS values, as well as AOO and CS independently, were
then calculated to produce a species-composite RCS value (mean) and a
metric of discordance and possible bias (SD). High SD can indicate
discordance between rarity values due to sensitivity to grain size (e.g.,
geographic sampling bias within a species), study extent (e.g., different
parts or proportions of a species' range), or data type (e.g., differential
sampling efforts by data set). The RCS mean and SD were then com-
pared among species within each major taxonomic group (fishes, am-
phibians, and reptiles). All spatial analyses were performed in ArcGIS
Version 10.3.1.

2.3. Species life history traits

Life history traits were assembled from published databases where
available (Mims et al., 2010; Myhrvold et al., 2015) and from trait
values compiled from the literature (Mims and Hockman-Wert, 2018).
Five primary life history traits were considered: body size measured as
the natural log of maximum reported adult body length (mm) for fishes
and amphibians and adult body mass (g) for reptiles; generation time
(measured as age at maturity); longevity; fecundity; and parental in-
vestment (taxa-dependent combination of egg size, body size, and
parental care behavior; defined in Appendix: Supplementary Methods).
These traits were widely available and were selected because they
characterize key energetic tradeoffs between longevity, generation
time, and juvenile survivorship (Pianka, 1970; Stearns, 1976;
Winemiller and Rose, 1992). See Appendix (Supplementary Methods
and Table A.3) for additional details on life history traits.

Multivariate life history trait patterns among species were sum-
marized and visualized for each of the three primary taxonomic groups
using a principal coordinate analysis (PCoA). PCoA is a statistical
methodology to explore and visualize similarities/dissimilarities in
multivariate data by optimally representing the variability of a multi-
dimensional data matrix in ordination space (distance) with reduced
dimensionality (Legendre and Legendre, 2012). A species similarity
matrix was constructed using the five continuous life history traits for
species of each major taxonomic group. Four traits were log-trans-
formed for all taxa (body size, fecundity, age at maturity, and genera-
tion time). Parental investment was scaled from 0 to 1 for species
within our major groups (fishes, amphibians, and reptiles) and was log-
transformed for fishes (log[parental investment]+ 1). Trait similarity
between species was calculated according to Gower's similarity coeffi-
cient (Gower, 1971). Statistical significance of the principal coordinates
(eigenvalues) and trait contributions (eigenvectors) were assessed using
Monte Carlo randomization (9999 permutations).

2.4. Evaluating relationships between RCS, traits, and conservation status

Vulnerability is widely acknowledged as multidimensional, and the
intrinsic components of risk that contribute to vulnerability, including
sensitivity and adaptive capacity (Foden et al., 2013), are likely to be
multidimensional as well (Nicotra et al., 2015). Therefore, a single
metric or approach (geographic vs. life history) may not capture all
components of intrinsic risk for a given species. We conducted a series
of analyses to evaluate relationships between species-composite mean
Rarity and Climate Sensitivity index (RCS) values and a suite of species
attributes, or traits, with theoretical and empirically-supported links to
species' climate sensitivity and adaptive capacity. For these analyses,
we calculated the RCS values across the Ecoregional study extent (all
grain sizes for VertNet data) for all species. We then evaluated the re-
lationships between RCS values (at the Ecoregional study extent) across
all three taxonomic groups and species' life history traits using uni-
variate Spearman rank correlation coefficients and visually using mul-
tivariate ordinations (PCoA) where we coded RCS values categorically
(by symbol size) per species in the ordination graphics. In addition to
life history traits, we also examined whether RCS values differed sig-
nificantly according to primary habitat types (aquatic, semiaquatic, or
terrestrial), taxonomy (order), or species conservation status at the state
and federal levels. AOO and CS were also examined according to species
conservation status to compare how these individual components dif-
fered from the combined RCS index. Comparisons of RCS values for
species in different categories of each variable were performed using a
Kruskal-Wallis test by ranks (Kruskal and Wallis, 1952), and a Dunn's
test of multiple comparisons using rank sums (Dunn, 1964) was used for
post-hoc evaluation of pairwise differences between categories where
Kruskal-Wallis results were significant. Finally, regression tree and

M.C. Mims et al. Biological Conservation 228 (2018) 183–194

186



random forest approaches were used to evaluate whether (and how
strongly) species attributes predicted RCS values across all species
(Breiman et al., 1984; Breiman, 2001). Body mass was calculated from
body lengths of fishes using length-weight parameters published in
FishBase (Froese and Pauly, 2016). For comparisons across all taxo-
nomic groups (rather than within taxonomic groups), parental invest-
ment was not included due to the taxon-specific nature of the trait itself.
Body size (log scaled), fecundity (log scaled), age at maturation, long-
evity, taxonomic order, and primary habitat types were evaluated as
predictors of rarity using the R function “rpart” (method= “anova”)
(Therneau et al., 2015). All continuous variables were evaluated for
correlations prior to inclusion in models. In random forest models,
variables explaining the least amount of variation were removed in a
stepwise fashion to identify a final model explaining the highest per-
centage variance. All analyses were performed in R (R Development
Core Team, 2011) using the package “Hmisc” for correlations (Harrell,
2016), “dunn.test” for Kruskal-Wallis and Dunn's tests (Dinno, 2016),
“rpart” for regression trees (Therneau et al., 2015), and “randomForest”
for random forest analysis (Breiman et al., 2018).

3. Results

3.1. Rarity and Climate Sensitivity of ectothermic vertebrates in the Pacific
Northwest, USA

Occurrence datasets across taxa (Fig. 1, Figs. A.1, and A.2; 42,052
total occurrence records analyzed) permitted calculation of Rarity and
Climate Sensitivity (RCS) index values for 114 species of ectotherms
native to Oregon. These included 73% of known freshwater fish species
(N=54), 100% of amphibian species (N=31), and 97% of reptile
species (N=29) native to Oregon (Tables A.3, A.4; Figs. 2, 3). Corre-
lations between RCS values across study extents, data types, and grain
sizes were strong overall, and ranged from an average of 0.88 to 0.99
for fishes, 0.90 to 0.99 for amphibians, and 0.80 to>0.99 for reptiles
(Table 1). Study extent had the greatest effect on the RCS values of
reptiles (lowest mean correlation across taxonomic groups, r=0.89),
followed by amphibians (r=0.91) and then by fishes (r=0.93). RCS
values were highly correlated across grain sizes for all taxonomic
groups, with the lowest mean correlation for fishes (r=0.96) followed
by reptiles (r=0.97) and amphibians (r=0.99). Rankings of RCS va-
lues within taxonomic groups were generally consistent across study
extent, grain size, and data types (Figs. 2 and 3). Across taxonomic
groups, the contributions of Area of Occupancy (AOO) and Climate
Sensitivity (CS) to the RCS index of each species showed similar general
patterns (Fig. 2), particularly for the rarest taxa (Figs. A.7–A.9). The

standard deviations of both AOO and CS for each species across all
study extents, data types, and grain size (e.g., buffer width) were gen-
erally small (Fig. 2). Among the more common taxa (low RCS rankings),
fishes tended to be most congruent across RCS, AOO, and CS rankings.
In contrast, AOO and CS values were more asynchronous for the most
common amphibians and reptiles compared to the most common fishes.
Distribution of RCS values as calculated within the three major taxo-
nomic groups varied, with high (> 0.8) RCS values for 37% of fish
species, 23% of amphibians, and 17% of reptiles (Fig. 3, Figs. A.7–A.9).
RCS values were also calculated across all species combined for directly
comparable values across all taxonomic groups (at the Ecoregional
scale, N=111 species with 48% fishes, 28% amphibians, and 24%
reptiles). Across all taxa, the species with the highest (> 0.8) RCS va-
lues were primarily fishes (70%), followed by amphibians (19%) and
reptiles (11%) (Combo_RCS, Table A.3.B).

3.2. Life history traits and variation

Principal coordinate analysis (PCoA, Fig. 4) revealed different tra-
deoffs between life history traits by taxa. Freshwater fishes had strong
positive correlations between fecundity, longevity, age at maturity, and
body size, and a negative relationship between parental investment and
all other traits examined (Table 2). These same relationships for fishes
were supported in multivariate space where a single primary axis (PC 1)
explained over 87% of the variation (Fig. 4A) and distinguished the
same correlations as revealed in univariate space. A second axis ex-
plaining< 5% of the variance (PC 2) distinguished body size from all
other traits examined (Fig. 4A). Univariate and multivariate analyses
supported a correlation between amphibian age at maturity and par-
ental investment (r=0.62) and indicated a tradeoff between those two
traits and fecundity (age at maturity, r=−0.45; parental investment,
r=−0.55) (Table 2). This tradeoff also was captured along the pri-
mary axis of the PCoA (PC 1), which explained over 63% of the var-
iation observed across amphibian species (Fig. 4B). We also found
support for relationships between body size and three life history traits:
fecundity (r=0.52), generation time (r=−0.51), and parental in-
vestment (r=−0.64) (Table 2, Fig. 4B). PCoA supported that strong
three-way correlation as well as a tradeoff between fecundity and all
other examined life history traits of reptiles (Fig. 4D, PC 2, 29.6%
variation explained). However, univariate analyses suggested the tra-
deoff between fecundity and other life history traits was not significant
(Table 2). Univariate and multivariate analyses supported strong cor-
relations between longevity and body size (r=0.82), longevity and
generation time (r=0.55), and body size and generation time
(r=0.69) for reptiles (Table 2).

Fig. 2. Two components of the species-specific Rarity and Climate Sensitivity (RCS) index: Area of Occupancy (AOO, x-axis) and Climate Sensitivity (CS, y-axis) for
(A) freshwater fishes, (B) amphibians, and (C) reptiles native to Oregon, USA. Symbol size scaled by RCS values, and the standard deviation of AOO and CS values
across all grain sizes, data types, and study extents indicated by grey lines. Asterisk (*) identifies Actinemys marmorata, a pronounced example of the potential effect
of data type on AOO.
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Fig. 3. Rarity and Climate Sensitivity (RCS) index values for all (A) freshwater fishes, (B) amphibians, and (C) reptiles native to Oregon, USA, with species ranked
from most rare (top; left points) to most common (bottom; right points). Values averaged across grain sizes for the Ecoregional study extent (VertNet data only).
Circle indicates mean RCS value, and standard deviation of RCS value indicated by black error bars. Species marked with an asterisk (*) were not assessed for at least
one study extent due to data limitations (too few occurrence points).

Table 1
Spearman's rank correlation coefficients of Climate Sensitivity (Sensitivity), standardized Area of Occupancy (AOO), and Rarity and Climate Sensitivity (RCS) index
values for each study design component of each taxonomic group.

Taxa Study design Sensitivity AOO RCS

Component Average Min Max Average Min Max Average Min Max

Fishes Extent 0.87 0.78 0.99 0.98 0.96 0.99 0.93 0.88 0.99
Grain size 0.92 0.80 0.99 0.97 0.92 0.99 0.96 0.89 0.99
Data type 0.98 0.95 0.99 0.99 0.99 0.99 0.98 0.97 0.99

Amphibians Extent 0.93 0.86 0.99 0.86 0.80 0.90 0.91 0.90 0.93
Grain size 0.96 0.87 > 0.99 0.98 0.92 0.99 0.99 0.97 > 0.99
Data type na na na na na na na na na

Reptiles Extent 0.75 0.35 0.87 0.91 0.86 0.96 0.89 0.82 0.93
Grain size 0.87 0.61 0.98 0.98 0.91 1.00 0.97 0.87 > 0.99
Data type 0.79 0.48 0.82 0.87 0.75 0.93 0.87 0.79 0.93

Correlation coefficients were summarized (average, minimum (min), and maximum (max)) among studies for which only one component of study design (either
extent, grain size, or data type) differed to assess the effect of that component on geographic rarity index values.
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3.3. RCS and species attributes

A relationship between species' RCS values and life history traits at
this regional scale was supported for only one trait for amphibian and

reptiles. For amphibians, we found a positive relationship between age
at maturity and RCS values (r=0.36, p=0.05, Table 2; Fig. 4B). For
reptiles, this same RCS-maturity age relationship was inverse and a bit
weaker (r=0.35, p=0.07, Table 2, Fig. 4C). There were no relation-
ships between RCS values and the life history traits examined for fishes
(Table 2).

Post-hoc exploratory analyses indicated that for species in this
study, RCS values were generally higher among species of conservation
concern at both the federal and state level, but these relationships were
weakened if sub-species status was considered. When conservation
status was considered at the species level only (e.g., protected or con-
servation status considered if applied to the entire species, not sub-
species or other conservation units), RCS values differed among status
categories at both the state and federal level (Fig. 5A and B, Table A.6).
At the federal level, both Endangered species and Species of Concern
had higher RCS values than species with no status (“None”); however,
RCS values were not different between threatened species and those
with no status (Fig. 5A, Table A.7). At the state level, both Critical and
Vulnerable species had higher RCS values than species with no con-
servation status (“None”, Fig. 5B, Table A.7). When sub-species status
was considered, fewer differences in RCS values were observed between
categories of protected status; only one was observed at the federal
level (endangered species had higher RCS values than those with no
protected status; Fig. 5C, Table A.7). No differences were present

Fig. 4. Principal coordinate analysis of trait data for (A) freshwater fishes, (B)
amphibians, and (C) reptiles native to Oregon, USA. Species are represented by
circles, and the rarest species (high RCS values) are indicated by larger circles.
Species protected status is indicated by color as federally threatened, en-
dangered, or a species of concern (orange); a statewide sensitive or vulnerable
species (yellow); or both (red). Species with no protected status or sub-species
protected status are shown in grey. Trait vectors are indicated by black arrows
and labeled by trait, and percent variation explained by principal components is
shown on each axis. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Table 2
Spearman rank correlation coefficients (top triangular matrix) and asymptotic
p-values (bottom triangular matrix) between life history traits and the mean
Rarity and Climate Sensitivity (RCS) index for each major taxonomic group.

RCS LogMass Long Mat LogFec ParInv

Fishes
RCS −0.19 −0.01 0.03 0.21 −0.07
LogBodySize 0.16 0.75 0.76 0.77 −0.72
Long 0.92 < 0.01 0.78 0.74 −0.68
Mat 0.81 < 0.01 < 0.01 0.82 −0.70
LogFec 0.13 < 0.01 < 0.01 <0.01 −0.80
ParInv 0.64 < 0.01 < 0.01 <0.01 < 0.01

Amphibians
RCS −0.13 0.15 0.36 −0.28 0.21
LogBodySize 0.48 0.16 −0.51 0.52 −0.64
Long 0.43 0.38 0.25 −0.17 0.07
Mat 0.05 < 0.01 0.18 −0.45 0.62
LogFec 0.12 < 0.01 0.36 0.01 −0.55
ParInv 0.27 < 0.01 0.70 <0.01 < 0.01

Reptiles
RCS −0.20 −0.26 −0.35 −0.06 −0.21
LogBodySize 0.30 0.82 0.69 −0.08 −0.35
Long 0.17 < 0.01 0.55 −0.17 −0.24
Mat 0.07 < 0.01 < 0.01 0.09 −0.29
LogFec 0.76 0.68 0.38 0.63 −0.20
ParInv 0.27 0.06 0.22 0.12 0.29

RCS Rarity and Climate Sensitivity index; LogBodySize, natural log of adult
length (mm) for fishes and amphibians and mass (g) for reptiles; Long, long-
evity (in years); Mat, age at maturity (in years); LogFec, ln(fecundity); ParInv,
parental investment (defined in Appendix: Supplementary Methods). See
Supplementary Methods for additional details on life history traits.
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between conservation status at the state level (Fig. 5D, Table A.6).
Differences between AOO and CS for categories of protected status
largely aligned with results from the RCS index comparisons (Figs. A.4
and A.5).

We found no differences in RCS values across species' primary ha-
bitat types or order (Fig. A.6, Table A.6). Correlations between con-
tinuous variables were not over the typical threshold of 0.7 (maximum
Pearson's r=0.58 between longevity and mass); thus, all predictor
variables were retained. Regression tree analysis provided no support
for traits, habitat, or taxonomy as predictors of rarity as measured by
RCS values (cross-validated standard error increased with number of
splits, for all combinations of predictors in regression tree analysis;
Table A.5). Random forest also provided no support for species attri-
butes as predictors of RCS values, with negative % variation explained
for all models evaluated.

4. Discussion

4.1. Rarity and Climate Sensitivity index supports direct comparisons
between climate-sensitive species

Multispecies assessments are urgently needed given the vast biodi-
versity at risk of decline or extinction due to environmental changes in
an increasingly human-affected world. To project intrinsic risk of
multiple species to climate change, we used an analytical approach
combining geographic rarity attributes, climate niche breadth, and life
history traits to provide a multidimensional assessment that allowed for
regional cross-taxonomic comparisons. For most species, rarity and
climate sensitivity (as measured by the Rarity and Climate Sensitivity
index, RCS) were similar across three geographic study extents, four
grain sizes, and two data types analyzed, supporting a simplification of

Fig. 5. Rarity and Climate Sensitivity (RCS) index values (y-axis) of native (Oregon, USA) ectothermic vertebrate species by species protected status at the federal (A,
C) and state level (B, D); with status granted at the species level (A, B) or for any sub-species unit within a species (C, D). *Indicates groups significantly different from
unlisted species. Each box delineates the upper and lower quartiles (75th and 25th percentile, respectively), and the line indicates the median (50th percentile).
Whiskers indicate the range of values, and values outside a range of 1.5 times the interquartile range (e.g., 150% the length of the box) are shown as outliers (open
circles).
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broad-based future analyses. We found that Climate Sensitivity (CS)
was generally constrained by Area of Occupancy (AOO), but CS values
varied substantially for species with smaller range sizes.

In terms of niche theory (Soberón and Nakamura, 2009) our treat-
ment of CS was based on actual occupancy and thus most closely cor-
responded to a species' realized niche within the extent that we con-
sidered for species' ranges. Realized climate niche breadth has been
identified as an important predictor of extinction risk in addition to
geographic range of an organism (Saupe et al., 2015). Our findings
indicate that inclusion of realized climate niche breadth (measured here
as CS) may indeed offer additional insight into species' intrinsic risk to a
changing climate over range size alone (Saupe et al., 2015). Among
species included in this study, differences in CS between species with
otherwise similar areas of occupancy could be related to a number of
underlying factors. These include bona-fide differences in sensitivity to
physical factors related to climate variability (e.g., the Grinnellian
niche; Soberón and Nakamura, 2009), differences in species' capacities
to behaviorally respond to climate (Beever et al., 2017), or results of
our specific methodologies (e.g., scale or time-related biases). Regard-
less of the underlying cause, consideration of CS in addition to AOO can
help to identify species that may merit additional investigation with
respect to CS, adaptive capacity, or other factors potentially con-
tributing to intrinsic risk.

The RCS index is valuable to consider for multi-species comparisons
of climate vulnerability because it jointly weighs rarity (area of occu-
pancy) and sensitivity to climate variation, allows a direct comparison
among species, and highlights taxa predicted to be intrinsically vul-
nerable to climate change effects. The strength of the RCS is in the
ability to identify taxa that may be at considerable risk due to com-
bined, spatial intrinsic climate sensitivities (AOO+CS). Although RCS,
AOO, and CS are largely concordant for the rarest taxa, the RCS can be
broken down into its individual components to determine primary
drivers of rarity should AOO and CS be discordant. Additionally, the
RCS index provides a relative metric that allows for direct comparison
of species within a region to one another. In our analyses, RCS values
varied considerably among species, providing objective insights for
those taxa with relatively little information regarding their intrinsic
sensitivity and potential adaptive capacity, especially relative to species
that may have protected status and be more heavily studied. For ex-
ample, we found that a large proportion of fishes (37%) have high
(> 0.8) RCS values, indicating that many freshwater fishes native to
Oregon and the Pacific Northwest may have high intrinsic sensitivity.
This is consistent with other regional assessments; for example, Moyle
et al. (2013) found that 50% of California's native fishes have high
intrinsic (or “baseline”) vulnerability to extinction. We also found that
freshwater fishes made up a higher proportion of taxa with high RCS
values, in comparison to RCS values calculated across all taxa (fishes,
amphibians, and reptiles). Although incomplete assessments and in-
formation can make cross-taxa comparisons difficult, other regional
assessments also indicate disproportionately high intrinsic vulnerability
of freshwater fishes compared to other fully, or partially, aquatic taxa
(Howard et al., 2015). This is likely due to constrained freshwater ha-
bitats (i.e., stream networks at high risk of fragmentation) and limited
dispersal ability of freshwater fishes compared to taxa with partial or
full capacity to disperse across terrestrial habitats (e.g., frogs; Pilliod
et al., 2015). Such conclusions can help provide context and guidance
for regional monitoring and prioritization efforts.

We also found little to no support for correlations between RCS
values and species' life history traits, indicating that geographic rarity
and life histories may inform multiple dimensions of species sensitivity
and adaptive capacity (i.e., intrinsic risk) to climate change (see also
Pearson et al., 2014), particularly at the regional scale of this study.
Assessing vulnerability is a multidimensional challenge, and our results
support the use of a combination of rarity- and traits-based approaches
to provide a relative assessment of potential risk of extinctions and

declines due to climate change for multiple species at broad geographic
extents.

The use of combined approaches provides multiple opportunities to
identify species that may be intrinsically at-risk due to environmental
change, but that may not be identified as such using a one-dimensional
approach. Furthermore, the use of both AOO and CS provide a two-
dimensional geographic rarity assessment that can be combined into
the RCS used in this study or evaluated independently to identify in-
dividual, geographic components of risk. Thus, our results support de-
ploying multiple approaches that incorporate both geographic and
functional species attributes to help identify potentially at-risk species
in a multispecies context.

Our approach has important methodological considerations. For
example, we weighted AOO and CS equally in our RCS index; however,
these two geographic components of intrinsic risk could be weighted
differently should empirical or theoretical evidence suggest one is more
important than the other for some taxa (e.g., Saupe et al., 2015). Ad-
ditionally, we calculated CS over the entire temporal period for which
we had climate data available to examine the breadth of climate con-
ditions for a species' putative, contemporary range. Given the oppor-
tunistic nature of these data, we temporally aggregated all occurrence
points. However, if species ranges have shifted or contracted during the
time period represented by our study, the realized climate niche may be
more restricted than the values presented here. CS values should be
interpreted with this caveat in mind.

4.2. Considerations of grain size, data type, and study extent

Multispecies vulnerability assessments often must consider a trade-
off between high-quality, systematically-collected data for well-studied
species and limited, often opportunistically-collected data for poorly
studied species. Consideration of as many species as possible, as was the
aim of this study, often relies upon data collected in opportunistic or
differing ways that may introduce biases within species or among
species due to differential sampling efforts. Despite general congruence
in RCS values within species, we found that some species' RCS values
were affected by grain size, data type, or study extent. RCS values
generally agreed between analyses derived from multiple datasets.
However, some differences emerged (as highlighted by high standard
deviation) and emphasize the importance of considering biases asso-
ciated with differential sampling efforts, detectability, or sampling sizes
when opportunistically compiling data for multispecies comparisons.
For example, the western pond turtle, Actinemys marmorata (Fig. 2C*),
had nearly two orders of magnitude more occurrence points (N=995)
in the comprehensive dataset than in the VertNet dataset (N=10) at
the three-state extent – a greater proportional difference between the
two datasets than most other reptiles. Using multiple grain sizes pro-
vided a balance between precision and standardization (Hartley and
Kunin, 2003) and helped assess whether sampling effort may affect RCS
scores; additionally, variable RCS values across grain sizes for a species
enabled identification of species with disproportionately high or low
sampling effort, or detection relative to other species (e.g., Lost River
Sucker, Deltistes luxatus; Fig. A.3). These potential effects of differential
sampling efforts are not typically detectable with coarse-filter ap-
proaches that rely only on range maps or convex hull approaches
(Peterson et al., 2017). Still, a relationship between sample size and
RCS was detectable (Pearson's R ranged from −0.68 to −0.71 across
grain sizes for VertNet Ecoregional data for all taxa). This relationship
may be due to rarity of species (e.g., species that are rare are generally
represented by fewer samples), or it could be associated with “true”
sampling error (e.g., non-random collection of sampling) or observation
error (e.g., detectability of species). Future empirical and simulation-
based studies could help parse these processes to evaluate the sensi-
tivity of RCS to sample size.

Our approach of buffered occurrence points at different grain sizes
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also allowed for direct comparison of three distinct taxonomic groups:
freshwater fishes, amphibians, and reptiles. For aquatic species such as
lotic-affiliated freshwater fishes and amphibians, an alternative ap-
proach for sampling unit (or “grain”) would be the use of watershed,
catchments, or other stream network-based units – particularly for
climate sensitivity metrics. Future research could expand the current
study to compare modified grid-based based approaches to network-
based approaches for aquatic organisms, where data allow. This com-
parison is likely an important step in setting regional priorities for
monitoring or conservation efforts and exploring possible biases and
limitations of the RCS approach – particularly if aquatic species are the
primary focus.

We found a high congruence of RCS values across different spatial
extents (Oregon only, three-state, and Ecoregional). However, study
extents constrained by jurisdictional boundaries resulted in higher RCS
values for some species with only a small extent of their total range
within Oregon (e.g., California slender salamander [Batrachoseps at-
tenuatus], Sacramento sucker [Catostomus occidentalis], and western
whiptail [Aspidoscelis tigris]). For species at the periphery of their range,
or if data availability is constrained within jurisdictional boundaries
(e.g., within a state or province), rarity assessments should be tempered
by species-specific geospatial and ecological contexts (i.e., accounting
for edges of species' ranges or endemism within the region).
Ecologically-defined study extents may provide a more reliable spatial
framework for multiple species comparisons and may align with in-
traspecific differences in widely distributed species. Our focus on a
regional extent and a particular state (Oregon) and its neighbors reflects
jurisdictional boundaries at which species are managed. In our case,
this regional focus allowed for the use of species occurrence data and
climate data uniquely available within the spatial scope of our study.
The alternative is to dispense with jurisdictional boundaries and con-
sider an entire species' range, if data availability permits (Akçakaya
et al., 2006). Both approaches provide useful insights.

Our results also highlight the utility of VertNet (Constable et al.,
2010) as a tool for coarse yet systematic assessments of rarity across a
wide range of species. VertNet records are verified by experts with
confirmed species identifications, addressing the problem of mis-
identifications of cryptic species. This was of particular concern for the
freshwater fishes in the study region, some of which are difficult to
identify to species outside of a laboratory setting (P. Scheerer, Oregon
Department of Fish and Wildlife, personal communication). However,
some species had too few or no occurrence records in VertNet, and 27%
of Oregon's native fishes were not assessed in this study due to too few
occurrence points (Table A.4) (Markle, 2016). As analytical approaches
for assessing species vulnerability to climate change continue to ad-
vance (Pacifici et al., 2015), the absence of many species in even the
most basic framework highlights the importance of coupling analytical
advances with empirical monitoring and assessment efforts. Ultimately,
leveraging occurrence data collected opportunistically to inform sen-
sitivity to climate change is most promising for datasets that have un-
dergone expert evaluation or used highly-sensitive techniques (e.g.,
Biggs et al., 2015; Handley, 2015) to facilitate standardized compar-
isons between common, easily identified species and rare or cryptic
species.

4.3. Geographic and traits-based approaches provide insight into multiple
dimensions of intrinsic risk at a regional scale

Traits-based analyses revealed different suites of trade-offs between
key life history traits among taxonomic groups. These results indicated
that traits may inform an additional dimension of intrinsic risk when
compared to geographic approaches. Additionally, the nature of trade-
offs between life history traits and energetic investments differs among
major taxonomic groups. In general, later-maturing species with lower
fecundity (e.g., K-selected species; Pianka, 1970) are considered to be
more at risk from a changing environment due to reduced evolutionary

response capacity (Williams et al., 2008; Pearson et al., 2014). Re-
lationships between life history traits for the region's freshwater fishes
revealed a primary trade-off between longer-lived, later-maturing,
highly fecund species and shorter-lived, early-maturing species with
high parental investment per offspring. These trade-offs are character-
istic of the larger suite of North American freshwater fishes (Mims et al.,
2010). Generation time is one of the primary correlates of extinction
risk (Pearson et al., 2014), and consequently fishes exhibiting a longer-
lived, later-maturing life history may be expected to be more sensitive
to climate change. Interestingly, we found no relationship between
body size and RCS values for freshwater fishes in this region; this
contrasts with evidence of positive correlations between range size and
body size at the national scale (Giam and Olden, 2017). This finding
may be due to restricted range sizes for many large-bodied native fishes
in Oregon, such as native suckers (Catostomidae) including the Lost
River sucker (RCS=0.92), the shortnose sucker (Chasmistes brevirostris,
RCS=0.86), and the Klamath largescale sucker (Catostomus snyderi,
RCS=0.86). This finding underscores the need for regional studies to
complement those at the scale of continents to inform management
priorities that are often set by jurisdictional boundaries smaller than the
entire extent of many species, particularly those with widespread dis-
tributions (Akçakaya et al., 2006). For the region's amphibians, life
history traits distinguished later-maturing, longer-lived species with
high parental investment from early-maturing, short-lived species with
higher fecundity. In the only case of correlation between a life history
trait and rarity and climate sensitivity, longer generation time was as-
sociated with higher geographic rarity for amphibians. As such, species
with small range sizes and longer generation times, including Siskiyou
Mountains salamander (Plethodon stormi), Larch Mountain salamander
(P. larselli), and Columbia torrent salamander (Rhyacotriton kezeri), may
have elevated risk due to multiple, potentially interacting, dimensions
of intrinsic risk along axes of geography and life history. Reptiles also
exhibited a tradeoff (albeit less pronounced) between later-maturing,
longer-lived species and highly fecund species with shorter generation
times. However, rarity and climate sensitivity were randomly dis-
tributed throughout the trait space of reptiles. Rare reptiles that exhibit
K-selected life history attributes may be especially sensitive to climate
change, and further investigation to characterize their vulnerability
may be warranted.

Although life history traits offer a promising first step in addressing
biological (or “functional”) components of intrinsic risk, they are not a
perfect predictor of adaptive capacity (Foden et al., 2013). Adaptive
capacity was only partially addressed by the traits considered here.
Behavior, movement ability, refuge use, ecophysiological factors – and
the plasticity associated with these traits – are all critical in the ability
of a species to respond to a changing climate (Nicotra et al., 2015;
Beever et al., 2016). However, these traits can be difficult to quantify
and are poorly characterized for many taxa. Life history traits, which
tend to be more widely available, offer a surrogate or “proxy” for
adaptive capacity in the absence of measures of behavior, refuge use,
and the plasticity of these traits and others (Nicotra et al., 2015). The
use of proxies for adaptive capacity must be considered in terms of the
uncertainty they introduce when evaluating intrinsic risk. However,
with the wide – and growing – availability of trait data, use of life
history traits as proxies for these more mechanistic components of
adaptive capacity offers a first step in assessing dimensions of intrinsic
risk that are not captured by geographic methods alone. Efforts to
synthesize evolutionary, genetic, and ecophysiological components of
adaptive capacity should help improve the representation of adaptive
capacity in vulnerability assessments in the future (Beever et al., 2016).

4.4. Placing species on the same scale: conclusions and future directions

Assessing vulnerability of species to a changing climate is a complex
and multidimensional problem that includes the evaluation of both
intrinsic and extrinsic components of risk. The multispecies approach
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we developed shows promise as a useful primary filter for identifying
species with intrinsic risk of extinction, but additional factors must be
considered to fully describe species vulnerability to climate change
(Williams et al., 2008; Foden et al., 2013). Understanding climate ex-
posure or the velocity of climate change (Loarie et al., 2009; Burrows
et al., 2014) within a species' range, as well as associated uncertainties
(Wenger et al., 2013), is a key component of a more complete vulner-
ability assessment. For example, a rare species in a relatively stable
environment may be less threatened than a common species occupying
rapidly changing environments. Historical, trend-based analyses are
known to perform better than strictly trait-based approaches in asses-
sing risk of species to climate change (Wheatley et al., 2017).

Though multispecies assessments of intrinsic vulnerability and risk
(i.e., with a focus on sensitivity and adaptive capacity) are subject to
limitations, it is highly unlikely that timely and detailed ecological data
will ever be available for most species of concern. Consequently, a
means of screening or filtering regional species pools, such as the ap-
proach implemented here, is necessary to identify species most in need
of additional information. Though the protected status of a species (or
sub-species) typically accounts for many elements of exposure to en-
vironmental change or extrinsic threats, the range of rarity values
within the “Not Listed” category – including some of the rarest species
in this study – is notable. Species identified as rare, but unprotected,
may warrant additional investigation, and this approach may provide
an early warning for highly-sensitive species (Pritt and Frimpong, 2010;
Stanton et al., 2015).

In summary, we found that the RCS index was relatively stable
across extents, grains, and data types, with climate sensitivity differ-
entiating species with otherwise similar areas of occupancy. We also
found that species with traits associated with climate sensitivity and
low adaptive capacity (e.g., long generation time, low fecundity) were
not necessarily the same species identified as at-risk via the RCS index.
This does not mean one approach is better than another, or that one is
incorrect; rather, it highlights the utility of considering multiple di-
mensions of rarity to provide multiple opportunities for identifying
species of potential conservation concern. This may prove to be critical
for species with little information available, as they may not appear as
intrinsically sensitive with only one means of exploration. Conversely, a
single mode of analysis may artificially inflate sensitivity due to issues
related to artificially low area of occupancy (e.g., undersampling or
edge-of-range issues), and exploration along different dimensions could
shed light on such scenarios. This approach equips managers with the
option of exploring multiple metrics at once, including AOO, CS, the
RCS index (a streamlined way to consider both AOO and CS), and traits.
Regional approaches such as this would benefit significantly from fu-
ture evaluations of the behavior within and among these dimensions of
intrinsic sensitivity, including how they are affected by scale, data type,
and sampling design (or, in the case of opportunistic data, distribution
of locality information). Such approaches could be performed for spe-
cies for which systematic surveys and opportunistic data are available,
as well as in simulation studies.

Our approach enables multispecies, multidimensional efforts to
quantify intrinsic sensitivity to climate change and provides a direct
comparison between data-deficient and data-rich species. Furthermore,
this approach is intermediate in scale, scope, and aim to very coarse-
scale efforts (e.g., range-wide unidimensional multispecies approaches
more appropriate for inference at continental or global scales), and
those that involve data-hungry modeling techniques that may only be
applicable to a few well-studied species. This is particularly important
at regional scales in which managers operate at these intermediate
scales and need tools that allow inclusion of the totality of a region's
species pool – not simply those that are well-studied. We demonstrate
that by considering multiple dimensions of intrinsic risk to climate
change (range size, climate sensitivity, and traits), site-specific locality
data may offer a pathway for ensuring vulnerable, understudied species
do not go overlooked in conservation. By placing all species on the same

scale, natural resource managers can reasonably evaluate a much
broader complement of biological diversity than is typically true in
practice. Such assessments can provide important guidance for invest-
ments to address species that require more information before decisions
can be made, and identify species that may have been overlooked in
current management and conservation plans.
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