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Abstract 

Background: Douglas-fir (Pseudotsugo menziesii), one of the most economically and ecologically important tree 

species in the world, also has one of the largest tree breeding programs. Although the coastal and interior varieties 

of Douglas-fir (vats. menziesii and glouco) are native to North America, the coastal variety is also widely planted for 

timber production in Europe, New Zealand, Australia, and Chile. Our main goal was to develop a SNP resource large 

enough to facilitate genomic selection in Douglas-fir breeding programs. To accomplish this, we developed a 

454-based reference transcriptome for coastal Douglas-fir, annotated and evaluated the quality of the reference, 

identified putative SNPs, and then validated a sample of those SNPs using the Illumina Infinium genotyping 
platform. 

Results: We assembled a reference transcriptome consisting of 25,002 isogroups (unique gene models) and 

102,623 singletons from 2.76 million 4,54 and Sanger cDNA sequences from coastal Douglas-fir. We identified 

278,979 unique SNPs by mapping the 454 and Sanger sequences to the reference, and by mapping four datasets of 

Illumina cDNA sequences from multiple seed sources, genotypes, and tissues. The Illumina datasets represented 

coastal Douglas-fir (64.00 and 13.41 million reads), interior Douglas-fir (80.45 million reads), and a Yakima population 

similar to interior Douglas-fir (8.99 million reads). We assayed 8067 SNPs on 260 trees using an Illumina Infinium 

SNP genotyping array. Of these SNPs, 5847 (72._5%) were called successfully and were polymorphic. 

Conclusions: Based on our validation efficiency, our SNP database may contain as many as -200,000 true SNPs, 
and as many as -69,000 SNPs that could be genotyped at -20,000 gene loci using an Infinium II array--more SNPs 

than are needed to use genomic selection in tree breeding programs. Ultimately, these genomic resources will 
enhance Douglas-fir breeding and allow us to better understand landscape-scale patterns of genetic variation and 

potential responses.to climate change. 

Background 

The availability of high-throughput sequencing methods 

has led to the discovery of thousands to millions of single 

nucleotide polymorphisms (SNPs) in diverse organisms, 

particularly humans, model experimental organisms, and 

agriculturally important plants and animals. Combined 

with high-throughput genotyping platforms, SNP markers 

are having substantial impacts on human medicine as well 

as plant and animal breeding [1-3]. They are also being 

~ Correspondence: glenn,howe@oregonstate.edu 
~Department of Forest Ecosystems and Society, Oregon State University, 

Corvallis, Oregon 97331, USA 

Full list of author information is available at the end of the article 

used to provide detailed insights into the population 

genetics of natural populations, and are likely to help 

elucidate the functional basis of simply inherited traits. In 

addition, they are frequently cited as the solution for un- 

derstanding the explicit genetic basis of quantitative traits 

[4], although prospects for the latter remain uncertain [5]. 

Our main goal was to develop and test a large number 

of SNP markers for Douglas-fir (Pseudotsuga menziesii 

(Mirb.) Franco) that could be used to enhance and acce- 

lerate Douglas-fir breeding via genomic selection. Tree 

breeders typically make breeding decisions based on an 

individual’s breeding value, which is the average perfor- 

mance of an individual’s offspring. Currently, breeding 
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values are estimated from measurements made in progeny 

tests containing thousands to tens of thousands of trees. 

Genomic selection, or whole-genome marker-assisted 

selection [6], could revolutionize tree breeding by allowing 

breeders to dramatically reduce the generation interval 

and extent of progeny testing. Genomic selection has been 

widely adopted in livestock breeding [7], where empirical 

studies suggest that accuracies of genomic selection are 

often 70% or more, compared to accuracies of 30 to 40% 

for breeding values estimated from parental performance, 

and accuracies of about 85% for breeding values estimated 

from progeny testing, which is both time-consuming and 

cosily [3]. However, these encouraging results required 

SNP resources consisting of thousands to tens of thou- 

sands of SNPs--numbers that far exceed what is available 

for Douglas-fir. In addition to genomic selection, SNP 

markers are expected to replace simple sequence repeats 

(SSRs) for routine, automated uses of markers for other 

breeding program applications. The high variability of SSR 

markers makes them ideal for many applications, but 

automated marker scoring is often challenging. In seed 

orchards, genetic markers (mostly SSRs) are routinely used 

to confirm the identity of seed orchard trees, measure 

pollen contamination, assess the effectiveness of pollen 

management techniques, measure and manage inbreeding 

and genetic diversity, determine parental contributions to 

open-pollinated seedlots (i.e., progeny populations), and 

verify seedlot integrity [8,9]. Highly informative genetic 

markers may also allow breeders to combine simple, cost- 

effective mating designs (e.g., polymix or open-pollinated 

designs) with parental analysis to reduce breeding costs, 

speed breeding progress, and increase genetic gains [10,11]. 

Douglas-fir is one of the most ecologically and eco- 

nomically important tree species in the world. It occu- 

pies diverse habitats from central British Columbia to 

Mexico, and from the Pacific Ocean to the eastern 

slopes of the Rocky Mountains. In the Pacific Northwest, 

coastal Douglas-fir (vat. menziesii) forms ancient forests 

that serve as key habitats for endangered species, and 

are widely grown in plantations that form the foundation 

of a multi-billion dollar forest products industry. In the 

Rocky Mountains, the interior or Rocky Mountain var- 

iety (var. glauca (Beissn.) Franco) occupies mostly drier 

and colder sites, and has a more varied impact on the 

ecology and economy of the region. In Mexico, Douglas- 

fir exists as widely dispersed ’sky-island’ populations that 

are typically considered extensions of var. glauca, but 

may deserve their own varietal status [12,13]. Overall, 

Douglas-fir is ecologically, physiologically, and genetic- 

ally diverse, within and among varieties (reviewed in 

[14]). Because of its economic importance, Douglas-fir 

has one of the largest tree breeding programs in the 

world. The Northwest Tree Improvement Cooperative 

program for coastal Douglas-fir has nearly 4 million tested 

trees, including more than 31,000 first-generation parents 

tested on 1,016 progeny test sites, and 2,980 second-cycle 

crosses tested on 129 sites [14] (K. ]ayawickrama, personal 

communication). Smaller breeding programs exist for 

interior Douglas-fir in the United States and Canada 

(reviewed in [14]). In coastal Douglas-fir, breeding focuses 

on improving growth, stem form, and wood properties 

while maintaining climatic adaptability. 

Our primary goal was to greatly expand the SNP 

resources for Douglas-fir beyond the 200-300 validated 

SNPs that were currently available [15]. Therefore, we 

combined two high-throughput sequencing technologies 

(454 pyrosequencing and Illumina sequencing-by-synthesis) 

to sequence the transcriptomes of diverse tissues and 

Douglas-fir genotypes. Our objectives were to (1) develop 

a reference transcriptome for coastal Douglas-fir by 

combining existing Sanger sequences with new 454 

sequences, (2) annotate and evaluate the quality of the 

reference transcriptome, (3) map 454 and Illumina short- 

read sequences to the reference and identify SNPs, and 

(4) construct and test a high-density Infinium genotyping 

array. In addition to the SNP markers we developed, our 

reference transcriptome will facilitate studies of gene 

expression and function, and will aid efforts to assemble 

and annotate reference genome sequences of Douglas-fir 

and other conifers (http://pinegenome.org/pinerefseq/). 

Results 
Pre-assembly sequence processing for the reference 

transcriptome 

We used long reads from three datasets as the basis for 

de novo assembly of a reference transcriptome for coastal 

Douglas-fir. Prior to the final assembly, we cleaned and 

filtered these datasets as shown in Figure 1 (Steps 1-5). 

These datasets included 454 sequences from a single 

genotype (SG~z~ = 1.241 M reads) and sequences from 

two multi-genotype pools produced using 454 pyro- 

sequencing (MG24s4 = 1.709 M reads) and Sanger sequen- 

cing (MGlsANC = 12,157 reads). Our initial pool of 

2.96 x 106 reads was reduced to 2.78 x 106 reads after 

filtering using the SnoWhite pipeline (Table 1). The per- 

centage of filtered sequences was substantially smaller for 

the normalized than for the non-normalized 454 dataset 

(2.4% for MG24,54 versus 11.2% for SG4s4), and this effect 

was most pronounced for the rRNA and retrotransposon- 

like sequences (Table 1). After removing additional fungal 

and bacterial sequences, and excluding reads shorter than 

50 nt, 2.76 x 106 sequences were available to assemble the 

reference transcriptome (Table 2). 

Assembly of the reference transcriptome 
In this section, we describe the preliminary and final 
assemblies of the reference transcriptome (Figure 1, Steps 
4-6), and analyses we used to infer the orientation of the 
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Figure 1 Strategy for assembling the Douglas-fir reference transcriptome and detecting SNPs. We used one Sanger sequence dataset 
(MGlsANG) and two 454 sequence datasets (MG2454 and SG#s~) to assemble the reference transcriptome. We then used these same datasets plus 

four Illumina short read datasets (MG2~u CB~u YK~u INT~L) to detect flanking variants. Orange boxes represent Sanger and 454 datasets, blue boxes 

represent lllumina short-read datasets, green boxes represent the reference transcriptome, red boxes represent SNP filtering steps, and yellow 

boxes represent SNP genotyping and analytical steps. The number of SNPs for which Infinium genotyping assays were successfully designed 

(Assay Design Tool score _> 0.6) depends on the probability used for filtering the target SNPs (P~ < 0.01, 0.001, and 0.0001) and the probability 

used to mask nucleotides in the flanking regions (P~ - 0.1, O.O1, 0.001, and 0.0001). Larger PF values resulted in more flanking variants and fewer 

target SNPs with successful designs. 



Howe et aL BMC Genomics 2013, 14:137 

http://www.biomedcent ral.com/1471-2164/14/137 

Page 4 of 22 

Table 1 Sequence datasets used to construct the Douglas-fir reference transcriptome* 

Plant materials (dataset ID) Methodt Total reads in Number of ~eads filtered from the input dataset 

Collection information cDNA library dataset (%) (% of library total) 

Short or Adapter or Chloro- Mitochon- rRNA Retro- 
low-quality vector plast drial transposon 

Multi-genotype #1 (MG1 SANG) Sanger 12,157 57 0 2 2 0 1 

(100) (0.47) (0.00) (0.02) (0.02) (0.00) (0.01) 
Cold season Normalized 

Greenhouse Non-normalized 

Multi-genotype #2 (MG2454) GS-FLX Titanium 1,709,211 6649 1893 8570 5519 7264 1 t,114 
(100) (0.39) (0.11) (0.50) (0.32) (0.42) (0.65) 

Cold and worm seasons Normalized 

Single-genotype (SG454) GS-FLX Titanium 1,241,260 6582 1826 " 11,070 10,463 86,828 2] ,849 

July 8, 2008 Non-norm~lized 
(100) (0.53) (0.15) (0.89) (0.84) (7.00) (1.76) 

All datasets 2,962,628 ] 3,288 3719 19,642 15,984 94,092 32,964 
(100) (0.45) (0.I3) (0.66) (0.54) (3.!8) (1.11) 

* For each dataset, the numbers of reads filtered using the SnoWhite pipeline (Figure I, Step 3) are shown by sequence type. 
t GS-FLX Titanium is the Roche 454 sequencing platform. 

resulting isotigs and singletons. Different assembly param- 

eters resulted in few differences in the number of resulting 

isogroups (overlap length = 35 or 45; overlap identity = 82 

to 98%; overlap difference score = -2 or -6). In particular, 

there was almost no increase in the total number of 

isogroups when the overlap identity was increased from 

82% to 90%, and only a slight increase from 90% to 98%. 

The final de novo assembly was constructed using a mini- 

mum overlap length of 45 nt, minimum overlap identity 

of 96%, and an alignment difference score of -6. However, 

before conducting the final assembly, we assembled the 

454 datasets (MG24s4 and SG4s4) separately, and then 

used BLASTN to compare the resulting isotigs and single- 

tons to a series of databases to identify and remove 

sequences from contaminating fungal and bacterial organ- 

isms (Figure 2). After the final assembly, we used Vmatch 

to eliminate redundant sequences from 40,010 assembled 

isotigs, resulting in 38,589 non-redundant isotigs with an 

average length of 1,390 nt and NS0 of 1,883 nt (Table 2). 

The resulting reference transcriptome consisted of 25,002 

isogroups (unique gene models) and 102,623 singletons. 
Of these 25,002 isogroups, 18,7z1~ were represented by a 

single isotig (transcript variant), and are inferred to corres- 

pond to a single transcript. These isogroups and isotigs 
are referred to as the ’I1’ (Isogroups with 1 isotig) subset 

in the following analyses. The remaining 6,228 isogroups 

were represented by multiple isotigs, which suggests they 

represent alternatively spliced transcripts from the same 

gene. These isogroups and isotigs are subsequently re- 

ferred to as the ’IM’ (Isogroups with Multiple isotigs) sub- 
set. The reference transcriptome (i.e., 37,177 isotigs _> 200 

nt) has been deposited at DDB]/EMBL/GenBank under 

accession GAEK01000000. The characteristics of the 

transcriptome isotigs and singletons are described in 

Additional files 1 and 2. 

Mapping of strand-oriented reads from the CBiL and 
YKuj libraries allowed us to infer the orientations of 73;4% 

of the isotigs and 9.5% of the singletons (Additional file 1: 

Table 2 Characteristics of the Douglas-fir transcriptome assembly using Newbler v2.3 

Length (nt) 

Statistic Number Mean Median N50 Total 

Reads used by Newbler* 2,764,549 360 392 416 996,614,802 

Reads assembled by Newbler* 2,544,087 364 394 416 925,577,338 

Isotigs~ 38,589 1390 1141 1883 53,622,767 

Isogrou ps 25,002 1443 1181 1864 36,069,331 

Isogroups with 1 isotig 01 ) 18,774 1334 1053 1750 25,046,862 

Isogroups with > 1 isotig (IM)~ 6228 1770 1547 2141 11,022,469 

Singletons ] 02,623 356 384 " 413 36,504,22 t 

Total (isogroups + singletons) 127,625 569 413 517 72,573,552 

* The input number of reads is less than the total in Table I (2.96 x 106) because reads sho~ter than 50 nt were excluded. Statistics were calculated using the 
sequences actually used in the assembly after applying a default minimum length of 40 for reads trimmed by Newbler. 
e Includes reads that assembled as complete reads or as partial reads. 
§ Isotigs _> 200 nt were deposited at DDBJIEMBLIGenBank under accession GAEK01000000. 
* Statistics for the IM isogroups were calculated using the longest isotig in each isogroup. 
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Figure 2 Taxonomic distributions of Douglas-fir sequences identified as bacterial or fungal contaminants. We used preliminary 

assemblies of the SG454 and MG2454 datasets and BLAST searches to identify isotigs and singletons resulting from bacterial or fungal 

contamination (see Methods), Reads corresponding to these singletons and isotigs were removed prior to the final assembly. Numbers in 

parentheses are the total number of sequences (isotigs and singletons) in each category. 

Tables $1 and $3). The orientations of the remaining 
isotigs and singletons were ambiguous because the bino- 
mial test was non-significant or no data were available 
(i.e., no Illumina reads were successfully mapped). Other 
assembly characteristics are reported in Table 2. 

Comparison to white spruce and loblolly pine 
To evaluate our assembled isotigs, we compared them to 
a well characterized set of white spruce unigenes 

(Figure 1, Step 8). Isotigs with clear interpretable rela- 
tionships to these unigenes were assigned high confi- 
dence scores, and were preferentially included on the 
SNP array. We categorized the isotigs into confidence 
dasses (C1-C7) based on their relationships to the white 
spruce unigenes described by Rigault et al. [16] (Table 3). 
Lower numbers represent simpler relationships and 
(hypothetically) greater confidence that the assembly is 
correct. Although the percentages of unmatched isotigs 
(Class C7) were roughly equal for the two subsets (I1 = 
28% and IM = 24%), the other classes differed dramatic- 
ally between the I1 and IM subsets (Table 3). This 
reflects the more complex relationships that are possible 
for isogroups with multiple isotigs (IM subset), and 
shows how this leads to generally lower confidence 
scores for this group. 

When we conducted the same SCARF analysis using 
35,550 loblolly pine contigs, the results were nearly iden- 
tical to those of white spruce (data not shown). For 
example, the correlation between the numbers of isotigs 
in each confidence class was 0.96 between spruce and 
pine (i.e., 0.96 for both the I1 and IM isotigs). In 
addition, 67% of the no-hit isotigs found using spruce as 
the reference (n =9960) were also no-hits using pine as 
the reference (n = 6651). Conversely, 80% of the no-hit 
isotigs found using pine as the reference (n = 8293) were 
also no-hits using spruce (n = 6651). 

Annotation 
We annotated the isotigs and singletons (Figure 1, Step 
8), and then used this information to select SNPs for the 
SNP array. For all three protein databases, the percent- 
ages of sequences .with matches were highest for the I1 
subset, moderate for the IM subset, and lowest for the 
singletons (S subset) (Table 4). The Annot8r annotation 
tool creates subsets of selected UniProt databases that 
only include protein sequences with GO, EC, or KEGG 
annotations. Therefore, in contrast to the results from 
Annot8r, many of the proteins in the Uniref50 database, 

and some of the proteins in the TAIR10 database have 
unknown functions. Thus, the results from AnnotSr 



Table 3 Comparison between Douglas-fir isotigs and white spruce unigenes [16] 

Number of isotigs 

Class* No. of WS Do other DF match Do other matching Isotig I1 subset (1 isotig per IM subset 
matchest the same WS?§ DF overlap?~ confidence# isogroup) (18,774) (>1 isotig per isogroup) (19,815) 

CI I No Highest 5140 261 

Example visual representations@ 

C2 2+ No Higher 896 88 

C3 1 Yes No Higher 1767 $77 

C4 2+ Yes No Medium 586 159 

C5 1 Yes Yes Lower 1736 6974 

C6 2+ Yes Yes Lowest 3405 7040 

Subtotal 13,530 15,099 

C7 No matches Unknown 5244 4716 

*Douglas-fir (DF)isotigs were categorized into seven classes (C1-C7) and three levels of confidence based on their relationships to white spruce (WS) contigs using the SCARF program/68]. 

tNumber of white spruce contigs that matched the Douglas-fir query. 

~’Yes’ indicates that at least one non-query isotig also matched the same white spruce contig. 

~’Yes’ indicates that the query and at least one non-query isotig matched the same region of the white spruce contig (overlapped), 

"Subjective level of confidence in the isotig assembly based on the information presented in columns 2-4. 

@Cross-hatched bars represent white spruce contigs, black bars represent query Douglas-fir isotigs, and white bars represent non-query Douglas-fir isotigs. 
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Table 4 Numbers and percentages of Douglas-fir sequences with matches to sequences in three protein databases* 

Isogroups (25,002)f 

Isogroups with 1 isotig (11 = 18,774) Isogroups with >1 isotig (IM = 6228) 

Database Number Percent Number Percent 

UnirefS0 15,054 80.2 3446 55.3 

TAtR10 13,749 73.2 3260 52.3 

Annot8r 11,733 62.5 2862 46.0 

*Matches were recorded for isogroups and singletons at a tBLASTX E-value < 10 s. 

Singletons (102,623)§ 

Singletons (S = 102,623) 

Number Percent 

25,757 25.] 

15,907 ! 5£ 

14,836 14.5 

tlsogroups are Newbler v2.3 isogroups. For the isogroups with more than I isotig (IM subset), a hit was counted only if all isotigs matched the same protein in 

the database. 

~Singletons are 454 reads that did not assemble with any other reads. 

provide the percentages of Douglas-fir sequences that 

can be annotated by function (62.5% for the I1 subset, 

46.0% for the IM subset, and 14.5% for the singletons). 

We subsequently used these annotations to target SNPs 

associated with growth, phenological traits, stress resist- 

ance, or adaptation to temperature or drought. In con- 

trast, the distribution of matches among taxonomic 

groups did not differ substantially among subsets I1, IM, 

and S (Table 5). Small percentages (I1 = 0.89%, IM = 

0.35%, S = 3.55%) of assembled Douglas-fir sequences 

matched fungal, bacterial, and viral sequences at an 

E-value < 10-5, which is greater than the much more 

stringent 10-1° E-value we used to identify contaminat- 

ing isotigs and singletons during the filtering that 

preceded our final assembly. 

The differences in the distributions of GO slim classifi- 

cations among the three types of Douglas-fir sequences 

(I1, IM, and S) were small (Figure 3). Compared to 

Douglas-fir, many .more Arabidopsis sequences fell into 
the "unknown cellular components" and "unknown mo- 
lecular functions" classes. This indicates that Douglas-fir 
sequences were less likely to match these classes of 
Arabidopsis sequences than others, suggesting that they 
tend to exhibit species-specific characteristics (i.e., are 
more highly diverged or absent from Douglas-fir). Pre- 
sumably, many of the unmatched Douglas-fir genes 
would fall into these GO slim classes had we used a less 
stringent E-value. 

SNP detection 
Two criteria are important for selecting SNPs for an 
Infinium genotyping array. First, the target SNP should 
have a high probability (i.e., low P-value, Ps) of being a true 
variant. Second, the target SNP should have no variants in 
its flanking sequences where the genotyping primers must 
hybridize. Therefore, the P-values for flanking variants 

Table 5 Numbers and percentages of Douglas-fir sequences with matches to sequences in the Uniref50 protein 

database* 

Isogroups (25,002)~ Singletons (102,623)§ 

Isogroups with 1 isotig (11 = 18,774) Isogroups with >1 isotig (IM = 6228) Singletons (S = 102,623) 

Taxonomic category Number Percent of matches Number Percent of matches Number Percent of matches 

Conifers 4088 27.16 t 073 3 t. 14 6486 25.! 8 

Other plants 9713 64.52 2047 59,40 16,061 62,36 

Other Eukaryotes 582 3.87 182 528 658 2.55 

Invertebrates 487 3.24 120 3.48 ] 087 4.22 

Bacteria 123 0.82 8 0.23 830 3.22 

Environmental 21 0.14 6 0,t 7 37 0.14 

Vertebrates 17 0,11 6 O.17 92 0.36 

Fungi 19 0.13 4 0.12 487 1,89 

Viruses 4 0.03 0 0.00 19 0.07 

Total matches 15,054 100.00 3446 100.00 25,757 100.00 

Unmatched 3720 2782 76,866 

Percent matched 80.2 55.3 -. 25.1 

*Matches are grouped by taxonomic affiliation and percentages are relative to the total number of matches (tBLASTX E-value < 10~). Numbers of input Douglas-fir 

sequences are in parentheses. 

tlsogroups are Newbler v2.3 isogroups. For the isogroups with more than 1 isotig (IM subset), a hit was counted only if all isotigs matched the same protein in 

the database. 

~Singletons are 454 reads that did not assemble with any other reads. 
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Figure 3 Distributions of Douglas-fir sequences and Arabidopsis genes by GO slim terms. Distributions are shown for Arobidopsis genes 

(TAIRIO accessions), two types of Douglas-fir isogroups (11 subset = isogroups with one isotig and IM subset = isogroups with more than one 

isotig), and Douglas-fir singletons. 

(SNPs and indels, PF) should also be considered. A high 

SNP conversion rate is expected when a very high P-value 

(permissive probability threshold) is used for flanking vari- 

ants, and a very low P-value (stringent probability thresh- 

old) is used for target SNPs. However, this approach will 

dramatically reduce the number of SNPs that can be 

detected and assayed. In this section, we describe how we 

filtered all potential target SNPs based on Ps, P~ and other 

criteria (Figure 1, Steps 9-10). 

We used a permissive probability threshold (PF = 0.10) 

to detect potential SNPs and indels in the flanldng regions 

of target SNPs (Figure 1, Step 9). These positions were 

then excluded (masked) from consideration when the 

genotyping primers were designed. Out of a total assembly 

of 72.6 x 106 nucleotides, we masked 820,253 SNPs and 

119,728 indel positions. In the subsequent filtering step to 

identify target SNPs, we identified bi-allelic SNPs that 

were not near high-quality indels (i.e., indels with scores > 

25), had a mapping quality score > 40 in at least one 

dataset, and target SNP probabilities (Ps) of < 10-=, 10-a, 

or 10°~ in at least one dataset (Figure 1, Step 10). For the 

most stringent (104) level of probability, these criteria 

resulted in 278,979 potential SNPs (Additional file 3), 

183,380 of which were detected in more than one dataset 

(Table 6). Many SNPs were detected in both the coastal 

and interior datasets--151,014 shared SNPs in t7,361 

isogroups. On average, these shared SNPs represented 

74% of all coastal SNPs and 67% of all interior SNPs. Not 

surprisingly, more SNPs were detected in the larger 

datasets (Table 6). 

SNP array 
In this section, we describe other criteria, including 

Infiniuna design scores, which were used to select the 

final set of SNPs to test on the genotyping array. Design 

scores are values generated by the Infinium Assay 

Design Tool that are associated with the performance of 

SNP assays. Design scores could be generated for only 

34% (95,478/278,979) of the target SNPs submitted to 

Illumina (Figure 1, Step 11), primarily because of the 

permissive probability threshold (PF = 0.10) used for 

calling variants in the flanking sequences. That is, assays 

were not possible for 66% of the target SNPs because of 

flanking SNPs and indels in the assay design region 



Table 6 Numbers of potential SNPs detected in Douglas-fir using an individual dataset probability value of 10.4 

No. of reads                                       No. of unique or shared SNPs* 

Plant materials Seed Sequencing 
(× 106) 

Unique Coastal Yakima Interior 

(dataset ID) source platform 

All isotigs (1 isotig/isogroup (11)) 

Multi genotype #1 (MGls.~NG) Coastal Sanger 2.77 3982 (2606) 101,089 (85,635) 
Multi-genotype #2 (MG2454) Coastal Roche 454 
Single-genotype (SG4s4) Coastal Roche 454 

Multi-genotype #2 (MG2/L) Coastal Illumina 64.00 18,694 (15,617) 192,693 (162,560) 

Coos Bay (CB/L) Coastal Illumina 13.41 1044 (895) 66,304 (56,547) 

Yakima (YK~c) Yakima IIlumina 8.99 638 (545) 43,066 (36,621) 

Interior (INT/L) Interior Illumina 80.45 7],24] (61,334) ]5],014 (]27,403) 

Total 169.62 

Totalf 

29,922 (25,523) 81,633 (69,109) 107,884 (90,487) 

41,952 (35,700) 146,242 (123,503) 192,693 (162,560) 

29,051 (24,703) 53,275 (45,437) 66,304 (56,547) 

40,840 (34,750) 47,573 (40,505) 

40,840 (34,750) 226,124 (192,076) 

*The number of unique SNPs and the number of SNPs shared in other datasets of the coastal, Yakima, and interior seed sources are presented for all isogroups (11 + IM) and for the I isotig per isogroup subset (11) (in 

parentheses). The total number of unique SNPs detected in all datasets was 278,979. 

tSNP totals are not the sums of the values in the same row because SNPs are double-counted. For example, we detected 66,304 SNPs in the CBjL dat~set, 29,051 of which were detected in the YKjL dataset and 53,275 

of which were detected in the INT~t dataset. 
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Table 7 Douglas-fir SNPs detected using an Illumina Infinium SNP array (n = 260 trees) 

No. of SNPs in category/No, of SNPs attempted or assayed (%)* 

SNP category Number of SNPs Attempted (n=8769) Assayed (n=8067) 

SN Ps attempted 8769 100.0 108.7 

SNPs assayed 8067 92.0 100.0 

Called SNPs (call frequency > 0.85)~ 7256 82,7 89.9 

Called SNPs that are polymorphic (MAF > 0) 5847 66.7 72.5 

Percent of called SNPs that are polymorphic (5847(7256) = 80.6 

~The number of SNPs in each category is expressed as a percentage of the total number of SNPs attempted (n = 8769) and number of SNPs successfully assayed 

on the array (n = 8067). 

tSuccessful calls are those with a GenCall score >_ 0.15 [19]. 

(failure code 106). We then sdected 8769 SNPs to test 
using an Infinium genotyping array (Figure 1, Step 12) 
[18]. Selection criteria included differential expression, 
annotations, target SNP probabilities, minor allele 
frequencies (MAF), Illumina design scores, and SNP array 
capacity. Of the 8769 attempted SNPs, only 8067 (92%) 
were assayed because of the normal loss of bead types that 
occurs during array manufacture (Figure 1, Step 13). Of 
these, 7256 SNPs had call frequencies > 85%, and 
5847 of these were polymorphic in a sample of 260 
trees (i.e., successful SNPs in Figure 1 and Table 7). 
Of the 5847 successful SNPs, 263 (4.5%) had signifi- 
cant deviations from Hardy-Weinberg equilibrium 
(HWE). The characteristics of the successfully called 
and polymorphic SNPs are described in Additional 
file 4 and summarized in Table 8. 

Using logistic regression, we identified eight bioinfor- 
matic characteristics significantly related to the ability to 
distinguish the 5847 successful SNPs from the remaining 
2220 SNPs that were assayed (P < 0.05). The order in 
which the variables entered the model reflects their rela- 
tive importance: (1) number of datasets in which the SNP 
was detected, (2) mean number of reads across datasets, 
(3) number of contigs per isotig, (4) minimum SNP prob- 
ability across datasets, (5) isotig length, (6) isotig type 
(i.e., single isotig/isogroup, longest of multiple isotigs/ 
isogroup, or one of multiple isotigs/isogroup), (7) mean 
SNP probability across datasets, and (8) confidence group 
(C1-C7). The four variables that did not enter the model 
were the mean minor allele frequency across datasets, 
number of isotigs per isogroup, SNP IUPAC code, and 
Illumina design score. 

Discussion 
We developed a reference transcriptome and large SNP 
database for Douglas-fir that will serve as a resource for a 
variety of research and breeding applications. We detected 
SNPs by aligning 454 and Illumina short-read sequences 
to a reference transcriptome, and then identifying SNP 
and indel polymorphisms. During this process, we incor- 
porated steps specifically designed to sequence transcripts 

from diverse genotypes, tissues, and environmental condi- 
tions; identify highly-lil¢ely SNP positions; and maximize 
the number of SNPs that can be reliably assayed using an 
Illumina Infinium II SNP array. A thorough evaluation of 
the reference transcriptome provides information on the 
sequences from which the SNPs were derived, including 
annotations. A set of 278,979 SNPs were deposited in the 
dbSNP database with submitted SNP ID numbers (ss#) 
ranging from 523,746,501 to 524,245,331. 

Assembly of the reference transcriptome 

We used Newbler v2.3 (Roche GS De Novo Assembler) 

to assemble a reference transcriptome from 454 and 

Sanger sequences. As for most other non-model organ- 

isms [20], we chose pyrosequencing because longer 

reads are better for de novo assembly, and during the 

sequencing phase of the project, 454 read lengths offered 

a clear advantage [21]. Sequences were removed from 

the input dataset by first filtering short and low-quality 

reads, and reads closely related to adaptor, vector, 

chloroplast, mito{hondrial, rRNA, or retrotransposon 

sequences (Table 1). For all classes of sequences, the 

normalized 454 dataset (MG24s4) had smaller numbers 

of filtered sequences than did the non-normalized 

dataset (SG4s4). Across all datasets (Sanger and 454), 

Table 8 Characteristics of 5847 successful SNPs based on 
data from an IIlumina Infinium SNP array* 

SNP characteristic Mean Median Range 

GenTrain score 0.81 0.84 0,35-0,98 

GCS0 score (median GenCall score) 0.78 0.87 0.!5-0.99 

Call frequencyt 0.99 1.00 0.85-! .00 

Minor allele frequency (MAF) 0,24 0.24 0.002-0.5 

Heterozygosity (observed) 0.33 0.36 0.00-1.00 

HeterozYgosity (expected) 0,32 0,36 0,004-0.5 

Number of SNPs with a significant HWE deviation - 263 (4.5%)~ 

"Successful SNPs are those with a call frequency > 0.85 and MAF > 0 based on 

an analysis of 260 trees. 

* Successful calls are thos{~ with a GenCall score > 0.15 [19]. 
~ Tested using an exact test of HWE and a probability level of 0.9 x 10.5 (i.e., 

Bonferroni-corrected P-value of 0.05 based on 5847 SNPs}. 
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rRNA-like sequences represented the largest percentages 
of filtered reads (3.18%), with retrotransposon-like 
sequences being second (1.11%). We used procedures 
similar to those described by Parchman et al. [22] to 
identify the retrotransposon sequences at the read-level. 
In lodgepole pine, Parchman et al. [22] found that 3.9% 
of their normalized 454 reads had characteristics of 
retrotransposons, but our values were 1.76% and 0.65% 
for the non-normalized and normalized datasets, 
respectively (Table 1). Even lower numbers of 
transposon-like sequences (0.0001 to 0.07% of reads) 
were reported for other conifer EST datasets [22,23]. 
Although these sequences could represent transcription- 
ally active retrotransposons, genomic contaminants are 
also likely to occur in the cDNA library, particularly 
when random primers are used for cDNA synthesis [16]. 

Newbler produces three kinds of output: unique gene 
models (isogroups), presumed transcript variants (isotigs), 
and singletons. Prior to the final assembly, we conducted 
preliminary assemblies using combinations of Newbler 
parameters, and evaluated the results based on the num- 
ber of isogroups represented by a single isotig (I1 subset), 
number of isogroups represented by multiple isotigs (IM 
subset), and total number of isogroups. We found subtle 
changes in the resulting assemblies, and ultimately de- 
cided to use a minimum overlap length of 45 nt, align- 
ment difference score of -6, and a minimum overlap 
identity of 96%. For SNP detection, we concluded that 
these parameters would result in an assembly that 
balances the detection of false positive SNPs among gene 
family members that are treated as a single locus versus 
false negative SNPs that are missed because alleles are 
treated as separate loci. 

We used isotigs and singletons derived from preliminary 
assemblies to identify and filter reads believed to result 
from contamination by fungi and bacteria, and to compare 
levels of contamination between the two 454 datasets. The 
single-genotype (SG4.s4) dataset was derived from tissues 
harvested from the aerial portion of the plant, whereas the 
multi-genotype (MG2454) dataset also included washed 
roots. These analyses suggest that bacterial and fungal 
contamination was not a serious problem in either dataset 
(Figure 2), but the true number of contaminating reads is 
unknown because 26% of the isogroups and 75% of the 
singletons remained unannotated (Table 5). 

In the multi-genotype dataset (MG24s4), the most highly 
represented bacterial and fungal sequences seemed to be 
associated with the roots included in this sample. For ex- 
ample, species of Pseudomonas are common in soils, where 
they are associated with plant disease and plant growth 
promotion [24]. Furthermore, there is a close association 
between Pseudomonas fluorescens and the symbiotic 
Laccaria ectomycorrhizae that infect Douglas-fir roots 
[25]. Other sequences that were common in the multi- 

genotype dataset included those related to Botrytis cinera 
(teleomorph Botryotinia fuckeliana), a soil fungus that 
causes grey mold .disease in Douglas-fir seedlings [26], 
Fusarium circinatum (teleomorph Gibberella circinata), 
which can cause pitch canker disease on Douglas-fir [27], 
and Sclerotinia, which is interesting because this plant 
pathogen has never been reported as a pathogen of 
Douglas-fir (G. Newcombe, personal communication). 
None of these sequences were common in the single- 
genotype dataset (SG4s4), which did not include roots. 
Instead, the most highly represented sequences in the 
single-genotype dataset (Phanerochaete and Antrodia) 
belong to genera that include wood-rot fungi which may 
have been associated with the cambial tissues that were 
specifically included in this sample. Nonetheless, this 
sample did contain some reads that are related to 
Inonotus, which is primarily considered a root pathogen 
(G. Newcombe, personal communication). 

Reference transcriptome 
Our first major objective was to assemble a reference tran- 
scriptome which could then be used to map reads and 
identify SNPs in both varieties of Douglas-fir. Our 
reference transcriptome consists of 25,002 isogroups 
(unigenes), 38,589 isotigs (transcript variants), 102,623 
singletons, and more than 2.5 million 454 reads (Table 2). 

Of our 25,002 isogroups, 18,744 are represented by a 
single isotig (transcript variant) and are inferred to 
correspond to a single transcript. The remaining 6228 
isogroups are represented by multiple isotigs, which 
suggests they represent alternatively spliced transcripts 
from the same gene. The mean length of isotigs was 
1390 nt and the NS0 was 1883. This NSO indicates that 
50% of the assembled nucleotides occur in isotigs that 
are shorter than 1883 nt. These isotigs are about as long 
as those derived from other recent assemblies of tree 
transcriptomes. For example, Lorenz et al. [28], assem- 
bled 454 reads from 12 conifers using three assemblers. 
Based on assemblies of 0.4 to 4.1 million reads (depen- 
ding on species), the average number of contigs (or 
isotigs) was 54,721, 56,955, and 20,598 using the MiraEST, 
NGen, and Newbler assemblers, with mean contig lengths 
of 787, 797, and 1198 nt. Newbler consistently yielded 
many fewer and longer contigs than did MiraEst and 
NGen. Using Newbler, the largest dataset of 4.1 million 
reads (loblolly pine), yielded 48,751 isotigs with a mean 
length of 1666 nt. In lodgepole pine, NGen was used to 
assemble a transcriptome from 0.6 million 454 reads, 
yielding 63,687 contigs with a mean length of 500 nt 
[22]. Not surprisingly, earlier de novo assemblies of 
transcriptomes of other non-model plants generally 
used fewer and shorter 454 reads, yielding fewer and 
shorter contigs [23,29-34]. 
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Comparison to white spruce 

The number of genes in Douglas-fir is unknown, but 

white spruce, another conifer in the Pinaceae, is esti- 

mated to have as many as 32,720 transcribed genes cov- 

ering as much as 47.3 Mb [161. This estimate, which is 

based on Sanger sequencing (272,172 ESTs from cDNA 

clones), next-generation transcriptome sequencing (7.4 

Mb GS-FLX and 59.5 Mb of Illumina GA-II), and gen- 

omic sequencing (1.7 Gb GS-FLX), provides a good basis 

on which to judge the extent of our reference trans- 

criptome. Considering only the longest isotig in each 

isogroup, our assembly covers 36.1 Mb in isogroups. 

Therefore, assuming that the white spruce estimates are 

accurate, and the transcriptomes of Douglas-fir and 

white spruce are about the same size, our isogroups 

could represent 76% of the genes and total transcrip- 

tome length of Douglas-fir. The total length of singletons 

was another 36.5 Mb, suggesting that only a modest pro- 

portion of these sequences represent unique Douglas-fir 

transcripts (i.e., missing sequences from already identified 

genes or unsampled genes). Given the estimated size of 

the white spruce transcriptome, many of these sequences 

are probably higtdy redundant with the assembled isotigs 

or each other, or represent contaminating sequences from 

genomic DNA or other organisms. 

We compared our isotigs to a white spruce gene catalog 

of 27,720 unigenes assembled from the 272,172 Sanger 

sequences described above [16]. Each Douglas-fir isotig 

was classified into one of seven classes designed to reflect 

the relative likelihood that reads were assembled correctly 

into a single locus (Table 3). For example, isotigs having 

one-to-one matches with white spruce unigenes (E-value 

< 10s) were classified into the ’Highest’ confidence class 

(C1), and isotigs that matched multiple white spruce 

isotigs and other Douglas-fir isotigs were classified 

into the ’Lowest’ class (C6). Isotigs that matched no 

white spruce unigene were classified into the ’Unknown’ 

confidence class (C7). 

For the I1 isotigs (1 isotig/isogroup subset), the two 

largest classes were the ’Unknown’ and the ’Highest’ 

confidence classes, each of which contained N28% of the 

18,774 I1 isotigs. For the IM isotigs (multiple isotigs/ 

isogroup subset), the largest classes were the ’Lowest’ 

and the ’Medium’ confidence classes, each of which 

contained -35% of the 19,815 IM isotigs. Overall, these 

rankings reflect our assumption that overlapping isotigs 

might be more common among sequences that are in- 

correctly assembled. These confidence classes were used 

to prioritize $NPs for the genotyping array, and could 

also be used to prioritize isotigs for other uses. ~Te sub- 

sequently conducted an identical analysis using 35,550 

loblolly pine contigs as the reference, and found nearly 

the same distribution of isotigs among the confidence 

classes. Across both analyses, we found a total of 6651 

no-hit isotigs--that is, isotigs that did not match any 

spruce or pine contig. This compares to a total of 9960 

no-hit isotigs for the spruce analysis, and 8293 no-hit 

isotigs for pine. These 6651 isotigs deserve attention 

because they probably represent unique Douglas-fir 

genes or mis-assembled sequences. 

Annotations 

Our second major objective was to annotate the refer- 

ence transcriptome. We did this by comparing the 

isotigs and singletons to the UnirefS0 and TAIR10 pro- 

tein databases at an E-value of 10-5 (Table 4). For the I1 

isotigs, TAIR10 and UnirefS0 matches were found for 

73.2% and 80.2% of the isotigs, respectively. The per- 

centages of matches for the IM isotigs were considerably 

lower (52.3% and 55.3%), mostly because we only 

counted matches when the best hit was identical for all 

isotigs in an isogroup. Together, these analyses yielded 

matches for 17,009 (TAIR10) to 18,500 (UnirefS0) 

isogroups. The matches for the singletons were much 

lower (15.5% and 25.1%). This is expected because these 

sequences are much shorter and may contain a higher 

proportion of sequences derived from untranslated tran- 

script regions (e.g., 5’ UTR, 3’ UTR, or unspliced 

introns) or contaminating genomic DNA. Based on the 

UnirefS0 analyses, most of the isogroup matches had 

best-hits to plant proteins (Table 5). The modest number 

of isogroups with hits to conifers (5161) compared to 

other plants (11,760) probably reflects the much smaller 

number of available conifer sequences. Among the 

matched sequences, only 1.33% of the isogroups and 

5.18% of the singletons had best hits corresponding to 

fungal, bacterial, or viral proteins. These could represent 

contaminating sequences that were not filtered prior to 

transcriptome assembly. 

Because the functions of some of the sequences in the 

UniRefS0 and TAIR10 databases are unknown, we also 

used the Annot8r annotation tool to identify Douglas-fir 

sequences that could be assigned a putative function. 

Specifically, we used Annot8r to query only those 

sequences in the EMBL UniProt database that are tagged 

with GO (Gene Ontology) annotations [35]. These 

analyses found that 14,595 isogroups could be assigned a 

putative function (GO term; Table 4). If we assume that 

Douglas-fir has about the same number of genes as 

white spruce (discussed above), we have putative func- 

tional annotations for almost half of the Douglas-fir 

genes (14,595/32,720 = 44.6%). The GO-annotations 

were distributed across a wide range of GO slim categor- 

ies, with no substantial differences among the different 

categories of isotigs or singletons (Figure 3). Compared 

to Douglas-fir, many more Arabidopsis sequences fell 

into the "Unknown cellular components" and "Unknown 

molecular functions" classes, suggesting that these GO 
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slim classes contain Arabidopsis genes that are more 

likely to be absent from Douglas-fir or highly diverged 

(i.e., resulting in no GO slim assignment for Douglas-fir). 

Overall, our annotation results suggest that our reference 

transcriptome (and corresponding SNPs) represent a 

broad array of genes covering a substantial proportion of 

the Douglas-fir transcriptome. 

SNP success 
Our final two objectives were to identify potential SNPs, 

and then test a subset of these using an Infinium geno- 

typing array. Across both varieties of Douglas-fir, we 

identified 278,979 potential SNPs distributed across 

20,663 isogroups. We submitted 8769 of these SNPs to 

Illumina for construction of an Infinium genotyping 

array. Because bead types are normally lost during the 

manufacturing process, it was only possible to assay 

8067 SNPs (92.0%) on the completed array (Table 7). 

Based on results from 260 Douglas-fir trees, we identi- 

fied 5847 reliably scored polymorphic markers, resulting 

in a conversion rate of 66.7% based on the SNPs submit- 

ted to Illumina, and 72.5% based on the number of 

successful SNP assays (i.e., successful bead types). Using 

slightly- more liberal criteria (i.e., a call frequency of 55% 

rather than 85%), Eckert et al. [36] reported an overall 

Infinium conversion rate of -55% in loblolly pine using a 

combination of Polyphred, PolyBayes, and a machine learn- 

ing approach to detect SNPs from Sanger resequencing 

data. However, using their best SNP detection approach 

(machine learning), the conversion rate was 66.5%, which is 

the same as for our submitted SNPs, but lower than the 

conversion rate for the SNPs we actually assayed (Table 7). 

These conversion rates are comparable to those reported 

for other tree species using the Illumina GoldenGate geno- 

typing platform, which ranged from 60.0% to 77.1% in 

white spruce, black spruce, loblolly pine, and apple [37-39]. 

In Douglas-fir, the conversion rate for a 384-SNP Golden- 

Gate array was 59% [15]. However, higher conversion rates 

were reported in sunflower using the Infinium platform 

[74.9%; 40], and in barley, soybean, wheat, and maize, using 

the GoldenGate platform [-80-95%; 41-45]. Compared to 

trees and other outcrossing species, inbred crops may have 

higher conversion rates because of lower genetic diversity 

[38,46], resulting in fewer assay failures caused by variation 

in the primer target sequences. 

Our 5847 successful SNPs had a median GCS0 score of 

0.87 and a median call frequency of 1.00 (Table 8). 

Because we filtered SNPs based on SNP probabilities and 

other metrics that are positively associated with MAF, our 

successful SNPs had high MAFs (median = 0.24) and 

heterozygosities (median = 0...,36). Therefore, their poly- 

morphic information content is probably much higher 

than that of randomly selected SNPs. Selection of SNPs 

with high MAFs also resulted in a very flat frequency 

distribution (MAP range = 0.002-0.500; Figure 4) and a 

moderately flat distribution for observed heterozygosity 

(Figure 5). 

We also identified 263 SNPs (4.5%) that deviated signifi- 

cantly from HWE based on a Bonferroni-corrected 

P-value of 0.05. In general, HXYTE deviations may result 

from genotyping errors, non-random mating, selection, 
mutation, gene fl6w/admixture, or relatedness among 

samples. However, for the SNPs with observed heterozy- 

gosities much greater than 0.5 (Figure 5), we may also be 

detecting polymorphisms among nearly identical paralogs 

[47]. Although deviations from HWE are often used to 

filter SNPs used in association studies, no consensus has 

emerged on the appropriate P-value to use [48]. However, 

probabilities of 10-’~ to 10-6 are typically used to filter SNPs 

in genome-wide association studies [49]. We used the 

Bonferroni correction because this approach was previ- 

ously used to filter SNPs in association studies of 

Douglas-fir and loblolly pine [15,36], and because the 

unadjusted threshold of 0.9 x 10s is consistent with other 

common practices [49]. If these 263 SNPs are not used in 

association genetic studies or other analyses, the number 

of non-filtered SNPs would be reduced to 5584. In loblolly 

pine, 1.46% (45/3082) SNPs deviated significantly from 

HWE using the Infinium platform [36]. 

We subsequently, used logistic regression to test whether 

successful SNPs could be predicted from bioinformatic 

characteristics. Although eight variables entered the pre- 

diction model, the model had little predictive power. This 

is not surprising because most of the assayed SNPs were 

highly selected based on these same variables, so the inde- 

pendent variables had little variation. Compared to ran- 

dom selection from our pool of 8067 SNPs, the prediction 

model only increased the probability of selecting success- 

ful SNPs from 72.5% to 73.8%. These results suggest that 

I----q SNPs 

~ SNPs in HWE 

0.00 0.10 0.20 0,30 0.40 0.50 

Minor allele frequency 

Figure 4 Distributions of minor allele frequencies for successful 

Douglas-fir SNPs. Open bars represent all 5847 successful SNPs. 

Solid bars represen~ 5584 successful SNPs that were in Hardy 
Weinberg Equilibrium (HWE). Successful SNPs had cal! frequencies > 
0.85 and were polymorphic. Successful calls are those with GenCal! 
scores -> 0.15 [191. 
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Figure 5 Distributions of expected and observed 

heterozygosities for successful Douglas-fir SNPs. ©pen bars 

represent all 5847 successful SNPs. Solid bars represent 5584 SNPs 

that were in Hardy-Weinberg Equilibrium (HWE), Successful SNPs 

had call frequencies > 0.85 and were polymorphic. Successful calls 

are those with GenCalt scores _> 0.15 [19]. 
k 

we could have relaxed our SNP selection criteria with little 

effect on SNP success--i.e., many more successful SNPs 

would have been identified had we developed and tested a 

much larger genotyping array. 

We also used multiple linear regression to determine 

whether any of the five SNP characteristics listed in Table 8 

(i.e., excluding expected heterozygosity) could be pre- 

dicted from the across-dataset variables used for SNP 

filtering. These predictor variables included 12 continuous 

and categorical variables reflecting SNP frequencies, SNP 

probabilities, numbers of covering reads, SNP repeatabi- 

Iities across datasets, Illumina assay design scores, isotig 

characteristics, types of SNP (i.e., IUPAC codes), and SNP 

confidence classes. Although all models were highly sig- 
nificant, the R2 values were all below 4%, except for MAF 

and observed heterozygosity. For MAF, -20% of the 

variation was explained by three variables--mean SNP 

frequency, mean SNP probability, and isotig length. For 

observed heterozygosity, N16% of the variation was 

explained by these three variables plus the mean number 

of covering reads. 

A SNP resource for genomic selection 

One of our key long-term goals is to test whether genomic 

selection can be used to enhance Douglas-fir breeding. 

Genomic selection, or whole genome selection, is a type 

of marker-assisted selection that uses dense marker cover- 

age to track alleles for most or all quantitative trait loci 

(QTL) in the genome [6]. If very large numbers of markers 

are used, most or all QTL will be in linkage disequilibrium 

with at least one marker, particularly in small populations. 

Genomic selection involves two steps [50]. First, a gen- 

omic prediction model is developed using phenotypes and 

marker genotypes measured on a test or ’training’ popula- 

tion. Second, individuals are selected from a related popu- 

lation of selection candidates based on breeding values 

predicted from the marker genotypes alone. 

The number of markers needed for accurate genomic 

selection varies widely, depending on the genome length 

(cM), effective size of the breeding population (Ne), 

number of QTLs, heritability, number of generations 

without model retraining, and other factors [50-52]. For 

example, a 50K SNP chip has been used by dairy cattle 

breeders since 2008, and a 777K SNP chip is now avail- 

able that may be useful for making selections across- 

breeds [53]. In contrast, it may be possible to use many 

fewer markers in forest trees because small breeding 

populations can be used to increase linkage disequilib- 

rium (LD) [51]. In a simulation study of genomic selec- 

tion in forest trees, -2 markers per cM were sufficient 

to achieve the same accuracy as BLUP-based phenotypic 

selection when Ne was _< 30, but as many as 20 markers 

per cM might be needed for an Ne of 100 [51]. Iwata 

et al. [54] came to a similar conclusion in a simulation 

study of a generic conifer breeding program. They con- 

cluded that efficient genomic selection would be 

achieved in a small breeding population (Ne = 25) using 

one marker per cM, and that accuracies could be 

increased by using greater marker densities. Assuming a 

genome length of -2000 cM for Douglas-fir [55], these 

values (i.e., 1-20 markers per cM) are equivalent to 

about 2,000 to z~0,000 SNPs. Empirical results support 

the results of these simulation studies. In two small 

populations of Eucalyptus (N~ : 11 and 51), the accuracy 

of genomic selection equaled that of BLUP-based pheno- 

typic selection using > 3000 DArT markers [56]. Similar 

results were also observed in a loblolly pine population 

(Ne N40) using 4825 SNP markers [57]. 
What is the size of our SNP resource? If we multiply 

the number of potential SNPs by our SNP conversion 

rate (72.5%; Table 7), we obtain an estimate of 202,260 

true SNPs. However, if we had tested all 278,979 SNPs 

on the genotyping array (i.e., by relaxing our. selection 

criteria), the SNP conversion rate may be lower. In 

contrast, the number of potential SNPs would have been 

much larger bad we used a SNP probability threshold of 

10-3 (337,938 SNPs) or even 10-2 (440,550 SNPs), but 

the SNP conversion rate may have been lower as well. 

Balancing these factors, a reasonable estimate for the 

number of true SNPs is N200,000. Second, what is the 

number of SNPs that can be genotyped using an 

Infinium II assay? This can be judged by the number of 

acceptable design scores. For example, using a SNP 

probability of 104 (278,979 potential SNPs) and a 
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probability of flanking variants (PF) of 10-1, we obtained 

95,478 SNPs with design scores _> 0.6. Again, assuming a 

72.5% conversion rate, the number of successfully geno- 

typed SNPs is estimated to be 69,221. We also tested the 
effects of using the same SNP probability (Ps < 10-4), but 

with lower flanking probabilities (Pv < 10-2, 10-a, and 10-4; 

Figure 1). Using a Pv value of 10-4, for example, the num- 

ber of SNPs with an acceptable design score was 150,025 

(Figure 1), and the number of successfully genotyped 

SNPs is estimated to be 108,768. Although SNP conver- 

sion rates may differ among these scenarios, our SNP 

resource seems more than sufficient to pursue genomic 

selection in Douglas-fir. 

Although we identified 278,979 potential SNPs, they 

are not distributed uniformly across the genome, which 

would be optimal for genomic selection. Therefore, it 

would be better to use the number of isogroups with 

SNPs (n = 20,663) to judge the effectiveness of our SNP 

resource for genomic selection. However, the large 

number of SNPs we detected means that it should be 

possible to genotype nearly all of these loci. Further- 

more, if much of the genetic variance of interest is 

explained by variants in or near transcribed genes, then 

these markers may be more efficient than randomly 

distributed markers. Approaches for increasing the 

number of loci with SNPs could involve mapping more 

reads to our reference transcriptome (n = 25,002 

isogroups), increasing the coverage of our reference 

transcriptome (yielding perhaps 30,000 to 40,000 loci), 

and relying on genomic sequencing to develop add- 

itional markers in non-transcribed regions. 

Conclusions 
We conclude that our current dataset of 278,979 poten- 

tial SNPs will translate into as many as -200,000 true 

SNPs, and as many as N69,000 SNPs that could be geno- 

typed at -20,000 gene loci using .an Infinium II array. 

Furthermore, we already have enough validated SNP 

markers (5847 markers in 5439 isogroups) to conduct 

realistic tests of genomic selection on small breeding 

populations of Douglas-fir. Assuming a density of 2.5 

markers per cM (5000 SNPs/2000 cM), we should be 

able to practice effective genomic selection in popu- 

lations up to -30 Ne [51]. However, because current 

breeding populations now average about 220 N~ 

(K. Jayawickrama, personal communication), we will 

either need more markers to practice genomic selection, 

or genomic selection will need to focus on smaller pop- 

ulations (e.g., sublines). Ultimately, our reference trans- 

criptome and SNP resource will enhance Douglas-fir 

breeding and allow us to better understand landscape- 

scale patterns of genetic variation and potential 

responses to climate change. 

Methods 
Plant materials and RNA preparation 
Reference tr(~nscriptome 

We used three sets of coastal Douglas-fir sequences to 

construct the reference transcriptome (Table 1). In this 

section, we describe the plant materials and general 

sequencing strategies used for each dataset. Detailed 

laboratory methods are described subsequently. 

The goal of the first multi-genotype dataset (MGlsa2vG) 

was to include existing Sanger sequences from a diverse 

set of genotypes known to be expressing functionally 

important genes. The MGlsAzvG dataset was prepared by 

combining Sanger sequences derived from three ’cold 

hardiness’ cDNA libraries (CA, MH, and CD) and one 

’actively growing’ (GR) library [58]. Seedlings used for the 

cold acclimating (CA) library were collected in September, 

October, and November; seedlings used for the maximum 

hardiness (MH) library were collected in December and 

January; and seedlings used for the cold deacclimating 

(CD) library were collected in February, March (2 dates), 

and April in Corvallis, OR. On each date, 10 seedlings 

were collected from a single orchard seedlot, and total 

RNA was extracted separately from needles, stems, and 

buds. The parents of these seedlings originated from a 

low-elevation population near Toledo, OR. Total RNA 

was isolated at Oregon State University (OSU) according 

to Chang et al. [59], except that the RNA was subse- 

quently purified on RNeasy columns (QIAGEN, Valencia, 

CA, USA). Equal amounts of total RNA were pooled from 

each tissue prior to sequencing. Sanger sequences from 

the cold hardiness libraries (CA = 3,949; MH = 3,701; and 

CD = 3,684 sequences) were combined with 6,760 

sequences from the GR library prepared from actively 

growing seedlings harvested from the greenhouse during 

their first growing season [55]. 

The goal of the second multi-genotype dataset was 

to increase the number genotypes, tissues, and physio- 

logical conditions, while also increasing sequence depth 

and coverage by using 454 pyrosequencing. The resulting 

MG24s¢ dataset consisted of Roche 454 sequences derived 

from three tissue collection regimes. First, on each of five 

dates between September and April, we harvested 6 or 12 

first-year seedlings and separated them into needles, 

stems, and buds. These seedlings were grown outdoors in 

Corvallis, OR, but their seed orchard parents originated 

from a low-elevation population near Coos Bay (CB), OR 

[58]. Second, we harvested three seedling tissues on five 

dates between July and January from a total of 79 seedlots 

provided by the Cottage Grove Nursery of Plum Creek 

Timber Company. On all five dates, we harvested buds 

(i.e., elongating apices or resting buds), shoots (stems plus 

needles), and roots. On two of the dates when the seed- 

lings were large enough, we also harvested lower stems 

without needles. These seedlings were grown outdoors in 
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Corvallis, and some were subjected to water stress to 

induce the expression of genes associated with adaptation 

to cold and drought. Third, we collected elongating 

shoots from ramets of two clonal genotypes growing 

at the Lebanon Forest Regeneration Center managed 

by Roseburg Forest Products. Because these shoots 

were collected during June from trees that had been 

stimulated to produce reproductive buds, they are 

expected to contain differentiating male and female 

flowers (strobili). Total RNA was isolated at OSU as 

described above, or at the University of Georgia 

(UGA) as described by Lorenz et al. [60]. Individual 

RNA samples were pooled in an attempt to have 

mRNAs from buds, stems, needles, and roots equally 

represented in the resulting cDNA libraries. 

The goal of the single-genotype dataset was to expand 

our representation of genes from mature trees and 

increase sequence depth and coverage by using 454 

pyrosequencing. The resulting SG4s4 dataset consisted of 

Roche 454 sequences derived from five tissues collected 

on 8 July from two mature ramets of a single clonal 

genotype growing at the Lebanon Forest Regeneration 

Center. We collected terminal shoots, stems, and resting 

buds (all from current year branches), plus cambial 

tissue and developing seeds from immature cones. Total 

RNA was isolated at UGA as described by Lorenz et al. 

[60], and 36 to 130 pg of total RNA was pooled from 

each tissue prior to eDNA synthesis. 

Illumina short-read sequences 

The goal of the Illumina sequencing was to enhance 

SNP detection by increasing the number and genetic 

diversity of the sequences to be mapped to the reference 

transcriptome. We used coastal and interior Douglas-fir 

to produce four sets of Illumina short-read sequences. 

One set of coastal Douglas-fir sequences (MG2jL) was 

derived from the same pooled RNA sample that was 

used to construct the MG24s~ dataset described above. 

The Coos Bay (CB1L) dataset was derived from a subset 

of the Coos Bay RNA samples described above, plus 

replicate samples harvested on some of the same dates. 

We used six bud samples and two needle samples for a 

total of eight Illumina sequencing runs. The Yakima 

(YK1L) dataset was prepared using the same collection 

protocol and sequencing protocol as for the CBjL 

dataset, but the seedlings were derived from parents 

growing in a high-elevation inland population near 

Yakima, Washington that is thought to represent the 

interior variety of Douglas-fir /61). Total RNA was 

isolated at OSU as described above. 

The interior Douglas-fir samples (INT~L dataset) were 

collected from mature trees growing in a provenance 

test near Vernon, B.C., Canada [62] and the Cherrylane 

Seed Orchard in northern Idaho. Young shoots were 

collected from the provenance test in early May from 

two trees from each of 26 seedlots collected from 

Arizona and New Mexico in the south, to British 

Columbia and Washington state in the north. Approxi- 

mately equal amounts of total RNA were pooled from 

recently flushed buds, stems, young needles, and mature 

needles. The seed orchard samples were collected in 

early June from 18 trees originating from northern 

Idaho. Approximal:ely equal amounts of total RNA were 
pooled from stems and needles harvested from recently 

flushed shoots. The two pooled RNA samples were then 

combined for Illumina sequencing. 

DNA sequencing 

Reference transcriptome 

The MGlsANG dataset was produced via Sanger sequen- 

cing. For the CA, MH, and CD libraries, pooled samples 

of total RNA were used by Evrogen JCS (Moscow, 

Russia) for double-stranded cDNA synthesis using the 

SMART approach [63], and the cDNAs were normalized 

using DSN normalization [6@ The resulting cDNAs 

were directionally inserted into the pAL17.1 vector and 

transformed into E. coil SymBio Corporation (Menlo 

Park, CA) amplified the eDNA clones using rolling circle 

amplification, and then sequenced about 4,000 eDNA 

clones per library using a MegaBASE 4000 sequencer (GE 

Healthcare, Little Chalfont, UK). The non-normalized GR 

library was prepared and sequenced (Sanger) as described 

by Krutovsky et al. [55]. Sanger sequences were archived 

under GenBank accession numbers CN634509-CN641229 

and ES417751-ES429084. 

The MG24s4 and SG4s¢ datasets were produced via 454 

pyrosequencing. For the MG24s4 dataset, mRNA isolation, 

eDNA synthesis, and DNA sequencing were performed by 

the University of Illinois Carver Biotechnology Center 

using the SuperScript Double-Stranded cDNA Synthesis 

Kit (Invitrogen, CA) and GS Titanium Library Preparation 

kit (454 Life Sciences, Branford, CT). The cDNA library 

was normalized using the Trimmer Direct Kit (Evrogen), 

and then sequenced using the 454 GS-FLX platform. For 

the SG~s4 dataset, eDNA synthesis was performed by the 

U.S. Department of Energy Joint Genome Institute (JGI) 

using the SMART PCR cDNA Synthesis Kit (Clontech, 

Mountain View, CA). The resulting non-normalized 

cDNA library was sequenced by JGI using the 454 

GS-FLX platform. The raw 454 sequences were deposited 

in the NCBI Sequence Read Archive (SRA) under acces- 

sion numbers SRA023776 and SRA051424. 

Illumina short-read sequences 

The CB~L and YI(zL libraries were constructed at the 

USDA Forest Service’s Pacific Northwest Research Station 

using Illumina mRNA-Seq Prep Kits (San Diego, CA) with 

minor modifications. To obtain strand-oriented reads, we 
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used dUTP for second-strand synthesis, and then selec- 
tively destroyed the dUTP-containing strand before the 
PCR-enrichment step as described by Parkhomchuk et al. 
[65]. Libraries were constructed using multiplex sequen- 
cing adapters [66], and single-end reads of 80 nt were 
obtained using multiplex sequencing on an Illumina 
Genome Analyzer IIx at the OSU Center for Genome 
Research and Biocomputing or Harvard FAS Center for 
Systems Biology. The MG2/L and INT1L cDNA libraries 
were constructed using the standard Illumina mRNA- 
Seq Sample Prep Kit, and then sequenced on an 
Illumina Genome Analyzer IIx for 2x101 cycles at the 
Carver Biotechnology Center. The RNA previously used 
for the MG24s4 dataset was also used for the MG21L 
library, and the RNA isolated from interior Douglas-fir 
was used for INT1L. The raw Illumina sequences were 
deposited in the NCBI SRA under accession number 
SRA051424. 

Pre-assembly sequence processing for the reference 

transcriptome 

Prior to assembly, sequences in the MGlsa~vc, MG24s4, 
and SG4s4 datasets were cleaned as described below 
(Figure 1). For the MG24.s~ and SG4s4 datasets, we used 
Roche’s sffinfo utility to trim primer and adaptor sequences 
and produce raw FASTA and quality files from the SFF 
files. For Sanger sequences (MGls~v~), we performed 

these same functions using phred [67]. We then used 
the SnoWhite pipeline (http://www.evopipes.net/snowhite. 
html), which combines Seqclean and TagDust, to remove 
or mask polyA/T tracts; short, low-quality and low- 
complexity sequences; and reads matching chloroplast, 
mitochondrial, rRNA, or retrotransposon sequences. Our 
filtering database contained (1) vector, adapter, linker, and 
primer sequences from NCBI’s UniVec database (http:// 
www.ncbi.nlm.nih.gov/VecScreen); (2) chloroplast, mito- 
chondrial, and ribosomal RNA (rRNA) sequences from 
21 to 50 species that included conifers, Arabidopsis, 
and Nicotiana (GenBank; http:l/www.ncbi.nlm.nih.govl 
genbank); (3) a nearly-complete reference of the coastal 
Douglas-fir chloroplast genome (GenBank JN854170; [68]); 
and (4) retrotransposon sequences from 27 species, includ- 
ing Arabidopsis and Oryza sequences from the Plant Re- 
peat Database (http:l/plantrepeats.plantbiology.msu.edul) 
and conifer sequences obtained from GenBank as described 
hy Parchman et al. [22]. Our final database of non- 
redundant filter sequences was prepared by processing all 
filter sequences through the NCBI BLASTclust program 
[69] with the identity and coverage parameters set to 90% 
(i.e., pairwise matches require sequences to be 90% identical 
over 90% of their lengths). We then used the SnoWhite 
pipeline to filter reads that had _> 96% sequence identity to 
any sequence in this filtering database (Figure 1, Step 3) 

We also filtered bacterial- and fungal-like sequences 
from the datasets used for transcriptome assembly. These 
sequences were filtered by first conducting a de novo 
assembly of each 454 dataset (MG24s4 and S(~4s4) using 
Newbler v2.3 (Figure 1, Step 4; discussed below). The 
resulting isotigs and singletons (plus the Sanger sequences 
from the dataset MGlsA~vc) were screened for homology 
using BLASTN against a dataset of 27,720 white spruce 
unigenes [16]; www.arborea.ca]. Non-matches (E-value > 
10-s, bit score < 50, and identity < 96%) were subsequently 
screened using BLASTN and two local databases: the 
NCBI nucleotide collection (nr/nt) and NCBI non-human, 
non-mouse ESTs (est-others). Assembled isotigs and sin- 
gletons were filtered if the best hit had a bit-score > 50 
and an E-value < 10-1°, and the corresponding genus 
name was found in a custom database of 162,679 bacterial 
and 59,139 fungal names downloaded from the NCBI Tax- 
onomy database (http://www.ncbi.nlm.nih.govlTaxonomy) 
(Figure 1, Step 5). After we removed the singletons and all 
reads that assembled into the contaminating isotigs, the 
original reads were re-assembled as described below 
(Figure 1, Step 6). We also used the results from these 
analyses to compare the number of contaminating fungal 
and bacterial reads between the two 454 datasets. 

Assembly of the reference transcriptome 

We used Newbler v2.3 (Roche GS De Novo Assembler 

v2.3; Roche Life Sciences, Inc.) to assemble the reads in 

the MGlsAt¢~, MG24s4, and SG~s4 datasets into a single 

reference transcriptome consisting of isogroups (unigene 

models), isotigs (presumed transcript variants), and sin- 

gletons _> 100 nt (Figure 1, Step 6). Prior to the final as- 

sembly of all datasets, we first evaluated the impact of 

alternative assembly parameters. De novo assemblies 

were run using the transcriptome (-cdna) option, mini- 

mum read length (-minlen) of 40 nt, isotig length 

threshold (-icl) of 40 nt, a large contig threshold (-1) of 

t00 nt, plus a factorial arrangement of the following pa- 

rameters: minimum overlap lengths of 35 and 45 nt; 

alignment difference scores of-2 and -6; and minimum 

overlap identities of 82% to 98%. The 20 resulting as- 

semblies were evaluated based on the total numbers of 

isogroups, number of isogroups represented by a single 

isotig (I1 subset), .and the number of isogroups repre- 

sented by multiple isotigs (/M subset). We also evaluated 

the assemblies by comparing the assembled isogroups to 

white spruce unigenes using the approach described 

below. Based on these evaluations, we performed the 

final Newbler assembly using a minimum overlap length 

of 45 nt, alignment difference score of -6, and a mini- 

mum overlap identity of 96%. We clustered the resulting 

isotigs using Vmatch (http://www.vmatch.de; -dbcluster 

P.~ma~l = 99 and p~g~ = 99) to form a non-redundant set 
of sequences, and then calculated the assembly statistics 
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shown in Table 2 using custom Perl scripts. The refer- 

ence transcriptome (i.e., 37,177 isotigs >_ 200 nt) has 

been deposited at DDBJ/EMBL/GenBank under acces- 

sion GAEK01000000. 

Comparison to white spruce and loblolly pine 

We compared the Douglas-fir assembly to a set of white 
spruce unigenes using SCARF, a sequence assembly tool 

designed for assembling 454 EST sequences against a 

reference sequence from a related species (Figure 1, Step 

8) [17]. We downloaded 27,720 white spruce unigenes 

constructed from Sanger sequenced ESTs [16]; www. 

arborea.ca], and then used SCARF to determine where 

Douglas-fir isotigs matched white spruce unigenes. The 

combination of MegaBLAST parameters [70] used in 

the SCARF analysis resulted in matches with a minimum 

length of 40 nt, minimum identity of 77%, minimum 

bitscore of 80, and maximum E-value of 2 x 10-13. Using 

this information, we defined seven types of structural re- 

lationships (C1 to C7) between Douglas-fir isotigs and 

white spruce unigenes, and then assigned the isotigs to 

these classes based on three criteria (Table 3). First, we 

classified each isotig according to the number of white 

spruce matches: no match (C7), one match (C1, C3, C4), 

or matches to multiple white spruce unigenes (C2, C5, 

C6). Multiple matches were counted only when the per- 

cent identities were within 5% of the best match. Sec- 

ond, we determined whether other isotigs matched the 

same white spruce unigene, resulting in isotigs that were 

classified as having no matching partners (C1, C2), and 

those that did (C3 to C6). Finally, for the isotigs with 

matching partners, we determined whether the partners 

overlapped each other (C4, C6) or not (C3, C5). We then 

assigned relative confidence scores to each isotig assem- 

bly based on these relationship classes: C1 ; Highest; C2 

and C3 = Higher; C4 and C5 = Medium, C6 = Lower; 

and C7 = Unknown. 

We conducted the same SCARF analysis using loblolly 

pine as the reference, but these analyses were completed 

after the SNP array was constructed and tested. These 

analyses were conducted using 35,550 contigs that com- 

prise the first release of the PineDB transcriptome as- 

sembly (PineDB vl.O; June 15, 2012; http://bioinfolab. 

muohio.edu/txid3352vl/interface/download.php). 

Annotation 

We annotated the isogroups using a local tBLASTX [69] 
search against the Uniref50 release 2010_09; [71] and 
TAIR10 (TAIRl0_pep_20101214; [72]) databases using 
an E-value of 10-5 (Figure 1, Step 8). We then summa- 

rized the results separately for the I1 isogroups, IM 
isogroups, and singletons. For the IM set of isogroups, a 
hit was counted only if all isotigs matched the same pro- 
tein in the database; otherwise this isogroup was 

considered unannotated. We also annotated sequences 

using the AnnotSr pipeline (http://www.nematodes.org/ 

bioinformatics/annotSr/index.shtml), which assigns GO 

terms [73], EC numbers (http://www.chem.qmul.ac.uk/ 

iubmb/), and KEGG pathways [74] to protein or nucleo- 

tide sequences from non-model organisms based on se- 

quence similarity to protein sequences in the EMBL 

UniProt database (http://www.uniprot.org/). We also 

assigned GO-slim terms to the isogroups and singletons 

using the results from the TAIR10 tBLASTX search. We 

extracted GO-slim terms for the matching Arabidopsis 

accessions from the TAIR10 database, and then com- 

pared the distributions of GO-slim terms for the I1 

isogroups, IM isogroups, and singletons versus the dis- 

tribution of GO-slim terms for all 35,386 Arabidopsis ac- 

cessions in the TAIR10 database (ftp://ftp.arabidopsis. 

org/home/tair/Ontologies/Gene_Ontology/). Finally, we 

assigned taxonomic affiliations to the isogroups and sin- 

gletons using the results from the UniRef50 tBLASTX 

search described above. We extracted the taxonomic as- 

signment for each best-hit, and then summarized them 

according to the categories shown in Table 5. 

Processing of Illumina short-read sequences and analysis 

of sequence orientation 
Illumina short read sequences were mapped to the tran- 

scriptome reference to identify SNPs. Some of the short- 

read sequences contained strings of nucleotides with a 

quality score of 2 (i.e., ’B’ ascii character), which Illumina 

uses to indicate that these calls should not be used for 

downstream analysis. Therefore, we changed these posi- 

tions to ’N’s before read mapping and SNP detection 

(Figure 1, Step 7). 

We used the strand-oriented reads from the CB1L and 

YKIL libraries to infer the orientation of the isotigs and 
singletons. We used Bowtie v 0.12.7 (-M 1, -q, -n 2; [75]) 

and custom R scripts to count the number of unique 

alignment locations where reads were mapped as direct 

Illumina output (D) and as their reverse complements (C). 

For each isotig and singleton, we summed D and C across 

both strand-specific datasets, and then used a two-tailed 

binomial test to test whether C was significantly greater or 

less than D (P < 0.05), which would indicate the corre- 

sponding isotig or singleton is in the forward (+) or re- 

verse (-) orientation, respectively. 

SNP detection 
Flanking variants 

The first step toward identifying likely SNPs and design- 

ing SNP assays was to identify flanking variants (SNPs 

and indels) using permissive criteria (Figure 1, Step 9). 

We combined the Sanger and 454 sequences (MGlsA~¢c, 

MG24s4, and SG4s4) into a single dataset, and then 
aligned them to the reference using the BWA-SW 
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program with default parameters [76]. For the Illumina 
sequences (CBzL, YK~L, and INTIL), we used the 

Novoalign short-read aligner with default parameters 
(Novocraft Technologies; www.novocraft.com). We used 
SAMTools [77] to output the alignment results to the 
BAM format, and then used mpileup, BCFTools, 
VCFutils, custom Perl scripts, and SAS (Statistical Ana- 
lysis System, Cary, NC) to extract and summarize se- 
quence variants. For these programs, we used the 
following parameters: 20,000 = maximum number of 
reads for calling a SNP, 20 = minimum mapping quality, 
and 20 = minimum base quality to identify putative 
SNPs. These SNPs were subsequently filtered using 
more stringent criteria. Although we recorded indels 
found within the query dataset~ or between the query 
dataset and the reference, we only recorded SNPs found 
within the queried dataset. That is, if the query dataset 
differed from the reference, but had no called SNP itself, 
we treated the variant as a sequencing error. Because 
our input sequences were derived from pooled samples, 
we did not filter variants based on probability values 
from BCFTools (i.e., we used -p -- 2.0 for the BCFTools 
view and VCFutils programs). Instead, we estimated 
SNP and indel probabilities from the mpileup output 
using a custom Perl script that implemented the 
methods described by Wei et al. [78], using a MAF value 
of 0.01 and sequence error rate of 0.01. We also used 
this Perl script to remove variants that had a total read 
depth < 5 or < 2 alternative alleles in the dataset. For 
each dataset, we compared variants detected using the 
BCFTools/VCFutils programs versus our custom Perl 
script, removed indels from the 454 dataset, merged the 
five datasets, and then removed other variants that did 
not meet a flanking probability threshold (PF) of 0.10 in 
any single dataset or pooled across datasets (Figure 1, 
Step 9). The pooled across-dataset probability was calcu- 
lated using a chi-square test with 10 degrees of freedom, 
where X2 equals -2E:ln~i), and Pi is the SNP probability 

for each of the five datasets [79]. We then used a Perl 
script to generate a reference sequence for each dataset 
that identified all retained indel and SNP positions using 
IUPAC codes, and these were combined to create a 
comparable sequence for Douglas-fir. 

Target SNPs 
We filtered flanking SNPs to obtain sets of ’target SNPs’ 
that could serve as a resource for future genotyping as- 
says. In Figure 1, we show three output datasets based 
on target SNP probabilities (Ps) of 10-2, 10-3, and 10-4 
(Figure 1, Step 10). To avoid redundant SNPs, this data- 
base was developed using only the longest isotig from 
each isogroup. For these datasets, we retained bi-allelic 
SNPs that were.not near a high-quality indel (i.e., did 
not receive a BCFTools code of "G" in any dataset), had 

a mapping quality score > 40 in at least one dataset, and 
probabilities < 10-?, 10-3, or 10-4 in at least one dataset. 
Using a SNP probability of 104, these criteria resulted in 

278,979 potential SNPs for which we obtained Infinium 
design scores. Design scores were obtained using four 
different sequence datasets constructed using flanking 
probabilities (PF) of 101, 10-2, 10-3, and 10-4 (Figure 1, 
Step 11). The dataset of 278,979 potential SNPs 
constructed using a Ps of 10-4 and PF of 10-I was used as 
the starting point for constructing a genotyping array. 
These SNPs have been deposited in the NCBI dbSNP 
database under submitter handle HOWE_OSU, with ss 
numbers ranging from 523,746,501 to 524,245,331. 

Infinium genotyping array 

We used additional criteria to filter the target SNPs to ob- 

tain 8769 SNPs for testing on an Infinium II genotyping 

array (Figure 1, Step 12). During this filtering step, we did 

not consider SNPs from isotigs having low confidence 

scores (C5 or C6). First, we selected SNPs in genes that 

were differentially expressed during cold acclimation [58]; 

unpublished data] or had annotations suggesting they 

were associated with growth, phenological traits, stress re- 

sistance, or adaption to temperature or drought. For these 

SNPs, we selected as many as two SNPs per isotig, exclud- 

~ng SNPs within 50 nt of each other. For the remaining 

SNPs, we removed those not found in at least two 

datasets, and then retained the most probable SNP in each 

isotig (i.e., based on the mean probability across all 

datasets). In the final filtering step, we retained all SNPs in 

differentially expressed genes (see above), and then filtered 

the remaining SNPs if they required two probes to assay 

(i.e., Infinium I assay type = A/T and C/G SNPs), or had a 

design score < 0.60, fewer than 10 quality reads, or a fre- 

quency < 0.05 (i.e., based on mean values across datasets). 

These criteria, which yielded 8769 SNPs, were specifically 

chosen to be compatible with an Infinium II array [18] 

that has a capacity of 9,000 attempted bead types. 

We tested the Infinium array by genotyping 260 trees 

of coastal Douglas-fir. DNA was isolated from ~50 mg 

of frozen needles using the DNeasy Plant 96 Kits 

(QIAGEN), genotyping was performed by the UC Davis 

Genome Center according to protocols from Illumina, 

and the resulting data were analyzed using Illumina 

GenomeStudio software v2011.1 [80]. 

We assessed the quality of the resulting SNP loci 

based on the Illumina GenTrain scores, GenCall scores, 

SNP call frequencies, MAFs, and probabilities of devi- 

ation from HWE (Figure 1, Step 13) [80]. Each of these 

measures ranges from 0 to 1. GenomeStudio software 

uses a custom algorithm to cluster the data for each 

locus into homozygous and heterozygous classes, and 

the GenTrain score reflects the quality of these clusters. 

The calling algorithm then uses the GenTrain model 
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and signal intensities to assign ("call") a genotype for 
each locus and tree. The GenCall score reflects the qua- 
lity of this assignment, and can be used to judge the 
quality of an individual SNP call, a SNP locus, or DNA 
sample. For example, the median GenCall score (50% 
GenCall score) is often used to judge the quality of SNP 
loci. Another measure of locus quality is the call fre- 
quency, or call rate, which is the number of successfully 
called SNP genotypes divided by the number of DNA 
samples (260 in our case). Based on the recommenda- 
tion for the Infinium platform [19], we considered calls 
with GenCall scores < 0.15 as unsuccessful ("no calls"). 
In this paper, we report the numbers and characteristics 
of high-quality SNP loci, which we defined as loci that 
were polymorphic in our sample of 260 trees with call 
rates > 85%. We also identified SNPs that deviated from 
HWE using the exact test described by Wigginton et al. 
[81] and a probability level of 0.9 x 10-5 (i.e., Bonferroni- 
corrected P-value of 0.05 based on 5847 SNPs). Finally, 
we used SAS Proc Logistic and stepwise model selection 
to determine whether the high-quality SNPs could be 
predicted from 12 SNP bioinformatic characteristics. 
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associated isogroups is found on the ’lsotig data ($1)’ worksheet and 
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other variables are found on the ~riable descriptions (58)’ worksheet. 
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