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A B S T R A C T

Lidar provides critical information on the three-dimensional structure of forests. However, collecting wall-to-
wall laser altimetry data at regional and global scales is cost prohibitive. As a result, studies employing lidar for
large area estimation typically collect data via strip sampling, leaving large swaths of the forest unmeasured by
the instrument. The goal of this research was to develop and examine the performance of a coregionalization
modeling approach for combining field measurements, strip samples of airborne lidar and Landsat-based remote
sensing products to predict aboveground biomass (AGB) in interior Alaska's Tanana Valley. The proposed
modeling strategy facilitates mapping of AGB density across the domain. Additionally, the coregionalization
framework allows for estimation of total AGB for arbitrary areal units within the study area—a key advance to
support diverse management objectives in interior Alaska. This research focuses on characterization of predic-
tion uncertainty in the form of posterior predictive coverage intervals and standard deviations. Using the fra-
mework detailed here, it is possible to quantify estimation uncertainty for any spatial extent, ranging from point-
level predictions of AGB density to estimates of AGB stocks for the full domain. The lidar-informed cor-
egionalization models consistently outperformed their counterpart lidar-free models in terms of point-level
predictive performance and total (mean) AGB precision. Additionally, including a Landsat-derived forest cover
covariate further improved precision in regions with lower lidar sampling intensity. Findings also demonstrate
that model-based approaches not explicitly accounting for residual spatial dependence can grossly underestimate
uncertainty, resulting in falsely precise estimates of AGB. The inferential capabilities of AGB posterior predictive
distribution (PPD) products extend beyond simply mapping AGB density. We show how PPD products can
provide insight regarding drivers of AGB heterogeneity in boreal forests, including permafrost and fire, high-
lighting the range of potential applications for Bayesian geostatistical methods to integrate field, airborne and
satellite data.

1. Introduction

Coupling remote sensing data with field-based forest measurements
via regression frameworks offers the potential to increase the precision
of inventory estimates and provides a mechanism for mapping the
spatial distribution of forest biophysical properties. A plethora of stu-
dies show strong relationships between lidar metrics and forest

variables (Asner et al., 2009; Babcock et al., 2013; Finley et al., 2014b,
2017; Lim et al., 2003; Næsset, 2004, 2011). These findings have
spurred investment in collecting lidar data for large areas from aircraft
and satellites alike. Of particular interest is the use of lidar to assist in
the estimation of forest inventory parameters in high-latitude terrestrial
ecosystems. From a carbon monitoring perspective, forests in boreal
systems may contain large stores of aboveground biomass (AGB) and
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carbon, but the uncertainty associated with current estimates is ex-
tremely high (Bradshaw and Warkentin, 2015; Pan et al., 2011). Un-
derstanding that the taiga-tundra ecotone is one of the most vulnerable
environmental systems to climate change and that its boreal forests can
contribute substantially to the global carbon cycle, methods are needed
to begin monitoring forest carbon stocks and fluxes for these systems
(Gauthier et al., 2015; Magnani et al., 2007; Neigh et al., 2013).

Current approaches used by the United States Forest Service's
(USFS) Forest Inventory and Analysis (FIA) program to quantify AGB
and carbon stocks in temperate regions rely on extensive, spatially-
balanced field plot probability samples to generate forest inventory
estimates with acceptable levels of precision (Bechtold and Patterson,
2005; Woodall et al., 2015). In vast remote landscapes, implementing
the estimation techniques used by the FIA in the contiguous United
States becomes prohibitively expensive due to the high cost of col-
lecting field inventory data in difficult-to-access boreal regions, e.g.,
interior Alaska (Barrett and Gray, 2011). A potential solution com-
monly put forward to reduce the expense of monitoring AGB in boreal
forest systems is to augment sparse collections of field samples with
remote sensing auxiliary data (Wulder et al., 2012). Lidar-derived
measures of forest structure tend to be highly correlated with AGB field
observations and, thus, are prime candidates to supplement boreal field
campaigns. Additionally, passive sensors such as Landsat can be used to
derive remote sensing data products correlated with forest AGB (Kumar
et al., 2015). Methodologies leveraging relationships between field and
lidar can potentially be further improved by incorporating Landsat-
based products (Margolis et al., 2015; Pflugmacher et al., 2014; Powell
et al., 2010; Zheng et al., 2004).

Here, we address two challenges encountered when attempting to
estimate forest AGB for large areas using lidar coupled with other re-
mote sensing information: 1) incomplete spatial coverage of remote
sensing data; and 2) prediction uncertainty quantification. Incomplete
spatial coverage is a common problem for studies using airborne or
spaceborne lidar over sizable study domains (Andersen et al., 2011;
Bolton et al., 2013; Nelson, 2010; Nelson et al., 2004). Model-based
methodologies used to link field and lidar data to estimate and map
AGB typically require laser altimetry information for the entire spatial
domain of interest (Babcock et al., 2015, 2016; McRoberts et al., 2013).
The expansive nature of boreal systems, make wall-to-wall collections
of airborne lidar data unrealistic. Further, future spaceborne lidar sys-
tems are not designed to procure complete coverage information. Ra-
ther, these campaigns will collect data for relatively narrow bands
along the orbital tracts of the sensors' host satellite (GEDI, 2014; ICESat-
2, 2015). In order to glean any additional information provided by
sampled remote sensing data in a statistically rigorous manner, esti-
mation frameworks that can accommodate incomplete coverage aux-
iliary information are necessary.

The second issue examined here is the problem of obtaining useful
estimates of uncertainty about forest AGB stocks using model-based
statistical procedures—necessary for decision making with imperfect
predictions of forest AGB. In design-based estimation frameworks, error
is assumed to arise from the sampling design, which can be appro-
priately characterized when plots are selected probabilistically
(Cochran, 1977; Thompson, 2002). In model-based inference, error is
attributed to the underlying process by which the response, e.g., AGB, is
generated (Gregoire, 1998; Ver Hoef, 2002). Studies attempting to es-
timate means and totals for areal units using ancillary data within a
model-based paradigm need to specify frameworks that reliably ac-
commodate the structure of the data to be modeled. It can be the case
that modelers who attempt to use model-based forest inventory esti-
mation approaches posit potentially unrealistic assumptions about the
distributional characteristics of model errors, such as independent and
identically distributed (iid) errors. In a spatial context, it is likely the
field observations of AGB will be spatially autocorrelated. If the aux-
iliary information used in the model fails to fully account for the spatial
dependence among field observations, model-based approximations of

AGB uncertainty can be grossly underestimated (Cressie, 1993; Griffith,
2005).

Coregionalization models constructed within a Bayesian hier-
archical framework offer a solution to both above-mentioned chal-
lenges (Gelfand et al., 2004). This class of multivariate spatial regres-
sion models is designed to predict multiple response variables
simultaneously while leveraging spatial cross-correlation structures
between error components of the responses. Further, the model can
accommodate spatial misalignment, i.e., missing response variable
measurements at some locations. If the lidar data is treated as an ex-
planatory variable (used on the right-hand side of the model as in most
lidar studies) predictions are only possible where lidar data is available.
Within a coregionalization model, the lidar-derived metrics can be
treated as additional response variables (moved to the left-hand side)
and jointly predicted with the response of interest, e.g., AGB, across the
entire landscape while explicitly modeling the spatially co-varying re-
lationship among the predictions within and across locations (Finley
et al., 2014a). A coregionalization framework also allows for the in-
clusion of wall-to-wall covariates derived from satellite data to assist in
the joint prediction of forest AGB and lidar information.

When multivariate coregionalization models are estimated using a
Bayesian hierarchical approach, uncertainty occurring at all levels of
the model can be propagated through to prediction and subsequent
estimation of means and totals for areal units (Berliner, 1996; Cressie
and Wikle, 2011; Gelfand and Smith, 1990; Hobbs and Hooten, 2015).
Forms of multivariate spatial prediction models have been in existence
since the 1960s, e.g., cokriging (Matheron, 1963). These non-hier-
archical implementations, however, struggle to effectively deal with
uncertainty associated with spatial covariance parameters, e.g., spatial
variances and decays (Diggle and Ribeiro, 2007, Section 7.1.1). Due to
increased computational efficiencies gained by ignoring uncertainty in
spatial variability, ‘plug-in’ spatial covariance parameters are used in
cokriging interpolation routines available in popular GIS software
packages. This limits their use for fully model-based predictive in-
ference (Schelin and Sjöstedt-De Luna, 2010).

The development of inferential approaches for complex spatial
prediction within a statistical framework is an active area of research.
In a hierarchical modeling context, coregionalization frameworks can
be constructed using random effects that arise from spatially correlated
Gaussian processes and partition variability into spatial and non-spatial
components (Banerjee et al., 2014; Cressie et al., 2009). When for-
mulated as such, estimation approaches including Restricted Maximum
Likelihood (REML) or Markov chain Monte Carlo (MCMC) become
possible in frequentist and Bayesian paradigms of statistical model-
based inference, respectively (Ver Hoef et al., 2004). There are ad-
vantages to choosing a Bayesian hierarchical approach to inference
over counterpart frequentist methods. Access to the full posterior pre-
dictive distribution (PPD), a by-product of Bayesian inference, allows
for easy posterior summarization of means or totals with associated
uncertainty for the full spatial domain in addition to any sub-domains
that may be of interest–even under back-transformation (Stow et al.,
2006). Access to PPDs facilitate subsequent, i.e., post-model-fitting,
analysis to inform ecological or management objectives while ac-
counting for prediction uncertainty. However, these increases in flex-
ibility come with substantial increases in computational demand.

The aim of this study is to develop and examine the performance of
a statistical modeling framework that can 1) incorporate partial cov-
erage lidar data and wall-to-wall Landsat products to improve AGB
density prediction; and 2) accommodate spatially structured variability
unaccounted for by covariates, thereby allowing for more reliable
model-based characterizations of uncertainty (e.g., uncertainty inter-
vals with intended coverage) and improved prediction accuracy. We
look to the Tanana Inventory Unit (TIU) in interior Alaska to explore
the potential for the proposed coregionalization model to estimate
forest AGB stocking by coupling spatially sparse field inventory, partial
coverage lidar and Landsat-derived tree cover data products in boreal
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landscapes. The USFS and National Aeronautics and Space
Administration (NASA) collaborated on the collection of field inventory
data using an augmented FIA sampling design and flight-line samples of
lidar data in 2014. Within this study region, four areal domains con-
taining systematic samples of field and lidar data serve as study sites in
this analysis. We use model comparison to identify strengths and lim-
itations of candidate modeling approaches and information sources.
These comparisons highlight tradeoffs associated with different esti-
mation methods and benefits of coregionalization modeling for large-
area estimation of AGB using sampled remote sensing data. We also
demonstrate the potential of Bayesian spatial hierarchical models for
generating small-area forest parameter estimates and analysis of
variability in ecosystem structure via PPD summarization. At one site,
generating AGB PPDs at a watershed scale offered insight regarding the
drivers of biomass variability in interior Alaska, including permafrost
and fire. We also compare uncertainty intervals generated using the
Bayesian coregionalization model with classical cokriging to highlight
advantages to fitting spatial models using Bayesian inference.

2. Background

2.1. Using lidar and Landsat data fusion for large-area forest AGB mapping

There is increased interest in combining active and passive remote
sensing data sources, such as lidar and Landsat, for forest variable
mapping over large spatial extents. Lidar is attractive for forest height,
volume and AGB prediction because it is able to gather information
relevant to the vertical structure of forests. Using spatially explicit
height information from lidar can lead to more accurate forest variable
maps than those based solely on passive remote sensing information
provided by Landsat or aerial photography. Ediriweera et al. (2014)
explored the use of wall-to-wall lidar and Landsat data to map AGB and
found that models incorporating both remote sensing sources per-
formed better than using either alone. However, it can be expensive to
collect wall-to-wall lidar useful for forest structure characterization
over large areas, e.g., state- or country-level. Given this limitation, there
has been increased research examining the integration of sampled lidar
data, often along flight-lines or orbital tracts, with wall-to-wall readily
available passive imagery to improve inventory mapping efforts. Deo
et al. (2017) explored multiple regression and Random Forest ap-
proaches fusing strip-sampled lidar and Landsat metrics to predict AGB
and showed improved model fits when both remote sensing sources
were used as covariates. Their models, however, could not yield a wall-
to-wall map due to incomplete spatial coverage of the lidar-derived
covariates. Yavaşlı (2016) examined a two-stage processing approach;
first predicting field measured AGB at lidar sample locations, then re-
gressing those lidar based AGB predictions on wall-to-wall Landsat
imagery to map AGB outside the lidar sampled areas. This type of two-
stage approach has the potential to improve point predictions based on
field observations, lidar samples and wall-to-wall imagery. However,
without a way to carry uncertainty across successive modeling stages,
such approaches fail to provide realistic prediction uncertainty esti-
mates in final map products. Without a well designed statistical fra-
mework able to effectively propagate error stemming from all proces-
sing steps through to prediction, multi-step interpolation routines can
only rely on holdout validation metrics to assess uncertainty. Estimates
of overall average error provided by such metrics can be inadequate
when decision-makers attempt to implement policy or management
initiatives using spatially explicit map products. Most proposed forest
measurement, reporting and verification (MRV) systems aim to provide
interpretable measures of spatially explicit uncertainty that account for
all error sources using statistical uncertainty intervals. Such MRV sys-
tems include the United Nations Programme on Reducing Emissions
from Deforestation and Forest Degradation (UN-REDD) and NASA's
Carbon Monitoring System (CMS) (CMS, 2010; UN-REDD, 2009).

2.2. Design-based and model-assisted forest inventory leveraging remote
sensing data

Forest inventory estimation is typically conducted using design-
based statistical principles, relying on probability samples of field plots
to obtain estimates of inventory parameters, such as mean tree density,
total growing stock volume or AGB. Most national forest inventory
programs, including the USFS FIA, have been developed with a design-
based approach to uncertainty quantification in mind. The advent of
readily available remote sensing information has led to new develop-
ments in design-based estimation approaches incorporating models to
improve estimation. Concerning the use of incomplete spatial coverage
lidar, studies employing model-assisted estimators within a design-
based inferential paradigm have been proposed that assume multi-
phase data collection schemes (Gregoire et al., 2011, 2016; Saarela
et al., 2015). In these studies, a model is employed to relate field and
remote sensing data and differences are analyzed using design-based
variance estimators to approximate error associated with mean or total
AGB estimates. When attempting to use remote sensing auxiliary data
to improve AGB estimates in a design-based paradigm, one only re-
quires remote sensing data to cover the plot locations, which can be
accomplished by collecting flight-line strips of auxiliary information
(Nelson et al., 2012). These model-assisted approaches show promise
but there are some significant limitations to their practical use in re-
mote sensing-aided forest inventory. Design-based model-assisted ap-
proaches can be insufficient due to the restrictive sampling designs they
require. We identify four shortcomings of design-based inference in
reference to using wall-to-wall and/or sampled remote sensing data for
forest inventory as follows:

1. Any model-assisted estimator depends on plots and sampled remote
sensing data being established as probability samples, which in
practice, is not easy to implement (Särndal et al., 1992, Chap. 8–9).
Although technically a probabilistic sampling approach, the sys-
tematic sampling designs which are typically conducted (or as-
sumed) offer no means to derive a variance estimator. Rather var-
iance estimators for other sampling designs, such as simple random
sampling, are used to approximate systematic sampling variance
with the understanding that uncertainty will likely be overestimated
(Cochran, 1946). The simulation study comparing different model-
assisted estimation approaches presented in Ene et al. (2012) ex-
emplifies this phenomenon, showing that in the case of two-phase
systematic sampling, uncertainty was over estimated by a factor of
four.

2. Multi-phase designs require the primary sampling units (field ob-
servations) to be a subsample of the secondary sampling units (lidar
strips/grid cells). This renders any AGB field samples missed by lidar
flight-lines or orbital tracks useless for estimation purposes. This
restriction becomes particularly problematic when combining na-
tional-scale forest inventory plots and space-based lidar data to
improve AGB estimation. This can result in estimates relying on field
observations alone (e.g., FIA data) being more precise than those
incorporating sampled lidar information simply because the direct
estimator uses all available field samples, i.e., larger sample size.

3. Model-assisted approaches can provide unstable small-area or post-
stratified estimates of forest variables when excessively low field
sample sizes are encountered in sub-domains (Breidenbach and
Astrup, 2012). Further, design-based confidence intervals require
assumptions about asymptotic normality. In small sample size si-
tuations, this assumption can be unrealistic. Also, design-based ap-
proaches offer no sound methodology for estimating the variable of
interest with uncertainty in sub-domains where no field samples
were collected. Pfeffermann (2013) provides further general dis-
cussion on the shortcomings of design-based estimation strategies
concerning small-area estimation.

4. Model-assisted approaches leveraging sampled lidar data provide no
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mechanism for wall-to-wall mapping of the variable of interest with
uncertainty. The ability to generate mean or total estimates of AGB
alongside maps of AGB density, both with associated measures of
error, can be advantageous for forest management and decision-
making.

2.3. Geostatistics to quantify error in forest inventory and mapping with
remote sensing data

Geostatistical techniques, such as kriging and cokriging (in all their
variants), were originally developed in the early 1960s as statistical
geology tools to estimate underground ore reserves based on nearby
field samples (Matheron, 1963; Cressie, 1990). Created specifically to
obtain optimal interpolation at unknown locations (points or regions)
based on ground-truth data, e.g., best linear unbiased predictions
(BLUP), geostatistical approaches are uniquely relevant to predictive
mapping problems throughout environmental remote sensing, in-
cluding forest inventory applications. Hudak et al. (2002) analyzed five
lidar and Landsat-based modeling approaches to predict forest canopy
height and showed that regressions incorporating spatial information
using geostatistical techniques were better predictors than their non-
spatial counterparts. Tsui et al. (2013) examined several spatial mod-
eling approaches, including regression-kriging and cokriging, to inter-
polate lidar-based predictions of AGB between simulated flight-line
strips leveraging wall-to-wall space-based radar. They found that
geostatistical modeling incorporating wall-to-wall covariates, e.g., re-
gression-kriging, was helpful for extrapolating between lidar strip
samples.

The geostatistical studies mentioned above, along with many others
found in the remote sensing and forest inventory literature, focus only
on optimal interpolation for accurate mapping, disregarding the po-
tential for spatial modeling to characterize uncertainty associated with
predictions (Meng et al., 2009; Mutanga and Rugege, 2006). For good
reason, kriging and cokriging standard errors are often considered un-
derestimates of uncertainty and therefore ignored (Diggle and Ribeiro,
2007, Section 7). This is due to the use of ‘plug-in’ semi-variogram (or

autocovariance) model parameters within the kriging/cokriging pre-
diction routine. By interpreting classical kriging standard errors and
subsequent confidence intervals as statistical measures of uncertainty,
the researcher assumes the estimated spatial covariance parameters,
e.g., nugget, partial sill and range, are known without error. In typical
applications this assumption is far from true. Spatial covariance para-
meters based on semi- and cross-variogram models depend on many
factors, including how observation pairs are binned and variogram
model selected to fit to the empirical variogram points, e.g., ex-
ponential, spherical or Matérn. In addition, the method used to estimate
semi- and cross-variogram model parameters, whether by maximum
likelihood, eye-fitting or others, can lead to very different parameter
estimates and all ignore the inherent variability around the resulting
point estimates. Hierarchical Bayesian approaches to spatial model
fitting allow researchers to relax these restrictive assumptions, leading
to uncertainty characterizations that can be more safely interpreted as
statistical measures of error. By allowing modelers to specify appro-
priately vague priors for spatial covariance parameters within a hier-
archical framework, Bayesian estimation naturally propagates un-
certainty into the posterior (predictive) distribution. Resulting
uncertainty characterizations based on the posterior distribution of
predictions therefore account for error about the spatial covariance
parameters, especially when vague prior distributions are used during
fitting (Gelman et al., 2013). Bayesian hierarchical modeling ap-
proaches are also easily extendable to multivariate response settings
with incomplete observations, e.g., field AGB and airborne lidar sam-
ples (Gelfand et al., 2004).

3. Methods

3.1. Study sites

The four study sites explored in this analysis all fall within the TIU
in interior Alaska (Fig. 1). The Tanana Valley State Forest (TVSF) is a
730 000 hectare (ha) tract of predominately boreal forest stretching
along the Tanana river basin. Nearly 90% of the TVSF is considered

Fig. 1. Map showing locations of the four study sites within the Tanana Inventory Unit (TIU). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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forested and close to 50% of all productive forestland in the TIU is
contained within the boundary of the TVSF (Alaska Department of
Natural Resources, 2016). Tree species typical of taiga forest can be
found throughout, including white spruce (Picea glauca), black spruce
(Picea mariana), tamarack (Larix laricina), quaking aspen (Populus tre-
muloides) and balsam poplar (Populus balsamifera).

Tetlin National Wildlife Refuge (TNWR) is nearly 300 000 ha in size
with lowland areas characterized by extensive wetlands and poorly
drained soils. Wet upland sites are home to black spruce forests whereas
drier landscapes favor white spruce. Deciduous species including
quaking aspen, paper birch (Betula papyrifera) and balsam poplar persist
on well-drained south-facing slopes. Shrub vegetation consisting of
willow (Salix spp.), alder (Alnus spp.) and dwarf birch (Betula spp.) can
be found in lowland areas around water bodies (U.S. Fish and Wildlife
Service, 2016).

Bonanza Creek Experimental Forest (BCEF) is a Long-Term
Ecological Research (LTER) site within the TVSF, consisting of vege-
tation and landforms typical of interior Alaska. The BCEF domain de-
lineated for this study is 21 000 ha and includes a section of the Tanana
River floodplain along the southeastern border. The BCEF is a mixture
of forest and non-forest vegetation compositions featuring white spruce,
black spruce, tamarack, quaking aspen and balsam poplar trees mixed
with willow and alder shrubland species (Bonanza Creek LTER, 2016a).

Caribou-Poker Creeks Research Watershed (CPCRW) is an in-
tensively studied basin reserved for hydrological and ecological re-
search (Bonanza Creek LTER, 2016b). CPCRW is approximately
10 600 ha in size and divided into 11 watershed units. Many research
initiatives at CPCRW involve vegetation and hydrology comparisons
among watershed units (Amatya et al., 2016; Rinehart et al., 2015;
Tanaka-Oda et al., 2016). Upland areas are dominated by paper birch
and aspen on south-facing slopes. North-facing slopes are largely oc-
cupied by black spruce. Patches of alder exist in the understory. Low-
land sites are composed of moss and dwarf shrubs. CPCRW has a rich
source of associated mapped data products including permafrost
polygon layers and fire maps (Chapin and Hollingsworth, 2006; Rieger
et al., 1972; Verbyla, 2011). In 2004, the Boundary Fire in interior
Alaska burned a significant portion of CPCRW, predominantly along the
southeastern border of the research area (Hollingsworth et al., 2013,
Fig. 1).

At all sites, AGB density was not predicted over Water and Barren
Lands grid cells classified by the National Land Cover Database (Homer
et al., 2015). These areas were not considered to be part of the study
domains.

3.2. Field measurements

At TVSF and TNWR, a spatially-balanced systematic design was
implemented using a tessellation of hexagons covering the study areas.
The hexagons were approximately 12 141 ha (30 000 acres) in size.
These polygons are five times larger than the hexagons used to establish
plots in the continental United States. In the summer of 2014, FIA field
crews established standard FIA plots at the center of each hexagon
complete with four subplots; one at the midpoint and three additional
subplots extended radially approximately 36 meters (m) at 0°, 120° and
240°. Each subplot has an approximate 7.3 m radius and an area of
168.11m2. Field measurements were taken using an augmented FIA
inventory design (Bechtold and Patterson, 2005). A notable change to
the typical protocol included the addition of a second micro-plot to be
inventoried in each subplot. Adding a second micro-plot helped to en-
sure that a sufficient number of small diameter trees were tallied (be-
tween 2.5 and 12.7 centimeter (cm) diameter at breast height)
(Andersen et al., 2011). Pattison et al. (2018) provide detailed field
protocols for the TIU inventory pilot project. The same sampling pro-
tocol was used at BCEF and CPCRW, although at a greatly increased
sampling intensity. Field plots at BCEF and CPCRW were each in-
ventoried once in the summer months of 2011, 2012 or 2014. We

recognize the mismatch between field plot measurement and lidar ac-
quisition years for some plots at BCEF and CPCRW is not ideal, but
given that boreal forests in this region are slow growing, we argue that
this level of temporal misalignment will have a negligible affect on
subsequent results. The total number of subplots measured at each site
was 263, 123, 292 and 149 at TVSF, TNWR, BCEF and CPCRW, re-
spectively (note that some subplots at each plot were not measured for
various logistical reasons or fell outside the study area boundary
making the total number of subplots not wholly divisible by four). AGB
for individual trees on subplots were tabulated using the Component
Ratio Method described in Woodall et al. (2015). AGB for all trees on a
subplot with breast height diameters 2.5 cm and larger were scaled to
megagrams per ha (Mg/ha) and summed to obtain subplot-level AGB
density. Prior to model-fitting, a square-root transformation was ap-
plied to the subplot-level AGB densities to better approximate a Gaus-
sian error distribution and ensure positive support following back-
transformation of predicted values. For this analysis each inventory
subplot was treated as a distinct observation. To ease explanation, the
term plot will be used in subsequent sections to refer to the individual
FIA subplots described above.

3.3. Remote sensing data

Lidar data were collected using a flight-line strip sampling approach
with NASA Goddard's LiDAR, Hyperspectral and Thermal (G-LiHT)
airborne imager in the summer of 2014 (Cook et al., 2013). G-LiHT is a
portable multi-sensor system that is used to collect fine spatial-scale
image data of canopy structure, optical properties, and surface tem-
peratures. G-LiHT's on-board laser altimeter (VQ-480, Riegl Laser
Measurement Systems, Horn, Austria) provides an effective measure-
ment rate of up to 150 kHz along a 60° swath perpendicular to the flight
direction using a 1550 nanometer laser. At a nominal flying altitude of
335m, laser pulse footprints were ≈10 cm diameter and sampling
density was ≈6 laser pulses m−2. Pulse densities> 4m−2 are able to
more accurately characterize complex terrain and vertical distribution
of canopy elements in dense stands, and tree height metrics (e.g., 90th
percentile height used here) are largely unaffected by pulse densities
above 1 pulse m−2 (Jakubowski et al., 2013; White et al., 2013). G-
LiHT's lidar is capable of producing up to eight returns per pulse. Point
cloud information was summarized to a 13×13m grid cell size (grid
cell area equal to 169m2) to approximate field plot areas. Over each
grid cell, percentile heights were calculated at 10% intervals ranging
from 10% to 100%. Maximum height (100th percentile height) relative
densities were also calculated at 10 equal width intervals. Additional
metrics including point cloud skewness and kurtosis, among others,
were calculated for each grid cell as well. Identical lidar metrics were
obtained using point clouds extracted over each field plot. Exploratory
regression model fits indicated that 90th percentile height alone ac-
counted for substantial amounts of variability in square-root trans-
formed AGB at all sites (0.78 ≤ R2 ≤ 0.87). Due to the high corre-
spondence between 90th percentile height and AGB, it was decided that
only this metric will be considered for subsequent modeling efforts. G-
LiHT data for the study area are available online at https://gliht.gsfc.
nasa.gov.

To reduce computational demand associated with fitting the pro-
posed models, the gridded lidar covariate sets were subsampled. At the
four study sites, approximately 0.5% of the original lidar grid cells were
randomly selected. The lidar subset grid cells were combined with the
90th percentile height values calculated using lidar point clouds over
the field plots to construct the lidar metric sets for subsequent model-
fitting. Specifically, 1 216 of 199 045, 813 of 132 635, 2 011 of 491 621
and 7069 of 1 374 118 lidar observations were used for model-fitting at
BCEF, CPCRW, TNWR and TVSF, respectively. Increases in computa-
tional power in the future will reduce the need for substantial thinning
of the lidar metric set, allowing for the models tested here to be fitted
using more observations. Also, see Section 6 for discussion about future
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modeling research avenues that may lead to increased computational
efficiencies, thereby alleviating the need to substantially thin sampled
remote sensing datasets to implement the modeling frameworks pro-
posed here.

We examined several Landsat-derived products to evaluate the po-
tential for additional predictive gains over the use of lidar data alone.
Candidate data layers with wall-to-wall coverage over the study area
included percent tree cover for 2010 (Hansen et al., 2013), individual
reflectance bands from Landsat 8 Operational Land Imager (OLI)
composite surface reflectance products for 2014, and vegetation indices
(e.g., Tasseled Cap values and Normalized Difference Vegetation Index,
NDVI) derived from the 2014 Landsat composites. The 2010 percent
tree cover data product exhibited the strongest relationship with field
observations of AGB. Further, including 2014 Landsat composite bands
and indices in addition to 2010 percent tree cover in regressions did not
result in appreciable gains in fit performance. For these reasons, only
the 2010 percent tree cover metric was considered for this analysis. R2

values for preliminary models relating square-root transformed AGB
density and percent tree cover ranged between 0.25 and 0.55 for the
study areas.

3.4. Model overview

3.4.1. Coregionalization model explanation
Fig. 2 is a graphical depiction of the full model tested in this ana-

lysis, labeled as Coregionalization+ Tree Cover in the results tables. The
other models tested can be viewed as special cases of the full model,
formed by setting different model terms to zero. The goal of this section
is to provide a high-level description of the model framework used in
this study. Further details concerning each of the individual tested

models are provided in Section 3.5 and references therein. We point
interested readers to Hobbs and Hooten (2015) for an accessible over-
view of Bayesian modeling principles in general and Banerjee et al.
(2014) for specific discussion about the models tested in this analysi-
s—including the coregionalization geostatistical framework.

Fig. 2 shows distinct, but connected, components for each response
variable—AGB (shown in blue) and lidar-derived 90th percentile height
(shown in green)—highlighting that this is a joint modeling framework.
Level 1 of the hierarchical framework contains three elements for each
response. The trend model element for both response components is a
simple linear regression with an intercept and slope parameter asso-
ciated with the Landsat-derived tree cover data x(s). We define s to be a
vector of geographic coordinates, e.g., easting and northing, in the
spatial domain D . In addition to the trend model, each component
contains a spatial random effect (vy(s) and vz(s)) designed to model any
spatially structured variability left after accounting for the trend model.
The variance parameters τ τ( and )y z

2 2 account for any uncorrelated error
once the trend models and spatial random effects are considered.

Level 2 of the hierarchical model contains the makings of the Level
1 spatial random effects, i.e., the uy(s) and uz(s) spatial correlation ef-
fects and a shared cross-covariance matrix K. The cross-covariance
matrix parameters estimate the spatial variability for each spatial
random effect (k11 and k22) and also their covariance k12. The covar-
iance parameter, k12, is the link between the AGB and 90th percentile
height model components and is informed by observations of spatially
coinciding responses (i.e., locations where both AGB and lidar-derived
90th percentile height are observed). For our setting, estimates of k12
provide two benefits. First, for locations where neither response is ob-
served, the joint prediction of AGB and lidar-derived 90th percentile
height will maintain their observed covariance. Second, in spatial

Fig. 2. Overview schematic of the full hierarchical model, labeled as Coregionalization+ Tree Cover in the results tables. Solid black arrows indicate stochastic
linkages for model parameterization, and dashed black arrows show deterministic links based on input data. To fully specify this framework as a Bayesian hier-
archical model, all parameters stochastically linked to other parameters or observations need to be assigned probability distributions. The blue rectangle contains all
model elements (pink rectangles) associated with the aboveground biomass component and the green rectangle contains all model elements associated with the lidar
component of the full model. The Landsat tree cover data and cross-covariance matrix belong to both model components, providing the link between the primary and
secondary responses. The levels of the hierarchy are delineated with gray bars highlighting the multi-level structure of the model. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
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misalignment settings the value of the observed response will inform
the prediction of the missing response, e.g., prediction of AGB will be
improved for locations where 90th percentile height is observed along
the lidar transects.

In addition to informing prediction where one or both of the re-
sponses are missing (via the K) the proposed model informs prediction
by pooling information from spatially nearby observations through a
spatial correlation function which is informed by a set of spatial cor-
relation parameters that reside in Level 3. As formalized in the sub-
sequent section, these parameters control the geographic range of
spatial dependence exhibited by the random effects.

3.4.2. Model distributional assumptions and fitting
Recall, our goal is to produce spatially explicit predictions of AGB

density and estimates of total (mean) AGB, both with quantifiable
measures of uncertainty that reflect the fact that none of the estimated
parameters are known without error. Such error quantification requires
a probabilistic modeling framework and some parameter distributional
assumptions. Fig. 2 identifies the parameters to be estimated and the
hierarchal dependence of the model components, but like most gra-
phical depictions, the distributional assumptions are omitted (Lunn
et al., 2012). We elect to fit the model described in Fig. 2 using Bayesian
model-based inference to handle the process of propagating uncertainty
stemming from all stages of the hierarchy through to prediction and
subsequent estimation of total (mean) AGB.

Beginning with the Data Level, we assume that square-root trans-
formed AGB, y(s), arises from a normal distribution with a mean equal
to the trend model plus a spatial random effect, i.e., β0y+ β1yx
(s)+ vy(s), and a variance parameter, τy

2. Similarly, we assume lidar-
derived 90th percentile height, z(s), to be distributed normally with a
mean equal to the trend model plus a spatial random effect, i.e.,
β0z+ β1zx(s)+ vz(s), and a variance parameter, τz

2.
In Level 1 of the hierarchy, we see the trend model intercept and

slope in addition to the spatial random effect are unknown for both
components. Moreover, the variance parameters, τy

2 and τz
2, also need to

be estimated. To estimate these parameters within a Bayesian statistical
paradigm, we need to set prior distributions for them. Further, these
prior distributions should reflect the researchers belief about what these
parameters are before observing the data used to fit the model. In our
case, we have no prior knowledge about the value of the intercept and
slope parameters so we establish prior distributions to be normal with a
mean equal to 0 and a variance of 10 000, i.e.,N (0, 10 000). The large
variance for these priors makes them sufficiently vague, i.e., this choice
of prior should not influence posterior inference beyond the observed
data. We also have no prior understanding about the true values for the
τy

2 and τz
2 variance parameters aside from knowing they are non-nega-

tive. For the τy
2 and τz

2 parameters we assume an Inverse-Gamma (IG)
prior with a mean equal to a reasonable starting value and an infinite
variance. The infinite variance setting establishes these as vague priors.
The spatial random effects in Level 1, = ′v s s sv v( ) ( ( ), ( ))y z , are set equal
to A u(s), where = ′u s s su u( ) ( ( ), ( ))y z and A is the square-root of the
cross-covariance matrix K. This is a deterministic link, meaning that we
do not need to specify a distribution for v(s) directly. Rather we specify
distributions for the unknown parts of v(s), namely uy(s), uz(s) and K.

In Level 2, both the uy(s) and uz(s) random effects are assumed to be
distributed according to a Gaussian process (GP) with a mean equal to
zero and a variance defined by a spatial correlation function. The cor-
relation functions chosen for this analysis were exponential decay
functions which depend on separation distances between points in the
domain and spatial decay parameters. This class of correlation function
is very useful for modeling spatially autocorrelated variability. When
points in the domain are close together, the correlation is near one. The
further the two points are from each other, the closer the correlation is
to zero. The rate at which the functions approach zero depends on the
spatial decay parameters (the Level 3, ϕy and ϕz parameters). The K
matrix controls the variance of each of the random effects and also the

covariance between them. Again, K is unknown so we set a prior for it
to be an Inverse-Wishart (IW) distribution. The IW distribution is a
multivariate extension of an IG distribution that is useful for setting
priors for variance-covariance matrices. The IW distribution has two
parameters that define its shape. The first is a degrees of freedom
parameter which we set to two because we are modeling a two-variable
(bivariate) variance-covariance matrix. The second parameter for the
IW prior is a variance-covariance matrix that we set to .1I2, where I2 is a
2×2 identity matrix. This is a vague prior specification. Without
standardization, the k12 covariance parameter (an element of the var-
iance-covariance matrix K) can be difficult to interpret. Because of this,
we present a correlation estimate between the spatial random effects in
the results tables labeled cor(uy(s),uz(s)) which is a simple transforma-
tion of the estimated cross-covariance matrix.

Since the Level 3 spatial decay parameters, ϕy and ϕz, need to be
estimated, sensible priors need to be set for them. We set uniform prior
distributions for ϕy and ϕz with a lower bound near zero and large
upper bound in effort to make these priors as vague as possible. Spatial
decay parameters are difficult to interpret directly, so we present ef-
fective range’s in the results tables (ery and erz) which are simply
transformations of ϕy and ϕz to distance units (km).

Now that we have defined the likelihood, random effect and prior
distributions for all unknown parameters we can construct a sampling
algorithm to draw from the posterior distribution of our model para-
meters. For this analysis we used the spBayes package written for the
R statistical computing environment which contains a class of functions
designed to fit models as defined in Fig. 2, namely, the spMisalign
function.

3.5. Candidate models

To assess the utility of coupling plot-level AGB measurements with
sampled airborne lidar and the 2010 Landsat-based tree cover index
developed by Hansen et al. (2013), six candidate models were com-
pared. Candidate models were evaluated on fit to observed data, pre-
diction performance and total (mean) AGB estimation precision. The
following sections provide the statistical modeling details required to
implement the six candidate models. The mathematical notation used
in the following sections closely mirrors that of Banerjee et al. (2014).

3.5.1. Null
The Null model is designed to be a baseline regression where no

information beyond plot measurements is considered. The Null model is

= +s sy β( ) ϵ ( ),y y0 (1)

where y(s) is a square-root transformed field-based measurement of
AGB at location s in spatial domain D . β0y is an intercept parameter to
be estimated. Since the Null model contains no additional regression
parameters, the estimated value for β0y should approximate the overall
mean of square-root transformed AGB from the field plots, i.e.,
∑ = sy n( )/i

n
i1 , where n is the total number of field plots measured. The

error term ϵy(s) captures any departure from the overall mean at site s.
Imposing a distributional assumption on N∼ϵ 0 Iτ( , )y

iid
y
2 —where

= … ′ϵ s s s τ(ϵ ( ), ϵ ( ), , ϵ ( )),y y y y n y1 2
2 is a variance parameter to be estimated

and I is an n× n identity matrix—allows for model-based statistical
inference concerning model parameters and predictions. Any statistical
inference, e.g., credible intervals and posterior standard deviations,
evaluated for model parameters or predictions can be considered reli-
able if the distributional assumptions about ϵy are not seriously vio-
lated.

3.5.2. Tree Cover
The Tree Cover model is

= + +s s sy β β x( ) ( ) ϵ ( ),y y y0 1 (2)
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where y(s) and ϵy(s) are defined as in model (1). The intercept, β0y, and
regression slope parameter, β1y, together describe the linear relation-
ship between the Landsat-based tree cover product, x(s), and y(s).

3.5.3. Spatial
Incorporating a spatial random effect into model (1) establishes the

Spatial model and is

= + +s s sy β w( ) ( ) ϵ ( ),y y y0 (3)

where y(s), β0y and ϵy(s) are defined as in model (1). Here, wy(s) is
modeled as a Gaussian process (GP) with a zero mean and a spatial
covariance function that captures the covariance between any pair of
locations s and s*, i.e., wy(s) ∼ GP(0,C(s,s*;θy)). We specify

=s s θ s sC σ ρ ϕ( , *; ) ( , *; )y y y
2 where ρ(s,s*;ϕy) is a valid spatial correla-

tion function and =θ σ ϕ{ , }y y y
2 , where ϕy is a correlation decay para-

meter and = wσ Var ( )y y
2 . For this analysis, we assume an exponential

correlation function, i.e., ρ(∥s −s*∥;ϕy)= exp(−ϕy∥s −s*∥), where ∥s
−s*∥ is the Euclidean distance between locations s and s* in kilometers
(km). This specification for the spatial correlation function requires the
modeler to assume the spatially structured error variability to be sta-
tionary and isotropic, meaning that spatial variability left after ac-
counting for the trend does not depend on location or direction. This is
true for the spatial random effects defined in subsequent sections as
well. To ease interpretation of the ϕy estimates, corresponding effective
range estimates, labeled ery, are presented in the results tables. We
define ery as the distance (km) where the spatial correlation between
locations drops to 0.05. See Gelfand et al. (2004) for specifics on how to
calculate effective spatial ranges using coregionalization models.

3.5.4. Spatial + Tree Cover
Introducing a spatial random effect in model (2) defines the Spa-

tial+ Tree Cover candidate written as

= + + +s s s sy β β x w( ) ( ) ( ) ϵ ( ),y y y y0 1 (4)

with all terms defined previously.

3.5.5. Coregionalization
A bivariate coregionalization model for the joint prediction of

square-root transformed AGB and lidar-derived 90th percentile height
is
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where y(s), β0y and ϵy(s) are defined previously. z(s) is 90th percentile
height recorded at location s and, because no other covariates appear in
the sub-model for z(s), β0z approximates the overall mean of the sam-
pled 90th percentile heights. Here, uy(s) and uz(s) are modeled as GPs
with zero means and spatial correlation functions (rather than covar-
iance functions as with wy(s) in Spatial and Spatial+ Tree Cover
models), i.e., uy(s) ∼ GP(0,ρ(s,s*;ϕy)) and uz(s) ∼ GP(0,ρ(s,s*;ϕz)),
where ϕy and ϕz are spatial decay parameters. We again assume an
exponential correlation function for both random effects, i.e., ρ(∥s
−s*∥;ϕy)= exp(−ϕy∥s −s*∥) and ρ(∥s −s*∥;ϕz)= exp(−ϕz∥s −s*∥).
Effective range estimates (ery and erz) are again presented in the results
tables to facilitate interpretation. The matrix = ′K AA models the cross-
covariance between the spatial random effects uy(s) and uz(s). The
2× 2 parameter matrix A is the lower triangular square-root of K. The
diagonal and off-diagonal elements of K capture the spatial processes
variances and covariances, respectively. We assume the errors asso-
ciated with the lidar sub-model are independent and normally dis-
tributed, i.e., N∼ϵ 0 Iτ( , )z

iid
z
2 , where = … ′ϵ s s s(ϵ ( ), ϵ ( ), , ϵ ( ))z z z z m1 2 and τz

2

is a variance parameter to be estimated.

3.5.6. Coregionalization+Tree Cover
The Coregionalization model described in model (5) can be extended

to include wall-to-wall Landsat-derived tree cover information as such,
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where all terms with the exception of β1z have been previously defined.
The lidar sub-model intercept, β0y, and regression slope parameter, β1y,
together describe the linear relationship between the Landsat-based
tree cover product, x(s), and z(s).

3.6. Candidate model parameter estimation

For all six candidate models, a Bayesian paradigm of statistical in-
ference was pursued, which required us to specify prior distributions for
all model parameters. Then inference proceeded by sampling from the
posterior distribution of the parameters. We set prior distributions to be
as vague as possible to minimize their influence on posterior inference.
For the regression intercept and slope parameters, i.e., β0y, β1y, β0z and
β1z, we assumed a N (0, 10 000). Any spatial and non-spatial variance
components, i.e., σy

2, τy
2 and τz

2, were assigned an inverse Gamma prior
IG(a,b). The a hyperparameter was set equal to 2, which results in a
prior distribution mean equal to b and infinite variance. The b hyper-
priors were determined using preliminary semi-variograms fit to the
residuals of the non-spatial models (1) and (2). The spatial decay
parameters, ϕy and ϕz were assigned uniform priors with support over
the geographic range of the study areas. The matrix K was assigned an
Inverse-Wishart prior with hyperparameter degrees of freedom set to 2
and diagonal scale matrix equaling 0.1I2, where I2 is a 2× 2 identity
matrix. Algorithms for efficient estimation of parameters for all six
candidate models are detailed in Banerjee et al. (2014) and Finley et al.
(2014a). All six models were fitted using the spBayes package written
for the R statistical computing environment (Finley et al., 2015).

3.7. Grid cell-level and areal estimation of aboveground biomass

After collecting a sufficient number of samples from the posterior
distribution of a model's parameters via MCMC (following typical
sampling and convergence diagnostics in Gelman et al. (2013)), com-
position sampling was used to obtain samples from the posterior pre-
dictive distribution (PPD) of square-root AGB density at all grid cell
locations within the study area (Banerjee et al., 2014). Then each
sample from the PPD was back-transformed (squared) to approximate
spatially explicit AGB density PPDs ( = …∼ ∼ ∼∼ ′( ( ) ( ) ( ))y s s sy y y, , , n1 2 0 ,
where n0 is the number of prediction units, e.g., grid cells). Useful
summaries of ∼ sy ( ) for each grid cell, such as, median, standard de-
viation, or credible interval width, can be mapped to examine the
spatial distribution of AGB density and associated uncertainty. ∼y can
also be summarized to estimate average AGB densities for arbitrary
areal units. For example, to estimate mean AGB density for the full
spatial domain we need to integrate the PPD of AGB density over the
entire study region, i.e., D D

D
∫=∼ ∼− s sy y( ) | | ( )d1 where D| | is the area

of the domain D . We can approximate this integral via MCMC in-
tegration using a fine grain systematic grid of ∼ sy ( ) samples, i.e.,

D D
L≈ ∑∼ ∼−
= sy y( ) | | ( )l l

1
1 , where ℒ is the number of equally-spaced

prediction grid points covering domain D . To convert D∼y ( ) to a PPD
for total AGB, we multiply each sample by D| |. This process also can be
used to generate mean AGB density PPDs for sub-domains by in-
tegrating grid cell-level PPDs over redefined areal blocks, i.e.,
B

B
∫ ∼− s sy| | ( )d1 , where ℬ is a sub-region of D . See Banerjee et al.

(2014, Chap. 7) for a more thorough discussion on summarizing PPDs
over areal units. Total (mean) AGB estimates presented in the results
tables were obtained by calculating the median of the total (mean) AGB
PPD for the study area (labeled Est). The standard deviation of the total
(mean) AGB PPD is presented in the results tables as well and serves as
a model-based uncertainty estimate for total (mean) AGB (labeled SD).
Relative standard deviations (labeled RSD in the results tables) were
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calculated as SD/Est * 100%.

3.8. Classical cokriging prediction

Cokriging interpolation is commonly used in situations where
multiple response variables need to be predicted across space and those
responses are posited to co-varying across the domain. A cokriging
approach is able to spatially predict the responses of interest accounting
for spatial autocorrelation. Additionally, cokriging variance estimates
can be calculated at prediction locations. Further, block-cokriging can
generate small- and large-area estimates of the mean of a response.
Given the similar capabilities of cokriging to the coregionalization fra-
mework examined here and the documented use of cokriging in forestry
and remote sensing, it is useful to conduct a comparison of the two
approaches to potentially identify the merits and shortcomings of each
(Meng et al., 2009; Mutanga and Rugege, 2006; Tsui et al., 2013; Wang
et al., 2009). Our interest is in understanding if either method produces
more accurate point predictions and whether uncertainty intervals
produced by each approach exhibit intended coverage.

Cokriging interpolation of the BCEF, CPCRW, TNWR and TVSF data
sets was implemented using the gstat package for the R statistical
computing environment, similarly to the cokriging estimation approach
detailed in Tsui et al. (2013). Specifically, the variogram function was
used to develop semi- and cross-variograms for the square-root AGB
and 90th percentile height responses. Subsequent exponential semi- and
cross-variogram models were fitted using the gstat package's fit.lmc
function. The fit.lmc function forces restrictions on semi- and cross-
variogram parameter estimates to ensure resulting cokriging variance-
covariance matrices are positive definite. Positive definiteness is a re-
quirement for resulting cokriging prediction variances to be valid, i.e.,
variances be non-negative. One particularly strong restriction imposed
by fit.lmc is that ranges for all semi- and cross-variogram models need
to be equal. This is not a restriction for cokriging in general but ap-
proaches for building valid cross-variograms relaxing these types of
restrictions can be complex and are not typically used in applications of
cokriging in practice (Ver Hoef and Barry, 1998). Once the models were
fitted, the gstat package's predict.krige function was used to
garner predictions and associated prediction variances for unobserved
locations.

3.9. Cross-validation

To examine grid cell-level predictive performance of the six candi-
date models, for each study site, a 10-fold holdout design was con-
structed by randomly assigning AGB plot observations to 10 approxi-
mately equal size groups. Square-root transformed AGB for each
holdout group was sequentially predicted given model parameters es-
timated using data in the remaining nine groups. 10-fold holdout cross-
validation root mean squared prediction error (CV-RMSE) was calcu-
lated using back-transformed holdout posterior predicted medians and
observed AGB for each model at all four sites. The model with the
lowest CV-RMSE was considered the best grid cell-level predictor. The
holdout predictions used for CV-RMSE calculation were also used to
generate the holdout residual semi-variograms presented in Fig. 3.

A similar 10-fold cross-validation procedure was used to obtain out-
of-sample predictions using cokriging for the four sites. To avoid po-
tential bias introduced due to back-transformation of cokriging pre-
dictions and variances, we elected to compare prediction accuracy and
uncertainty interval coverage with the Coregionalization model on the
transformed ( Mg/ha ) scale. Back-transformation in a frequentist set-
ting is much more complicated than with the Bayesian models (Stow
et al., 2006). Empirical 95% coverage probability was assessed by di-
viding the number of 95% prediction uncertainty intervals containing y
(s) by the total number of observations at the site. For intervals ex-
hibiting proper coverage, the empirical 95% coverage probability
should be near 0.95.

4. Results and discussion

4.1. Comparing non-spatial and spatial models

Tables 1–4 present parameter posterior distribution summaries and
prediction accuracy estimates for the six candidate models applied to
the BCEF, CPCRW, TNWR and TVSF datasets. At all four sites, results
show the Nullmodels to be more precise estimators of total (mean) AGB
(labeled Est in Tables 1–4) than their Spatial counterpart models, evi-
denced by lower total (mean) AGB standard deviations (labeled SD in
Tables 1–4). However, the Null models also show dramatically higher
CV-RMSE accuracy assessments compared to the Spatial models at all
sites, suggesting that the models including spatial random effects pro-
duced more accurate predictions.

The increased accuracy coupled with apparent decreased precision
of the Spatial model predictions highlight the role of distributional as-
sumptions concerning the SD and CV-RMSE estimates. The CV-RMSE
metric employed here does not rely on distributional assumptions
concerning stochastic model components because it only assesses the
ability of the PPD median point estimate to approximate observed AGB
at plot locations—see Efron and Gong (1983) for discussion on ro-
bustness of cross-validation strategies to modeling assumptions. On the
other hand, model-based summaries of PPDs, such as, the SD precision
metric presented in Tables 1–4, heavily rely on modeling assumptions.
Strong violations of distributional assumptions made during model-
fitting can lead to unrealistic uncertainty estimates. Looking at the Null
model holdout residual semi-variograms in Fig. 3, we see that, at all
four sites, there is strong residual spatial autocorrelation. This means
that the Null models likely violate the iid error assumption imposed to
conduct model-based inference about any parameters or predictions
using standard deviations or other posterior distribution summaries.
The SD metrics for total (mean) AGB resulting from the Null models are
underestimated because the errors are falsely assumed to be in-
dependent of one another (Griffith, 2005). The Spatial model semi-
variograms, however, show no signs of residual spatial structure, in-
dicating that w(s) has effectively absorbed any extraneous spatial
variability (Fig. 3). Relaxing the iid error assumption by incorporating
spatial random effects allows for modelers to better interpret model-
based uncertainty measures. Total (mean) AGB SD estimates garnered
via the Spatial models are more reliable than the Null model SDs.

A similar phenomenon is observed when comparing the Tree Cover
and Spatial+ Tree Cover model predictive performance measures, al-
though differences were smaller. Comparing the Null and Tree Cover
holdout residual semi-variograms in Fig. 3 shows that introducing the
Landsat-derived tree cover variable absorbs a portion of the spatially
structured variability in AGB at all four sites. However, spatial structure
still exists in the holdout residuals of the Tree Cover models. We argue
that, due to positive residual spatial autocorrelation, SD estimates are
underestimated for the Tree Covermodels as well. Comparisons between
the univariate non-spatial (Null and Tree Cover) and spatial (Spatial and
Spatial+ Tree Cover) models underscore the need to adhere to posited
distributional assumptions concerning stochastic model components
when attempting to interpret model-dependent measures of predictive
performance, including grid cell-level and areally integrated PPDs.

4.2. Comparing spatial and coregionalization models

At all four sites, the lidar-informed Coregionalization models out-
performed their counterpart lidar-free Spatial models by producing
lower CV-RMSE accuracy assessments and total (mean) AGB SDmetrics.
Similarly, the Coregionalization+ Tree Cover models produced better
accuracy measures than the Spatial+ Tree Cover models. Prediction
gains resulting from the incorporation of lidar information are not
surprising considering that lidar-derived measures of forest height are
strongly related to AGB. It is encouraging, however, that this relation-
ship produces appreciable gains in total (mean) AGB estimation
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precision at such low lidar sampling intensities—see Section 3.3 for
description of the lidar dataset subsampling. Tables 1–4 show the cor-
relation between the spatial random effects for the AGB and lidar sub-
models (labeled cor(uy,uz) in Tables 1–4). Median point estimates of
correlation range between 0.73 and 0.89 indicating strong correspon-
dence between square-root transformed AGB density and 90th per-
centile height. Since the relationship between the AGB and lidar re-
sponses is so substantial, considerable improvements in predictive
performance and total (mean) AGB estimation precision are realized. At

all sites, relative standard deviations (labeled RSD in Tables 1–4) for the
Coregionalization models are nearly half that of the Spatial models.

At the sites with sparser field and lidar sampling, i.e., TVSF and
TNWR, we see further gains in grid cell-level prediction accuracy and
total (mean) AGB certainty when the Landsat-based tree cover product
is included—evidenced by Coregionalization+ Tree Cover models
having lower RSD and CV-RMSE estimates than counterpart
Coregionalization frameworks. Examining effective range estimates (la-
beled ery and erz in Tables 1–4) offers insight concerning this

Fig. 3. Holdout residual semi-variograms for the six candidate models at all four study sites.
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Table 1
Bonanza Creek Experimental Forest (BCEF) candidate model parameter estimates, prediction accuracy metrics and total (mean) aboveground biomass (AGB) esti-
mates. Est=estimated total (mean) AGB with associated 95% credible interval in parentheses. SD=posterior predictive standard deviation for AGB total (mean)
estimate. RSD=relative standard deviation for total (mean) AGB estimate (SD/Est * 100%). CV-RMSE=10-fold holdout cross-validation root mean squared pre-
diction error accuracy assessment.

Table 2
Caribou-Poker Creeks Research Watershed (CPCRW) candidate model parameter estimates, prediction accuracy metrics and total (mean) aboveground biomass
(AGB) estimates. Est=estimated total (mean) AGB with associated 95% credible interval in parentheses. SD=posterior predictive standard deviation for AGB total
(mean) estimate. RSD=relative standard deviation for total (mean) AGB estimate (SD/Est * 100%). CV-RMSE=10-fold holdout cross-validation root mean squared
prediction error accuracy assessment.
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Table 3
Tetlin National Wildlife Refuge (TNWR) candidate model parameter estimates, prediction accuracy metrics and total (mean) aboveground biomass (AGB) estimates.
Est=estimated total (mean) AGB with associated 95% credible interval in parentheses. SD=posterior predictive standard deviation for AGB total (mean) estimate.
RSD=relative standard deviation for total (mean) AGB estimate (SD/Est * 100%). CV-RMSE=10-fold holdout cross-validation root mean squared prediction error
accuracy assessment.

Table 4
Tanana Valley State Forest (TVSF) candidate model parameter estimates, prediction accuracy metrics and total (mean) aboveground biomass (AGB) estimates.
Est=estimated total (mean) AGB with associated 95% credible interval in parentheses. SD=posterior predictive standard deviation for AGB total (mean) estimate.
RSD=relative standard deviation for total (mean) AGB estimate (SD/Est * 100%). CV-RMSE=10-fold holdout cross-validation root mean squared prediction error
accuracy assessment.
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phenomenon. Effective range estimates help us understand how far-
reaching the underlying spatial dependence structure is in the re-
sponses, i.e., y(s) and z(s), after accounting for covariates. The longer
the effective range, the larger the proximate neighborhood each grid
cell draws information from. The erz median point estimates for the
TNWR and TVSF Coregionalization and Coregionalization+ Tree Cover
models extend less than the 10 km separation distance between lidar
flight-lines at those sites (4.49 km< erz<7.10 km). However, the ef-
fective range estimates for the corresponding models exceed the
average flight-line separation distances of< 1.5 km at BCEF and
CPCRW (2.15 km< erz<2.41 km). On average, grid cell-level predic-
tions at BCEF and CPCRW are borrowing more proximate lidar data to
inform prediction because there is more available within the effective
range of spatial dependence at these sites. Since field plots are also
closer together at CPCRW and BCEF compared to TVSF and TNWR, grid
cell predictions are potentially tapping into more information provided
by nearby AGB observations as well. Any AGB explanatory power of-
fered by the Landsat tree cover product is already explained by simply
borrowing strength from nearby field and lidar data to inform predic-
tion at BCEF and CPCRW. However, since field and lidar data are much
farther apart at TVSF and TNWR, we do see benefit from the wall-to-
wall information provided by the Landsat-based tree cover product.

4.3. Comparing Coregionalization and Coregionalization+ Tree Cover
mapped predictions

Figs. 4–7 show maps of PPD median point estimates and standard
deviations for AGB density using the Coregionalization and Cor-
egionalization+ Tree Cover models. The flight-lines where lidar was
collected are easily discernible in the Coregionalization model prediction
maps (Figs. 4 and 5). We see differentiation of AGB within lidar strips
and near field plot locations. As one moves away from regions where
information was collected, predicted AGB densities retreat to the global
mean. Additionally, grid cell-level uncertainty maps show a trend of
higher predictive precision in close proximity to field and lidar ob-
servations compared to areas farther away. Even though the Cor-
egionalization models provide reliable estimates of total (mean) AGB
and show favorable CV-RMSE accuracy assessments, the resulting pre-
diction maps leave something to be desired. Having no information
outside the flight-lines, the coregionalization models only rely on bor-
rowing strength from nearby observations to inform prediction between
strips. The addition of the wall-to-wall Landsat tree cover product al-
lows for better differentiation of median point predictions outside lidar
strips, leading to maps that are potentially more useful for assessing the
spatial distribution of AGB across the landscape. At TVSF and TNWR,
CV-RMSE estimates suggest that the addition of the Landsat tree cover
product leads to better map accuracy. However, at BCEF and CPCRW,
the inclusion of Landsat tree cover appears to only offer cosmetic

Fig. 4. Mapped grid cell-level predictions of aboveground biomass density (a and c) and associated standard deviations (b and d) (Mg/ha) using the Coregionalization
model for Bonanza Creek Experimental Forest (BCEF) and Caribou-Poker Creeks Research Watershed (CPCRW). The red polygon boundary shown in c and d defines
the area burned during the 2004 Boundary Fire at CPCRW. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
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adjustments to resulting maps, not actual increases in prediction ac-
curacy. It seems that the intensity of the field and lidar sample at BCEF
and CPCRW mixed with constructing models to borrow information
from neighboring locations offered more predictive advantage than
simply including Landsat tree cover as a covariate.

4.4. Watershed unit AGB estimates at Caribou-Poker Creeks Research
Watershed

Fig. 8 shows estimated mean AGB densities for the 11 watershed
units at CPCRW predicted using the Coregionalization+ Tree Cover
model with a permafrost polygon layer overlaid. Average AGB density
was negatively correlated with permafrost presence at the watershed
unit level. By appropriately summarizing the model's PPD surface, it is
possible to obtain an estimate of the correlation between AGB density
and permafrost proportion at the watershed unit scale while accounting
for uncertainty in the AGB density predictions. By calculating the cor-
relation between the proportion of the watershed unit covered in per-
mafrost with each MCMC sample of average AGB density, we can obtain
a PPD summary characterizing their degree of correlation. The median
correlation point estimate representing the relationship between per-
mafrost and watershed-unit AGB density is −0.685. The 95% upper
and lower credible bounds for this estimate are −0.587 and −0.764,
respectively. Since this interval does not include zero, we can conclude
that permafrost presence is negatively related to AGB density with 95%
certainty.

We can also explore potential causes for departure from the overall

trend between watershed unit-level AGB density and permafrost. We
see that the watershed units furthest below the trend-line (points
highlighted in red in Fig. 8) correspond to watersheds with the highest
proportion of area burned during the 2004 Boundary Fire, suggesting
that these areas are still in a state of recovery from fire after a decade.
We may expect these two watershed units to continue to accrue AGB
until they begin to align with the overall trend between AGB density
and permafrost. Fig. 8 captures the effect of fire history on watershed-
unit AGB variability beyond what would be expected due to variation in
permafrost coverage at CPCRW.

5. Comparing Coregionalization model and cokriging predictions

Table 5 presents holdout prediction accuracies and 95% coverage
probabilities for the cokriging interpolations and Coregionalization
models at BCEF, CPCRW, TNWR and TVSF. The results in Table 5 in-
dicate that cokriging and Coregionalization holdout prediction ac-
curacies were similar at all four study sites, although prediction accu-
racy estimates were slightly better for the Coregionalization models at
BCEF, CPCRW and TNWR. This is likely due to the restrictions imposed
on the fitted variogram models necessary for valid cokriging prediction
variances. In contrast, the Coregionalization framework estimated using
Bayesian inference ensures positive definiteness by construction,
meaning that, as long as the covariance functions used for the spatial
correlation elements and the K variance-covariance matrix are positive
definite, the model is estimable. Positive definiteness for the spatial
random effect variances and covariances is satisfied through

Fig. 5. Mapped grid cell-level predictions of aboveground biomass density (a and c) and associated standard deviations (b and d) (Mg/ha) using the Coregionalization
model for Tetlin National Wildlife Refuge (TNWR) and Tanana Valley State Forest (TVSF). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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appropriate prior specification, e.g., the IW prior on K is a distribution
of only positive definite matrices and the spatial decay priors only
consider positive values. The increased flexibility in modeling spatial
autocorrelation provided by the Coregionalization framework estimated
using Bayesian inference may be leading to slightly improved predic-
tion over the gstat implementation of cokriging at BCEF, CPCRW and
TNWR. As shown in Table 5, the empirical 95% coverage probabilities
for the Coregionalization model holdout uncertainty intervals better
match the intended 95% coverage than the cokriging intervals. The
cokriging confidence intervals are far too narrow, leading to low em-
pirical coverage. This is a direct result of the inability of classically
estimated cokriging to account for uncertainty associated with the
semi- and cross-variogram parameter estimates. These variogram
parameters are difficult to estimate with high confidence and methods
that fail to account for this uncertainty will produce unreliable coverage
intervals. This is a common problem identified for many geostatistical
models estimated using frequentist approaches, including kriging and
cokriging (Sjöstedt-De Luna and Young, 2003; Schelin and Sjöstedt-De
Luna, 2010).

6. Conclusions and next steps

The goal of this analysis was to develop and test the performance of
a statistical modeling framework that can 1) incorporate partial

coverage lidar data and wall-to-wall Landsat products to improve AGB
density prediction; and 2) accommodate spatially structured error,
thereby allowing for more reliable model-based characterization of
uncertainty and improved prediction. Through model comparison we
were able to show that a coregionalization framework can effectively be
used to couple sampled lidar and field data to improve grid cell-level
AGB density prediction accuracy and increase confidence in total AGB
estimates. Rigorous model comparison also demonstrated the adverse
effects of spatial autocorrelation and how including appropriately
specified random effects within a Bayesian hierarchical framework can
absorb spatial dependence in the response variable not accounted for by
the covariates.

An examination of Coregionalization and Coregionalization+ Tree
Cover model mapped predictions revealed benefits of including wall-to-
wall information to better visualize spatial variability in AGB. We also
saw that greater differentiation of AGB median point estimates pro-
vided by Landsat-based tree cover data does not necessarily lead to
improved grid cell-level predictive performance. It can be the case that
simply constructing models to leverage proximate observations may
improve prediction more than supplementing auxiliary data, especially
when sites are intensively sampled and ancillary information is only
weakly related to the response variable.

We demonstrated the ability to summarize PPDs from the
Coregionalization+ Tree Cover model to generate small-area estimates

Fig. 6. Mapped grid cell-level predictions of aboveground biomass density (a and c) and associated standard deviations (b and d) (Mg/ha) using the
Coregionalization+ Tree Cover model for Bonanza Creek Experimental Forest (BCEF) and Caribou-Poker Creeks Research Watershed (CPCRW). The red polygon
boundary shown in c and d defines the area burned during the 2004 Boundary Fire at CPCRW. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

C. Babcock et al. Remote Sensing of Environment 212 (2018) 212–230

226



Fig. 7. Mapped grid cell-level predictions of aboveground biomass density (a and c) and associated standard deviations (b and d) (Mg/ha) using the
Coregionalization+ Tree Cover model for Tetlin National Wildlife Refuge (TNWR) and Tanana Valley State Forest (TVSF). (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. Left figure maps watershed unit-level mean aboveground biomass (AGB) (Mg/ha) with associated standard deviations in parentheses using the
Coregionalization+ Tree Cover model for Caribou-Poker Creeks Research Watershed. Solid polygon boundaries delineate watershed units. Translucent purple polygon
identifies area covered in permafrost. The black dashed line delineates the border of the 2004 Boundary Fire. The red outlined watershed units are identified as the
two units with the highest proportion of area burned during the 2004 Boundary Fire. The right figure shows a scatter plot highlighting the relationship between the
proportion of permafrost in a watershed unit and AGB density. The dashed trend-line shows the general relationship between AGB density and permafrost proportion.
The points shown in red correspond to the red outlined watershed units in the left figure. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
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of mean AGB density at CPCRW. Small-area estimates are a challenge
for traditional estimation methods (Breidenbach and Astrup, 2012;
Goerndt et al., 2011), and have also limited the ability to investigate
fine-scale spatial heterogeneity within larger management units such as
the TVSF or TNWR. In contrast, our results demonstrate how small-area
integrated PPDs can be used to examine correlation with other in-
formation about sub-domains while accounting for prediction un-
certainty. Relating watershed unit-level AGB density to permafrost and
fire history polygon layers uncovered possible drivers of AGB varia-
bility among watershed units at CPCRW while explicitly accounting for
uncertainty of AGB density predictions. This exercise shows the in-
ferential potential of AGB PPD products generated using Bayesian
hierarchical spatial models beyond simply mapping AGB density.

Upcoming satellite lidar missions, e.g., ICESat-2 and GEDI LiDAR,
are designed to collect data along orbital transects but not provide
complete spatial coverage. Results from this study suggest that it may
be possible to implement a coregionalization approach to augment the
FIA program's network of permanent sample plots over the contiguous
United States with sampled space-based lidar to improve forest in-
ventory estimates. Further, Landsat products can be incorporated to
potentially improve point-level prediction accuracy and areal inventory
estimates at a national scale.

The coregionalization framework detailed here is very computa-
tionally intensive. After dramatically subsampling the lidar dataset
(described in Section 3.3), the TVSF Coregionalization model took two
days to complete a single MCMC chain of 50 000 iterations on a Linux
workstation equipped with an eight-core processor leveraging threaded
BLAS and LAPACK C++ libraries (www.netlib.org/blas and www.
netlib.org/lapack). When lidar and/or field observations exceed 10
000, fitting this class of multivariate spatial models within a Bayesian
paradigm becomes intractable on typical desktop computers due to
computational difficulties related to inverting massive matrices. Recent
advances in GP modeling theory and computation have unearthed new
approaches for estimating spatial random effects that circumvent the
limitations imposed by the necessity to invert large matrices (Datta
et al., 2016a,b; Finley et al., 2017). Implementing Nearest-neighbor
Gaussian process priors (NNGP) in place of traditional GPs alleviates the
need to invert large covariance matrices, allowing modelers to effec-
tively estimate complex Bayesian spatial models using many remote
sensing and field observations on standard workstations. In the future,
we will investigate the approximation of GPs with NNGPs to allow for
the inclusion of more field and remote sensing samples within cor-
egionalization frameworks to further improve grid cell-level prediction
and areal estimation certainty. These techniques will allow broader
applicability of robust modeling techniques to other disciplines, based
on the large data volumes typically associated with spatially extensive
airborne and satellite remote sensing products. We also plan to extend
this class of multivariate spatial models to allow for the simultaneous
prediction of multiple forest variables, e.g., tree density, basal area and
AGB, while leveraging spatial cross-correlations between all responses.
By jointly predicting many forest inventory parameters we will be able
to preserve the inherent relationships between them and use those

intrinsic correlations to aid spatial prediction and subsequent areal
estimation of all included forest inventory parameters.
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