A state-space modeling approach to estimating canopy conductance and associated uncertainties from sap flux density data

David M. Bell¹, Eric J. Ward², A. Christopher Oishi³, Ram Oren⁴, Paul G. Flikkema⁵ and James S. Clark⁴

¹USDA Forest Service, Pacific Northwest Research Station, Corvallis, OR, USA; ²Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, USA; ³USDA Forest Service, Southern Research Station, Franklin, NC, USA; ⁴Nicholas School of the Environment, Duke University, Durham, NC, USA; ⁵Department of Electrical Engineering and Computer Science, Northern Arizona University, Flagstaff, AZ, USA; ⁶Corresponding author (dmbell@fs.fed.us)

Received July 15, 2014; accepted April 27, 2015; published online June 9, 2015; handling Editor David Whitehead

Uncertainties in ecophysiological responses to environment, such as the impact of atmospheric and soil moisture conditions on plant water regulation, limit our ability to estimate key inputs for ecosystem models. Advanced statistical frameworks provide coherent methodologies for relating observed data, such as stem sap flux density, to unobserved processes, such as canopy conductance and transpiration. To address this need, we developed a hierarchical Bayesian State-Space Canopy Conductance (StaCC) model linking canopy conductance and transpiration to tree sap flux density from a 4-year experiment in the North Carolina Piedmont, USA. Our model builds on existing ecophysiological knowledge, but explicitly incorporates uncertainty in canopy conductance, internal tree hydraulics and observation error to improve estimation of canopy conductance responses to atmospheric drought (i.e., vapor pressure deficit), soil drought (i.e., soil moisture) and above canopy light. Our statistical framework not only predicted sap flux observations well, but it also allowed us to simultaneously gap-fill missing data as we made inference on canopy processes, marking a substantial advance over traditional methods. The predicted and observed sap flux data were highly correlated (mean sensor-level Pearson correlation coefficient = 0.88). Variations in canopy conductance and transpiration associated with environmental variation across days to years were many times greater than the variation associated with model uncertainties. Because some variables, such as vapor pressure deficit and soil moisture, were correlated at the scale of days to weeks, canopy conductance responses to individual environmental variables were difficult to interpret in isolation. Still, our results highlight the importance of accounting for uncertainty in models of ecophysiological and ecosystem function where the process of interest, canopy conductance in this case, is not observed directly. The StaCC modeling framework provides a statistically coherent approach to estimating canopy conductance and transpiration and propagating estimation uncertainty into ecosystem models, paving the way for improved prediction of water and carbon uptake responses to environmental change.

Keywords: canopy conductance, hierarchical Bayesian model, sap flux, transpiration.

Introduction

Many sources of variation in individual tree water use obscure species-specific differences in ecophysiological responses to environment, limiting the ability to estimate key inputs for ecosystem models. For example, canopy conductance and transpiration can be key components in the parameterization of ecosystem models examining dynamics in water and carbon (Schäfer et al. 2003, Kim et al. 2008, Mackay et al. 2012). The data used to parameterize ecosystem models are often estimated using empirical relationships on noisy and incomplete data, which themselves entail error (Clark et al. 2011). As a result, the estimation of canopy transpiration and conductance...
from continuously monitored stem sap flux density (e.g., Ewers et al. 2007, Mackay et al. 2007) has the potential to play an increasingly important role in ecosystem modeling (Tang et al. 2006). Interspecific differences in stomatal regulation can be characterized by canopy-averaged stomatal conductance (Gc; see Table 1 for all abbreviations). The relationship of Gc to environmental variables, such as vapor pressure deficit (D) (Oren et al. 1999b, Mackay et al. 2003), describes the sensitivity of stomatal regulation to external forcings. The continuous monitoring of stem sap flux can be used to examine both interannual and interspecific differences in tree water use (Ewers et al. 2007). However, uncertainties in sensor-level measurements, scaling of individual sap flux measurements to canopy-level responses and canopy-level stomatal responses to environment pose challenges in the use of stem sap flux data for estimating canopy processes (Oren et al. 1999b, Phillips and Oren 2001, Ewers et al. 2007, Mackay et al. 2007).

Inference on Gc (Vincke et al. 2005, Bréda et al. 2006, Oishi et al. 2008, Ward et al. 2008), and thus carbon assimilation (Schäfer et al. 2003, Kim et al. 2008), requires scaling of individual sap flux density measurements up to forest canopies. However, error in measurements and in the scaling of sap flux measurements to canopy processes (Ewers and Oren 2000, Lu et al. 2004), together with missing data, violate assumptions of traditional modeling approaches (Ford et al. 2005, Ward et al. 2008). Thermal dissipation probes are commonly used to monitor sap flux density Ji in a given portion of xylem (i.e., probe i) at a given time t, which then serves as the basis for inference on canopy transpiration and conductance (Granier 1985, Granier and Gross 1987, Goulden and Field 1994). Errors in transpiration estimates arise from the fact that one or a few probes capture only part of the variation in xylem function (Phillips et al. 1996, Clearwater et al. 1999, Ewers and Oren 2000, Ford et al. 2004a, 2004b). Information is lost when sensors or whole networks fail (Lu et al. 2004, Clark et al. 2011). Models of transpiration response to weather can be complex and are further complicated by capacitance and internal water storage (Loustau et al. 1998, Daley and Phillips 2006, Phillips et al. 2009, Buckley et al. 2012). These considerations preclude coherent inference using traditional time-series methods or Kalman filtering and suggest a hierarchical state-space framework (Carlin et al. 1992, Wikle et al. 2001, Clark and Børøe and Wikle 2011). Hierarchical Bayesian statistical approaches are gaining acceptance among scientists examining sap flux data and inferring canopy conductance or transpiration, paving the way for the improved prediction of physiological responses to environmental change (Mackay et al. 2012, Ewers 2013).

How can models accommodate the spatio-temporal dependence in observations of such highly indirect variables and provide valid inference on parameters and state variables? In this study, we developed an approach to quantify interannual and interspecific variations in canopy conductance and transpiration, accommodating the time-series and hierarchical nature of sap flux and environmental data. We developed this State-Space Conductance (StaCC) model to estimate canopy conductance and transpiration of co-occurring deciduous tree species based on stem sap flux density data. Our hierarchical state-space framework accommodates the time-series nature of sap flux data, the canopy conductance process and error associated with variation in xylem conductivity, missing data and measurement error (see also Ward et al. 2013b). We examined the sensitivity of model results to uncertainties in model specification and the resulting predicted seasonal patterns of canopy conductance and transpiration.

Materials and methods

Study area

This study was conducted over a 4-year period (2002–2005) in a 1-h bottomland forest stand at the Duke Forest Ameriflux...
Hardwood site (Pataki and Oren 2003, Stoy et al. 2006, Oishi et al. 2008, 2010), Orange County, NC, USA (36°58′41.430″N, 79°05′39.087″W). The 100-year-old stand is dominated by hickory (e.g., Carya tomentosa (Lam.) Nutt.), sweetgum (Liquidambar styraciflua L.), yellow poplar (Liriodendron tulipifera L.) and various oak species (e.g., Quercus alba L., Q. michauxii Nutt. and Q. phellos L.). Leaf area for these dominant species varied interannually (Figure 1) and accounted for 64% of the peak leaf area index (LAI) 7.0 m² m⁻² (Table 2). Soils were characterized by Iredell gravely loam with most of the rooting zone restricted to the upper 0.35 m of soil depth (Oren et al. 1998). Mean annual precipitation was 1146 mm.

Sap flux and environmental measurements

Sap flux density in the outer 20 mm of xylem was measured using Granier-type thermal dissipation probes (Granier 1985, Granier and Gross 1987) every 30 s, with 30-min averages stored on a CR23X datalogger (Campbell Scientific, Logan, UT, USA). A previous study indicated that the probes in the outer xylem likely did not come in contact with the heartwood (Oishi et al. 2008), and thus did not require a correction for non-conductive tissue (Clearwater et al. 1999). Each pair of probes measured a difference in temperature at time t between the heated and unheated probe. An empirical relationship is then used to calculate the sap flux density \(J_i \) (g m⁻² s⁻¹) (Lu et al. 2004). Despite known issues with thermal dissipation probes and the empirical relationships used to generate stem sap flux density (Bush et al. 2010, Steppe et al. 2010), we use the existing empirical relationships because the uncertainties introduced by these problems are beyond the scope of this study. There are \(i = 1, \ldots, n \) pairs of probes (probe-set hereafter) located in hydroactive xylem for each of six species (Table 2): C. tomentosa, L. styraciflua, L. tulipifera, Q. alba, Q. michauxii and Q. phellos. Before calculating sap flux density \(J_i \) for probe-set \(i \) at time \(t \), temperature differences were normalized to maximum temperature differences when: (i) average, minimum 2-h vapor pressure deficit was <0.05 kPa and (ii) the standard deviation of the four highest temperature differences was <0.5% of the mean values (Oishi et al. 2008). Sap flux density was calculated based on the commonly used relationship between \(J_i \) and observed temperature differences (Granier 1985, Granier and Gross 1987, Lu et al. 2004).

Vapor pressure deficit \(D_t \) (kPa) was calculated from air temperature (°C) and relative humidity measured at two-thirds canopy height using HMP35C probes (Campbell Scientific). Photosynthetically active radiation \(Q_t \) (mmol m⁻² s⁻¹) was monitored above canopy at 42 m. Volumetric soil moisture (m³ m⁻³) was measured with 12 sensors (ThetaProbe, Delta-T Devices, Cambridge, UK), four in each of two subplots and four near an eddy covariance tower near the center of the hectare plot. Because differences in soil moisture measurements among the subplots were small (Oishi et al. 2010), measurements for

![Figure 1. Variation in vapor pressure deficit \(D_t \), soil moisture \(M_t \) and LAI summed across the six study species during the 4-year study period. Non-growing season data (cross-hatched areas of figure) were not used in this analysis.](image)

Table 2. Sampling design and stand characteristics by species are presented for the hectare plot at the Duke Ameriflux Hardwood site.

<table>
<thead>
<tr>
<th>Species</th>
<th>Number of trees</th>
<th>Diameter range (cm)</th>
<th>Stand area (A_2) (cm²)</th>
<th>Peak LAI (m² m⁻²)</th>
<th>Basal area (m² ha⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. tomentosa</td>
<td>5</td>
<td>12.7–58.4</td>
<td>3.41</td>
<td>2.06</td>
<td>6.20</td>
</tr>
<tr>
<td>L. styraciflua</td>
<td>10</td>
<td>19.7–55.6</td>
<td>3.18</td>
<td>0.78</td>
<td>6.29</td>
</tr>
<tr>
<td>L. tulipifera</td>
<td>10</td>
<td>16.1–65.4</td>
<td>2.96</td>
<td>0.91</td>
<td>4.53</td>
</tr>
<tr>
<td>Q. alba</td>
<td>5</td>
<td>13.7–57.7</td>
<td>0.52</td>
<td>0.32</td>
<td>1.73</td>
</tr>
<tr>
<td>Q. michauxii</td>
<td>5</td>
<td>16.1–54.4</td>
<td>0.59</td>
<td>0.64</td>
<td>1.95</td>
</tr>
<tr>
<td>Q. phellos</td>
<td>5</td>
<td>43.1–63.6</td>
<td>0.27</td>
<td>0.12</td>
<td>0.99</td>
</tr>
</tbody>
</table>
each 30-min time period were averaged, resulting in a single
time-series of volumetric soil moisture M_t (Figure 1). Leaf area
index for all species (A_L; m2 m$^{-2}$) for the 1-ha stand was calcu-
lation based on specific leaf area and total leaf mass for each
species from leaf litter baskets in the hectare plot (Oishi et al.
2008).

Model specification

To address the challenges of modeling canopy processes based
on imperfectly monitored stem sap flux data, we adopt the StaCC
framework capable of partitioning uncertainties in the data, the
process and the parameters. The StaCC model not only provides
probabilistic predictions of parameters of interest (e.g., the sen-
sitivity of canopy conductance to vapor pressure deficit) and
latent states (e.g., canopy transpiration), but also the observa-
tions themselves (Clark et al. 2011). As a result, the StaCC
model can provide estimates and uncertainties of canopy con-
ductance or transpiration, the associated responses to environ-
mental variation and the observations themselves even when
data are missing. While this paper focuses on the modeling of
canopy processes based on sap flux and environmental data, the
challenges motivating our approach are increasingly common for
much of environmental science (Clark et al. 2011).

In this section, we describe the StaCC model, a hierarchical
Bayesian state-space model for canopy-averaged stomatal con-
ductance (G_s) responses to vapor pressure deficit (D_t), volumet-
ric soil moisture (M_t) and photosynthetically active radiation (Q_t)
scaled to leaf-specific transpiration (E_{LJ}) and sap flux measure-
ments (J_t). This model takes advantage of empirical relations-
ships known from previous studies to link observations (J_t, D_t, M_t
and Q_t) to unobserved, latent states (G_s and E_{LJ}). A similar
approach was used to evaluate the effects of elevated CO$_2$
and nitrogen fertilization on stomatal conductance in an adjacent lob-
lolly pine (Pinus taeda L.) forest (Ward et al. 2013a, 2013b).
The model was implemented for each of six species in each
year, except for Q. michauxii for which data were only available
for 2004 and 2005. We restricted analysis to the portion of the
growing season when leaves are fully developed, defined as
day-of-year 110–291 (Figure 1). In the next sections, we
describe components of the model that are integrated to
account for uncertainty in data, process and parameters.

Canopy conductance process model

The process model follows current understanding, the key innovation here being that
canopy conductance is treated as a latent state with process
and observation error. Environmental forcing on canopy con-
ductance (Jarvis 1976) is the ‘steady-state’ conductance $G_{S,J}$
(mm mol m$^{-2}$ s$^{-1}$) at time t as a function of vapor pressure deficit
D_t, photosynthetically active radiation Q_t and volumetric soil
moisture M_t.

$$G_{S,J} = f(D_t)g(Q_t)h(M_t)$$ (1)

where $f(D_t) = G_{ref} - \lambda \ln(D_t)$, and $g(Q_t)$ and $h(M_t)$ are monoto-
nically increasing from 0 to 1. G_{ref} declines with D_t, from the refer-
ence conductance G_{ref} (mmol m$^{-2}$ s$^{-1}$) = $G_{S,J}$ when $D_t = 1$ kPa
(Oren et al. 1999a). The effect of Q_t on $G_{S,J}$ is modeled as

$$g(Q_t) = 1 - \alpha_1 \exp(-Q_t/\alpha_2)$$ (2)

where α_1 allows for night-time conductance (Oren et al. 1999a)
and α_2 determines the saturating increase in $G_{S,J}$ with increasing
Q_t. The effect of M_t on $G_{S,J}$ is

$$h(M_t) = \{ \exp(-0.5(M_t - \alpha_3)\alpha_4) \}^{(\alpha_3)} \text{ if } M_t \leq \alpha_3$$
$$h(M_t) = 1 \text{ if } M_t > \alpha_3$$ (3)

where α_3 represents the value below which M_t limits $G_{S,J}$ and α_4
controls the rate and shape of the reduction in $G_{S,J}$ with declining M_t.

The relationship between steady-state conductance $G_{S,J}$ and
actual canopy conductance G_t assumes stomatal responses that
depend on the previous conductance and elapsed time dt
(Rayment et al. 2000, Ward et al. 2008)

$$G_t = G_{S,J} + (G_{S,J} - G_{S,J})\varepsilon_t$$ (4)

where the time interval is $dt = 30$ min and $\varepsilon_t = 1 - \exp(-d/t)$. We
assumed τ equal to 10 min based on previous observations of
deciduous tree species in a nearby pine plantation (Naumburg and
Ellsworth 2000), such that lags were relatively short in
comparison with the frequency of measurements. The forcing
associated with the stomatal time constants is imprecise and
accommodated in the model by stochastic process error ε_t
where $\varepsilon_t \sim N(0, \sigma^2)$. To allow the variance in conductance to
scale with the time interval, the variance is $\sigma^2\varepsilon_t^2$. Therefore, as
the elapsed time dt increases, the variance tends to σ^2.

The conductance process model is the basis for our full hier-
archical specification informed by sap flux measurement (J_t) and
scaled depending on sapwood area (A_J) and leaf area (A_L),
while accounting for capacitance in the stem. The model allows for
error associated with sensor failure, sampling design and
variation in xylem activity. Transpiration per square meter leaf
area E_{LJ} (kg m$^{-2}$ s$^{-1}$) is related to G_t as follows (Phillips and
Oren 1998, Monteith and Unsworth 2013)

$$E_{LJ} = \frac{G_t D_t (1/173 + 1)}{44,600(115.8 + 0.4226t)}$$ (5)

We find it convenient to express Eq. (5) as $E_{LJ} = G_t q_t$, where q_t
is a composite environmental variable collecting the dependencies
on T_t and D_t, as well as the constant terms in Eq. (5). G_t then can
be easily converted to transpiration per m2 sapwood area T_t
(kg m$^{-2}$ s$^{-1}$) by multiplying E_{LJ} by the leaf area A_L and dividing
by the effective sapwood area $A_J R_s$, where R_s is a scaling con-
stant based on radial variation in sap flux density (see Appendix
S1 available as Supplementary Data at Tree Physiology Online; Oishi et al. 2008). Thus, \(E_i = G_{ti}A_i (A_tR_t)^{-1} \). Similarly, canopy transpiration per m² ground area \(E_{Ct} \) (kg m⁻² s⁻¹) equal \(G_{ti}A_t \).

Capacitance submodel Several factors influence how observations \(J_t \) relates to the average sap flux in the outer xylem \(\tilde{J}_t \) (g m⁻² s⁻¹), including capacitance (Phillips et al. 1997, 2004, Steppe et al. 2002, 2006, Meinzer et al. 2004, 2009). Sap flux measured at the probe height responds only indirectly to atmospheric demand. Transpiration from leaves creates a deficit in the mass of water stored above the locations of sensors \(W_i \) (g m⁻²). By modeling the water deficit \(W_i \) per unit sapwood area as the difference in the mass of water entering xylem above the probe (i.e., average sap flux density per unit sapwood area \(\tilde{J}_t \)) and leaving by transpiration (i.e., transpiration per unit sapwood area 1000\(E_i \)) during an interval \(dt \), we represent the influence of capacitance.

The change in deficit \((W_{i,t+dt} - W_i) \) from time \(t \) to time \(t + dt \) is assumed to be governed by the difference between transpiration and replenishment per unit sapwood area during the measurement interval. Individual tree size (i.e., sapwood volume) is important in defining capacitance dynamics associated with sap flux (Phillips et al. 2003). Since we did not have sap flux measurements at multiple heights, such as 1.4 m and base of live crown, we could not directly characterize tree hydraulics as we did for \(P. taeda \) in a previous study (Ward et al. 2013a). Therefore, we assume that the water deficit per unit sapwood area \(W_i \) is a characteristic of sapwood, not an individual tree, and thus operate on the average sap flux \(\tilde{J}_t \). Assuming that total sap flux from \(t \) to \(t + dt \) is proportional to the deficit \(\tilde{J}_t dt = \beta W_{i,t} \), we have

\[
W_{i,t+dt} = W_i + 1000E_{i}dt - \tilde{J}_t dt
\]

(6)

where \(W_i = 0 \) indicates absence of deficit. We performed a sensitivity analysis for the model at different values of the \(\beta = 0.86, 0.63, 0.39 \) and 0.22 (see Appendix S3 available as Supplementary Data at Tree Physiology Online). These values are roughly equivalent to time constants of 15, 30, 60 and 120 min (based on Rayment et al. 2000) reported elsewhere in the literature (Phillips et al. 1997). As part of the sensitivity analysis, we examined the influence of \(\beta \) on other parameters, including the predicted process and observation variances. Unless otherwise stated, all results presented below assume \(\beta = 0.63 \), which is likely low given that time constants can vary from minutes to hours (Phillips et al. 1997, 2004, Meinzer et al. 2004, Ward et al. 2013a).

Sap flux data model Three probe-level sources of variation were incorporated in this study. First, we used sapwood profiles developed in a previous study at this site (Oishi et al. 2008) that related relative sapwood depth \(d_i \) for probe \(i \) to flux density for C. tomentosa, L. styraciflua, L. tulipifera and Quercus species (see Appendix S1 available as Supplementary Data at Tree Physiology Online). Second, measured sap flux density \(J_t \) of a given area of xylem can vary for unobservable reasons. For example, sensors may have been placed in damaged xylem, presumably reducing the flux rates sensed by that probe-set (Clearwater et al. 1999, Tateishi et al. 2007). Unobserved influences are accounted for using probe-level random effects \(a_i \) for probe \(i \) centered on unity with variance \(\nu_{ai} \) such that \(a_i \sim N(1, \nu_{ai}) \), where the mean random effect for each species equals unity. Finally, we included a Gaussian measurement error with variance \(S \) in addition to the error in the canopy conductance process.

Combining these sources of variation, we modeled sap flux observations of a given probe \(i \) at time \(t \) as

\[
J_t \sim N(\hat{J}_tZ(d)\alpha_i, S)
\]

(7)

where \(\hat{J}_t \) is the average sap flux density of the outer xylem (i.e., \(d_i = 0 \)) for the species at time \(t \), \(Z(d) \) is the sapwood depth submodel, \(\alpha_i \) is the random effect for probe \(i \) and \(S \) is the variance. This data model translates the sap flux contributed by species at the stand-level to the measurement taken by a given probe-set. Values of \(J_t \) decrease with \(d_i \) (cambium at zero and sapwood-heartwood boundary at one), such that

\[
Z(d_i) = \exp \left(\frac{-1(\bar{d}_i > b_1)(\bar{d}_i - b_2)^2}{2b_2^2} \right)
\]

(8)

where \(1(\cdot) \) is the indicator function, equal to 1 when \(\bar{d}_i > b_1 \) and zero otherwise, such that \(Z(d_i) = 1 \) when \(d_i \leq b_1 \) and \(Z(d_i) \) declines monotonically when \(d_i > b_1 \). Values of \(b_1 \) and \(b_2 \) were taken from previous work at this site (Oishi et al. 2008). For species with \(b_1 = 1 \) (i.e., Quercus species), sap flux does not vary with depth within the sapwood. Note that because \(Z(d) \) relates sap flux at some depth \(d_i \) to sap flux at depth zero, total sapwood area had to be rescaled in order to relate the average sap flux density of the outer xylem \(\hat{J}_t \) to canopy transpiration, and thus conductance (i.e., the use of effective sapwood area \(A_tR_t \)).

Because state-space models allow for imputation of latent variables when observations are missing, the analysis produces gap-filled \(J_t \) and inference on canopy processes simultaneously. Values of \(G_i \) are modeled with all estimates benefiting from all observations. The state-space framework provides a natural and coherent basis for predicting missing observations and states in ecosystem models (Clark et al. 2011). Let \(o_i = 1 \) denote the event that there is an observation from probe \(i \) at time \(t \), and \(o_i = 0 \) denote the event that the observation is missing. Then the likelihood is

\[
\prod \prod N(J_t | \hat{J}_tZ(d)\alpha_i, S)^{o_i}
\]

(9)

meaning that the observation model contributes information only when observations are present. Periods with no measurements
Results

Model performance

The StaCC model explained a high degree of variation in observed sap flux measurements. Assuming that the capacitance parameter $\beta = 0.63$, squared Pearson correlation coefficients r^2 for in-sample predictions of individual sap flux probes averaged 0.88, with 25th and 75th percentile r^2 values equal to 0.84 and 0.92, respectively (see Figure S1 available as Supplementary Data at Tree Physiology Online). Predictions were unbiased for 85% of sap flux sensors (e.g., Figure 2a), but 10% of sap flux probes under-predicted for moderate sap flux densities (e.g., $20 < J_{it} < 40$ g m$^{-2}$ s$^{-1}$; Figure 2b) and 5% of sap flux probes under-predicted at low sap flux densities (e.g., $J_{it} < 20$ g m$^{-2}$ s$^{-1}$; Figure 2c). The latter two cases occurred primarily for sensors exhibiting lower maximum sap flux densities. Under-prediction at moderate sap flux (Figure 2b) occurred during mornings as Q_t increased in advance of D_t. Conversely, under-prediction of low sap flux observations (Figure 2c) was often associated with high observed night-time sap flux.

Sensitivity analysis of the capacitance parameter β indicated that the specification of the capacitance model influenced many parameter estimates, regardless of year or species. With the exception of 2002, model accuracy, as measured by the correlation between predicted and observed sap flux density, increased with β (see Figure S2 available as Supplementary Data at Tree Physiology Online). In general, decreasing values of β, and the associated increases in the effective time constant, resulted in increased sensitivity of canopy conductance to vapor pressure deficit (λ) and light (α_2), decreased night-time conductance (α_1), reducing process error σ^2 and increasing measurement error S (see Figures S3–S5 available as Supplementary Data at Tree Physiology Online). Parameter estimates for the moisture submodel were also sensitive to the value of β (see Figure S6 available as Supplementary Data at Tree Physiology Online).

Interannual variation in canopy conductance and transpiration

We observed a large degree of variation in interannual and interspecific magnitude of canopy conductance G_t. The reference conductance G_{ref} and the relative sensitivity to declines in log vapor pressure deficit λ / G_{ref} varied by species and year (Figure 3). Conductance responses to moisture (i.e., D_t and M_t) differed between years and species (Figure 4). For example, across a range of vapor pressure deficits, steady-state canopy conduc-

doctrine of the vapor pressure deficit and soil moisture effects \(f(D_t)h(M_t) \) (Figure 5). The weekly drought effect \(f(D_t)h(M_t) \) declined with vapor pressure (Figure 5a) as shown for the vapor pressure deficit response \(f(D_t) \) alone (Figure 4c), but the combined drought effect with respect to soil moisture (Figure 5b) did not necessarily reproduce the univariate effect \(h(M_t) \) (Figure 4o). For example, while steady-state canopy conductance was predicted to decline with soil moisture in 2003 (Figure 4o), there was no apparent combined drought effect as soil moisture declined during that year (Figure 5b).

Our statistical framework allowed us to examine temporal variation in canopy-level processes during the study period. Within individual months, the variation in daily processes was at least as great as the variation among months, as indicated by the width of 90% predictive intervals of mean daily canopy transpiration \(E_C \) and conductance \(G_s \) (Figure 6). This was particularly evident for transpiration near the beginning and end of the growing season (Figure 6a–d). In contrast, credible intervals for mean monthly conductance and transpiration were narrow (see Figure S7 available as Supplementary Data at Tree Physiology Online). Despite the substantial variation both within and among years, \(C. tomentosa \), \(L. styraciflua \) and \(L. tulipifera \) tended to exhibit the greatest stand-level transpiration \(E_C \) with other species contributing less to stand-level water flux (Figure 6a and b). The contributions to \(E_C \) were determined by both (i) differences in species responses to environment (Figure 4) and (ii) the fact that \(C. tomentosa \) and \(L. tulipifera \) account for 59% of the sapwood area \(A_S \) and 61% of the leaf area \(A_L \) of the six species studied (Table 2). Quercus phellos exhibited the highest transpiration per unit leaf area \(E_L \) and canopy conductance \(G_s \), followed by \(C. tomentosa \), \(L. styraciflua \) and \(L. tulipifera \) during most of the study period (Figure 6c.

Figure 4. Estimated mean (solid lines) and 95% credible intervals (dashed lines) for absolute effect of (a–f) vapor pressure deficit \(D_t \) as well as the relative effects of (g–l) light \(Q_t \) and (m–r) soil moisture \(M_t \) on steady-state canopy conductance \(G_s \) for each species and year.

Figure 5. An example of the combined mean weekly drought effect on canopy transpiration \(f(D_t)h(M_t) \) as a function of (a) vapor pressure deficit \(D_t \) and (b) soil moisture \(M_t \) for \(L. tulipifera \) during each study year (2002–2005). The solid lines represent regressions of \(f(D_t)h(M_t) \) on \(M_t \) below the soil moisture at which conductance begins to decline \(\alpha_s \), which quantifies the strength of the drought-induced decline in canopy conductance across years.
and d), except in 2002 when \(L. \) styraciflua and \(L. \) tulipifera canopy conductance \(G_t \) was depressed by drought conditions (Figure 6e and f).

Discussion

By modeling the effects of vapor pressure deficit, soil moisture and light effects on canopy conductance while accounting for uncertainties in relating sap flux to canopy processes, the StaCC modeling approach provides a powerful method for analyzing tree ecophysiological responses to environmental drivers. Because StaCC incorporates uncertainty in observed stem water flux, dampening due to stem capacitance and variation in canopy processes, the approach presented in this study and elsewhere (Ward et al. 2013a, 2013b) recovered both observed sap flux and unobserved canopy conductance and transpiration dynamics. These results indicated that the scaling of sap flux \(J_t \) to canopy conductance \(G_t \) and the representation of environmental influences on canopy conductance were sufficient to capture variation in the process and sap flux measurements: the StaCC model predicted sap flux density well (Figure 2 and Figure S1 available as Supplementary Data at Tree Physiology Online), a prerequisite for robust estimates of canopy dynamics. The ability of the StaCC framework to simultaneously gap-fill missing data and assess sensor-level biases provides a statistically rigorous advance in data modeling for sap flux data. Given the importance of canopy conductance and transpiration estimates in parameterizing some ecosystem

Figure 6. Monthly 90% predictive intervals for mean daily canopy transpiration \(E_C \) (a and b), transpiration per unit leaf area \(E_L \) (c and d) and canopy conductance \(G_t \) (e and f) for each species during the 4 years of the study. Results are presented only for growing season months used to fit the model (see Figure 1).
models (e.g., Schäfer et al. 2003, Kim et al. 2008), such advances are essential.

Daily variation in E_c, E_i, and G_i within months was high (Figure 6) while uncertainties in the monthly estimates were low (see Figure S7 available as Supplementary Data at Tree Physiology Online), indicating that daily fluctuations in vapor pressure deficit, light and soil moisture contribute more to seasonal variability than the model error. However, at the 30-min scale, these errors can be substantial, as is evident in the comparison of observed versus predicted sap flux density (Figure 2). Depending on the structure of ecosystem models into which estimates are input and the objectives of the modelers, these prediction errors may be of little consequence. For example, highly non-linear models based on estimates of canopy conductance or transpiration could be particularly sensitive to error in predictions (e.g., Jensen's inequality). Luckily, modelers could explore the sensitivity of ecosystem modeling results to the uncertainties in E_c, E_i, or G_i used to parameterize these models based on different interactions of the Gibbs sampler, a Markov Chain Monte Carlo simulation technique. Such analyses would allow modelers to propagate error from estimates of canopy conductance or transpiration into ecosystem model predictions, such as forest carbon uptake.

The StaCC model also provides a novel framework for assessing complex ecophysiological responses to environment. For example, the difficulty in separating drought effects in terms of the supply (M_t) and atmospheric demand (D_t) for water may arise from the fact that D_t and M_t are correlated at time scales of days to weeks. However, by jointly modeling and examining the combined effects of M_t and D_t (e.g., Figure 5), we can better understand the importance of water-limitation on ecosystem function. Because these results depended on the presence of both wet and dry years during the study period, examinations of canopy conductance responses that do not incorporate variation in seasonal droughts will not capture tree sensitivities to soil water availability. Furthermore, interannual variability in model behavior may indicate uncharacterized processes at work.

During years when D_t rarely exceeded 3 kPa (2003–2005; Figure 1), the estimated relative sensitivities of G_i to D_t (λ/G_{rel}) were often between 0.6 and 0.7 (Figure 3), similar to the theoretical predictions (Oren et al. 1999b, Katul et al. 2009). Low relative sensitivities of some species could be explained by the greater variation in D_t and M_t in 2002 (Figure 1) or drought deciduous behavior (Marchin et al. 2010), which can cause increased leaf-specific hydraulic conductivity (Oren et al. 1999b). Leaf area of C. tomentosa and L. styraciflua declined following 2002, likely contributing to higher canopy conductance, whereas the high leaf area following the wet year of 2003 was accompanied by lower canopy conductance (Figures 1 and 4–6). This negative relationship between leaf area and canopy conductance might be expected if a similar sapwood area were supplying less leaf area (Pataki et al. 1998). Drought deciduousness was also observed in L. styraciflua and L. tulipifera during a 2007 drought in a nearby deciduous forest in the North Carolina Piedmont (Hoffman et al. 2011). These interspecific and interannual differences have important implications for canopy transpiration, and thus ecosystem water cycling.

Careful exploration of parameter sensitivities to variation in the capacitance parameter β (see Appendix S3 available as Supplementary Data at Tree Physiology Online) highlights the importance of incorporating dynamic behavior in models of canopy conductance (Ward et al. 2013a). In the current study, the sensitivity analysis indicated that parameter estimates were sensitive to the specification of the capacitance model, notably indicating that process error σ^2 decreased and measurement error S increased with increasing lags between transpiration and sap flux (i.e., smaller values of β). This result reflects the assumed decoupling of sap flux measurements from canopy processes as lags increase. Relatively high predictive accuracy of the StaCC model with higher values of β (see Figure S2 available as Supplementary Data at Tree Physiology Online) support our use of $\beta = 0.63$ in most years, but raise questions regarding the appropriateness during extreme droughts. A growing body of work shows that incorporation of damping in dynamic models of sap flux scaled canopy conductance is preferable to simply lagging sap flux data behind environmental drivers (Burgess and Dawson 2008, Phillips et al. 2009), but better guidance is needed on the trade-offs between the complexity and utility of such models and how this tradeoff influences our ability to make inference across scales, from individual trees to entire communities and ecosystems.

Stomatal responses during the 2002 drought were dramatically different from other years (Figures 4–6), highlighting the importance of investigations into interannual variability at a given site. Uncertainties in the supply of water in terms of availability (i.e., soil moisture) and transport (i.e., hydraulic capacitance lags) could be resolved with more detailed measurements and further model development. Interannual variability in hydraulic factors, such as the availability of water in soils below the depth of measurement (Oishi et al. 2010) or sapwood capacitance and conductivity, may explain the interannual variation in canopy conductance observed here (Wullschleger and Hanson 2006). The representation of internal tree hydraulics in our statistical model is simplistic, contributing to the observed differences in results between years. Recent advances in the modeling of tree hydraulics and the impacts on carbon metabolism (e.g., Steppe et al. 2002, 2006) may provide guidance for future improvements of the framework that more explicitly represent the physiological realities of water transport through trees.

While our analysis does not present novel mechanistic representations of plant water regulation, it directly addresses limitations in the data and our understanding of the mechanisms controlling sap flux, transpiration and canopy conductance by partitioning uncertainties in data, processes and parameters in a
hilierarchical fashion. These uncertainties may not only impact the testing of hypotheses using long-term data (Mackay et al. 2012, Ward et al. 2013b), but also will impact ecosystem modeling results based upon canopy conductance and transpiration estimates. Thus, the StaCC modeling framework provides a powerful set of tools for integrating uncertainty into the modeling of both sap flux data and the canopy processes like conductance and transpiration (Ewers 2013).

Supplementary data

Supplementary data for this article are available at Tree Physiology Online.

Acknowledgments

We thank Michael Ryan, David Whitehead and two anonymous reviewers for comments which improved the manuscript. Any use of trade, product or firm names is for descriptive purposes only and does not imply endorsement by the US Government. Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of funding sources.

Conflict of interest

None declared.

Funding

Office of Science (BER) of US Department of Energy through the Terrestrial Carbon Processes (TCP) program; Graduate Research Environmental Fellowship program; National Science Foundation (DBI-1202800, CNS-0540414, CDI-0940671, DDDAS-0540347); SAMS Institute; USDA Forest Service; USDA National Institute of Food and Agriculture (2011-68002-30185).

References

