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Abstract

The U.S. Geological Survey’s Gap Analysis Program (hereafter, GAP) is a nationally based program that uses land cover,
vertebrate distributions, and land ownership to identify locations where gaps in conservation coverage exist, and GAP
products are commonly used by government agencies, nongovernmental organizations, and private citizens. The GAP
land-cover designations are based on satellite-derived data, and although these data are widely available, these data
do not capture the 3-dimensional vegetation architecture that may be important in describing vertebrate distributions.
To date, no studies have examined how the inclusion of snag- or shrub-specific Light Detection and Ranging (LiDAR)
data might influence GAP model performance. The objectives of this paper were 1) to assess the performance of the
National GAP models and Northwest GAP models with independently collected field data, and 2) to assess whether the
inclusion of 3-dimensional vegetation data from LiDAR improved the performance of National GAP and Northwest GAP
models. We included only two parameters from the LiDAR data: presence or absence of shrubs and presence or
absence of snags $25 cm diameter at breast height. We surveyed for birds at.150 points in a 20,000-ha coniferous
forest in northern Idaho and used data for eight shrub- and cavity-nesting species for validation purposes. On a guild
level, National GAP models performed only marginally better than Northwest GAP models in correct classification rate,
and LiDAR data did not improve vertebrate distribution models. At the scale used in this study, GAP models had poor
predictive power and this is important for managers interested in using GAP models for species distributions at scales
similar to ours, such as a small park or preserve ,200 km2 in size. Additionally, because the inclusion of LiDAR data did
not consistently affect the performance of GAP models, future studies might consider whether LiDAR data affect GAP
model performance by examining 1) different spatial scales, 2) different LiDAR metrics, and/or 3) species-specific
habitat relationships not currently available in GAP models.
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Introduction

The U.S. Geological Survey’s Gap Analysis Program
(hereafter, GAP) is a nationally based program that uses
land cover, vertebrate distributions, and land ownership
to identify locations where gaps in conservation cover-
age exist (e.g., Scott et al. 1993; http://gapanalysis.usgs.
gov/). Primarily, GAP has modeled these conservation
gaps for vertebrates using deductive modeling ap-
proaches, whereby literature and expert opinion are
both incorporated into the modeling process (e.g.,
Aycrigg et al. 2010). Underlying assumptions of GAP
are that vertebrate associations with land cover are
known, land cover is accurately mapped, and land cover
is mapped at a scale ecologically relevant to the species
in question (Edwards et al. 1996; Boykin et al. 2010).

Data are available from GAP at a national scale
(continental United States; hereafter, USGAP), regional
scale (e.g., northwestern United States states, including
Oregon, Washington, Montana, Idaho, and Wyoming;
hereafter, NWGAP), and for some individual U.S. states
(e.g., Idaho); and each scale uses different numbers and
types of variables in their distribution models (Aycrigg et
al. 2010, 2013). Modeling the distributions of multiple
species at a regional or national scale has several
challenges because these modeling efforts must balance
ecologically relevant variables with the grain and extent
of available spatial data (e.g., Elith and Leathwick 2009).
Additionally, the amount of spatial data (.90 gigabytes)
required to model species at regional and national
extents challenges current computational power. Conse-
quently, most models use fewer than 10 different metrics
for each vertebrate species, regardless of their scale. For
example, national models use a maximum of seven
variables (land cover, hydrology [e.g., stream velocity,
salinity, etc.], human avoidance, elevation, forest edge,
woodland–shrubland, and minimum patch size [http://
gapanalysis.usgs.gov/]), similar to regional programs
such as Southwest GAP (slope, aspect, distance to water,
land cover, soil type, percent rock outcrop, and landform;
Boykin et al. 2010). Some regional programs use even
fewer metrics; for example, NWGAP only used a single
variable (land cover) in its species models (Aycrigg et al.
2013).

Validation of GAP distribution models is important
because they are used by many different stakeholders
and for multiple purposes (Scott et al. 1993; Edwards et
al. 1996; Peterson et al. 2001; Collinge et al. 2005; North
American Bird Conservation Initiative, U.S. Committee
2011; Boykin et al. 2013). However, research studies on
GAP model accuracy have had differing findings, mostly
dependent on scale. Edwards et al. (1996) found that the
accuracy rate (percent correctly classified) of GAP
distribution models for vertebrates was .69% for eight
national parks in Utah. In Idaho, Peterson et al. (2001)
noted accuracy rates of up to 85%, but also concluded
that accuracy depended largely on scale, with fine-scale
(approx. 2-ha) accuracy as low as 39%. In Southwest GAP,
Boykin et al. (2010) noted concordance of approximately
60% between GAP models and field-collected data.
These studies used independently derived data to

examine the accuracy of GAP models, which is important
to determine where improvements can be made in the
GAP modeling process (Scott et al. 1996, 2002).

Land cover is a common denominator in all GAP
vertebrate models and is typically derived solely upon
satellite-based data. Although land cover is undoubtedly
an important variable for vertebrates, the two-dimen-
sional nature of satellite data may be insufficient to
capture important habitat variables for some species
(Vierling et al. 2008). Because LiDAR is a remote-sensing
tool that describes 3-dimensional vertical structure, the
incorporation of LiDAR data may improve our under-
standing of species distributions at both fine and broad
spatial scales (Lefsky et al. 2002; Vierling et al. 2008;
Bergen et al. 2009). Applications for wildlife habitat
modeling using LiDAR data have increased in recent
years, largely because LiDAR data can reflect ecologically
relevant vegetation structure that may otherwise be
difficult to gather through traditional field-based efforts
(e.g., Bradbury et al. 2005; Müller et al. 2009).

The value of LiDAR is apparent from the growing
number of research studies that have incorporated
LiDAR-derived data in wildlife-habitat models (e.g., Goetz
et al. 2007; Clawges et al. 2008; Vogeler et al. 2013). There
are multiple metrics that might be used to model
distribution of a specific species, but as mentioned
above, two metrics that are broadly applicable in a GAP
framework are LiDAR-derived shrub and snag data. These
two metrics are likely to improve GAP vertebrate models
because they represent real structural components of the
landscape used by wildlife (Martinuzzi et al. 2009). Our
objectives were to assess 1) the performance of USGAP
and NWGAP models with independently collected field
data, and 2) whether the inclusion of LiDAR-derived
shrub and snag data improved the performance of
USGAP and NWGAP models. We used data from field
surveys of four shrub-nesting and four cavity-nesting
bird species to assess the accuracy of distribution models
created by 1) the national USGAP data set only, 2) the
regional NWGAP data set only, 3) LiDAR-derived data
only, and 4) combinations of LiDAR, USGAP, and NWGAP
data.

Study Area

We conducted this study on Moscow Mountain in
northern Idaho (approx. 46u449N, 116u589W). Moscow
Mountain encompasses about 20,000 ha of mixed co-
niferous forest. Vegetation in our study varied by aspect,
elevation, and management history. Dominant tree
species included ponderosa pine Pinus ponderosa, Doug-
las-fir Pseudotsuga menziesii, grand fir Abies grandis,
western red cedar Thuja plicata, and western larch Larix
occidentalis (Martinuzzi et al. 2009; Vogeler et al. 2013;
Washington State University 2014). Common shrub
species included ocean-spray Holodiscus discolor, ninebark
Physocarpus malvaceus, common snowberry Symphoricar-
pos albus, white spirea Spiraea betulifolia, huckleberry
Vaccinium membranaceum, and Rocky mountain maple
Acer glabrum (Martinuzzi et al. 2009; Washington State
University 2014). Most of Moscow Mountain is managed
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for timber production by private industrial forest compa-
nies, but a portion is used for research by the University of
Idaho. Both logged and unlogged areas occur on Moscow
Mountain (Falkowski et al. 2005) and past forest manage-
ment practices include prescribed burning, such as annual
burns on approximately 1–2% of the University of Idaho’s
Experimental Forest (Falkowski et al. 2005). For snags
$25 cm diameter at breast height (DBH), the snag density
is approximately 30–35% of the area (Martinuzzi et al.
2009).

Methods

Selection of focal species
We selected four shrub-nesting and four cavity-nesting

birds as focal species for our analyses. Shrub-nesting
species included dusky flycatcher Empidonax oberholseri,
MacGillivray’s warbler Geothlypis tolmiei, orange-crowned
warbler Oreothlypis celata, and Swainson’s thrush Catharus
ustulatus. Cavity-nesting species included hairy wood-
pecker Picoides villosus, northern flicker Colaptes auratus,
mountain chickadee Poecile gambeli, and red-breasted
nuthatch Sitta canadensis. The cavity-nesting guild select-
ed for this study included two species that function mostly
as primary-cavity excavators (northern flicker and hairy
woodpecker) and two species that are usually classified as
secondary-cavity users or weak excavators (mountain
chickadee and red-breasted nuthatch). Secondary-cavity
users are species that utilize cavities for nesting, but that
do not necessarily excavate their own cavity and are often
dependent upon primary-cavity excavators for cavities
(Martin et al. 2004; Gentry and Vierling 2008). Both
primary-cavity excavators and secondary-cavity users will
use cavities for roosting (Martin et al. 2004). Although the
number of species we selected is small, we chose species
that we anticipated would be sensitive to either shrub or
snag presence and for which we had sufficient sample
sizes to examine our objectives.

Survey data
To assess the performance of USGAP and NWGAP

models, we conducted point counts to detect all focal
species within our study area. We randomly stratified
point-count stations by locating stations within eight
strata that represented a range of successional stages
from early successional to mature forest stages (Vogeler
et al. 2013). We placed stations a minimum of 250 m
apart to minimize the chance of sampling the same bird
at multiple stations and used 8-min variable-radius point-
count methods. We identified bird species by sight or
sound and estimated distance to each individual
(Reynolds et al. 1980; Vogeler et al. 2013, 2014).

We conducted standard point counts in 2009 at 151
sites on Moscow Mountain for all focal species. As part of
a concurrent study on cavity-nesting birds, we also
conducted playback point counts for woodpeckers at all
of these sites, plus an additional five sites. Thus, we
surveyed for all eight birds at 151 sites, and then used
playbacks to survey for woodpeckers alone at an
additional 5 sites, for 156 total woodpecker sites. For
woodpecker detections, if a point detected a woodpecker

during either the standard point count or the playback
point count, we considered that site occupied.

To increase our chances of detecting the majority of
breeding bird species in our study area, we visited each
site twice between 15 May and 5 July 2009 (Petit et al.
1995; Smith et al. 1995). Standard point-count surveys
lasted 8 min (Vogeler et al. 2013, 2014), and we followed
the methods of Vierling et al. (2013) for woodpecker
playback surveys. For each detection, we recorded the
distance to the bird and omitted from analysis all birds
detected .100 m from stations. We began surveys at
sunrise and continued until 5 h after sunrise to capture
the period of active vocalization (Manuwal and Carey
1991). We did not survey during periods of strong wind
or heavy rain, when the observers’ abilities to detect
birds were compromised (Vogeler et al. 2013).

Determining predicted species presence
To assess whether the inclusion of 3-dimensional

vegetation data improved the performance of USGAP
and NWGAP models, we obtained GAP species-distribu-
tion data from USGS GAP (http://gapanalysis.usgs.gov/)
and NWGAP (http://www.gap.uidaho.edu/). Predictors of
the GAP models for our focal species include between 55
and 344 land-cover classes in addition to hydrology,
human avoidance, elevation, forest edge, and minimum
patch size. We then obtained LiDAR data sets from
multiple-return LiDAR that had been flown by Horizons,
Inc., in summer 2003. Data were acquired using a Leica
ALS40 system at an elevation of 2,500 m and using
a wavelength of 1,064 nm. The mean LiDAR point density
was 0.4 points/m2. We separated data into ground and
nonground returns following Evans and Hudak (2007)
and constructed the classification of snag and shrub
presence and absence using the Random Forest algo-
rithm (Breiman 2001) following Martinuzzi et al. (2009).
Shrub cover was defined as vegetation returns between
1 m and 2.5 m in height (Martinuzzi et al. 2009) and we
classified understory shrubs as “present” if they covered
.25% of a 20 m 6 20 m pixel (Data S1, Supplemental
Material). We estimated the accuracy of our shrub
prediction as 83% and our snag prediction as 86–88%
(Martinuzzi et al. 2009). The LiDAR data could not
distinguish between hardwood and nonhardwood
shrubs, such as saplings of Douglas-fir, ponderosa pine,
and grand fir. Additional details on the mapping of snags
and shrubs are available in Martinuzzi et al. (2009).

Presence and absence of snags based on LiDAR-
derived data were available for three size categories:
snags $15 cm DBH (Data S2, Supplemental Material),
snags $25 cm DBH (Data S3, Supplemental Material), and
snags $30 cm DBH (Data S4, Supplemental Material). We
completed a review of the literature on the sizes of snags
used for each of our focal cavity-nesting species to
determine which size classes were important for nesting
(see Table S1, Supplemental Material, for list of scientific
literature included in review). For all species, 90% of all
snags used in the reviewed studies (n = 36) were
$25 cm DBH. We therefore considered that the LiDAR
layer for snags $25 cm DBH should accurately represent
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the size of snags needed for nesting by all cavity-nesters
(Data S3, Supplemental Material).

We created 100-m buffers around each point-count
location and calculated the proportion of each circular
buffer area that was classified as suitable for each species
for each of the distribution models (USGAP only, NWGAP
only, LiDAR only, USGAP + LiDAR combined, NWGAP +
LiDAR combined). If $50% of the buffer around a point-
count station was predicted as suitable habitat, we
classified that point as having a “predicted presence” for
that species. If ,50% of the buffer was predicted to be
suitable, we classified the point as “predicted absence.”
For combination GAP and LiDAR models, we used
ArcMap 10 (ESRI, Redlands, CA) to overlay LiDAR data
with GAP distribution models for each species, and the
resulting model represented the intersection of these
two layers. For predicting species presence of our LiDAR
+ GAP models, we determined that a pixel had to contain
predicted presence for both individual models, and
absence was predicted in all other cases.

Similar to other studies (e.g., Edwards et al. 1996;
Peterson et al. 2001; Boykin et al. 2010), we calculated
the percentage of correct positive predictions (positive
predictive power), the percentage of correct negative
predictions (negative predictive power), and the correct
classification rate (the percentage of correct present and
absent predictions together; Table S2, Supplemental
Material). For each model, we then computed 95%
confidence intervals for proportions as,

b+1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b 1{bð Þ

n

r

where b represents the parameter estimate (in this case,
proportions), and n the sample size. When confidence
intervals for different models did not overlap, we
considered that there was a difference between models.

Results

We detected all eight focal species on Moscow
Mountain, and both shrub- and cavity-nesting birds

were detected on at least one-quarter of all points
(Table 1). Red-breasted nuthatch and Swainson’s thrush
were the most common species, occurring on 82% and
73% of surveys, respectively (Table 1). Orange-crowned
warbler was the least commonly detected species, but
still occurred on 27% of point-count surveys.

On a species-specific level, there was great variability
in the amount of suitable habitat predicted by the GAP
models (Table 1). For example, USGAP predicted that 0%
of Moscow Mountain was suitable for orange-crowned
warbler, whereas NWGAP predicted 81%. The only
species for which USGAP and NWGAP predicted the
same amount of suitable habitat was red-breasted
nuthatch (Table 1).

On a guild level, USGAP models performed marginally,
though consistently better than NWGAP models in
correct classification rate (Table 2). However, on a species
level, these differences were only significant for a single
species—orange-crowned warbler (Figure 1). Negative
predictive power (percent of correct negative predic-
tions) values were higher for USGAP models compared
with NWGAP models across all species, shrub-nesters
only, and cavity-nesters only (Table 2). Five of the eight
species had significantly greater negative predictive
power values for USGAP-only models compared with
NWGAP-only models (Figure 1). For most species, both
GAP models poorly predicted species presence on
Moscow Mountain. We estimated that for all species
together, NWGAP and USGAP correctly classified only
44% and 51% of our point-count surveys (Table 2).

The addition of LiDAR data to the GAP maps
decreased the amount of predicted suitable habitat for
all species except orange-crowned warbler, for which
USGAP predicted no suitable habitat (Table 1). On a guild
level, the addition of LiDAR data improved the correct
classification rate of both USGAP and NWGAP by up to
12 percentage points (Table 2). The only guild–model
combination that did not see an improvement with
the addition of LiDAR data was the USGAP model for
shrub-nesters, which performed poorly overall because
USGAP underestimated the presence of two common

Table 1. Estimated proportion of suitable habitat on Moscow Mountain, Idaho, from 15 May to 5 July 2009 for each of eight focal
bird species based on distribution models for 1) the regional Northwest Gap Analysis Project data set only (NWGAP), 2) the national
U.S. Geological Survey Gap Analysis Program data set only (USGAP), 3) Light Detection and Ranging (LiDAR) –derived data only, and
4) combinations of LiDAR-derived data with national and regional GAP maps. Number in parentheses following each species’ name
represents the proportion of sites where the species was detected using survey data.

Species NWGAP only
NWGAP +

LiDAR USGAP only
USGAP +

LiDAR LiDAR only

Shrub-nesters

Swainson’s thrush Catharus ustulatus (0.73) 0.78 0.46 0.71 0.44 0.48

MacGillivray’s warbler Geothlypis tolmiei (0.46) 0.13 0.04 0.05 0.02 0.48

Orange-crowned warbler Oreothlypis celata (0.27) 0.81 0.47 0.00 0.00 0.48

Dusky flycatcher Empidonax oberholseri (0.33) 0.65 0.46 0.74 0.45 0.48

Cavity-nesters

Hairy woodpecker Picoides villosus (0.29) 0.73 0.34 0.71 0.33 0.35

Northern flicker Colaptes auratus (0.47) 0.78 0.34 0.60 0.26 0.35

Red-breasted nuthatch Sitta canadensis (0.82) 0.69 0.32 0.69 0.33 0.35

Mountain chickadee Poecile gambeli (0.51) 0.69 0.32 0.72 0.33 0.35
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species—MacGillivray’s and orange-crowned warbler
(Table 1). The largest improvements from LiDAR data
occurred with the negative predictive power (the ability
to accurately describe “absent” sites correctly). With the
addition of LiDAR data, there was a 22% increase in
negative predictive power for all species compared with
a 2% increase for positive predictive power (Table 2).

On a species-specific level, the effect of LiDAR data on
GAP model performance varied widely, even within the
same guild. The LiDAR data improved both USGAP and
NWGAP models for some species (such as dusky
flycatcher), had no effect on others (MacGillivray’s
warbler), and actually decreased model performance
for the Swainson’s thrush USGAP model (Figure 1). The
performance of LiDAR data alone for predicting species
distribution was likewise variable (Table 2). For example,
the LiDAR-only model performed better than the NWGAP
model for northern flicker, showed no difference for
mountain chickadee, and performed worse than the
USGAP model for orange-crowned warbler (Figure 1).

Discussion

Our assessment of USGAP and NWGAP models with
independently collected field data showed that the
ability of USGAP and NWGAP models to predict species
distributions is highly species-specific. Even within the
same guild, GAP models were highly variable. For
example, within the shrub- and cavity-nesting guild,
respectively, some GAP models correctly classified .70%
of points for orange-crowned warbler and red-breasted
nuthatch, but classified ,40% of Swainson’s thrush and

hairy woodpecker points. It is possible that we missed
presence of some species by surveying in only 1 y and on
two occasions. But it is also possible that these
differences arise because GAP models predict suitable
habitat for a species, rather than the actual occurrence of
a species in a specific area, and not all habitat may be
occupied (Jennings 2000; Boykin et al. 2010; Franklin
2010). Additionally, some species rely on fairly specific
components of a habitat types. These finer scale habitat
components may be missing from GAP models that only
consider coarse depictions of habitat when modeling
species distributions, and thus some areas considered
suitable by coarse habitat classifications may in actuality
be unsuitable.

After combining all species in this study, both GAP
models on average correctly classified presence and
absence of our focal bird species in half the cases, or
about equal to what would be expected from random
chance alone. These conclusions support those of
McClure et al. (2012) that GAP models perform poorly
at small spatial scales such as 100-m-radius point-count
circles used in this study. McClure et al. (2012) examined
the accuracy of GAP maps for vertebrate distributions in
the southeastern United States and noted that the
accuracy of GAP maps decreased with spatial scale. In
addition, it is possible these models performed poorly
because we surveyed for birds only two to four times in
1 y and thus missed detecting some species at our point-
count stations. Points classified as unoccupied may have
been occupied (MacKenzie et al. 2006), and if this is the
case, then GAP may have higher positive predictive

Table 2. Mean diagnostic values to assess the performance of Northwest Gap Analysis Project (NWGAP), U.S. Geological Survey
Gap Analysis Program (USGAP), Light Detection and Ranging (LiDAR), and LiDAR + GAP models for predicting species occurrence
for eight focal species in 2009 on Moscow Mountain, Idaho. The NWGAP models are applicable in the Northwest, and USGAP refers
to national GAP models. The correct classification rate is the percentage of total correct presence and absence predictions, positive
predictive power is the percentage of correct positive predictions, and the percentage of correct negative predictions is the
negative predictive power.

Model Correct classification rate Positive predictive power Negative predictive power

All species

NWGAP only 0.44 0.44 0.38

NWGAP + LiDAR 0.52 0.46 0.60

USGAP only 0.51 0.42 0.64

USGAP + LiDAR 0.52 0.44 0.53

LiDAR only 0.50 0.43 0.60

Shrub-nesters only

NWGAP only 0.43 0.44 0.42

NWGAP + LiDAR 0.56 0.50 0.67

USGAP only 0.55 0.39 0.71

USGAP + LiDAR 0.55 0.46 0.53

LiDAR only 0.52 0.61 0.53

Cavity-nesters only

NWGAP only 0.44 0.45 0.35

NWGAP + LiDAR 0.48 0.42 0.53

USGAP only 0.47 0.45 0.57

USGAP + LiDAR 0.49 0.42 0.53

LiDAR only 0.48 0.43 0.53
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Figure 1. Correct classification rate, positive predictive power, and negative predictive power values with associated 95% confidence
intervals by species and by model. Models predict species occurrence for eight focal bird species in 2009 on Moscow Mountain, Idaho,
and include Northwest Gap Analysis Project (NWGAP), U.S. Geological Survey Gap Analysis Program (USGAP), Light Detection and
Ranging (LiDAR), and LiDAR + GAP models. The NWGAP models are applicable in the Northwest and USGAP refers to national GAP
models. The correct classification rate is the percentage of total correct presence and absence predictions, positive predictive power is
the percentage of correct positive predictions, and negative predictive power is the percentage of correct negative predictions.
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power than reflected in our results. We suggest that
future studies account for this possibility and consider
more rigorous surveys.

Comparing USGAP and NWGAP models on a species
level, the USGAP models performed slightly better than
NWGAP models, and this difference was significant for
dusky flycatcher and orange-crowned warbler. Our
results for orange-crowned warbler should be treated
with caution, however, because of the low level of
predicted habitat for this species in the USGAP models.
For dusky flycatcher, the USGAP models may have
outperformed NWGAP models because NWGAP models
were based on a single variable (e.g., land cover),
whereas USGAP models included multiple variables
(e.g., land cover, elevation, and minimum patch size).
The ability to accurately map the distribution of species
is partly dependent on the selection of the correct
variables and spatial scale used in the modeling
framework (e.g., Austin 2007; Elith and Leathwick 2009;
Franklin 2010), and it is likely the species that we
examined were sensitive to the model variables included
in USGAP models compared with land cover alone. This
finding supports GAP’s iterative approach to their
species-modeling effort in which species models are
updated as new data or information regarding species
occurrences and habitat relationships become available
(Aycrigg et al. 2010).

LiDAR data are derived at a smaller scale for bird point-
count surveys; therefore, we were surprised that the
addition of LiDAR data did not consistently improve

models. Previously, researchers have examined the ability
of either GAP or LiDAR data separately to predict species
distributions (e.g., Howell et al. 2008; Bellamy et al. 2009;
Goetz et al. 2010; McClure et al. 2012), but none have
combined shrub- and snag-specific LiDAR data with
NWGAP or USGAP models to assess model performance.
In our study, the addition of LiDAR data to GAP models
improved model performance only for some species.
Within the same guild, some species, such as dusky
flycatcher, showed higher correct classification rate with
LiDAR data; but others, such as MacGillivray’s warbler,
showed no overall improvement. Still others, such as
Swainson’s thrush, actually had poorer predictive power
with LiDAR data than without. For such species, LiDAR
data resulted in poorer predictive power because GAP
models tended to overpredict suitable habitat and
therefore had inflated positive predictive power. All
three of these species should have responded positively
to shrub cover. However, it is possible that LiDAR data
did not improve these species models because these
birds were responding to other unmeasured stand
features, such as the presence of nonhardwood shrub
cover (Morrison 1981; Ellis et al. 2012). The LiDAR data
alone cannot distinguish between hardwood and non-
hardwood shrub layers, and for LiDAR data to improve
species-distribution maps, additional information about
species-specific habitat requirements and the appropri-
ate spatial scale of those habitat variables would have to
be included.

Figure 1. Continued.
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It is noteworthy, however, that in some cases, LiDAR
data could not improve models because the underlying
models themselves were highly inaccurate. For example,
USGAP models predicted virtually no suitable habitat on
Moscow Mountain for MacGillivray’s warbler, even
though the species is common in the region. This
species is most likely to be detected in streamside
riparian cover and has been classified as a riparian-
dependent species (Pitocchelli 2013). Linear riparian
habitats are challenging to accurately map using 30 m
6 30 m resolution satellite imagery. Therefore GAP
models based on land cover and other broadly occurring
model variables will have lower accuracy, and this
demonstrates that LiDAR data cannot improve GAP
models if the GAP models themselves vastly under-
predict species presence.

Overall, we found that the ability of GAP models to
predict species distributions within the spatial extent of
our study was highly species-specific and LiDAR data did
not consistently improve GAP models. This may be
encouraging for land managers who lack LiDAR data. At
the present time, airborne LiDAR data are limited in
spatial extent to temperate areas (Müller and Vierling
2013), and even though LiDAR data are increasingly
available in multiple states within the United States,
there are still operational challenges to the incorporation
of airborne LiDAR data into conservation and manage-
ment plans. Our study results suggest that managers
should consider the limitations of LiDAR data; LiDAR data
may only be appropriate for cases where the specific
habitat requirements of the animal are considered, and it
may only improve species-distribution models if the
underlying models themselves are accurate. Given our
findings, we caution land managers from using GAP
models at small spatial scales without field-collected
data, at least until GAP models are improved and
validated by field studies (Fielding and Bell 1997). In
our study, GAP models were not accurate in predicting
species presence in our 200-km2 study area, which is
similar in size to a small park or preserve. The GAP
models are more appropriate at national, regional, or
statewide scales or for providing context for finer level
maps, such as prioritizing areas for further research
(Jennings 2000; Aycrigg et al. 2013; USGS-GAP 2013).
Future studies should consider using LiDAR data to
improve GAP models at larger spatial scales and more
appropriate to the scale at which GAP models were
designed. Given the differences in model performance
by species, we also encourage researchers to first
consider GAP and LiDAR models on a species-specific
level and to be careful about making generalizations
across guilds.
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Data S1. The LiDAR-derived shrub presence and
absence data for Moscow Mountain, Idaho. Requires
ArcGIS software (ESRI, Redlands, CA) to convert text file
to raster map.

Found at DOI: http://dx.doi.org/10.3996/092013-
JFWM-064.S1 (2502 KB TXT).

Data S2. The LiDAR-derived snag presence and
absence data for snags $15 cm on Moscow Mountain,
Idaho. Requires ArcGIS software (ESRI, Redlands, CA) to
convert text file to raster map.

Found at DOI: http://dx.doi.org/10.3996/092013-
JFWM-064.S2 (2483 KB TXT).

Data S3. The LiDAR-derived snag presence and
absence data for snags $25 cm on Moscow Mountain,
Idaho. Requires ArcGIS software (ESRI, Redlands, CA) to
convert text file to raster map.

Found at DOI: http://dx.doi.org/10.3996/092013-
JFWM-064.S3 (2483 KB TXT).

Data S4. The LiDAR-derived snag presence and
absence data for snags $30 cm on Moscow Mountain,
Idaho. Requires ArcGIS software (ESRI, Redlands, CA) to
convert text file to raster map.

Found at DOI: http://dx.doi.org/10.3996/092013-
JFWM-064.S4 (2483 KB TXT).

Table S1. List of scientific literature reviewed to
determine the appropriate snag size requirements for
the hairy woodpecker Picoides villosus, northern flicker
Colaptes auratus, mountain chickadee Poecile gambeli,
and red-breasted nuthatch Sitta canadensis. (Includes
References S8, S9, S10, and S11).

Found at DOI: http://dx.doi.org/10.3996/092013-
JFWM-064.S5 (41 KB DOC).

Table S2. Comparisons of actual and predicted
occurrence data for eight bird species across Moscow
Mountain, Idaho, during 15 May to 5 July 2009. Predicted
occurrence models were based on 1) the regional North-
west Gap Analysis Project data set only (NWGAP), 2) the
national U.S. Geological Survey Gap Analysis Program data
set only (USGAP), 3) Light Detection and Ranging (LiDAR)
–derived data only, and 4) combinations of LiDAR-derived
data with national and regional GAP maps. The LiDAR-
derived data reflected either presence of absence of snags
of $25-cm DBH for cavity-nesting species, or shrub
presence or absence for shrub-nesting species.

Found at DOI: http://dx.doi.org/10.3996/092013-
JFWM-064.S6 (69 KB DOC).

Reference S1. Aycrigg J, Beauvais G, Gotthardt T,
Boykin K, Williams S, Lennartz S, Vierling KT, Martinuzzi S,
Vierling LA. 2010. Mapping species ranges and distribu-
tion models across the United States. Gap Analysis
Bulletin 18:12–20.

Found at DOI: http://dx.doi.org/10.3996/092013-
JFWM-064.S7 (944 KB PDF).
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Reference S2. Aycrigg JL, Andersen M, Beauvais G,
Croft M, Davidson A, Duarte L, Kagan J, Keinath D,
Lennartz S, Lonneker J, Miewald T, Ohmann J, editors.
2013. Ecoregional Gap analysis of the northwestern
United States. Moscow, Idaho: U.S. Geological Survey
Gap Analysis Program.

Found at DOI: http://dx.doi.org/10.3996/092013-
JFWM-064.S8 (18.8 MB PDF).

Reference S3. Peterson CR, Burton SR, Pilliod DS, Lee
JR, Cossel JO Jr, Llewellyn RL. 2001. Assessing the
accuracy of Gap Analysis predicted distributions of Idaho
amphibians and reptiles. Gap Analysis Bulletin 10:25–28.

Found at DOI: http://dx.doi.org/10.3996/092013-
JFWM-064.S9; also available at http://www.gap.uidaho.
edu/bulletins/10/assessing_accurac.htm (334 KB PDF).

Reference S4. North American Bird Conservation
Initiative, U.S. Committee. 2011. The state of the birds
2011 report on public lands and waters. Washington,
D.C.: U.S. Department of Interior. Found at DOI: http://dx.
doi.org/10.3996/092013-JFWM-064.S10; also available at
http://www.stateofthebirds.org (4855 KB PDF).

Reference S5. Petit DR, Petit LJ, Saab VA, Martin TE.
1995. Fixed-radius point counts in forests: factors influenc-
ing effectiveness and efficiency. Pages 49–56 in Ralph CJ,
Sauer JR, Droege S, editors. Monitoring bird populations by
point counts. Albany, California: U.S. Department of
Agriculture Forest Service, Pacific Southwest Research
Station. General Technical Report PSW-GTR-149.

Found at DOI: http://dx.doi.org/10.3996/092013-
JFWM-064.S11; also available at http://www.fs.fed.us/
psw/publications/documents/psw_gtr149/psw_gtr149.pdf
(6600 KB PDF).

Reference S6. Smith WP, Twedt DJ, Cooper RJ,
Widenfeld DA, Hamel PB, Ford RP. 1995. Sample size and
allocation of effort in point count sampling of birds in
bottomland hardwood forests. Pages 7–18 in Ralph CJ,
Sauer JR, Droege S, editors. Monitoring bird populations
by point counts. Albany, California: U.S. Department of
Agriculture Forest Service, Pacific Southwest Research
Station. General Technical Report PSW-GTR-149.

Found at DOI: http://dx.doi.org/10.3996/092013-
JFWM-064.S12; also available at http://www.fs.fed.us/
psw/publications/documents/psw_gtr149/psw_gtr149.
pdf (6600 KB PDF).

Reference S7. Manuwal DA, Carey AB. 1991. Methods
for measuring populations of small diurnal forest birds.
Portland, Oregon: U.S. Department of Agriculture Forest
Service, Pacific Northwest Research Station. General
Technical Report PNW-GTR-278.

Found at DOI: http://dx.doi.org/10.3996/092013-
JFWM-064.S13; also available at http://www.treesearch.
fs.fed.us/pubs/9004 (1594 KB PDF).

Reference S8. Kozma J M. 2009. Nest-site attributes
and reproductive success of white-headed and hairy

woodpeckers along the east-slope Cascades of Washing-
ton State. Pages 52–61 in Rich TD, Arizmendi C, Demarest
D, and Thompson C, editors. Tundra to tropics: connect-
ing birds, habitats and people. Proceedings of the 4th
International Partners in Flight Conference 13-16 Febru-
ary 2008, McAllen, Texas. (See Table S1).

Found at DOI: http://dx.doi.org/10.3996/092013-
JFWM-064.S14 (298 KB PDF).

Reference S9. Laudenslayer WF. 2002. Cavity-nesting
bird use of snags in eastside pine forests of northeastern
California. Albany, California: U.S. Department of Agricul-
ture Forest Service, Pacific Southwest Research Station.
General Technical Report PSW-GTR-181. (See Table S1).

Found at DOI: http://dx.doi.org/10.3996/092013-
JFWM-064.S15; also available at http://www.fs.fed.us/
psw/publications/documents/gtr-181/000_gtr181fm.pdf
(224 KB PDF).

Reference S10. Nelson SK. 1988. Habitat use and
densities of cavity nesting birds in the Oregon Coast
Range. Master’s thesis. Corvallis: Oregon State University.
(See Table S1).

Found at DOI: http://dx.doi.org/10.3996/092013-
JFWM-064.S16; also available at http://ir.library.oregon-
state.edu/xmlui/bitstream/handle/1957/7742/Nelson_S_
Kim_1988.pdf?sequence = 1 (1249 KB PDF).

Reference S11. Scott VE, Whelan JA, Svoboda PL.
1980. Cavity-nesting birds and forest management.
Pages 311–324 in DeGraaf RM, Tilghman NG, compilers.
Management of western forests and grasslands for
nongame birds. Ogden, Utah: U.S. Department of the
Interior, Fish and Wildlife Service, Denver Wildlife Re-
search Center. U.S. Forest Service General Technical
Report INT-86. (See Table S1).

Found at DOI: http://dx.doi.org/10.3996/092013-
JFWM-064.S17; also available at http://www.fs.fed.us/
rm/pubs_int/int_gtr086.pdf (925 KB PDF)

Acknowledgments

We would like to thank the National Gap Analysis
Program at the University of Idaho (grant numbers:
G08AC00047 and G12AC20244), the U.S. Forest Service,
and the Palouse Audubon Society for funding.

We thank Gary Beauvais, Doug Keinath, and Mark
Andersen of the Wyoming Natural Diversity Database;
Ken Boykin of New Mexico State University; Matt Rubino
and Nathan Tarr of North Carolina State University; and
Thomas Laxson of the University of Idaho for developing
GAP species-distribution models. We thank Sebastian
Martinuzzi and Andy Hudak for providing the LiDAR data.
We thank two anonymous reviewers and the Subject
Editor for constructive comments that improved this
publication.

This is contribution 1086 of the University of Idaho
Forest, Wildlife and Range Experiment Station. T. Lorenz,
K.T. Vierling, and J. Aycrigg are equal first co-authors.

Assessing GAP Model Performance with LiDAR T.J. Lorenz et al.

Journal of Fish and Wildlife Management | www.fwspubs.org December 2015 | Volume 6 | Issue 2 | 445



Any use of trade, product, or firm names is for
descriptive purposes only and does not imply endorse-
ment by the U.S. Government.

References

Austin M. 2007. Species distribution models and ecolog-
ical theory: a critical assessment and some possible
new approaches. Ecological Modelling 200:1–9.

Aycrigg J, Beauvais G, Gotthardt T, Boykin K, Williams S,
Lennartz, S, Vierling KT, Martinuzzi S, Vierling LA. 2010.
Mapping species ranges and distribution models
across the United States. Gap Analysis Bulletin 18:
12–20 (see Supplemental Material, Reference S1,
http://dx.doi.org/10.3996/092013-JFWM-064.S7).

Aycrigg JL, Andersen M, Beauvais G, Croft M, Davidson A,
Duarte L, Kagan J, Keinath D, Lennartz S, Lonneker J,
Miewald T, Ohmann J, editors. 2013. Ecoregional Gap
analysis of the northwestern United States. Moscow,
Idaho: U.S. Geological Survey Gap Analysis Program
(see Supplemental Material, Reference S2, http://dx.
doi.org/10.3996/092013-JFWM-064.S8).

Bellamy PE, Hill RA, Rothery P, Hinsley SA, Fuller RJ,
Broughton RK. 2009. Willow Warbler Phylloscopus
trochilus habitat in woods with different structure
and management in southern England. Bird Study 56:
338–348.

Bergen KM, Goetz SJ, Dubayah RO, Henebry GM,
Hunsaker CT, Imhoff ML, Nelson RF, Parker GG,
Radeloff VC. 2009. Remote sensing of vegetation 3-D
structure for biodiversity and habitat: review and
implications for lidar and radar spaceborne missions.
Journal of Geophysical Research-Biogeosciences
114(505):G00E06.

Boykin KG, Kepner WG, Bradford DF, Guy RK, Kopp DA,
Leimer AK, Samson EA, East NF, Neale AC, Gergely KJ.
2013. A national approach for mapping and quanti-
fying habitat-based biodiversity metrics across multi-
ple spatial scales. Ecological Indicators 33:139–147.

Boykin KG, Thompson BC, Propeck-Gray S. 2010. Accu-
racy of Gap Analysis habitat models in predicting
physical features for wildlife–habitat associations in
the southwest U.S. Ecological Modelling 221:2769–
2775.

Bradbury RB, Hill RA, Mason DC, Hinsley SA, Wilson JD,
Baltzer H, Anderson GQA, Whittingham MJ, Davenport
IJ, Bellamy PE. 2005. Modelling relationships between
birds and vegetation structure using airborne LIDAR
data: a review with case studies from agricultural and
woodland environments. Ibis 147:4432452.

Breiman L. 2001. Random forests. Machine Learning 45:
5–32.

Clawges R, Vierling KT, Vierling LA, Rowell E. 2008. The
use of airborne LiDAR to assess avian species diversity,
density, and occurrence in a pine/aspen forest.
Remote Sensing of Environment 112:2064–2073.

Collinge SK, Johnson WC, Matchett R, Grensten J, Cully JF
Jr, Gage KL, Kosoy MY, Loye JE, Martin AP. 2005.
Landscape structure and plague occurrence in black-

tailed prairie dogs on grasslands of the western USA.
Landscape Ecology 20:941–955.

Edwards TC Jr, Deshler ET, Foster D, Moisen GG. 1996.
Adequacy of wildlife habitat relation models for
estimating spatial distributions of terrestrial verte-
brates. Conservation Biology 10:263–270.

Elith J, Leathwick JR. 2009. Species distribution models:
ecological explanation and prediction across space and
time. Ecology, Evolution, and Systematics 40:677–697.

Ellis TM, Kroll AJ, Betts MG. 2012. Early seral hardwood
vegetation increases adult and fledgling bird abun-
dance in Douglas-fir plantations of the Oregon Coast
Range, USA. Canadian Journal of Forest Research 42:
918–933.

Evans JS, Hudak AT. 2007. A multiscale curvature
algorithm for classifying discrete return LiDAR in
forested environments. IEEE Transactions on
Geoscience and Remote Sensing 45:1029–1038.

Falkowski MJ, Gessler PE, Morgan P, Hudak AT, Smith
AMS. 2005. Characterizing and mapping forest fire
fuels using ASTER imagery and gradient modeling.
Forest Ecology and Management 217:129–146.

Fielding AH, Bell JF. 1997. A review of methods for the
assessment of prediction errors in conservation
presence/absence models. Environmental Conserva-
tion 24:38–49.

Franklin J. 2010. Mapping species distributions: spatial
inference and prediction. Cambridge, Massachusetts:
Cambridge University Press.

Gentry DJ, Vierling KT. 2008. Reuse of woodpecker
cavities in the breeding and non-breeding seasons in
old burn habitats in the Black Hills, South Dakota.
American Midland Naturalist 160:413–429.

Goetz S, Steinberg D, Dubayah R, Blair B. 2007. Laser
remote sensing of canopy habitat heterogeneity as
a predictor of bird species richness in an eastern
temperate forest, USA. Remote Sensing of Environ-
ment 108:254–263.

Goetz SJ, Steinberg D, Betts MG, Holmes RT, Doran PJ,
Dubayah R, Hofton M. 2010. Lidar remote sensing
variables predict breeding habitat of a Neotropical
migrant bird. Ecology 91:1569–1576.

Howell JE, Peterson JT, Conroy MJ. 2008. Building
hierarchical models of avian distributions for the State
of Georgia. Journal of Wildlife Management 72:168–
178.

Jennings MD. 2000. Gap analysis: concepts, methods and
recent results. Landscape Ecology 15:5–20.

Lefsky MA, Cohen WB, Parker GG, Harding DJ. 2002.
LiDAR remote sensing for ecosystem studies. Bio-
science 52:19–30.

MacKenzie DI, Nichols JD, Royle JA, Pollock KH, Bailey LL,
Hines JE. 2006. Occupancy estimation and modeling:
inferring patterns and dynamics of species occurrence.
San Diego, California: Academic Press.

Manuwal DA, Carey AB. 1991. Methods for measuring
populations of small diurnal forest birds. Portland,
Oregon: U.S. Department of Agriculture Forest Service,

Assessing GAP Model Performance with LiDAR T.J. Lorenz et al.

Journal of Fish and Wildlife Management | www.fwspubs.org December 2015 | Volume 6 | Issue 2 | 446



Pacific Northwest Research Station. General Technical
Report PNW-GTR-278 (see Supplemental Material,
Reference S7, http://dx.doi.org/10.3996/092013-JFWM-
064.S13); also available: http://www.treesearch.fs.fed.
us/pubs/9004 (March 2015).

Martin K, Aitken KEH, Wiebe KL. 2004. Nest sites and nest
webs for cavity-nesting communities in interior British
Columbia, Canada: nest characteristics and niche
partitioning. Condor 106:5–19.

Martinuzzi S, Vierling LA, Gould WA, Falkowski MJ, Evans
JS, Hudak AT, Vierling KT. 2009. Mapping snags and
understory shrubs for a LiDAR-based assessment of
wildlife habitat suitability. Remote Sensing and
Environment 113:2533–2546.

McClure CJW, Estep LK, Hill GE. 2012. Effects of species
ecology and urbanization on accuracy of a cover-type
model: a test using GAP Analysis. Landscape and
Urban Planning 105:417–425.

Morrison ML. 1981. The structure of western warbler
assemblages: analysis of foraging behavior and
habitat selection in Oregon. Auk 98:578–88.
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