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Abstract. Future changes in society and climate are expected to affect wildfire activity in the south-eastern United States.

The objective of this research was to understand how changes in both climate and society may affect wildfire in the coming
decades.We estimated a three-stage statistical model of wildfire area burned by ecoregion province for lightning and human
causes (1992–2010) based onprecipitation, temperature, potential evapotranspiration, forest land use, human population and

personal income. Estimated parameters from the statistical models were used to project wildfire area burned from 2011 to
2060 under nine climate realisations, using a combination of three Intergovernmental Panel on Climate Change-based
emissions scenarios (A1B, A2, B2) and three general circulation models. Monte Carlo simulation quantifies ranges in
projected area burned by county by year, and in total for higher-level spatial aggregations. Projections indicated, overall in

the Southeast, that median annual area burned by lightning-ignited wildfire increases by 34%, human-ignited wildfire
decreases by6%, and totalwildfire increases by 4%by2056–60 comparedwith 2016–20. Totalwildfire changes varywidely
by state (�47 to þ30%) and ecoregion province (�73 to þ79%). Our analyses could be used to generate projections of

wildfire-generated air pollutant exposures, relevant to meeting the National Ambient Air Quality Standards.
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Introduction

Wildfire activity in the south-eastern USA is determined by two
major factors: climate and society. Climate change is expected to
alter patterns of precipitation, temperature and the severity of

droughts, which will impact on the accumulation of fuels and the
occurrence of favourable wildfire conditions in the region
(e.g. Liu et al. 2013). Simultaneously, it has long been recognised
(e.g. Prestemon et al. 2002; Mercer and Prestemon 2005;

Prestemon and Butry 2005; Mercer et al. 2007; Prestemon et al.
2013) that humans are a dominant factor affecting ignition rates
and the arrangement of fuels on the landscape. Although humans

start most wildfires in the region, they also devote substantial
resources to suppressing wildfires to limit their areal extent and
associated damages (e.g. Butry et al. 2001), and they manage

fuels, in part, to limit wildfire severity and intensity. Therefore, to

gain insight into how climate change is likely to affect wildfire

(e.g. Liu et al. 2013), the role of humans must be considered.
In addition to uncertainty regarding capturing the direct roles

of humans in influencing ignition sources and fuels distributions

and, thereby, the overall expected extent of wildfires, there is
uncertainty about how society and climate will jointly evolve
over time. The Intergovernmental Panel on Climate Change
(IPCC) has published several assessments describing how

climate will change under different greenhouse gas (GHG)
emission scenarios. Nakicenovic and Steward (2000) elaborate
how these emissions scenarios emerge under varying assump-

tions regarding energy policies, economic output trends and
human population growth. These varying assumptions, along
with the projected changes in climate, define scenario-storylines

that were the data inputs into descriptions of various possible
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land-use futures in the south-eastern US (e.g. Wear 2013),
including those of forestland, a critical variable affecting wild-
fire activity. The scenario-storylines were also the inputs into

projections of possible futures regarding population and income
growth in the region (and worldwide). Nobody knows precisely
how emissions or society will change, but capturing the variety

of potential changes in all of these variables (as inferred by the
approach used by Littell et al. (2009), for example) would be an
important step towards understanding how they combine to

produce a picture of a wildfire future for the Southeast.
The primary objective of the present research was to project

area burned in 13 south-eastern states of theUnited States during
the period 2011–60, while accounting for projected changes in

climate and society, including land use. To do this, we built
statistical models of wildfire annual area burned, estimated by
county within ecoregion provinces (Bailey 1995) for the histori-

cal period 1992–2010. Models were specified as functions
of temperature, precipitation, potential evapotranspiration, per-
sonal income, population and land use. The estimated statistical

models were then used in projection mode, using exogenous
projections to 2060 of the same variables used in the model-
building phase of the analysis. Three different emission scenar-

ios were used in each of three general circulation models to
generate nine realisations of future climate. The three emissions
scenarios were A1B and A2 from the IPCC’s Third Assessment
Report, and B2, from a somewhat earlier model (see Joyce et al.

2014). Projections of land use, population and personal income,
provided by the 2010 Resources Planning Act (RPA) Assess-
ment (USDA Forest Service 2014a, 2014b) for each of these

three scenarios, were combined to enable modelling to generate
envelopes of possible futures of wildfire area burned, annually
to 2060, by county, which can then be reported by state and by

ecoregion province. Because of our attention to land-use and
societal changes, motivated by theory regarding wildfire man-
agement (e.g. Donovan and Rideout 2003) and empirical evi-
dence (Prestemon et al. 2002; Mercer and Prestemon 2005;

Mercer et al. 2007; Butry et al. 2010), the present effort differs
from studies that focus only onwildfire changes, and due only to
climate change. The wildfire projections resulting from this

effort therefore provide a more comprehensive picture of the
range of possible futures of wildfire in the region by capturing
projected changes in human factors.

The modelling and projection effort we describe differs
significantly from other efforts to project changes in area burned,
and their consequences, in a changing climate. A comprehensive

reviewof past efforts is in Flannigan et al. (2009), who enumerate
and classify modelling studies that project future wildfire. Our
study extends these earlier efforts in three ways. First, this is the
first study we are aware of to project future area burned in the

south-eastern US. Second, we estimate not only the effects of
climate change, but also land-use changes and shifts in the
societal factors that affect area burned. Third, we address issues

of data quality that are commonly found in wildfire activity
databases (Short 2015), using a technique (Heckman 1979)
common in the econometrics literature but not, as far as we are

aware, applied in models for projecting wildfire area burned.

Methods

Theoretical structure

Wildfire area burned (W) by either lightning or human causes is
posited to be dependent on the availability of ignition sources,
fuels, weather favourable for ignition and spread, and inten-

tional and unintentional contributions by humans (‘Society’):

W ¼ f ðWeather;Fuels; SocietyÞ ð1Þ

Mercer and Prestemon (2005) documented how wildfire is
affected by these sets of variables, while Mercer et al. (2007)
described the theoretical underpinning for managerial interven-

tions in wildfire processes. Consistent with descriptions by
Donovan and Rideout (2003) and Mercer et al. (2007), among
others, we also describe a Cost plus Net Value Change (CNVC)

model, whose objective function minimises expected CNVC
with respect to wildfire management input quantities. Abstract-
ing fromMercer et al. (2007) by ignoring terms associated with

long-run discounting, we have:

minxE CNVC½ � ¼ w0xþ VE WðxÞ½ � ð2Þ

where x is a vector of wildfire management inputs; w is a
conformable vector describing the costs of those inputs; V

quantifies the value at risk per unit of wildfire area burned; W

is area burned; and E is the expectations operator (because area
burned is a stochastic variable). In solving Eqn 2, at the
optimum, the last unit of wildfire management input deployed
is valued equally to the cost of the last unit of loss averted owing

to the unit of input applied. In other words, wildfiremanagers (or
society, more broadly) act to deploy costly and scarce resources
(labour, capital, materials) to wildfire management in order to

avert even greater losses of social welfare (values at risk) due to
wildfire. One implication of the wildfire manager’s actions is
that, as values at risk increase owing to increased prevalence of

weather and fuel favourable to fire ignition and spread, the
optimal amount of resources devoted to wildfire management
will also increase. Generally, on private lands, particularly in the
south-east US, where private lands dominate, changes in these

values at risk are beyond the direct control of wildfire managers;
they instead derive from the broader economy and society.1

In empirical modelling, values at risk can be represented

by the number of people living in fire-prone landscapes, the
value of their structures, and the value of vulnerable natural
resources such as timber (e.g. Butry et al. 2001). Therefore, as

the density (number of structures per unit of fire-prone land-
scape) rises along with human population and wealth, so will V
in Eqn 2. Similarly, as wealth increases, the (market) value of

each additional structure is also expected to rise (e.g. Mankiw
and Weil 1989), further increasing V. Because timber and most
other natural resources have market values that are far less than
those of structures, development that reduces the quantity of

natural resources on the landscape would only slow the rate of
increase with rising wealth for a V that is calculated solely using
market values.

1Landowners and public land managers, however, can alter the quantity of values at risk by managing fuels, reducing unwanted human-caused wildfire

ignitions through fire prevention efforts, and making structures more fire-resistant.
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The quantity of the values at risk can change not only owing to
the weather, but also because of the availability of fuels. Because
fuels are more contiguous and abundant in forests compared with

other land uses in the south-eastern US, greater forest area can be
linked to greater wildfire area burned, holding physical variables
affecting wildfire (e.g. slope, weather conditions) constant.

Increased population, requiring more structures, is associated
with increased road densities and other interruptions of fuel
contiguity on landscapes, which can slow wildfire spread, and

provide easier access for firefighting, leading to less area burned
(e.g. Mercer and Prestemon 2005; Narayanaraj and Wimberly
2012; Syphard et al. 2012). So the forest loss associated with
increased population and economic activity can decrease values

at risk by limiting how much wildfire burns on the landscape –
although the link between area burned and values at risk is not
necessarily linear or constant across space, or even across wild-

fires, owing to variations in fuels, wildfire intensities and seve-
rities, and the valuable resources, structures, and humans that
each fire encounters. Likewise, humans intentionally or uninten-

tionally ignite most wildfires in the United States at large, and in
the Southeast in particular (Prestemon et al. 2013). These igni-
tions can be reduced by wildfire prevention (Butry et al. 2010)

and law enforcement efforts (Prestemon and Butry 2005).
A greater number of humans, holding other variables constant,
would imply a greater number of fire ignitions due to accidental
and intentional actions, but greater values at risk and larger

human populations imply greater wildfire prevention and law
enforcement efforts. Therefore, the net effect of increases in
population and values at risk on wildfire ignitions is ambiguous,

owing to the competing influences of greater prevention efforts
and law enforcement, and greater human contact with fuels.

In modelling annual area burned, analysts need to acknowl-

edge the possibility that the wildfire area burned data may be
incomplete (e.g. Malamud et al. 2005; Short 2015) and also that
wildfire occurrence is highly variable when viewed across broad
landscapes. In the statistical modelling for the present study, we

accounted for both of these phenomena partly owing to sugges-
tions by K. C. Short (unpubl. data) regarding data adequacy for
every county and year in our historical dataset. Another reason

was our conception that the processes involved in determining
whether a wildfire occurs at all in a spatial and temporal unit of
inference is different from that determining total area burned in

the spatial-temporal unit (Mercer and Prestemon 2005). Not
accounting for either data quality or the truncated distribution of
wildfire area burned in estimating statistical models (e.g. simply

regressing area burned in a spatial-temporal unit on a set of
predictors) could lead to biased and inconsistent estimates of the
area burned production process (e.g. Heckman 1979; Greene
1992; Short 2014; Short 2015). To account for variable data

quality and area burned distribution truncation, we specify an
empirical model structure that accounts for sample selection
(Heckman 1979) at two stages in advance of estimating a final-

stage equation of wildfire area burned by cause category. Stage 1
is on the existence of a ‘valid’ observation,where ‘valid’ has been
determined by K. C. Short (unpubl. data) based on whether the

observation on reported wildfire area burned (a valid observation
could be 0 ha burned, for example) is likely to reflect actual
wildfire area burned accurately for each spatial and temporal unit.
This stage involves estimating a statistical model that predicts

whether each spatial-temporal unit of observation is valid.
A summary statistic of this equation estimate, the Inverse Mills
Ratio (IMR), measures the likelihood of each observation’s

validity. Stages 2 and 3 are estimated using a two-step estimator.
Stage 2 controls for the truncation of the dependent variable at
zero, and quantifies the probability that a valid observation has

zero reportedwildfire, given the IMR from the first stage, aswell
as a set of additional exogenous predictor variables. Finally,
Stage 3 is an ordinary least-squares equation relating the area

burned, if non-zero, to a set of exogenous predictors and the
IMRs from Stages 1 and 2.

More specifically, in the statistical modelling, we estimated
equations at each stage sequentially: we estimated the first stage

and calculated the first-stage IMR; estimated the second stage
that included the first stage IMR as an additional predictor, and,
with that equation, calculated the second-stage IMR; and

estimated the third stage that included both IMRs as predictors.
The first stage of the three-stage wildfire model controls for the
selection effect of inadequate data. All observations for all

counties and all years in our dataset were coded as 1 if not valid,
and 0 otherwise. Although the value of the IMR varies from one
observation to another, for all observations included in an

equation with the IMR from an earlier stage, the coefficient
measures the direction of the biasing effect of sample selection.

This first-stage equation, a probit model, controls for the
potential biasing effects of non-randomness in the sample of

observations making it into the next stage of estimation.
Heckman’s (1979) insight is that the sample selection (dropping
of particular observations) is a form of omitted variables bias,

which can lead to incorrect inference and lead to poor out-of-
sample performance of the resulting estimated equation. In the
Heckman (1979) approach, the probit model explaining the

selection bias is based on a theory explaining the selection
process. When the resulting IMR is included in the subsequent
equation estimated on the remaining data, parameter estimates
are, in the limit, unbiased. The first-stage probit model is

(Greene 1992, p. 663):

Prob Yi ¼ 1½ � ¼ F b01x1;i
� � ð3Þ

where Yi¼ [0,1] is a discrete variable identifying whether the
observation on wildfire area burned (in our case) is valid (0) or

not valid (1); F(�) is the Standard Normal probability distribu-
tion function; x1,i is a vector of variables for observation i that
are hypothesised to be related to the validity of the observation;

and b1 is a vector of estimation parameters conformable to x1.
From an estimate of Eqn 1, the IMR for the ith observation (l1,i)
can be calculated (Heckman 1979):

l1;i ¼ fðZ1;iÞ
Fð�Z1;iÞ ;

Z1;i ¼ �b01x1;i=s1

ð4Þ

where f(�) is the Standard Normal probability density and s1 is
the standard error of the estimate of the residuals in Eqn 3.
Variables in the set of predictors (x1) for observation validity
could include indicators of the state from which the observation

derives, because state and federal agencies in charge of data
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reporting may have variable success across space and time in
reporting wildfires completely and in a statistically unbiased
way (Short 2014; Short 2015). Variables in x1 could also include

measures of weather, fuels and human factors that are them-
selves hypothesised to be related to wildfire processes.

The second stage evaluates whether an observation that is
valid has recordedwildfire area burned that is greater than zero.2

For the present study, this second stage seeks to explain why the
area burned by a human- or lightning-ignited wildfire is greater
than zero in a particular county in a particular year. This stage

includes the IMR from Stage 1 as an additional explanatory
variable:

Prob Ai ¼ 1jYi ¼ 0½ � ¼ F b02x2;i þ g1l1;i
� � ð5Þ

where Ai¼ [0,1] indicates if the area burned for observation i is
zero (Ai¼ 0) or positive (Ai¼ 1); x2,i is a vector of variables for
observation i that are hypothesised to be related to whether

wildfire area burned was greater than zero for observation i; b2

is a vector of estimation parameters conformable to x2; and g1 is
a parameter measuring the effect of sample selection in the first

stage on the probability of non-zero wildfire area burned, which
controls for the potentially biasing effects (on the estimate ofb2)
of observation validity. Examples of variables in x2 affecting

wildfire area burned could include summary measures of
weather, fuels and societal factors. As in the first stage, the
IMR for the ith observation of the second stage (l2,i) can also be
calculated for each observation where Yi¼ 0:

l2;i ¼
f Z2;i
� �

F �Z2;i
� � ;

Z2;i ¼ � b02x2;i þ g1l1;i
s2

ð6Þ

where s2 is the standard error of the estimate of the residuals in

Eqn 5.
The third and final stage of modelling of wildfire area burned

is a least-squares equation relating non-zero area burned to a set

of predictors l1,i, and l2,i into the equation specification to
control for both the validity of the observation and the likelihood
of zero area burned:

E WijYi ¼ 0;Ai ¼ 1½ � ¼ b03x3;i þ a1l1;i þ a2l2;i ð7Þ

where Wi. 0 is area burned; x3,i is a vector of variables for
observation i that are hypothesised to be related to area burned,

given that an observation was both valid and greater than zero;
b3 is a vector of estimation parameters conformable to x3; and a1
and a2 control for the potentially biasing effects (on the estimate

of b3) of the probability that the observation is valid, and the
probability that it is non-zero respectively. Variables contained
in x3 could be the same variables (in x2) used to predict whether a

unit of observation had zero wildfire.

Data and model development

Historical data

Historical wildfire data on annual area burned by lightning
and annual area burned by human causes (which we call

‘human-ignited’) in acres by county for the years 1992–2010
were obtained from K. C. Short (unpubl. data) for estimating
Eqns 1–5. Data were aggregated (i.e. the area burned was

added up across all wildfires of (i) lightning cause, and (ii) all
wildfires of other causes, including unknown cause, which we
label ‘human’) to the county spatial unit and annually, based on
the county of origin and the date of wildfire ignition. As

recommended by K. C. Short (unpubl. data), observations of
wildfire area burned by lightning and humans were flagged as
not valid, but the indicator of observation validity and a set of

predictor variables associated with each observation were used
in the first of the three stages of the wildfire statistical model
estimation process. Each model of lightning wildfire and of

human-ignited wildfire was separately estimated for five
spatial domains based on ecoregion provinces found in the
south-eastern US (Bailey 1995), shown in Table 1. Counties

were assigned to whole ecoregion provinces based on Butry
(2003). Fig. 1 is a map of the ecoregion provinces for the
Southeast.

2An alternative functional form at this stage would be the Tobit model rather than a Heckman sample selection model. Preliminary tests showed that the Tobit

performed significantly worse in out-of-sample predictions compared with the Heckman sample selection model.

Table 1. Groups of ecoregion provinces and the selection model stages in the final versions of statistical models

Ecoregion provinces included in the model Lightning wildfire

selection model stages

Human wildfire

selection model stages

Eastern Broadleaf Forest (Oceanic) (221) 2 3

Eastern Broadleaf Forest (Continental) (222) 3 3

South-eastern Mixed Forest (231) 3 3

Coastal Plain mixed Forest (232), Lower Mississippi Riverine Forest (234),

Everglades (411)

3 3

Prairie Parkland (Temperate) (251), Prairie Parkland (Subtropical) (255), Great

Plains Steppe and Shrub (311), South-west Plateau and Plains Dry Steppe and

Shrub (315), Chihuahuan Semidesert (321), Great Plains–Palouse Dry Steppe

(331), Great Plains Steppe (332)

2 2

718 Int. J. Wildland Fire J. P. Prestemon et al.



The form of weather observations included as predictors in
the three-stage statistical models of wildfire annual area burned

was based on what was available from temporal and spatial
downscaling emerging from general circulation model (GCM)
projections. Weather data for the historical time series (1992–

2010) were obtained from the historical data assembled for the
Parameter-elevation Regressions on Independent Slopes Model
(PRISM) developed by Daly et al. (2002). Potential evapotrans-
piration (PET) was calculated using a modified Linacre (1977)

method described by Joyce et al. (2014). Daily data on these four
measures for each county were summarised as monthly values
(average maximum and minimum temperature, total precipita-

tion, average PET) for each county. In equation specifications
for Eqns 3–7, only the aggregated observations for January,
March, May, July and September were used. The January–

September range corresponded best with fire seasons across
the south-eastern US. Initial data exploration indicated that
intertemporal correlations of monthly meteorological variables
fall with temporal distance; including all months runs the risk of

multicollinearity. Hence, we omitted meteorological observa-
tions from the intervening months in the equation estimation.

Data on county land area and historical forest land use by

county were obtained from the USDA Forest Service (2014a),
with methods on land use described inWear (2013). Data for the
historical time series were reported only for 1997 and for 2010.

Data for intervening years were obtained by linear interpolation
(1998–2009) and extrapolation (1992–96).

Data on population by county in the historical time series

were obtained from the US Census Bureau (2012). Data on
annual personal income by county (US Bureau of Economic

Analysis 2013a), 1992–2010, were converted to real values (in
constant 2005 US dollars) with the US gross domestic product

deflator (US Bureau of Economic Analysis 2013b).

Projected data

Climate inputs for the statistical models for the projection
period, 2011–60, were statistically downscaled from three

GCMs (Daly et al. 2002), namely the MIROC32, the CSIR-
OMK35 and the CGCM31, for each of three IPCC emission
scenarios (A1B, A2, B2), producing nine climate projections for

the region. The statistically downscaled data for each of these
nine projections were obtained from Joyce et al. (2014), who
produced them for the 2010 RPA assessment using data from the
IPCC, at 5-arcmin resolution in latitude–longitude coordinates.

They were remapped to a Lambert Conformal Conic map
projection grid at 12-km resolution for an air-quality modelling
domain that includes 13 states from eastern Texas to the

Carolinas east to west, and Kentucky to Florida north to south,
for eventual use in regional air quality assessments. To generate
county-level meteorological data for area burned projections,

county-level averages of daily maximum andminimum temper-
ature, total precipitation and PETwere averaged across all of the
model grid cells whose majority area was in the county.

Land area and land-use data by county and by year for each
emissions scenario (A1B, A2, B2) in the projection years were
obtained from Wear (2013). Projections of land use were by
10-year increments (2010, 2020, 2030, 2040, 2050, 2060) for

each of the three scenarios. Intervening-year values for each
county were calculated using linear interpolation. Data on
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Fig. 1. Bailey’s ecoregion provinces in the south-eastern US, with delineations drawn at county lines (source:

Butry 2003).
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population and personal income (real, in constant 2005

US dollars) were obtained from USDA Forest Service (2014b)
projections made at 5-year increments for each scenario. Inter-
vening-year values were calculated using linear interpolation.

Land areas by county were held at the initial totals for 1997
reported in Wear (2013).

We chose the older climate projection models that supported
the IPCC Third Assessment Report, The Coupled Model Inter-

comparison Project Phase 3 (orCMIP3), rather than the analogous
supporting models of the Fifth Assessment Report (CMIP5) for
two main reasons. First, unlike the CMIP5 scenarios, the CMIP3

scenarios are directly, mechanistically linked to internally consis-
tent projections of human population and economic growth that
are tied to the emissions scenarios – that is, they form an internally

consistent picture of societal development under alternative
emissions pathways. Second, projections of county-level income,
population and land use were produced in the 2010 RPA Assess-

ment, providing a ready dataset of not just the evolution of climate
at fine spatial scales in theUnited States, but also variables thatwe
assert are connected towildfire.Updating the projections based on
CMIP5, including more recently available alternative representa-

tive concentration pathways (RCPs), would require identifying
population and economic projections for the United States South-
east, and hence the region’s land-use futures, that are consistent

with the CMIP5 RCPs. The extra effort required is beyond the
scope of this analysis. We note that the CMIP5 RCPs, if we were
able to use them, could conceivably alter our conclusions, but

Knutti and Sedláček (2013) showed that the CMIP5 projections
per se are not significantly different from the CMIP3 (and fourth
phase, CMIP4), and their uncertainty remains almost the same,
even though climate projection methods themselves have been

refined in later iterations.Additional evidence of their similarity is
available from IPCC Working Group I Technical Support Unit
(2015, p. 811).

Model development

Given the large number of potential predictor variables, we

employed a model selection approach to final model identifica-
tion in all three stages of the statistical modelling. The list of
predictor variables used in the initial (full) equation specifications

for each of the three stages differed slightly across stages, across
lightning- vs human-caused wildfires, and across ecoregion pro-
vinces. Differences across ecoregion provinces involved dummy

variable intercept shifters measuring the effects of individual

states and constituent ecoregion provinces for cases where the
data for counties in multiple ecoregion provinces were included
together in a single ecological domain model (e.g. the models for

aggregated ecoregion provinces 232, 234 and 411).
In model estimation, we began with the full list of variables

shown in the first column of Table 2 and estimated models using
a subset of the data – i.e. only covering 1992–2003, which we

call the ‘in-sample’ data. We reduced the numbers of predictor
variables to arrive at final specifications for each stage in every
lightning- and human-causedwildfire in each ecological domain

by dropping statistically insignificant variables until all includ-
ed variables were at P values smaller than 0.10. Once these final
specifications were found, we examined their out-of-sample

forecast performances for the held-out sample (2004–10), i.e.
the out-of-sample data. Fit statistics for the out-of-sample
forecasts were recorded, and then the final specifications based

on the in-sample data were re-estimated using the entire dataset
(1992–2010). It was these whole-sample model estimates that
were used in the projection modelling (2011–60). Statistics of
wildfire area burned by lightning and by human causes are

summarised for all of the valid observations of annual area
burned in the counties within the ecoregion provinces included
in model estimation (Table 3).

As Heckman (1979) explained, bias can be eliminated (in
large samples) or reduced (in smaller samples) in the presence of
sample selection as long as the first stage of the selection model

accurately explains the selection process. We hypothesised that
the validity of the observation ofwildfire area burned in a county
in a year (i.e. that Yi¼ 0) was related in unknown ways to the
efforts by the government fire-occurrence reporting agencies to

record wildfire occurrences consistently, which were in turn
related to factors affecting the overall extent of wildfire
(e.g. large fires are more likely to be observed and recorded).

For this reason, we included the same variables in the specifica-
tion of Eqn 3 as we did in subsequent stages in the modelling.
Model selection (the process of dropping insignificant variables

to arrive at a specification) naturally led to a specification of
Stage 1 equations that differed from those of subsequent stages.

One concern in employing the model selection approach was

the introduction of biases in statistical models that could have led
to poor out-of-sample forecasts of area burned. A comparison of
the area burned predictions made in-sample (i.e. using models

Table 2. Variables used in the initial empirical specification for each stage of the empirical modelling

Stage 1 (data validity

flag, probit)

Stage 2 (non-zero

wildfire, probit)

Stage 3

(least-squares)

Lightning Human Lightning Human Lightning Human

Monthly average daily maximum temperature (8C) X X X X X X

Monthly average daily PET X X X X X X

Monthly total precipitation (mm) X X X X X X

Land area (km2) X X X X X

Forest land-use area (km2) X X X X X

Population X X X X X X

Population density (population per land area) X X X X X X

Personal income per capita (real personal income, US$ per population) X X X X X X

State dummy variables X X X X X X
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estimated with data for 1992–2003) with the area burned pre-
dicted out-of-sample (i.e. 2004–10) allowed us to evaluate
whether the model selection procedure resulted in reduced

forecast performance. Goodness-of-fit measures included bias
(average prediction error in area burned), percentage bias, root
mean-squared error, maximum absolute error and mean absolute
error. Bias was a primary criterion used to evaluate forecast

performance, whereas the other fitness measures were used
secondarily. If bias was detected in out-of-sample performance,
we returned to the fullmodel specifications and did not drop some

‘borderline’ variables (i.e. those with P values in the 0.10 to 0.20
range). This process was continued until a final specification for
each stage was identified.3

The final empirical specification of the three-stage selection
models depended in part on whether the coefficient estimate for
the IMR from the first stage was statistically significant in the

second-stage model estimate. If not, the first stage was dropped
for the final version of the second- and third-stage model
estimates (Table 1), resulting in the standard two-stage selection
model (i.e. Stages 2 and 3 in our framework) described by

Heckman (1979).
Not included among the list of potential predictor variables

(Table 2)weredirectmeasures ofwildfire suppression, prescribed

fire, the fuel treatment effects of wildfire, or fire prevention.
Firefighting organisations in the United States seek to comply
with standards advanced by the National Fire Protection Associ-

ation, which recommend that capacity levels adjust to changing
densities of structures andother landscape features at riskof fire to
maintain minimum staffing and average response times (e.g.
National Fire ProtectionAssociation 2015).We therefore assume

that firefighting agencies adjust their staffing and response times
in step with changes in values at risk that were measured by the
land-use and other socioeconomic variables included in the

statistical equations. Omission of variables that would account
for the fuel treatment effects of wildfire (e.g. Mercer et al. 2007),
which tend to reduce area burned in subsequent periods, implies

that such treatment effects are accounted for generally by the
intercepts and variables accounting for states and ecoregions,
which capture historical wildfire activity. A shortcoming of this

assumption is that in places with large positive changes in
projected wildfire, these projections would be positively biased,
and the reverse would be true for locations with large negative
changes in projected wildfire. Another underlying assumption is

that the relationship ofwildfire to the includedvariables takes into
account the effects of prescribed fire on annual area burned.
Prescribed fire currently is, and has been historically, an impor-

tant part of public and private management of southern pine
forests, especially in ecoregion provinces 231 and 232. The
implication of explicitly omitting them in these two provinces

in particular is that prescribed fire activity, including operational
windows for burning, is assumed to be explained by the societal
and climatic variables already appearing in the estimated statisti-

cal models. Finally, studies show that wildfire prevention efforts
are effective in reducing occurrences of wildfire (e.g. Prestemon
et al. 2010). An assumption of our modelling was therefore that
the other included variables in the statistical models adequately

accounted for the spatial and temporal variations in wildfire
prevention efforts.

Monte Carlo simulations

Future states of nature are inherently uncertain; this applies to
both climate and societal factors affecting wildfire. In our
analyses, annual area burned for each county was predicted
using three-stage statistical models using climate variables

extracted from each of the nine climate model realisations.4 All
such models have uncertainties regarding their predictions, and
this uncertainty can be used, in conjunction with the model

uncertainty in the nine-member ensemble of GCM–emission
scenario realisations, to describe the range of potential futures.
Median annual area burned projections (where the median is the

middle projected value in a Monte Carlo simulation) and
probability bounds around the median can provide the analyst

Table 3. Summary statistics for wildfire area burned for annual area burned by county, in hectares, 1992–2010

Ecoregion province number

221 222 231 232, 234, 411 251, 255, 311,

315, 321, 331, 332

Lightning wildfire Valid observations 1601 1423 4687 4504 1132

Mean area burned observed (ha) 12 5 15 127 24

Standard deviation area burned observed (ha) 95 110 143 1599 182

Minimum area burned observed (ha) 0 0 0 0 0

Maximum area burned observed (ha) 2361 4047 5564 50226 3844

Human-caused wildfire Valid observations 1601 1423 4687 4504 1132

Mean area burned observed (ha) 244 113 154 271 403

Standard deviation area burned observed (ha) 701 348 396 928 1804

Minimum area burned observed (ha) 0 0 0 0 0

Maximum area burned observed (ha) 10884 5404 10035 29278 32786

3Goodness-of-fit measures were also used to compare the three-stage approach with a simple Tobit model, which predicted area burned as a truncated variable

(continuous from zero), and ignored model selection. We found that the Tobit generally had larger bias than the three-stage selection model.
4The models estimated in the first-stage equations using historical data (Appendix S1, Tables S1 through S4) provided the probit model parameter estimates

needed to generate IMRs for projection years for all counties.

Wildfire projections for the south-eastern USA Int. J. Wildland Fire 721



with a sense of the range of future possible wildfire outcomes for
any desired location or area of inference (down to the smallest
modelling unit).

To describe the range of potential outcomes in our projec-
tions, we conducted Monte Carlo simulations of equation
estimates. These simulations randomly selected samples, with

replacement, from among the observations in the historical time
series, and then used the resulting equation estimates in each
iteration to project wildfire in each county in each of the years

2011–60; 2006 and 2010 wildfire burned areas were also
predicted using historical data. Across all scenario–GCM com-
binations, these produced a total of 2250 iterations of projections
for each county for each year. From these iterations, we

summarised quantile distribution bounds of expected wildfire
for every county, for both lightning- and human-ignited wild-
fire, and their sum. We also did these summaries for other

higher-level spatial units of inference, including by state, and by
ecosystem province-based ecological domain of counties in the
south-eastern US.

Equation estimation results

The first-stage equations (Stata/MP 13.1, StataCorp LP, College
Station, TX)were used in all statisticalmodelling; probit models
predicting whether a county’s observation of wildfire area
burned for the calendar year was valid (Yi¼ 0) or considered to

be not valid (Yi¼ 1) were the same for both lightning- and
human-ignited wildfires, because K. C. Short (unpubl. data)
judged validity for the entire county and year in question for all

wildfires recorded, regardless of cause. Equation estimates
(summarised in Tables 4 and 5, with detailed statistical results
shown in Appendix S1, Tables S1–S4, available as online sup-

plementary material) showed that non-valid data were often
related to the state where the county was located, as well as to
factors that affected the number of wildfire occurrences. The
direction of the effect of many weather-related variables indi-

cated that the probability of a non-valid observationwas related in
a complex way to weather and climate, with some months
showing positive relationships, and others negative, for each of

maximum temperature, PET and precipitation. For ecoregion
province 221, there was a negative relationship of non-valid data
with personal income per capita and a positive relationship with

population density. For 222, a negative relationship to personal
income per capita was also found, whereas population was pos-
itively related. Forest area in this equationwas negatively related,

which might be linked to the idea that wildfires occurring in
heavily wooded areas often go unreported, or could be connected
to other problems with reporting accuracy. For counties in 231,
land area was negatively related, whereas forest area was posi-

tively related to data validity, a result that is difficult to explain. It
should be noted that the first-stage probit model for counties in
ecoregion provinces 251, 255, 311, 315, 321, 331 and 332 (whose

counties were grouped together in a single ecological domain for
modelling) had broad insignificance, including the intercept.
Thus, for both lightning- and human-ignited wildfire models,

the three-stage approach collapsed to a two-stage model in this
ecological domain.

The results of second- and third-stage statistical models are

summarised in Tables 4 and 5 (with detailed results available in
Appendix S1, Tables S5–S14). For the lightning wildfires
(Table 4), the IMR produced by the first-stage equation was

found to be positively related to the probability that wildfire in
the county was zero for the counties grouped together for the
ecological domain defined by ecoregion provinces 232, 234 and

411, and in ecoregion province 222. For counties in ecoregion
province 231, the relationship was negative. For the counties in
the other ecological domain consisting of ecoregion provinces
251, 255, 311, 315, 321, 331 and 332, the first-stage probit

model was not significant, so that no IMRwas included; for 221,
the IMR from the first stage was not statistically significant in
initial second-stage model estimates and was therefore dropped

from the final specification. For lightning wildfires, land area of
the county, included in four out of five lightning model second-
stage specifications, had a positive effect on the likelihood that a

county had non-zero lightning wildfire; that is, larger counties
were more likely to have had at least one lightning fire occur-
rence. Forest area was included in only twomodels: counties for

the ecological domain consisting of ecoregion provinces 251,
255, 311, 315, 321, 331 and 332, where it was positively related,
and counties in ecoregion province 231, where it was negative
but not significant (but where land area was positive).5 Personal

income per capita was positively related to non-zero lightning
fire in counties of the ecological domain containing ecoregion
provinces 232, 234 and 411, and counties in ecoregion province

221, but negatively for those in 222. When population density
entered the second-stage model, its effect was negative. Weather
variables had effects that were generally expected based on

theory: precipitation was negatively related to non-zero lightning
fires in most cases, whereas temperature and PET were both
positively related. In most cases, these models were substantially
simpler than the second-stage (and first-stage) selection equa-

tions, limited to a few climate and societal variables, and land use.
In one case, namely themodel of lightningwildfire area burned in
counties of ecoregion province 222, the area burned was a

function of just a constant and a statistically insignificant IMR
from the second-stage equation. Land area, when it appeared, was
positively related. In ecoregion province 231, the positive sign on

land area was accompanied by a negative sign on forest area, a
result that was not necessarily expected. The only societal
variable affecting area burned other than forest area, a land-use

measure, was population density, which appeared in the final-
stage model for counties in the ecological domain containing
ecoregion provinces 251, 255, 311, 315, 321, 331 and 332. Here,
its effect was negative. This appears reasonable because more

densely populated counties would have more breaks in the
landscape that slow wildfire spread, so that wildfire sizes should
be smaller, all other things being equal. For area burned in the

final stage of lightning wildfire, weather variables were also
related as expected from theory – precipitation, negatively, and
temperature and PET, positively.

5Inmodel development using in-sample data, 1992–2003, forest area was statistically significant. But when the finalmodel was estimated using all data (1992–

2010), its significance disappeared. We included it in this specification based on its in-sample model significance.
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For human-ignited wildfires (Table 5), only one second-
stage model included land area, consisting of the counties of the

ecological domain containing ecoregion provinces 232, 234 and
411, and its effect was positive. Forest area was included in the
other second-stage models, and its effect was positive. Personal

income per capita had varying effects, including a positive effect
for ecoregion provinces 232, 234 and 411, and a negative effect
for counties in 221 and 231. Population density had a positive
effect on the probability of non-zero human-ignited wildfire for

counties in 251, 255, 311, 315, 321, 331 and 332. Population
itself, however, had a generally positive effect for counties

whose models included it: ecoregion provinces 222 and 231.
This makes sense because higher population density would
mean that there are fewer people in close proximity towildlands,

while higher populations should be connected to more chances
for wildfires to be accidentally ignited through any number of
specific causes (e.g. debris-burning, children, campfires, equip-
ment). In nearly all cases, weather variables had the expected

Table 4. Lightning-ignited wildfire summary statistical results (first-, second-, third-stage models), by ecoregion province

For each variable in each column, the three indicators refer to the first, second and third stages of the selection models. ‘þ’ implies a positive and ‘–’ a negative

parameter estimate that was significantly different from zero at 10%or stronger; ‘0’ implies no statistically significant effect (or not included in themodel). T is

temperature in degrees Celsius, PET is potential evapotranspiration

Predictor variable 221 222 231 232, 234, 411 251, 255, 311, 315, 321, 331, 332

Weather variables

January average max. T �, 0, 0 0, 0, 0 �, 0, 0 �, 0, 0 0, 0, 0

March average max. T þ, 0, 0 0, 0, 0 þ,�, 0 þ, 0, 0 0, 0, 0

May average max. T þ, 0, 0 0, 0, 0 �, 0, 0 �, 0, 0 0, þ, 0

July average max. T 0, 0, 0 0, 0, 0 þ, 0, 0 þ, 0, 0 0, 0, 0

September average max. T �, 0, 0 �, 0, 0 �, 0, 0 þ, �, 0 0, þ, 0

January average PET þ, þ, 0 �, 0, 0 þ, þ, þ þ, þ, þ 0, 0, 0

March average PET �, 0, 0 0, 0, 0 �, 0, þ �, 0, 0 0, 0, 0

May average PET þ, 0, 0 �, 0, 0 þ, 0, 0 þ, þ, 0 0, 0, 0

July average PET þ, 0, 0 þ, þ, 0 �, 0, 0 �, 0, 0 0, 0, 0

September average PET þ, 0, 0 þ, 0, 0 �, 0, 0 �, 0, 0 0, 0, 0

January average precipitation �, 0, 0 0, 0, 0 þ, 0, 0 þ, 0, � 0, 0, 0

March average precipitation þ, 0, � 0, 0, 0 0, �, 0 þ, 0, 0 0, 0, 0

May average precipitation þ, �, 0 0, 0, 0 �, �, 0 þ, 0, � 0, 0, 0

July average precipitation 0, 0, 0 0, 0, 0 þ, �, 0 þ, 0, 0 0, 0, 0

September average precipitation þ, �, 0 þ, 0, 0 0, þ, 0 0, 0, 0 0, 0, 0

Biophysical variables

Land area þ, þ, 0 0, þ, 0 �, þ, þ 0, þ, þ 0, 0, þ
Forest area 0, 0, 0 �, 0, 0 þ, �, � 0, 0, 0 0, þ, 0

Socioeconomic variables

Population 0, 0, 0 þ, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0

Population density þ, �, 0 0, 0, 0 0, �, 0 0, 0, 0 0, �, �
Personal income per capita �, þ, 0 �, �, 0 0, 0, 0 0, þ, 0 0, 0, 0

Categorical variables

Alabama 0, 0, 0 �, 0, 0 þ, �, 0 0, 0, 0 0, 0, 0

Arkansas 0, 0, 0 �, 0, 0 þ, þ, 0 0, 0, 0 0, 0, 0

Florida 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0

Georgia þ, 0, 0 0, 0, 0 þ, 0, 0 þ, 0, 0 0, 0, 0

Kentucky þ, 0, 0 �, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0

Louisiana 0, 0, 0 0, 0, 0 þ, �, 0 þ, 0, 0 0, 0, 0

Mississippi 0, 0, 0 0, 0, 0 þ, 0, 0 �, 0, 0 0, 0, 0

North Carolina �, 0, 0 0, 0, 0 0, 0, 0 �, 0, 0 0, 0, 0

Oklahoma 0, 0, 0 �, 0, 0 þ, 0, 0 0, 0, 0 0, 0, 0

South Carolina 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0

Tennessee þ, �, 0 0, 0, 0 þ, 0, 0 0, 0, 0 0, 0, 0

Texas 0, 0, 0 0, 0, 0 þ, 0, 0 �, 0, 0 0, 0, 0

Virginia 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0

Province 234 0, 0, 0 0, 0, 0 0, 0, 0 �, �, 0 0, 0, 0

Province 411 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0

Province 255 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, �, 0

Inverse Mills ratios

Second stage 0 þ � þ 0

Third stage � 0 0 þ �
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signs in these second-stage model estimates. Final-stage area

burned models for human-ignited wildfires, like lightning wild-
fires, also demonstrated a tendency (except for ecoregion
province 231) to be simpler, including fewer predictor variables.

Land area and forest area were both positively related to area
burned. This indicates that a prediction of forest area loss would
be connected to a decline in the area burned by human-ignited

wildfires. In these final-stage equations, population density had
a negative effect on the area burned by human-caused wildfires

in counties of the ecological domain containing ecoregion

provinces 251, 255, 311, 315, 321, 331 and 332, and those of
ecoregion province 231. The finding on population density is
consistent with the idea that a greater density of humans is linked

to more fuel breaks in the landscape and greater opportunities
for wildfire suppression resources to access and extinguish
active fires. In contrast, higher overall populations in counties

of ecoregion province 222 were linked to more area burned by
human-causedwildfires. This is logical becausemore people are

Table 5. Human-ignited wildfire summary statistical results province (first-, second-, third-stage models), by ecoregion province

For each variable in each column, the three indicators refer to the first, second and third stages of the selectionmodels. ‘þ’ implies a positive and ‘–’ a negative

parameter estimate that was significantly different from zero at 10% or stronger; ‘0’ implies no statistically significant effect (or not included in themodel). T is

temperature in degrees Celsius, PET is potential evapotranspiration

Predictor variable 221 222 231 232, 234, 411 251, 255, 311, 315, 321, 331, 332

Weather variables

January average max. T �, 0, 0 0, 0, 0 �, 0, 0 �, 0, 0 0, 0, 0

March average max. T þ, 0, 0 0, 0, 0 þ, 0, 0 þ, 0, 0 0, 0, 0

May average max. T þ, 0, 0 0, 0, 0 �, 0, 0 �, 0, 0 0, 0, 0

July average max. T 0, 0, 0 0, 0, þ þ, 0, 0 þ, 0, 0 0, 0, 0

September average max. T �, 0, 0 �, 0, 0 �, 0, 0 þ, 0, � 0, þ, 0

January average PET þ, 0, 0 �, þ, 0 þ, 0, þ þ, 0, þ 0, 0, 0

March average PET �, 0, 0 0, 0, þ �, 0, 0 �, 0, 0 0, 0, 0

May average PET þ, 0, 0 �, 0, 0 þ, 0, 0 þ, 0, 0 0, 0, 0

July average PET þ, 0, 0 þ, 0, 0 �, 0, 0 �, 0, 0 0, 0, 0

September average PET þ, 0, 0 þ, 0, 0 �, 0, 0 �, 0, 0 0, 0, 0

January average precipitation �, 0, 0 0, 0, 0 þ, 0, 0 þ, 0, 0 0, 0, 0

March average precipitation þ, 0, 0 0, 0, � 0, �, � þ, 0, 0 0, 0, �
May average precipitation þ, �, 0 0, 0, 0 �, 0, 0 þ, 0, 0 0, 0, 0

July average precipitation 0, 0, 0 0, 0, 0 þ, 0, 0 þ, 0, 0 0, 0, 0

September average precipitation þ, 0, 0 þ, �, 0 0, 0, 0 0, �, 0 0, 0, 0

Biophysical variables

Land area þ, 0, 0 0, 0, 0 �, 0, 0 0, 0, 0 0, 0, 0

Forest area 0, þ, þ �, þ, þ þ, þ, 0 0, þ, 0 0, þ, þ
Socioeconomic variables

Population 0, 0, 0 þ, �, 0 0, þ, þ 0, þ, þ 0, þ, 0

Population density þ, 0, 0 0, 0, 0 0, 0, � 0, 0, � 0, �, 0

Personal income per capita �, �, 0 �, 0, � 0, �, � 0, 0, 0 0, 0, 0

Categorical variables

Alabama 0, 0, 0 �, 0, 0 þ, þ, þ 0, 0, 0 0, 0, 0

Arkansas 0, 0, 0 �, 0, 0 þ, 0, 0 0, 0, 0 0, 0, 0

Florida 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0

Georgia þ, 0, 0 0, 0, 0 þ, 0, 0 þ, 0, 0 0, 0, 0

Kentucky þ, 0, þ �, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0

Louisiana 0, 0, 0 0, 0, 0 þ, 0, 0 þ, 0, 0 0, 0, 0

Mississippi 0, 0, 0 0, 0, 0 þ, 0, þ �, 0, 0 0, 0, 0

North Carolina �, 0, 0 0, 0, 0 0, 0, 0 �, 0, 0 0, 0, 0

Oklahoma 0, 0, 0 �, 0, 0 þ, 0, þ 0, 0, 0 0, �, 0

South Carolina 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0

Tennessee þ, 0, 0 0, 0, 0 þ, 0, 0 0, 0, 0 0, 0, 0

Texas 0, 0, 0 0, 0, 0 þ, 0, þ �, 0, 0 0, 0, 0

Virginia 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0

Province 234 0, 0, 0 0, 0, 0 0, 0, 0 �, �, 0 0, 0, 0

Province 411 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, þ 0, 0, 0

Province 255 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0, 0, 0

Inverse Mills ratios

Second stage þ � þ þ 0

Third stage � þ þ 0 þ
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in contact with the wildland, creating more opportunities to
ignite wildfires, but also have them recorded by fire manage-
ment agencies. Personal income per capita was found to be

negatively related to area burned for counties of ecoregion
province 222 and 231. The negative relationship makes sense
from an economics perspective: locations with higher wealth

generally have greater financial resources available for fire
suppression and prevention, leading to smaller overall wildfires.
Such locations also typically have greater values at risk, which

would compel greater investments in suppression and prevention.
Finally, the IMRs from the first and second stage were usually
statistically significant and positively related to area burned,
indicating that places with more likely non-zero wildfire tend to

also have larger wildfires, all other things being equal, which, in
turn, indicates the importance of accounting for this tendency.

Monte Carlo simulation of projected wildfire futures

While individual iteration data for each county and each of the
2250 iterations performed in this projection of the annual area
burned future of wildfire in the Southeast are available from the

authors on request,6 Appendix S2, available as online supple-
mentary material, describes these graphically. In Appendix S2,
charts show projected annual area burned over the projection

period for each state and each ecosystem province-based eco-
logical domain. For a concise description, Figs 2–4 display the
Southeast-wide summary for lightning and human causes and
for total wildfire respectively.

The results of Monte Carlo simulations are probability dis-
tributions of projected wildfire in the Southeast, given our
modelling and projection assumptions, and it is from these that

we extract median and quantile information in our discussion of
the projection results. Our results show that, for the projection
period after 2010, there is a wide range in potential outcomes

consistent with the historical data and our chosen scenarios of
projected climate and societal futures. This is apparent for the
extent of both lightning- and human-ignited wildfire area burned

in the south-eastern US. However, from 2011 on, it is apparent
that the expected annual area burned by lightning rises over time.7

This increase is projected in percentage terms for every state and
ecosystem province (Table 6). The average of the Monte Carlo

median area burned by lightning rises by an average of,616 ha
per year across the entire region from the 2016–20 average of the
Monte Carlo median to the 2056–60 average of the Monte Carlo

median, a 34% rise.8 For human-ignited wildfires, the picture is
different. The average of the Monte Carlo median area burned
declines 373 ha per year across the entire region, a 6% fall.

Human-ignited wildfires represent the majority of annual area
burned in the region. Projections indicate that their human share
will drop from 76% of all area burned in the 2016–20 period to
,69% by 2056–60. The net effect of these changes across the

Southeast in total is that expected annual area burned bywildfires

6That is, data can be summarised at the county level for any of the nine emission scenario–GCM combinations. Results generally indicate substantial ranges in

potential futures, with the A2 scenario combinations generating higher levels of wildfire and the B2 the lowest amounts, although these trends vary across

space.
7The higher level of predicted area burned for 2006 in these figures is due to the unusually fire-prone conditions found in many parts of the Southeast that year,

especially from lightning and in states along the Atlantic coast and much of the Gulf of Mexico coast, compared with 2011–15 projections.
8We compared the average of theMonte Carlomedian area burned for 2056–60with the average of theMonte Carlomedian area burned projected for 2016–20

rather than with a historical (pre-2011) period because of missing data in the pre-2011 period.
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Fig. 2. Projections of lightning-ignited wildfires, 2006 and 2010–60, for

the south-eastern US, in aggregate (i.e. the sum of wildfire for all counties in

the region), including upper and lower 90% bounds of 2250 Monte Carlo

iterations of models under all scenario and general circulationmodel (GCM)

realisations. (Note: No projectionsweremade for 2005, 2007, 2008 or 2009.)
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Fig. 3. Projections of human-ignited wildfires, 2006 and 2010–60, for the

south-eastern US, in aggregate (i.e. the sum of area burned for all counties in

the region), including upper and lower 90% bounds of 2250 Monte Carlo

iterations of models under all scenario and general circulationmodel (GCM)

realisations. (Note: No projectionsweremade for 2005, 2007, 2008 or 2009.)
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of all causes is projected to rise by ,4% by 2056–60 compared
with 2016–20.

Such changes at the regional level mask more substantial,
and sometimes contrasting projected changes for geographical
subsets of the region. For example, Florida and Louisiana are

projected to see median wildfire area burned rise by 15 and 30%
respectively. Other states with smaller expected rises include
Georgia, Mississippi, North Carolina, Oklahoma, South Caro-
lina and Texas. States with projected double-digit percentage

declines include Arkansas, Kentucky, Tennessee and Virginia.
Ecoregion provinces 221, 222 and 231 are each projected to
have double-digit percentage declines in median annual area

burned, but double-digit percentage increases in expected
annual area burned are projected for ecoregion provinces 232,
234 and 411. It should be emphasised that great uncertainties

exist in the likelihood of projected changes, even in the context
of our modelling assumptions. The 90% upper and lower
bounds, documented in Figs 2–4, and those for individual states

and ecoregion provinces available in Appendix S2, are indica-
tors that definitive conclusions cannot be made about the
ultimate changes in wildfire in any state or ecoregion province.

The results suggest that changes in society have a large impact

on human-ignited wildfires and a smaller impact on lightning-
ignited wildfires. We summarise the net effects of the projected
net reductions in forestland, and increases in income and human

population across the region in Fig. 5. This figurewas constructed
by: (1) projecting wildfire allowing only changes in the climate
variables from all nine climate realisations while holding land

use, income and population constant at levels observed in 2006;
and (2) subtracting the mean projection from the mean projec-
tions reported in Figs 2–4 that do allow land use, income and
population to change. Fig. 5 therefore demonstrates the net effects

of the land-use, income and population variables on our

projections. The figure shows that land-use and socioeconomic
variables have aminimal effect onprojected lightning-ignited fire

areas; changes in these variables reduce projected lightning
wildfire area burned by only ,2% by 2060 compared with the
simulation with no change in land-use and socioeconomic vari-

ables. For human-ignited wildfire, the effects are substantially
greater: annual area burned by human-ignited wildfires is pro-
jected to be 23% lower in 2060when land-use and socioeconomic

variables are allowed to change, compared with holding those
variables constant; conversely, ignoring land-use and socioeco-
nomic variable changes results in a projected median that is 30%
higher than our median projection. In total, the effect of land use,

income and population changes is to reduce wildfire by all causes
by,18% in 2060 comparedwithwhat it would be if land-use and
socioeconomic changes did not occur. In summary, climate

change, on average, is projected to push up annual area burned
in the Southeast, but changes in the distribution of fuels and other
factors that are related to income and population growth serve to

counteract most of the effects of climate change on area burned,
largely through reductions in the annual area burned by human-
ignited wildfires.

Discussion

Modelling of wildfire in the south-eastern US, to be broadly
useful, requires information on whether historical data are valid.
Selection models can help compensate for (a lack of) valid data.

Such projections should also account for the uncertainties in both
the statistical models as well as future states of nature. Finally,
wildfire, particularly in the south-eastern US, is dominated by

humans, who ignite the majority of wildfires and suppress nearly
all of them. Humans break up landscapes, thus limiting fire
spread, and,with their roads and other infrastructure, facilitate the

0
2015 2020 2025 2030 2035 2040 2045 2050 2055 2060

�5

�10

South-wide total lighting

South-wide total human

South-wide total all causes

�15

�20

�25
P

er
ce

nt
ag

e 
ch

an
ge

 in
 w

ild
fir

e 
an

nu
al

 a
re

a 
bu

rn
ed

 d
ue

 to
ch

an
ge

s 
in

 la
nd

 u
se

 a
nd

 s
oc

io
ec

on
om

ic
 v

ar
ia

bl
es

Fig. 5. Projected effects of changes, in percentage, in wildfire annual area

burned in the Southeast owing to changes in land use and other socioeco-

nomic variables, mean effect across all scenario–GCM combinations, in

5-year increments, in aggregate (i.e. the sumof area burned for all counties in
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suppression of wildfires. Our modelling results found that
counties in the Southeast tend to have less area burned in places

with higher personal income per capita. Furthermore, dense
populations and lower areas of forest are related to less overall
wildfire area burned. However, larger populations may be con-

nected to more fires ignited, and therefore the net effect of rising
population density and rising overall population numbers is an
empirical question.

The scenarios defined in the 2010 RPA Assessment projected
rising populations, rising population densities, rising incomes and
falling forest area for the region. These effects would tend to

favour less wildfire in the region, at least for fires ignited by
humans.However, based onourmodel estimation results (Table 4
and Table 5),warming temperatures tend to favourmorewildfire.
Additionally, precipitation patterns could also change. The net

effect of these climate variables, our results show, is therefore
especially to force up lightning-caused wildfire. In our simula-
tions, we would expect more lightning-caused wildfires in

locations with already plentiful lightning-ignited wildfires –
especially along the Gulf of Mexico and Atlantic coasts.
Human-ignited wildfires, especially in interior portions of the

Southeast, are projected to decline in most states owing to loss of
forest, and in relation to rising incomes.Overall, themedian ofour
wildfire area projections indicates that the Southeast would not

experience a large net increase in annual area burned. However,

considerable uncertainty remains in how both society and nature
and, therefore, wildfire will evolve in the coming decades. Our

results show that there is ample scope for either increases or
decreases in annual wildfire area burnedwhen viewed Southeast-
wide. Hence, wildland fire managers and environmental policy-

makers concerned with how wildfire may affect the costs and
losses accruing from wildfire and its management, as well as the
air quality implications of such changes,would dowell to plan for

either eventuality. Our simulations provide context for the possi-
ble ranges of these changes.

Although state-level policies regarding landowner liability

have shifted to favour increased use of prescribed fire (Yoder
et al. 2004), concerns about air quality and other factors (e.g. Liu
et al. 2009; Quinn-Davidson and Varner 2012) have led to the
possibility of growing restrictions on its use. It is enlightening to

consider how the net effect of such changes, not modelled in our
study, may affect wildfire in the Southeast. Mercer et al. (2007)
found that a 1% increase in prescribed fire led to,0.23% long-

run decrease in the annual area burned by wildfire in Florida,
which lies primarily in ecoregion province 232, a statewith large
amounts of prescribed fire. The median annual area burned for

ecoregion province 232 is projected in our models to rise from
,99 000 ha in 2016–20 to 120 000 ha in 2056–60, or by,21.6%
(Table 6). If prescribed fire in all of ecoregion province 232were

to decline by 25%, over and above any changes forced by a

Table 6. Summary of projected expected percentage changes in annual areas burned by wildfire by lightning and

human causes and in total, 2056–60 compared with 2016–20

Provinces 315, 321, 331 and 332 were represented by very few counties in the spatial domain of inference, and so their wildfire

changes were not separately tracked in the modelling

Geographic unit Lightning wildfire annual

area burn change

Human wildfire annual

area burn change

Total wildfire annual

area burn change

(% change, 2056–60 average compared with 2016–20 average)

Alabama 39 �12 �3

Arkansas 60 �59 �31

Florida 11 16 16

Georgia 33 �7 6

Kentucky 189 �28 �22

Louisiana 57 8 30

Mississippi 85 �2 8

North Carolina 74 �10 4

Oklahoma 43 �1 3

South Carolina 34 �7 5

Tennessee 173 �62 �52

Texas 26 �5 4

Virginia 164 �50 �26

Ecoregion province 221 218 �41 �29

Ecoregion province 222 8 �88 �78

Ecoregion province 231 55 �20 �10

Ecoregion province 232 22 10 20

Ecoregion province 234 151 34 82

Ecoregion province 251 37 3 4

Ecoregion province 255 31 �5 �1

Ecoregion province 311 52 2 6

Ecoregion province 411 5 22 17

Ecoregion provinces 315,

321, 331, 332

27 �3 3

Southeast 34 �6 4
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changing climate, an application of the estimate of Mercer et al.
(2007) would project the ecoregion province annual area burned
to rise by an additional 6900 ha above our median projection for

the ecoregion province, to,126 900 ha. This represents a rise of
an additional 7 percentage points (to,28.6%) compared to the
2016–20 average.

A sensitivity analysis that examined the impacts of changes
in land use and other socioeconomic factors on wildfire showed
that these trends in the south-eastern US should not be ignored

when seeking to understand how wildfire could change into the
future. Economic and population growth in the Southeast leads
directly to forest loss because humans require land to build
houses (Wear 2013), requiring new investments in fire suppres-

sion resources by states and municipalities, and involving the
construction of new roads, which create breaks in fuels and
allow easier fire suppression access. For example, from 2006 to

2060, under scenarioA1B, population is projected to increase by
54% and forestland use to decrease by 10% in the counties
covered in the current study. Similarly, increasing personal

income, projected to rise by 252% under the A1B scenario,
and rising population imply greater densities of values at risk
on the landscape, which are a focus of fire suppression. In

summary, we find that ignoring changes in land-use and socio-
economic factors that have a statistically significant effect on
wildfirewould overestimate area burned by nearly one-fifth, and
the effect is particularly acute for human-ignited wildfires.

In contrast, rising population in the face of nearly stable
wildfire area burned implies rising human exposure to wildfire
when viewed in total across the region. These changes in the

exposure are projected to vary widely across the counties of the
region, in step with widely varying changes in wildfire and
population. Nevertheless, the consequences of greater exposure

to emissions of ozone and particulate species from wildfire
include an expected rise in their human morbidity and mortality
impacts (Rappold et al. 2011; Fann et al. 2013). This result
implies that there could be significant social and economic

benefits to management approaches that are shown to reduce
the occurrence of wildfires in the region, including wildfire
prevention and fuelsmanagement (e.g.Mercer et al. 2007;Butry

et al. 2010).
Finally, these annual burned area projections could be a

valuable dataset for informing broader assessments, from air

quality to exposure to health burden, over the next few decades in
the Southeast. There could be significant consequences for the
region’s future air quality and the humanmorbidity andmortality

associated with wildfire activity changes (e.g. Viswanathan et al.
2006; Johnston et al. 2011). With projections of both climate and
wildfire activity, models for studying the air quality impacts of
anthropogenic and natural emissions that can include those from

wildfire (e.g. the Community Multiscale Air Quality model
(Byun and Schere 2006)) can provide additional insights into
how a changing climate and society may in turn have health

consequences for humans.

Conclusions

Flannigan et al. (2009) described the need for new studies that

account for the complex, non-linear interactions between cli-
mate, fuels and humans if we hope to understand the implications

of climate on future wildfire. These authors also highlighted the
importance of improved data on wildfire occurrence so that
prospective analyses can be done formanyparts of theworld.Our

study addresses the first need, bringing in variables that are sur-
rogates for the many roles that humans have in igniting, sup-
pressing and preventing wildfire, managing fuels and changing

aggregate fuels through land-use shifts; in the process, it also
addresses the second need by compensating for the obvious data-
quality problems that face analysts focussed on the US.

This study has also directly addressed some of the uncertain-
ties that arise when considering the future of wildfire. By
combining nine alternative views of both climate and society,
generating probability distributions of area burned, we can begin

to appreciate the extent of wildfire uncertainty facing society in
the south-eastern US. Such uncertainty implies that wildfire
managers and other decision-makers need to prepare for a

possibly wide-ranging direction of change in wildfire processes
in the region. Although some of this uncertainty is connected to
bounded confidence of statistical models of wildfire production,

much is due to uncertainty about how driving climate and societal
variables will change over the coming decades in this region. In
future studies, uncertainties could be reduced first by the devel-

opment of more accurate wildfire production models than the
ones we estimated. As newer climate projections are produced
with improved GCMs and RCPs for greenhouse gas climate
forcing, and as scientists and policymakers gain a better picture of

our emissions, economic, population and policy futures, greater
prediction accuracy as well as precision could be achieved. This
enhanced projection environment will enable land managers and

policymakers to take more concrete actions to minimise some of
the negative effects of altered wildfire patterns.
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