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ABSTRACT. Coupled human and natural systems (CHANS) research highlights reciprocal interactions (or feedbacks) between
biophysical and socioeconomic variables to explain system dynamics and resilience. Empirical models often are used to test hypotheses
and apply theory that represent human behavior. Parameterizing reciprocal interactions presents two challenges for social scientists:
(1) how to represent human behavior as influenced by biophysical factors and integrate this into CHANS empirical models; (2) how
to organize and function as a multidisciplinary social science team to accomplish that task. We reflect on these challenges regarding
our CHANS research that investigated human adaptation to fire-prone landscapes. Our project sought to characterize the forest
management activities of land managers and landowners (or “actors”) and their influence on wildfire behavior and landscape outcomes
by focusing on biophysical and socioeconomic feedbacks in central Oregon (USA). We used an agent-based model (ABM) to compile
biophysical and social information pertaining to actor behavior, and to project future landscape conditions under alternative
management scenarios. Project social scientists were tasked with identifying actors’ forest management activities and biophysical and
socioeconomic factors that influence them, and with developing decision rules for incorporation into the ABM to represent actor
behavior. We (1) briefly summarize what we learned about actor behavior on this fire-prone landscape and how we represented it in an
ABM, and (2) more significantly, report our observations about how we organized and functioned as a diverse team of social scientists
to fulfill these CHANS research tasks. We highlight several challenges we experienced, involving quantitative versus qualitative data
and methods, distilling complex behavior into empirical models, varying sensitivity of biophysical models to social factors,
synchronization of research tasks, and the need to substitute spatial for temporal variation in social data and models, among others.
We offer recommendations that other research teams might consider when collaborating with social scientists in CHANS research.
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INTRODUCTION
Coupled human and natural systems (CHANS) research has
emerged as a new approach for studying complex social-ecological
interactions. This trend coincides with growing policy interest
among land management agencies in the United States to manage
natural resources at landscape scales—across ownerships and
administrative jurisdictions—such that policies and management
correspond to the spatial scales of ecological processes and
structure (e.g., U.S. Forest Service 2006, Collins and Larry 2007,
Ager et al. 2015). Empirical models often are central to these
research efforts, for representing complex interactions between
humans and their environment, evaluating policy alternatives,
and guiding policies toward greater resilience (Folke et al. 2002).
Agent-based models (ABMs), in particular, are often used to
integrate human behavior models with ecological models in
CHANS studies, thereby enabling researchers to simulate human
agents (or actors) engaging and interacting with other actors
according to prescribed rules in a dynamic environment (e.g.,
Parker et al. 2003, Millington et al. 2008, An 2012, Rounsevell et
al. 2012, Filatova et al. 2013). Such modeling efforts can aid in
understanding human decision-making, revealing emergent
behaviors that arise in CHANS that feature many actors with
differing goals, and informing policy development (e.g., Chapin
et al. 2006, Happe et al. 2006, Nagendra and Ostrom 2014).  

A primary task for social scientists involved in CHANS modeling
efforts is representing human behavior in empirical models.
Conceptually, this involves characterizing how individual actors
interact with their environment via landscape management

decisions in response to biophysical and socioeconomic
conditions (or feedbacks) (Anderies et al. 2004, Liu et al. 2007,
Ostrom 2007, Spies et al. 2014). Actor–landscape interactions can
take place at multiple spatial (e.g., parcel, landscape, region),
temporal (e.g., short- versus long-term), and organizational scales
via actors’ management activities and interactions with other
actors, agencies, and organizations (e.g., Pickett et al. 2005).
However, designing and parameterizing CHANS empirical
models to represent actor decision-making is challenging
(Filatova et al. 2013). Some researchers devise actor decision rules
based on theoretical, generalized, static, or scale-indeterminate
assumptions about how actors behave, without actual empirical
data that describe behavior. This can lead to erroneous model
parameters, faulty representations of behavior, and ultimately
oversimplified policies and practices should policy-makers
attempt to use model results to inform policy (Ostrom 2007,
Carpenter et al. 2009). In contrast, excessively complex
representations of human behavior can be difficult to apply in
management settings. Empirical data, when available and
examined within appropriate theoretical frameworks, likely offer
the greatest potential for representing CHANS processes to
improve policy (e.g., Janssen and Ostrom 2006, Carpenter et al.
2009, Filatova et al. 2013). Such research necessitates
multidisciplinary and interdisciplinary approaches that address a
diversity of human system components (e.g., Rounsevell et al.
2012, Filatova et al. 2013).  

For example, factors internal to the human system, such as
individual actors’ risk perceptions, beliefs, and environmental
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values (e.g., Paton 2003, Lindell and Perry 2012), tend to mediate
behavioral responses to ecological conditions (Meyfroidt 2012).
Adequately evaluating these factors can involve a combination of
social science disciplines. Also, although CHANS ABMs tend to
focus on individual actor behavior, there is increasing interest in
how organizations (e.g., agencies, nongovernmental organizations,
community groups) may influence actor behavior via social
networks (e.g., Basu et al. 1998, Barton et al. 2000, Monticino et
al. 2007, Honghui et al. 2010, Rounsevell et al. 2012). There also
is a need for developing CHANS models that represent the
influence of spatial factors on interactions among actors and their
outcomes (e.g., Filatova et al. 2013) at broad spatial scales that
are appropriate to addressing contemporary natural resource
management issues. Given these needs, a key challenge for
CHANS research teams is coordinating work among the often
diverse social scientists tasked with developing the data and
methods to represent actor behavior in CHANS empirical models.
This includes identifying appropriate conceptual frameworks and
theories to guide analysis, defining how data will be collected and
analyzed, and developing ways to use the results of these efforts
to devise decision rules or other representations of actor behavior
for empirical models (e.g., ABMs).  

Conducting interdisciplinary research is both a long-standing
science goal and challenge in the United States and internationally
(Daily and Ehrlich 1999, Metzger and Zare 1999, Tress et al.
2003), with integration of social and natural sciences an urgent
priority (e.g., Redman et al. 2004, Shindler et al. 2017). Roy et al.
(2013:745) defined interdisciplinary research as “scholars of
different disciplines collaborating to develop terminology,
research approaches, methodologies, or theories that are
integrated across multiple disciplines.” This differs from
multidisciplinary research, which includes “perspectives and
methods from several disciplines, [but where project] researchers
still act within and preserve the exemplary concerns of their own
discipline” (Klein 1990, Roy et al. 2013:745). Others have
addressed challenges involved in conducting interdisciplinary
research and offered guidelines to would-be practitioners. Many
papers focus on overcoming conceptual, linguistic, perceptual,
and philosophical differences among individual disciplines as
barriers to interdisciplinary discourse and collaboration (e.g.,
Turner and Carpenter 1999, Eigenbrode et al. 2007). Cross-
disciplinary research also can be challenged by operational
difficulties in combining disparate concepts and methods from
different disciplines (Eigenbrode et al. 2007:55–56), and
associated lack of common vocabulary between biophysical and
social scientists (e.g., Fox et al. 2006), among other factors. Some
scholars have argued the benefits of using particular analytical
“tools,” including ABMs, to structure and facilitate integration
among the multiple disciplines in research pertaining specifically
to human–natural interactions (e.g., Zvoleff  and An 2014).
Researchers who attempt to integrate social and biophysical
sciences are cautioned against simplifying or “compressing” one
discipline in favor of others, such that a given discipline is reduced
to overly simple equations or rules that do not adequately
represent the “critical dimensions of the problem” under study
(Wear 1999:300).  

We drew on these developing interdisciplinary research guidelines
to investigate and represent actor behavior within the CHANS of
the fire-prone landscape of central Oregon. However, in addition

to the recommendations outlined by others concerning
interdisciplinary research, we suggest that those teams engaged in
interdisciplinary efforts, and CHANS efforts specifically, could
benefit from learning about how other similarly engaged scholars
from diverse disciplines collaborated on CHANS projects. Such
reflections could aid ongoing and future CHANS research efforts
by identifying potential problem areas regarding data, analysis,
and modeling issues, as well as how to organize and function as a
team of diverse disciplines. This might enable other CHANS teams
to avoid potential pitfalls (e.g., Turner and Carpenter 1999).
Toward this end, we (1) briefly summarize what we learned about
actor behavior on this fire-prone landscape and how we represented
it in an ABM, and (2) more significantly, report on the challenges
we encountered while working as a multidisciplinary team of social
scientists to develop data and methods for representing actor
behavior in a CHANS ABM. Our social science team spanned
anthropology, economics, environmental history, political science,
and sociology. Details about the CHANS project, ABM, and
landscape simulations can be found in Barros et al. (2017), Spies
et al. (2017), and Shindler et al. (2017). Details about individual
social science contributions can be found in Charnley et al. (2017),
Olsen et al. (2017), and Steen-Adams et al. (2017). We highlight
the lessons we learned as a team of social scientists who developed
decision rules for the ABM, identify challenges we encountered,
and discuss their implications for CHANS research.

STUDY CONTEXT AND SOCIAL SCIENCE OBJECTIVES
Fire-prone landscapes feature several CHANS characteristics (Liu
et al. 2007, Fischer et al. 2016a), including complexity, feedbacks
lagged in time and space, and heterogeneity in the ways that
different actors contribute to and mitigate wildfire risk (Ager et al.
2015). Wildfire risk, we assume, includes both the likelihood of
wildfire and the likelihood of damage (e.g., Brenkert-Smith et al.
2006). Actors may be influenced by combinations of internal
factors (e.g., wildfire risk perceptions, mitigation costs, and local
forest conditions) and external factors (e.g., federal, tribal, and
state land management policies, timber markets, and regional
demographic trends) (Steelman 2010, Steelman and McCaffery
2011). Influencing factors (or variables) also can be “fast” or
“slow” (Gunderson and Holling 2001, Folke 2006, Walker et al.
2012) depending on the amount of time it takes for a factor to
manifest influence. In fire-prone landscapes, fast variables might
include post-fire management, a new information campaign, an
unusually active fire season, or rapid buildup of forest fuel
following a wildfire or insect outbreak, for example. Slow variables
might include changes in federal law, human demographic trends
(e.g., in-migration), macroeconomic conditions, and the influence
of climate change on the wildfire regime. Because slow variables
operate over longer time frames, they can sometimes influence fast
variables, for example, by imposing constraints on responsiveness
to altered conditions (Carpenter and Turner 2000, Walker et al.
2012). Whether variables are fast or slow can affect the degree to
which particular variables can be examined effectively using short-
term studies (e.g., Walker et al. 2012).  

In our conceptual framing (Fig. 1), we assumed that the human
system features a set of unique and interacting actor groups
reacting to and in turn effecting changes to biophysical conditions
and processes within the natural system according to their risk
perceptions and management behaviors. These actor groups play
two predominant roles: (1) public land management agencies and
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private forestland owners manage the landscape directly to
influence biophysical variables (e.g., via harvesting or thinning to
reduce stand density), which results in altered fuel conditions and
corresponding changes in the likelihood of high-severity wildfire,
among other landscape outcomes (Spies et al. 2017); and (2)
agencies and organizations with an interest in wildfire
management and policy strive to influence land managers and
landowners through social networks—via business contacts,
public meetings, person-to-person contacts, and involvement with
formal incentive programs, among other civic activities (Fischer
et al. 2013a, Fischer and Jasny 2017). In some cases, individual
actors may play both roles, such as federal land management
agencies (e.g., U.S. Forest Service) which might collaborate with
local government agencies to coordinate wildfire risk mitigation
efforts. We assumed that all these actors are influenced in their
management or social network activities by biophysical variables
that are relevant to wildfire and its management, including forest
vegetation and stand structure, fuel conditions, and topography.
In addition to these internal variables are external factors,
including federal and state policy, commodity markets, and
climate change, among others, that influence the CHANS of fire-
prone landscapes (Fig. 1). Within the natural system, for example,
biophysical conditions interact with wildfire and climate regimes
to produce a biophysical fire network (Ager et al. 2014). Although
external drivers can influence CHANS variable dynamics, we
assumed they remain largely uninfluenced by feedbacks in our
study area landscape (e.g., Walker et al. 2012).

Fig. 1. Conceptual coupled human and natural system model of
a fire-prone landscape.

Our CHANS project proposed using systems models, integrated
research, and collaborative learning to improve understanding of
how human actors adapt to living in fire-prone forests (e.g.,
Walters 1986, Berkes and Folke 1994) and how existing policies
could be made more effective. We conceptualized actor behavior
as being influenced by biophysical and socioeconomic conditions
and processes at various spatial and temporal scales, with actors
both influencing and being influenced by landscape conditions
(or feedbacks), such as wildfire hazard (Spies et al. 2014). We

planned to (1) examine how land management policies, social
networks and institutions, and actor behaviors interact to
influence landscape dynamics and produce intended and
unintended consequences for biodiversity and ecosystem services;
(2) examine how sensitive landscape outcomes are to feedbacks
via landscape patterns, social networks and institutions, and
alternative policies; and (3) examine how external drivers, such as
climate change and markets, might alter landscape outcomes. We
were especially interested in representing the management
behavior of agency or other organizational actors because fire-
prone landscapes commonly include significant public, tribal, or
private corporate actors (e.g., Moritz et al. 2014). To advance
these goals, project social scientists were tasked with identifying
and characterizing factors—biophysical versus socioeconomic,
internal versus external, and fast versus slow—that influence
actors’ forest management and wildfire risk mitigation behavior,
and with using this information to parameterize actor decision-
making in an ABM.  

Our study area was central and south-central Oregon, east of the
Cascade Mountains (Fig. 2). The area includes a diversity of
ownerships, institutions, and land management objectives. The
landscape features a patchwork of growing urban areas (Bend,
OR) in the northern portion, and other small cities (Klamath Falls
and Lakeview) in the south-central portion amidst a matrix of

Fig. 2. Central Oregon (USA) study area and major
ownerships.
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remote rural areas. Year-round and seasonal residents are drawn
to the study area for its aesthetic and recreational amenities.
Although historically the region experienced frequent wildfires,
recent wildfires have been comparatively large and severe, and
sometimes originate on the federally managed wildlands and
spread to the wildland–urban interface (WUI) (Spies et al. 2014,
Stine et al. 2014). These biophysical and socioeconomic
circumstances challenge public officials and land managers to find
ways to protect both forest resources and homes (Fischer et al.
2016a).  

Six landscape actor groups occupy different shares of the
landscape: federal government (58% of the total land area),
especially the U.S. Forest Service (48%), state government (1%),
tribal (8%), private corporate (12%), and private individuals,
including family forest owners (8%) and WUI homeowners (12%)
(Fig. 3). Forest Service lands include the Fremont-Winema
(912,676 ha) and Deschutes (648,308 ha) national forests, with a
range of management objectives (Charnley et al. 2017). Tribal
lands include the Confederated Tribes of the Warm Springs,
which focus on commercial timber management and ecological
restoration (Steen-Adams et al. 2017). Private corporate forest
landowners (10,000 ha or more) typically have focused on
commercial timber production but have undergone significant
recent change, with landownership turnover among the largest
companies, and divestment of timberlands by forest industries to
Real Estate Investment Trusts and Timber Investment
Management Organizations (Charnley et al. 2017). Private
individual actors include family forest landowners (parcels 2 ha
or greater) and homeowners (parcels less than 2 ha) located within
the WUI. Their land management goals are highly variable,
ranging from aesthetics, wildlife habitat, timber production, and
privacy (e.g., Fischer et al. 2013b). We excluded urban landowners
to focus on those lands that are most subject to, and influential
on, wildfire risk.

Fig. 3. Distribution of study area land among landscape actors
(BLM: Bureau of Land Management; WUI: wildland–urban
interface).

HOW WE CONDUCTED OUR SOCIAL SCIENCE WORK
Our project team began taking shape during the grant proposal
writing phase, with a diverse array of social scientists invited to

join a smaller group of ecologists, ecological engineer, and systems
analysts to consider research questions we would address and
methods we would use. We developed an initial integrative
theoretical and methodological framework (e.g., Heemskerk et
al. 2003, Redman et al. 2004) which the project team believed
would accommodate the diverse theories and methods of our
multidisciplinary team (Spies et al. 2014). The presumption that
the ABM Envision (Spies et al. 2017) would be core to our research
approach as a tool for integrating the work of disparate disciplines
(e.g., Zvoleff  and An 2014) was established by project leaders at
the start, and was noted by proposal reviewers as a strength of
our project proposal. Project leaders—a landscape ecologist and
an ecological engineer—initially sought social scientist team
members who expressed interest in helping develop information
concerning actors’ forest management and wildfire risk mitigation
behaviors as they are influenced by key biophysical and
socioeconomic conditions and processes related to wildfire, for
use in developing decision rules for representing actor behavior
in the ABM. Additional social scientists were added to the project
along the way when it was felt they had expertise that might aid
the project. Project leaders sought to secure a range (or
“portfolio”) of social science expertise, including some potential
redundancy in interests and skill sets, to ensure there was sufficient
capacity over the multiyear course of the project to address the
diverse array of human–natural interactions that characterize
wildfire management issues in fire-prone landscapes.  

Following proposal funding, the project got underway with more
than 10 social scientists formally listed as participants. These
included an anthropologist, three economists, an environmental
historian, a political scientist, and four sociologists, as well as
several graduate students who participated in different phases of
the project. Specific social science research tasks pertaining to
investigating actor behavior and developing decision rules for the
ABM were assigned using largely an ad hoc process whereby
individuals initiated work based on their own prior interests and
using methods with which they were most familiar. The
anthropologist who had previously studied federal land managers
planned to collect and analyze data using qualitative methods to
examine federal and state land managers and corporate forest
owners (Table 1). The environmental historian with an interest in
Native American tribes planned to use mostly qualitative methods
to examine that actor group. A sociologist with experience in
studying homeowners examined that group, while the economists
previously involved with family forest owners examined that
group. Other project social scientists either did not involve
themselves directly in examining actor behavior in a manner that
facilitated development of decision rules for the ABM or
examined broader contextual issues such as public attitudes
toward wildfire and stakeholder engagement, again somewhat
commensurate with their own prior research interests.  

Although the specific methods used to examine each actor group
aligned with the disciplinary focus of the particular social scientist
(s) who led the examination of each group, method choice also
was based in part on characteristics of the actor groups
themselves, including the number of distinct entities or
individuals within each group. Although federal and state
agencies, tribes, and private corporate owners manage most (68%)
of the study area landscape, the number of individual managers
is low (Table 1). Thus, the anthropologist and environmental
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Table 1. Primary actor groups identified, specific entities examined, and approaches to data collection and analysis (WUI: wildland–
urban interface; BLM: Bureau of Land Management; NEPA: National Environmental Policy Act).
 

Data sources

Actor group Total number of
entities

Number of
entities examined

Discipline of lead
scientist

Primary Secondary Analytical
method

Federal land
managers

Two national forests,
BLM, and several
smaller holdings

Two national
forests

Anthropology Interviews with 82
employees at district,
regional, and national
offices

Management plans, NEPA
documents, activity databases

Qualitative
content
analysis

State Two state forests, and
several smaller
holdings

Two state forests Anthropology Interview with sole
manager of both
state forests

Management plan Qualitative
content
analysis

Native American
tribes

Two tribes, one of
which governs land

One tribe Environmental
history

Interviews with
18 past and current
decision-makers

Management plan,
archival documents

Qualitative
content
analysis

Corporate forest
owners

Five corporations Five
corporations

Anthropology Interviews with one
manager each for five
corporations

Certification reports,
activity notifications

Qualitative
content
analysis

Family forest
owners (≥ 2 ha)

Estimated > 8000 Survey sample Economics 379 responses to mail
survey

Peer-reviewed research
literature

Logistic
regression

Homeowners
(< 2 ha in WUI)

Estimated in tens
of thousands

Survey sample Sociology 531 responses to mail
survey

Peer-reviewed research
literature

Logistic
regression

Note: Details regarding methods for examining specific actors can be found in Charnley et al. (2017), Steen-Adams et al. (2017), and Olsen et al. (2017).

historian used qualitative content analysis (Flick 2014) of
transcripts from in-person, semistructured interviews of
managers and reviews of secondary data sources (e.g.,
management documents and activity reports) to investigate the
behavior of these actor groups (Charnley et al. 2017, Steen-
Adams et al. 2017). Family forest landowners and homeowners
collectively manage a much smaller portion of the study area
landscape but are more numerous and variable than government,
tribal, or corporate actors (Table 1). Thus, the sociologist and
economists who examined individual landowners used mail
surveys to investigate these actor groups. Grounded in conceptual
framing developed by Fischer et al. (2014), their analyses relied
on logistic regression to describe the statistical likelihood that
individual homeowners and family forest landowners conducted
various management and wildfire risk mitigation activities as a
function of explanatory variables that represented key
biophysical and socioeconomic influencing factors (e.g., Olsen et
al. 2017).  

The body of social science conducted for the CHANS project
thus comprised several substudies that were largely grounded in
the specific discipline and research interest of the social scientist
(s) who led the investigation of each actor group. For each actor
group, substudies sought to (1) examine the landscape
management activities that actors undertake; (2) explain actors’
decision-making processes, including their goals, decision
frameworks (e.g., policy directives), and wildfire risk perceptions;
(3) identify biophysical and social factors that influence actors’
forest management and wildfire risk mitigation behaviors; and
(4) use these data to develop decision rules to be programmed into
the ABM to represent actors’ behaviors. Additional details about
some of these individual substudies can be found in Charnley et
al. (2017), Olsen et al. (2017), and Steen-Adams et al. (2017). The
result was the application of a mix of methodological approaches
to examine the forest management and wildfire risk mitigation
behaviors of the different actor groups. This paralleled the mixed-

methods approach taken by the project’s biophysical scientists
(Spies et al. 2017), consistent with a “hybrid” approach to agent-
based modeling (O’Sullivan et al. 2016).  

The foregoing discussion should not give the impression that our
project was absent of any cross-disciplinary social science
collaboration. To the contrary, some cross-disciplinary social
science collaboration did occur but somewhat on an “as needed”
basis. For example, given the quantitative nature of the ABM, the
anthropologist who used qualitative methods to examine federal
and state land managers and corporate forest owners sought
assistance from one of the economists to devise empirical decision
rules for those actor groups based on the qualitative data
collected. The sociologist who examined homeowners
collaborated with another one of the economists who assisted in
developing probabilistic regression equations that described the
likelihood that homeowners performed structure and landscape
fire-proofing activities, using methods similar to those the
economists used to examine family forest owners. The
involvement of the economists in facilitating development of
many of the actor decision rules for the ABM was due in part to
their relative greater interest in and comfort with quantitative
methods. These characteristics enabled the economists to work
somewhat as intermediaries between the qualitative project social
scientists and the systems analysts who were developing the ABM.

WHAT WE LEARNED ABOUT ACTOR BEHAVIOR AND
HOW TO REPRESENT IT IN AN AGENT-BASED MODEL
We identified a variety of management objectives and activities
among and within the actor groups (Table 2). Internal biophysical
factors that influenced management decisions included stand
density, age, and structure, and wildfire hazard, for example, while
internal socioeconomic variables that influenced management
decisions included harvest costs and landowners’ and
homeowners’ contacts with wildfire-related agencies and
organizations. External socioeconomic variables that influenced
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Table 2. Forest management and wildfire risk mitigation activities of actor groups, and primary influencing factors identified (WUI:
wildland–urban interface).
 

Primary influencing factors

Actor group Management objectives Principal management activities Biophysical Socioeconomic

Federal land
managers

Forest restoration,
reduction in wildfire risk

Thinning, mowing, mastication, prescribed
burning, salvage, fire suppression

Forest type, wildfire hazard,
stand stocking, topography

Federal policy, budget
priorities, WUI location,
resources at risk, access

State Timber revenue, reduction
in risk from wildfire, insects,
and disease

Harvest, thinning, piling and burning, fuel
breaks, fire suppression, tree planting

Stand stocking, topography,
wildfire hazard, insects and
disease threats

State policy, WUI location,
communities and travel
corridors, timber prices,
harvest costs, access

Native American
tribes

Forest restoration,
protection of life, property,
cultural resources

Harvest, thinning, mowing, mastication,
prescribed burning, fire suppression

Wildfire hazard, WUI,
stand stocking, topography,
proximity to water

Tribal policy, WUI location,
demographics, timber prices
and harvest costs, access

Corporate forest
owners

Financial return, with risk
mitigation as a secondary
outcome

Harvest, thinning, burning slash piles,
salvage, fire suppression

Stand stocking, topography,
wildfire hazard, WUI,
insects and disease threats

Annual revenue targets,
timber prices and harvest
costs, access

Family forest
owners (≥ 2 ha)

Reduction in wildfire
hazard, financial return,
recreation, amenities

Timber harvest, thinning, mowing,
prescribed burning

Stand density and stocking,
topography, past wildfire,
insects and disease

Presence of structure, timber
prices and harvest costs,
access, contact with U.S.
Forest Service

Homeowners
(< 2 ha in WUI)

Reduction in wildfire risk Structure and landscape fire-proofing Burn probability, potential
conditional flame length,
past wildfire, stand density

Homeowner association
rules, contact with local fire
department or fire awareness
groups

Note: Details on specific actor results can be found in Charnley et al. (2017), Steen-Adams et al. (2017), and Olsen et al. (2017).

behavior included federal policy, annual revenue targets, public
support, and timber prices. Some “fast” influencing variables
included the degree of wildfire hazard associated with fuel
conditions, past wildfire, and tree mortality from insects and
disease. Examples of “slow” influencing factors included federal
habitat protection and endangered species policies, population
and housing growth and associated expansion of the WUI which
bolsters political support for federal and state wildfire protection
policies, and demographics (Table 2).  

We found that the varied characteristics of the actor groups and
the varied ways we examined them called for using different
approaches to develop decision rules for each actor group. Details
about these decision rules can be found in Spies et al. (2017). We
developed decision rules for federal and state land managers,
tribes, and corporate forest landowners as sets of heuristics that
reflected manager interviews, existing management plans,
planning documents, and expert opinion (Table 3). We
represented their timber harvest decisions using a target-based
approach derived from annual harvest targets for each owner,
combined at each model time-step with an ordinal ranking of
stands that met desired harvest characteristics. We based the
noncommercial fuel reduction activities of federal and tribal
actors on annual treatment targets, combined at each model time-
step with stand characteristics that were identified by managers
as indicating suitable treatment opportunities, including priorities
that concerned particular forest values (e.g., habitat), timber
productivity, fuel loads, WUI designation, and transportation
infrastructure (Table 3). We based our decision rules for individual
private landowners on logistic regression analysis of specific
survey questions that pertained to family forest owners’ harvest
and fuel reduction activities and homeowners’ structure and
landscape fire-proofing activities (Olsen et al. 2017), following
Fischer et al. (2014). We used the resulting regression equations

in the ABM to compute probabilities that family forest owners
and homeowners would conduct particular activities at each
modeling time-step as a function of key biophysical and
socioeconomic variables (Table 3).  

Our CHANS research resulted in several insights and
accomplishments regarding forest policy management in fire-
prone landscapes. The decision rules enabled us to use the ABM
to simulate the management behavior of the actor groups over 50
years for current and alternative landscape-scale management
scenarios to understand both their feasibility and the social and
ecological conditions that result from joint management strategies
(Charnley et al. 2017, Spies et al. 2017). In these simulations,
management actions combined with succession and natural
disturbance to determine projected biophysical conditions across
the study area landscape. These simulated biophysical changes in
turn served as landscape feedbacks which influenced whether
actors could or would choose to implement particular
management actions during each simulation year. We found that
the federal government was a key actor group in our study area
(Charnley et al. 2017), and attempts at representing policies,
programs, and norms of agency actors could inform other
CHANS research. We also mapped wildfire suppression and fuels
management networks (Fischer et al. 2016b). We found that
exposure to fire suppression and wildfire-related agencies and
organizations influences the likelihood that individual private
landowners conduct risk mitigation activities (Olsen et al. 2017,
Spies et al. 2017). The ABM currently is being used to evaluate
alternative landscape-scale management strategies in participatory
modeling (e.g., O’Sullivan et al. 2016) with formal forest
collaborative groups.  

We were able to address a number of CHANS characteristics. We
identified combinations of influencing factors, including
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Table 3. Representation of actors’ forest management and wildfire risk mitigation activities in the agent-based model Envision (WUI:
wildland–urban interface).
 

Decision rule parameters

Actor group Management activities
represented in Envision

Approach Biophysical Socioeconomic

Federal land
managers

Harvest (thinning from below,
salvage logging), reduce fuel
(prescribed burning, mowing/
grinding)

Target-based (volume
and area) allocation
heuristic

Harvest: commercial species forest
types, tree size > 10" (25.4 cm), closed
canopy, basal area, potential fire
severity, stand slope < 30%
Reduce fuel: high fire frequency forest
types, tree size > 10" (25.4 cm), single
story stands, low to moderate canopy
closure, potential fire severity, fast-
spread fuels

Harvest: “Suitable for harvest”
designation, not Wilderness, no
endangered species nesting
habitat, 14+ years since previous
activity, WUI proximity
Reduce fuel: “Suitable for
harvest” designation, time since
previous treatment, not
Wilderness, no endangered
species nesting habitat, proximity
to roads

State land managers Harvest (selection cutting) Target-based (area)
allocation heuristic

Commercial species forest types —

Native American
tribes

Harvest (thinning, clearcutting,
salvage logging), reduce fuel
(prescribed burning)

Target-based (volume
and area) allocation
heuristic

Harvest: commercial species forest
types, minimum stand age, slope,
distant from streams
Reduce fuel: high fire frequency forest
types, fast-spread fuels

Harvest: “Suitable for harvest”
designation, time since prior
activity, no endangered species
nesting habitat, WUI proximity,
road proximity
Reduce fuel: time since previous
treatment

Corporate forest
owners

Harvest (selection cutting,
salvage)

Target-based
(volume) allocation
heuristic

Any forested type, high basal area (>
23 m2/ha) preferred, slope < 30% for
salvage logging

More than 19 years since
previous harvest, proximity to
roads

Family forest owners
(≥ 2 ha)

Harvest (thinning from below),
reduce fuel (thinning, mowing/
grinding, prescribed burning)

Probabilistic
regression equation

Harvest: basal area, size of parcel
Reduce fuel: trees per hectare, recent
wildfire near parcel

Harvest: none
Reduce fuel: structure present on
parcel

Homeowners
(< 2 ha in WUI)

Any landscape or structure fire-
proofing activity

Probabilistic
regression equation

Burn probability, potential conditional
flame length, trees per hectare, recent
wildfire near home

Recent prescribed burning near
home

Note: Additional details about the decision rules developed for the actor groups, as well as the landscape simulations, can be found in Spies et al. (2017).

biophysical, socioeconomic, internal, external, slow, and fast, for
the actors we examined. We found that some of these factors
operate as two-way feedbacks, which influence actors’ forest
management and wildfire risk mitigation activities, which in turn
influence biophysical (e.g., vegetation, fuel) conditions. We were
able to use qualitative and quantitative data and hypothesis
testing, rather than relying on purely theoretical assumptions, to
develop predictive models of actor behavior to aid in simulating
CHANS dynamics over time in an ABM (e.g., Spies et al. 2017).
However, much of our social science research also involved
developing a fundamental understanding of the social landscape
of this fire-prone CHANS, including identifying key actors and
the biophysical and socioeconomic factors that influence them.
In this regard, much of our social science work necessarily
involved more discipline-focused data collection, analysis, and
hypothesis testing, over integrative development of CHANS
theory pertaining to fire-prone landscapes.  

We also found that developing empirical models that capture some
actor responses to wildfire hazard is challenging, in part because
fire signal frequency is low at fine spatial and temporal scales
(Spies et al. 2017). This characteristic may make it difficult both
for actors to perceive and react to wildfire risk and for social
scientists to observe such effects using biophysical and
socioeconomic data collected over short periods. Additionally, in
our project, we found that some of the landscape management

and wildfire risk mitigation activities conducted by some actors
were too subtle or small to be influential in biophysical models
that operated at the spatial scale we had chosen to represent the
fairly large geography of our study area. For example,
homeowners may effect changes in landscaping around their
homes by conducting wildfire risk mitigation activities, but even
if  most homeowners perform such activities, the net change in
fuel conditions at the spatial grain of the biophysical models used
in the ABM may be negligible. This was the case for our modeling
with all of the landscape and structure Firewise activities that
homeowners reasonably might conduct. Additionally, our
wildfire behavior model did not simulate fire movement at a
spatial scale that was sufficient to discern house-to-house fire
movement. As a result, we had to account for the potential
effectiveness of homeowners’ risk mitigation activities by
assuming an improved rate of structure survival when Firewise
activities were adopted (Olsen et al. 2017). We also found that
some actors (e.g., family forest owners and homeowners) are quite
varied in how they implement fuels management activities, which
presented additional challenges when these behaviors similarly
could not be represented at the spatial scale of a given biophysical
model.  

We made limited progress in representing social network
influences on actor behavior as social network feedbacks in our
ABM. In hindsight, we may have been overly ambitious in this
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goal at the outset given the relative lack of available research on
key network components, structure, and function. Although we
did find statistically significant social network effects in our actor
behavior models for family forest owners and homeowners (e.g.,
Olsen et al. 2017), we were unable to fully represent these in the
ABM because of limitations in our ability to model changes in
social networks themselves. Difficulties arose mostly because we
did not collect empirical information that described interactions
among social network dynamics, actor behavior, and landscape
change. Moreover, the large numbers of individual actors and
social connections among them, and their heterogeneity, defied
easy characterization for CHANS modeling. However, our work
has better positioned us to pursue this goal in the future. The
estimated regression coefficients that described social network
influences on family forest owner and homeowner management
behavior provide a coarse empirical link between existing social
networks and the simulated management and mitigation activities
of these actors should a dynamic social network simulation model
ever be developed. Continued advancement of methods for
representing social wildfire-related networks in CHANS
empirical modeling (e.g., Fischer et al 2013a, 2016b, and Fischer
and Jasny 2017) could present such opportunities in the future.  

We also made less progress than we had hoped in characterizing
institutional behavior of federal and state actors. Behavior of
these actors conceivably can be influenced by a broad array of
external social, economic, and political factors in addition to
agency-specific policy goals and the largely internal biophysical
variables we examined. For example, the number of resources
used in wildfire suppression by public agencies can be sensitive to
media coverage and political pressure (Donovan et al. 2011),
which suggests that biophysical feedbacks can occur indirectly
through political and social network processes in addition to the
more direct landscape-to-actor pathways we examined. Also, it is
conceivable that population and housing growth, and its impact
on wildfire risk in the WUI, tends to embolden political interest
in maintaining federal and state policies that favor current wildfire
suppression over alternative approaches to addressing wildfire.
Alternatives might include, for example, reducing suppression
efforts to save homes from approaching wildfire in favor of
expanding efforts to encourage homeowners to take greater
responsibility for their own residential location choices and
reduce their own exposure to fire risk through increased risk
mitigation activities that are focused on their property and
structure. Although our initial intent was to incorporate such
indirect feedbacks into our ABM, ultimately we lacked the time
and resources to do so.

CHALLENGES WE ENCOUNTERED IN REPRESENTING
ACTOR BEHAVIOR IN A COUPLED HUMAN AND
NATURAL SYSTEMS AGENT-BASED MODEL
We also observed several interrelated challenges in working as a
team of diverse social scientists who collaborated with biophysical
scientists to develop data and methods for representing actor
behavior in our CHANS ABM. We summarize these challenges
according to several themes.

Quantitative versus qualitative data and analysis
At the outset, it was apparent that how familiar and comfortable
individual social scientist team members were with collecting and
analyzing actor behavior data quantitatively (versus qualitatively)

might influence the degree to which their work would contribute
directly to developing actor decision rules for the ABM. Those
team members who were most comfortable working
quantitatively or who actively engaged with other team members
who were comfortable working quantitatively (often the
economists) saw their work contribute more directly to the ABM
than did qualitative team members who did not actively engage
quantitative team members. With almost all actor groups, one or
another of the economists on the team necessarily played
somewhat of an intermediary role in facilitating the
transformation and transfer of data and analysis developed by
more qualitatively inclined team members to the various
biophysical scientists and systems analysts who prepared the
various biophysical models that were used to represent ecological
and wildfire processes and program the ABM. In some cases,
research efforts by qualitative team members who did not work
directly with a quantitative team member resulted in analyses and
insights that were more contextual and were not directly
incorporated into the ABM. These efforts included surveys of
public attitudes concerning wildfire and its management,
development of an environmental history of tribal, federal, and
private corporate lands in the study area, and stakeholder
outreach and engagement, among others, all of which were
valuable contributions in their own right to enhancing
understanding of this CHANS.

Distilling complex human system processes into simple models
We were challenged by having to represent actor behavior using
limited sets of decision rules. The decision rules we developed for
each actor group necessarily focused only on the most prevalent
forest management and wildfire risk mitigation activities found
among each group, and on the most consequential for biophysical
conditions and processes evaluated by the ecological and wildfire
models used to represent the natural system. Such simplification
arguably is almost always necessary in CHANS empirical
modeling because models can address only a limited range of
activities and influencing factors. An outcome for us was that
decision rules ultimately focused on a reduced set of biophysical
and socioeconomic influencing variables, mostly fast and internal
to the CHANS we studied and corresponding to specific variables
recognized by the biophysical models we used to describe
ecological and wildfire conditions and processes. We necessarily
excluded several forest management and risk mitigation
behaviors, largely owing to difficulties in representing them at the
spatial and temporal scales of our ABM. Excluded influencing
variables tended to be slow or external. For example, federal
wildfire suppression policy and treatment targets, and population
and housing growth all influence when and where federal
managers place fuel reduction treatments (e.g., Paveglio and Prato
2012), but none of these factored into our ABM as endogenous
variables or feedbacks, and so our ABM is “static” regarding these
effects.  

At the outset, we had to establish bounds on the scope of what
biophysical–socioeconomic feedbacks we could examine and
represent in the Envision model. Given the broad spatial scale at
which we were working and the existing structure of the Envision
model, interactions between biophysical conditions and
landscape managers and landowners were deemed most feasible.
We found that representing feedbacks that involved broader
socioeconomic factors, such as political dynamics and markets,
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was more challenging. In the case of population and housing
growth, for example, one of the biggest factors that influences
rates and patterns of housing development in Oregon is the
statewide land use planning program, which is administered at
the county level but under the oversight of the State’s Land
Conservation and Development Commission (e.g., Kline et al.
2014). Any reasonable attempt to model population and housing
growth in a dynamic way necessarily would involve developing
decision rules that outline how wildfires would influence political,
economic, or social dynamics in a way that resulted in modified
land use plans and policies, and eventually changes in in-
migration and housing development. Similar to our difficulties in
incorporating social networks into the Envision model, we found
the possibility of incorporating these broader political, economic,
or social dynamics beyond our capacity in the current project.

Varying sensitivity of biophysical models to social variables and
models
Our omission of particular actor behaviors and influencing
factors was due in some cases to the unresponsiveness (at the
spatial and temporal scales of our ABM) of particular biophysical
models to management and risk mitigation activities that actors
said they conducted. Two examples included (1) the inability of
our fuel model to react to changes in fuel conditions in response
to precommercial thinning, which conceivably would reduce fuel,
and (2) the inability of our wildfire behavior model to react to
structure- and landscape fire-proofing activities conducted by
homeowners, which conceivably could influence wildfire behavior
and suppression effort. In both cases, constraints on project
resources necessitated that we rely on already established and
generally accepted models, with little opportunity for tailoring
them to our specific application and the spatial scale at which we
were working (Barros et al. 2017, Spies et al. 2017). Whether such
omissions meaningfully influenced our results is uncertain. Some
human behavior can seem significant to individual actors but may
not be all that significant at the landscape-scale of our analysis.
However, the degree to which progress can be made toward
representing two-way feedbacks (e.g., Parker et al. 2008, Filatova
et al. 2013) depends in part on whether biophysical models can
be responsive to modeled landscape management activities at the
spatial scales at which we conduct CHANS research. Regarding
CHANS in fire-prone landscapes, focused research may be
necessary to identify what human activities indeed matter for key
biophysical conditions and processes, and to consider at what
spatial scales they can be represented in biophysical models. Such
research could indicate needed improvements in biophysical
modeling and provide new opportunities for integrating
biophysical and socioeconomic information in empirical
modeling.

Synchronization of research tasks involving social and natural
systems
We found that, in some cases, the timing of research tasks
influenced what CHANS interactions we could address in our
ABM. For example, project time constraints meant that actor
interviews and surveys, intended to provide data and analysis for
developing actor decision rules, were ongoing simultaneous to
ABM development. In some cases, this created disconnects
between what was being learned about actor behaviors and the
biophysical and socioeconomic variables that influence them, and
which of these could be represented or modeled in the ABM. If

social scientists on the project team had a better sense about what
was being learned by the biophysical scientists and systems
analysts about which management activities would be possible to
represent in the various biophysical models and the ABM, before
they conducted their interviews and surveys, they might have
structured particular interview or survey questions differently.
Similarly, if  biophysical scientists and systems analysts had had
a better sense about what management activities the social
scientists were finding were most prevalent or were perceived by
actors as most significant, they might have had opportunities to
revise biophysical models or reconsider the spatial scale of the
ABM. Despite near monthly project-wide team meetings, we
often tended to experience concurrent (but not necessarily always
collaborative) learning about what actor management activities
and influencing factors were prevalent and which would be
feasible to model at the spatial scales selected for the ABM.

Substituting spatial for temporal variation in social data and
models
We found difficulties in using cross-sectional data to characterize
actors’ behavioral responses to time-dynamic biophysical and
socioeconomic variables. Social science often relies on interviews
and surveys conducted over narrow windows (or “snapshots”) in
time. This can make it difficult or impossible to identify behavioral
changes over longer time frames. In some cases, it may not be that
a behavior or influencing factor does not matter, but rather that
its effect or influence cannot be evaluated using cross-sectional
data. For example, the central Oregon part of our study area
included a well-developed organizational network that was
focused on increasing awareness about wildfire and how
landowners could reduce their risk (Fischer and Jasny 2017).
Because nearly all landowners sampled in central Oregon had had
recent contact with this network, there were too few survey
respondents in our sample to reliably estimate how absence of
such a network would influence risk mitigation effort. To examine
this effect, we had to substitute spatial for temporal variation by
using the survey sample from the south-central part of our study
area (Hall 2015), where the wildfire organizational network was
less developed, to evaluate how network absence might affect
behavior. Although this substitution was partially effective in our
case, other CHANS researchers will want to consider what they
might miss when using cross-sectional data to investigate CHANS
relationships that evolve over longer time frames. Evaluating some
actor behavior at the core of CHANS may require historical or
retrospective studies, or longitudinal studies that track human
responses to slow variables over time scales at which they operate.

The potential tyranny of complex quantitative models
We found that our project team’s decision to make an ABM
central to our research approach at the outset may have influenced
both how individual social scientists were able to participate and
what human system processes we examined. Complex
quantitative models, such as ABMs, undoubtedly are useful for
examining complex CHANS processes. However, the risk of
undue focus on complex quantitative modeling is that the
quantitative modeling itself  will end up defining the direction of
CHANS research, rather than vice versa. In our project, the
structure and data demands of our ABM were the foci of early
project meetings concerning how to coordinate and conduct our
research. Several project social scientists felt unduly constrained
by the analytical demands placed on them by the ABM and found
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it difficult to transfer the theoretical underpinnings of their own
research to the ABM framework. The work of “feeding the
model” occupied the time of several of the quantitative social and
biophysical scientists on the team. This focus on getting the model
up and running for our study area possibly came at the expense
of conducting broader investigations about how our CHANS
functioned, which might also have been informative. Additionally,
selecting any given empirical model may sometimes necessitate
excluding particular phenomena from investigation if  those
phenomena are not amenable to examination using a given
model’s structure or spatial or temporal scale of analysis.
Examples of potentially relevant human system processes that we
omitted include the possibility that wildfires propel political
activity that operates as a feedback that influences future federal
policy and management, and the possibility that severe wildfire
activity spurs state or local land use planning policy changes that
influence the pace and location of future housing development,
and thus potentially influence the placement of future fuel
reduction treatments by federal forest managers. Although the
degree to which these processes might influence actor behavior
relative to others in the CHANS we examined remains unknown,
their potential effects on the landscape could be examined by
representing them in the scenarios to be simulated.

Conducting interdisciplinary versus multidisciplinary research
More broadly, we were challenged to fully integrate the work of
the various disciplines represented on our project team. Our
CHANS research proposal stressed that we would draw on both
social and ecological disciplines to develop information about
actor behavior that we would incorporate into an ABM, and we
anticipated that our use of an ABM would facilitate our
integration. However, we found that much of our work ultimately
was more multidisciplinary, as individual social scientists on our
project team largely “act[ed] within and preserv[ed] the exemplary
concerns of their own discipline” (e.g., Roy et al. 2013:754) by
developing data concerning the behavior of their selected actor
group largely using the theories and methods of their respective
disciplines. This self-selection in research task assignment
influenced both which disciplines examined particular actor
groups and which disciplines developed decision rules for the
ABM. We found that our ABM enabled us to integrate
information developed based on the theoretical and
methodological backgrounds of the disparate disciplines
represented on our project team (Shindler et al. 2017) but did not
necessarily ensure that we developed integrated concepts and
theories. Whether this affected our research outcomes is
uncertain. Much of our initial social science effort was focused
on developing a fundamental understanding of the CHANS in
our fire-prone study area landscape, including identifying what
actors were involved, what management activities they conduct,
and what socioeconomic and biophysical factors influence them.
Much of this process involved primary data collection and
analysis, which was conducted mostly by those team members
who possessed expertise in the methods that were best suited to
evaluating particular actor groups. This focus may have limited
our opportunities for developing theories that were more
integrated across multiple disciplines, for example. However, by
developing greater understanding of the human system
components of fire-prone landscapes, our research has set the
stage for further interdisciplinary developments in future work.

CONCLUSIONS AND IMPLICATIONS FOR COUPLED
HUMAN AND NATURAL SYSTEMS MODELING
With growing policy interest in landscape-level social-ecological
issues (e.g., Stine et al. 2014), researchers increasingly are called
on to examine how people respond to their environment via their
landscape management decisions and responses to fast and slow
variables, both internal and external to CHANS. How well
empirical models can contribute to that process depends in part
on how well social and biophysical scientists can adequately
represent human system dynamics in landscape-level models.
Social science offers an array of theories and methods for
examining and evaluating human actors and their behaviors. Our
work exemplifies continuing challenges in conducting social
science to represent actor behavior in empirical modeling. Papers
that address interdisciplinary research often focus on conceptual,
linguistic, perceptual, and philosophical differences among
individual disciplines as barriers to discourse and collaboration
(e.g., Turner and Carpenter 1999, Eigenbrode et al. 2007). To these
challenges we might add the potential difficulties that arise from
issues involving (1) data structure and its availability at spatial
and temporal scales that are sufficient to examine social-
ecological phenomenon under study by different disciplines, and
(2) whether it is analytically and technically feasible to fully
integrate the work of different disciplines using empirical models,
in part, given such data constraints. There may always be limits
to what phenomena CHANS projects can study. However,
improvement in CHANS research also may depend on individual
CHANS projects recognizing and sharing their perspectives
about their perceived limitations of individual projects so that
future projects may better anticipate potential trouble spots
ahead.  

Based on our experiences in conducting our own CHANS
research, including development and use of an ABM, we offer
the following recommendations to the CHANS research
community:  

1. Convening research teams. When building CHANS research
teams, project leaders should identify and consider
prospective team members who are likely to best
complement the knowledge, skills, and temperaments (e.g.,
Jakobsen et al. 2004, Lach 2014) of other prospective team
members. Ideally, individual team members should possess
sustained interest and capacity to work collaboratively
rather than independently, be willing to engage different
disciplines and consider new ways of viewing their own, and
be willing to consider involving themselves in all aspects of
the CHANS research effort rather than selecting only those
portions with which they are most comfortable or interested.
Project leaders also should consider the trade-offs in
securing needed expertise versus enlisting a manageable
number of team members. Although a portfolio approach
to team formation may argue for including some redundancy
to offset the possibility that some team members may not
deliver, too much redundancy risks wasting project resources
and time associated with negotiating and collaborating with
a greater number of individuals, especially if  some
individuals are inappropriate for CHANS research.
Reserving a portion of project funds for later securing
unforeseen but needed expertise is a viable alternative. 
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2. Qualitative versus quantitative methods. Although both
qualitative and quantitative data and analyses can
contribute to CHANS research (e.g., Lach 2014), projects
that feature development and use of ABMs or other
empirical models should include some social scientists who
are comfortable and willing to work with quantitative data
and analysis to ensure its transfer to the development and
use of the empirical models involved. Alternatively, CHANS
teams should identify individuals who are willing and able
to act as intermediaries between more qualitative-minded
team members and those individuals who are involved in
development of empirical models. These roles should be
anticipated and individuals should be identified at the
outset, if  possible. None of this, however, presumes that
CHANS research necessarily must rely on empirical models
and quantitative data, even though that has been a focus of
our paper. 

3. Reliance on existing models versus developing new models.
CHANS research teams should consider potential
advantages and disadvantages of committing to a specific
or already established empirical model at the outset. The
potential advantage of expediency and appeal during the
grant proposal phase of committing to a particular
empirical model may sometimes be outweighed by the
potential constraints imposed on particular (e.g., social
science) team members regarding what they will be able to
contribute and what CHANS processes they might be able
to address. Interdisciplinary projects must take care not to
“minimize or compress” the content of one or another
discipline “to amplify the content of another” (Wear
1999:301). We encourage CHANS projects to consider
whether and how selecting a specific empirical model as a
tool for facilitating integration may actually exclude
particular disciplines or the examination of particular
phenomena by virtue of the spatial and temporal scales at
which the model may operate, for example, or other factors. 

4. Defining project scope. Establishing bounds on what
CHANS processes and influencing factors can be examined,
at what temporal and spatial scales and scopes, is an
unavoidable step. CHANS researchers should consider the
criteria they will use to determine those bounds, and apply
them thoughtfully and strategically. In some cases, resources
(including time and funding) may necessitate that a project
select approaches based more on expediency (e.g., we already
have this empirical model available). In other cases, greater
long-term knowledge may be generated when CHANS
researchers also select methodologies and temporal and
spatial scales of analysis that offer the most promising
avenues for finding new and meaningful insights concerning
social-ecological issues of interest. The selection of a subset
of actor behaviors and influencing factors to include in
CHANS empirical models is a milepost in the research
process where researchers risk excluding phenomena and
factors that may be critical to understanding the issue at
hand. Even when researchers do recognize and select critical
behaviors and influencing factors, it may not always be
possible to integrate them into a select empirical model,
given the data and analytical difficulties we highlight. Some
CHANS interactions may not be amenable to evaluation

using particular modeling approaches, such that the
selection of a given approach involves trade-offs regarding
what CHANS projects will be capable of learning.
Examining some CHANS phenomenon may require long-
term or iterative studies. 

5. Fostering interdisciplinary engagement. Ideally, CHANS
research should provide sufficient opportunities for different
disciplines to inform each other (e.g., Wear 1999) by allowing
adequate time for interdisciplinary cooperation and
integration to develop (Jakobsen et al. 2004, Redman et al.
2004). Part of this involves coordinating analysis and
modeling of human system with that of the natural system
to ensure that key socioeconomic variables are adequately
represented in biophysical models, and that key biophysical
variables will be adequately represented in socioeconomic
models. The typical 3- to 4-year research grant often may
not provide enough time to fully develop complex integrated
social-ecological systems models. Yet, it can be difficult to
fund individual social or ecological research components in
isolation if  such work is not viewed as sufficiently novel or
cross-disciplinary. Enabling CHANS research projects to
plan beyond the typical 3- to 4-year research grant time
horizon may be necessary to enable some projects to more
fully develop. “Start-up” or “exploratory” funding at the
grant proposal or early development stage could provide
would-be CHANS projects with greater time and resources
for pooling knowledge, considering research ideas, and
developing conceptual frameworks and analytical
approaches without the pressure to settle too early on a
specific approach or empirical model merely to increase the
likelihood of proposal selection, for example. 

6. Post-project reflection and evaluation. Although the
CHANS approach (e.g., Liu et al. 2007) provides an
integrated conceptual framework for examining social-
ecological phenomena, many CHANS concepts—including
feedbacks lagged in time and space via fast versus slow, and
internal versus external variables, for example—are fairly
abstract and offer little guidance to interdisciplinary teams
on how to go about the task of evaluating human system
conditions and processes, and their interactions with the
natural system. For this reason, we feel that CHANS
research, and interdisciplinary research more generally,
could benefit from retrospective, candid self-reflection and
documentation by individual research teams regarding the
ways they feel their work may have both succeeded and failed
at conducting CHANS research and in integrating the work
of multiple disciplines involved. Such reporting not only
would provide observations of different types of CHANS
systems (e.g., Liu et al. 2007), it would provide retrospective
observations and analyses about how CHANS research can
be conducted, what challenges arise, and what solutions can
be found. The future of CHANS research depends on
developing clear examples of multidisciplinary and
interdisciplinary CHANS research accomplishments,
including evaluating the degree to which these
characteristics may (or may not) influence what can be
learned. We encourage other CHANS research teams to
reflect on and document their own attempts at conducting
CHANS research so that they might help guide future
CHANS and interdisciplinary research efforts. 
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Ideally, CHANS research would involve developing methods for
conducting interdisciplinary analysis that enable multidisciplinary
teams to examine the biophysical and social processes and
influencing factors relevant to social-ecological issues at the
temporal and spatial scales at which they operate. CHANS
research teams should be encouraged to pursue a variety of
approaches and methods—both quantitative and qualitative.
CHANS research funding agencies and organizations could foster
such diversity in the projects they fund. There likely are
advantages and disadvantages to different approaches that
manifest in different research contexts. Our research team’s
capacity and comfort in conducting multiple social science
approaches can, in part, be traced to the diversity of social science
disciplines represented on our team. We feel that this diversity
positioned our team to secure project funding, investigate the
major actors in our study area, and develop models for
representing and evaluating landscape outcomes resulting from
many of their behaviors. However, there likely are various paths
that can be taken when conducting CHANS research. Choosing
one path may have implications for what can or will be learned.
A fundamental challenge for CHANS researchers may involve
reflecting on the ways that our individual research decisions may
influence what we learn (e.g., Shindler et al. 2017). Addressing
that challenge likely calls for examining the CHANS research
process itself.

Responses to this article can be read online at: 
http://www.ecologyandsociety.org/issues/responses.
php/9329
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