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1. Introduction 

ABSTRACT 

Accurate landscape-scale maps of forests and associated disturbances are critical to augment studies on 
biodiversity, ecosystem services, and the carbon cycle, especially in terms of understanding how the spatial 
and temporal complexities of damage sustained from disturbances influence forest structure and function. 
Vegetation change tracker (VCT) is a highly automated algorithm that exploits the spectral-temporal 
properties of summer Landsat time series stacks (LTSSs) to generate spatially explicit maps of forest and 
recent forest disturbances. VCT performs well in contiguous forest landscapes with closed or nearly closed 
canopies, but often incorrectly classifies large patches of land as forest or forest disturbance in the complex 
and spatially heterogeneous environments that typify fragmented forest landscapes. We introduce an 
improved version of VCT (dubbed VCTw) that incorporates a nonforest mask derived from snow-covered 
winter Landsat time series stacks ( LTSSw) and compare it with VCT across nearly 25 million ha of land in the 
Lake Superior (Canada, USA) and Lake Michigan (USA) drainage basins. 
Accuracy assessments relying on 87 primary sampling units (PSUs) and 2640 secondary sampling units 
(SSUs) indicated that VCT performed with an overall accuracy of 86.3%. For persisting forest, the commission 
error was 14.7% and the omission error was 4.3%. Commission and omission errors for the two forest 
disturbance classes fluctuated around 50%. VCTw produced a statistically significant increase in overall 
accuracy to 91.2% and denoted about 1.115 million ha less forest (- .371 million ha disturbed and 
-0.744 million ha persisting). For persisting forest, the commission error decreased to 9.3% and the 
omission error was relatively unchanged at 5.0%. Commission errors decreased considerably to near 22% and 
omission errors remained near 50% in both forest disturbance classes. 
Dividing the assessments into three geographic strata demonstrated that the most dramatic improvement 
occurred across the southern half of the Lake Michigan basin, which contains a highly fragmented agricultural 
landscape and relatively sparse deciduous forest, although substantial improvements occurred in other 
geographic strata containing little agricultural land, abundant wetlands, and extensive coniferous forest. 
Unlike VCT, VCTw also generally corresponded well with field-based estimates of forest cover in each stratum. 
Snow-covered winter imagery appears to be a valuable resource for improving automated disturbance 
mapping accuracy. About 34% of the world's forests receive sufficient snowfall to cover the ground and are 
potentially suitable for VCTw; other season-based techniques may be worth pursuing for the remaining 66%. 

Published by Elsevier Inc. 

Forests are vital for maintaining biodiversity (Myers et al.. 2000) 
and providing invaluable ecosystem services (Costanza et al., 1997). 

In forested landscapes, natural and anthropogenic disturbances are 

fundamental mechanisms of change that exert significant influences 

on forest structure and function across a range of spatial and temporal 

scales (Foster et al., 1998; Schulte et al.. 2007, Stueve et al., 2009; 
Stueve et ill., 2011; Turner. 2005; Woods, 2004). Tree canopy damage 

patterns from landscape-scale disturbances, in particular, tend to be 

patchy and highly variable, controlled by the complexities of 

cascading interactions between the spatial heterogeneity oflandscape 
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features and disturbances themselves (Flatley et al.. 2011; Nelson et 
al.. 2009; Rich et al., 201 0; Stueve et al.. 2007). For example, trees are 
more susceptible to ice and wind damage near the forest edge 
(Millward et al.. 2010; Stueve et al., 2011 ). but damage may also be 
more extensive and severe near a particularly intense part of a storm 
irrespective of forest edge. Furthermore, the presence of forest edge is 
dependent on the spatial distribution and damage severity of other 
natural and anthropogenic stand-clearing disturbances. Damage 
patterns from anthropogenic disturbances, such as forest harvest, 
are also spatially heterogeneous and tend to favor easily accessible 
stands comprising high quality timber, salvageable stands recently 
damaged by natural disturbances, and private lands in general 
(Kittredge et al., 2003; Scl1miegelow et al., 2006). Indeed, it is of 
paramount importance to identify and contextualize these interrela­
tionships in order to increase our understanding of forest ecosystems 
and their interactions with other systems. 

The implications of spatially heterogeneous patterns and processes 
in forested landscapes on the photosynthetic uptake of carbon, in 
particular, have received considerable attention in the midst of rapidly 
rising atmospheric carbon dioxide (C02 ) levels and ongoing climate 
change (Dixon et al., 1994; Goodale et al., 2002; Goward et al., 2008). 
Forests usually release carbon after a major disturbance because of 
increased respiration from decomposers and only transition to carbon 
sinks when photosynthetic carbon uptake from regrowing trees 
exceeds the release from decomposers (Goward et al., 2008; Rice 
et a!.. 2004 ). However, the heterogeneous nature of forests and 
persistent state of flux would allow, for example, two neighboring 
stands to act as a carbon source and sink respectively, or a rapid 
disturbance-facilitated shift from a stand that sequesters carbon to 
one that releases it (Goodale et al., 2002: Goward et al., 2008; Kurz 
et al., 2008). Current systematic sampling schemes of field-based 
research plots cannot reliably detect all of these spatially ancl 
temporally heterogeneous events, and ultimately they do not provide 
a sufficient understanding of ecological pattern and process at 
landscape-scales (e.g., spatially explicit patterns and processes across 
thousands of hectares or more). For example, Stueve et al. (2011) 
could not rely on United States Department of Agriculture (USDA) 
Forest Service, Forest Inventory and Analysis (FIA) plot data for 
validating -50,000 ha of forest damage from four windstorms in the 
northern Great Lakes because the patchy damage patterns affected 
few FIA sample plots, and the timing of two storms preceded 
established sampling intervals. Indeed, problems arising from the 
aforementioned examples and others (e.g., Nelson et al., 2009) have 
introduced unacceptable uncertainty levels (estimated as low as 8-
25% and upwards to 50%) in North American estimates of carbon flux 
(Heath et al., 2011: c.f. Thomas et al., 2011) and will present 
challenges to acquiring reliable estimates across the globe (Goodale 
et al., 2002). Not surprisingly, there is a burgeoning consensus among 
ecologists that spatially explicit and temporally dense forest distur­
bance and regrowth data encompassing large spatial extents are 
essential for developing an improved understanding of complex 
ecological phenomena in forests. 

Fortunately, the recent accomplishments and future interests of 
remote sensing scientists and ecologists appear to be rapidly 
converging (Rich et al., 2010), and the remote sensing community is 
poised to provide an abundance of invaluable data at landscape scales 
to fulfill the expanding needs of ecologists (Huang et a!., 2010a; 
Kennedy eta!., 201 0). Passive satellite remote sensing platforms in the 
visible and near infrared (VNIR) and shortwave infrared (SWIR) 
ranges of the electromagnetic spectrum are well-suited for these 
purposes because of their typically dense temporal coverage spanning 
the last several clecacles, moderate spatial resolutions, and compre­
hensive global coverage (Epting et al., 2005; Goward et <1!., 2006; 
Jakubauskas, 1996; Soverel et <1!., 201 0). Until recently, most 
disturbance mapping and change detection approaches only utilized 
imagery with limited temporal coverage (Lu et al., 2004; Singh, 1989). 

These coarse temporal sequences (often bi-temporal, e.g., clecaclal) 
are uncloubteclly useful, but they are ineffective at capturing the broad 
array of patchy and spatially explicit natural and anthropogenic 
changes frequently occurring on forested landscapes (Lam bin, 1996). 
Such approaches also may lack temporal frequency sufficient to detect 
more rapid instances of disturbance and recovery. However, over the 
last approximately five years, great conceptual and technological 
achievements have been realized in developing practical and efficient 
approaches for creating and validating dense temporal assessments of 
forest disturbance and regrowth (Chuvieco et al., 2005; Cohen et al., 
2010; Huang et al., 2010a; Jin & Sader, 2005; Kennedy et al., 2007, 
2010; Thomas et al., 2011: Verbesselt et al.. 2010). In the broader 
context, perhaps the most important recent development has been 
the free release of the entire Landsat archive, allowing for financially 
unconstrained acquisitions of dense temporal data stacks across large 
geographic extents. 

Some of the most promising multitemporal approaches exploit 
the rich archive of Landsat satellite data (Cohen & Goward, 2004), 
which provides synoptic coverage of global forests over the last 
several decades at a moderately fine spatial resolution. Vegetation 
change tracker (VCT) (Huang et al., 2010a) and Landsat-based 
detection of trends in disturbance and regrowth (LanclTrenclr; 
Kennedy et al., 2010) are automated multitemporal approaches for 
detecting forest disturbance and regrowth patterns that rely on 
tracking pixel-by-pixel spectral trajectories of land surface changes 
over time in dense biennial or annual summer Landsat time series 
stacks (LTSSs). Both VCT and LandTrenclr can reliably detect stand­
clearing disturbance and regrowth patterns, but LanclTrenclr is better 
adapted to detecting partial disturbance and regrowth (Kennedy et 
al .. 201 0; Thomas et a!.. 20 II). Abundant forest and forest 
disturbance commission errors have been problematic in some 
cases with VCT, particularly in complex and highly fragmented 
landscapes (e.g., Huang et a!., 2010a; Walterman et al., 2008). To 
elate, the largely successful validations of VCT and LandTrendr have 
mostly been restricted to a series of individual Landsat scenes 
scattered across the United States or, at most, multiple adjacent 
scenes encompassing an individual state. No wall-to-wall multistate, 
regional, or international assessments of these products exist. 

1.1. Extensive forest commission errors in regional implementation of 
VG . 

The North American Forest Dynamics (NAFD) project-funded by 
the National Aeronautics and Space Administration (NASA) and the 
USDA Forest Service-develops multitemporal change detection 
methods for archives of Landsat data with the goal of characterizing 
recent landscape trends in North American forest disturbance and 
regrowth. By extension, this work benefits the United States 
Environmental Protection Agency's (EPA) Great Lakes Restoration 
Initiative (GLRI) through the identification of spatial and temporal 
forest changes in the Great Lakes' drainage basins. In combination 
with field plot data collected by FIA, the resulting maps of forest 
changes facilitate the prioritization of landscapes for management 
ancl/or restoration activities. We chose the Lake Superior and Lake 
Michigan drainage basins (Fig. 1) as a starting point for applying VCT 
wall-to-wall across the Great Lakes in support of the GLRI. To 
accomplish this task, we downloaclecl 574 Landsat images for 36 
paths/rows encompassing approximately 24.5 million ha (excluding 
Great Lakes waters) in the basins, acquired and/or generated 
necessary ancillary data for elevation and Janel cover, and applied 
VCT via procedures similar to those discussed by Huang eta!. (2010a) 
and Thomas et al. (2011 ). 

During preliminary quality assessments, we detected an abun­
dance of false positives for forest and forest disturbance (i.e., 
commission errors). Visual inspections of aerial photography revealed 
that VCT erroneously included up to- 70% (locally) of nonforest pixels 
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Fig. 1. The study area in the Great Lakes region of North America. 
Data source: terrestrial ecoregions database from the World Wildlife Fund as presented by Olson rl a!. (2001 ). 

in a disturbed forest or forest category. The preponderance of 
commission errors appeared to be associated with wetlands and 
agricultural fields in complex and highly fragmented forest land­
scapes (Fig. 2), consistent with reports from previous studies (Huang 
et al., 2010a; Thomas et al., 2011). These commission errors seemed 
logical because there is occasionally little spectral separability 
between forests, wetlands, and/or agricultural fields during the 
growing season (i.e., june through early September) (e.g., Odenweller 
& Johnson, 1984; Ozesmi & Bauer. 2002). Fluctuating water levels, 
highly variable vegetation densities across space and time, and 
differences in growing season phenology likely contribute to incorrect 
classifications in wetlands because these processes closely mimic 
spectral trajectories associated with healthy forest, disturbance, and 
regrowth (e.g., Ozesmi & Bauer, 2002) (upper panel of Fig. 3). A 
similar phenomenon likely occurs in agricultural landscapes (e.g., 
Odcnweller & johnson, 1984). Crops that senesce and are harvested 
early in the latter part of the growing season (especially wheat and 
soybeans) may simulate a forest disturbance and other years in the 
time series that include corn rotations, which usually do not senesce 
until the end of the growing season, likely exhibit a spectral 
resemblance to forest (upper panel of Fig. 3). Additionally, crops 
planted later in the growing season are sometimes mistaken as a 
disturbance because they have not emerged or have only recently 
emerged by the imagery acquisition date, whereas crops planted 
before the defined growing season fully emerged and are spectrally 
similar to forest. 

1.2. Potential solutions 

Forest commission errors have been reduced in national land cover 
classifications by utilizing imagery from multiple time periods per path/ 
row, such as the early, peak, and late growing season Landsat imagery 

used to produce the National Land Cover Database (NLCD) (Homer et al., 
2004). However, the VCT algorithm is mostly constrained to using 
imagery from the peak growing season and only incorporates later or 
earlier imagery during an abnormally warm fall or spring. Walterman et 
a!. (2008) developed an effective solution to mitigate commission errors 
for forest and forest disturbance using random forests, 101 predictor 
variables, and 800 photo-interpreted points, but their approach is 
laborious and difficult to apply in regional landscapes (e.g., millions of 
hectares and larger) with widely varying reference data. We desired a 
convenient yet equally effective approach for comprehensive regional to 
international applications of VCT. Simply masking VCT outputs with 
nonforest classifications from other datasets. for example National Land 
Cover Data ( NLCD) and other international equivalents, was not a viable 
option because these datasets comprise a temporally static represen­
tation of land cover and often suffer reduced accuracies in the same 
complex landscapes where VCT's performance declines (e.g., Wickham 
et a!., 2004 ). Applying other algorithms to achieve a static forest/ 
nonforest classification might also be useful. but this approach requires 
incorporating another classification technique and also does not capture 
the forestjnonforest boundaries continually shifting across time. 
However. acquiring multitemporal stacks of winter imagery may 
allow the exploitation of distinct spectral-thermal contrasts between 
forest and snow-covered nonforest landscapes to efficiently identify and 
mask nonforest areas over time. 

Remote sensing scientists previously have utilized snow-covered 
winter imagery to improve maps of temperate and boreal forests, 
particularly when attempting to differentiate between deciduous and 
coniferous forest or to strictly map coniferous forest (Cohen et al., 
2003; Wolter et al., 1995). In addition, snow-covered winter imagery 
may outperform growing season imagery when estimating forest 
structural attributes (e.g., basal area or volume) (Franco-Lopez et al., 
2001 ). Distinct spectral-thermal separability occurs between snow-
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Fig. 2. Examples of the false positive errors for forest disturbance encountered during initial mapping procedures. 

covered landscape features and forests. Snow reflects the majority of 
VNlR portions of the electromagnetic spectrum and much less in the 
SWIR portions, depending on viewing angle, snow consistency, and 
snow depth. Forests (especially coniferous) comparatively attenuate 
much of the reflectance, particularly in the visible portion of the 
electromagnetic spectrum but also in the near infrared bands, and 
reflect relatively more in the SWIR (cf. Warren, 1982; cf. Rocket al., 
1986; Dozier, 1989; Vikhamar & Solberg, 2003a, 2003b; Vikhamar et 
al., 2004 ). In terms of thermal processes, bare and needled branches in 
forests absorb and convert more incoming shortwave radiation to 
longwave radiation compared to other snow-covered features on the 
landscape ( Gustafsson et a!., 2004; Sicart eta!., 2004 ). 

We postulated that applying VCf to snow-covered Landsat time 
series stacks (LTSSw) might generate an accurate nonforest mask 
capable of mitigating commission errors of forest and forest 
disturbance because the version of vcr utilized here includes an 
automated cloud-masking algorithm. This algorithm relies on the 
spectral-thermal Landsat bands to mask clouds from LTSSs (Huang ct 
al., 20 lOb). Clear view forest pixels (i.e., uncontaminated by clouds or 
cloud shadows) are used to identify cloud boundaries and ultimately 
discern between clouds and clear view surfaces (Huang et al., 201 Ob ). 
Pixel-based accuracies of this technique tested in data collected for 

the NAFD program range from 86.1% to 98.8%. This algorithm is likely 
to be equally proficient at masking snow-covered ground from LTSSw 
in relatively flat landscapes because of similar spectral-thermal 
contrast between both clouds/snow and other landscape features 
(Fig. 4) and improved spectral separation between forest and 
nonforest lands (lower panel versus the upper panel of Fig. 3) (Dozier, 
1989). We proceeded with the key assumption that wetlands, 
agricultural fields, and other nonforest lands are largely frozen and 
covered with snow during a year with average to above average 
snowfall, and that the cloud-masking algorithm in vcr treats all of 
these snow-covered areas as "clouds", which subsequently can be 
integrated into the vcr processing stream as a nonforest mask. 

Our primary objectives were to: (1) generate accurate maps of 
landscape changes from the mid-1980s to the present for the Lake 
Superior and Lake Michigan drainage basins of the western Great 
Lakes, ( 2) mitigate the prevalence of false positives for forest and 
forest disturbance persisting in vcr outputs, and (3) present a robust 
statistical assessment to gauge the effectiveness of incorporating 
snow-covered LTSSw in vcr. Achieving these objectives will repre­
sent a marked improvement in automated disturbance mapping 
protocols while generating more reliable spatially explicit maps of 
contemporary forest changes suitable for use in future research 
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Fig. ].Integrated forest z-scores (IFZ) for a random sample of pixel values extracted from stacks of summer (left panel) and snow-covered winter (right panel) imagery in p23r30 of 
southeastern Wisconsin. Calculating IFZ relies on Landsat TM or ETM+ bands 3, 5, and 7 (Huang et ,11., 2010a). We collected winter pixel values from the exact same locations as the 
sample of summer pixel values for each respective class. The summer scene demonstrates spectral confusion that can occur between forest and non forest lands during the growing 
season. We truncated winter values at 42 to emphasize the greatly'improved spectral separation between coniferous forest, deciduous forest, and other land cover types covered by 
snow during the winter. The only spectral overlap during winter occurred after the coniferous forest disturbance in the early 2000s, which is predictable and easily flagged for 
exclusion from a winter nonforest mask. 

throughout the western Great Lakes region. It will also represent the 
first region-wide validation of VCT across a complex and spatially 
heterogeneous landscape that encompasses several dozen contiguous 
Landsat paths/rows. 

2. Methods 

2.1. Study area 

This study was conducted within the Lake Superior and Lake 
Michigan basins of the western Great Lakes. These two lakes are 
located slightly east of the geographic center of North America and 
span across parts of both Canada and the United States, enclosed by a 
diverse landscape comprised of large tracts of contiguous and 
fragmented forest, wetlands, agricultural fields, lakes, human settle­
ments, and frequent natural and anthropogenic disturbances. (Radeloff 
et al., 2005: Schulte ct a!., 2007: Stueve et al., 2011; Wolter et al., 2006) 
(Fig. 1 ). The spatial heterogeneity of this region is complex and 
landscape patterns often differ markedly over short geographic 
distances, dependent on physiographic features persisting from a glacial 
past, a phenological gradient affected by differences in temperature and 
precipitation, natural disturbances (especially wind, but also fire and 
insects), forest harvesting, agricultural activities, and a suite of 
development and preservation strategies. The landscape of the Lake 
Superior and Michigan drainage basins is particularly diverse and 
multifaceted because it also contains large tracts of boreal, mixed 
northern hardwood, and temperate deciduous forests (Fig. 1 ). The 
climate in the region is mostly humid continental with substantial 
influences on precipitation emanating from the Great Lakes (Bailey et 
a!., 1994). According to the National Climatic Data Center (NCDC) and 
Environment Canada (EC), average annual temperatures in the region 
vary between 9.4 oc (southwest Michigan) and 0.3 OC (west half of 
northern Ontario), and average annual snowfall varies widely between 
457 em (western Upper Peninsula of Michigan) and 76 em (southeast­
ern Wisconsin). The heaviest annual snowfall amounts occur on the 
windward shores of the Great Lakes. 

2.2. The VCT algorithm and constructing LTSSs 

The VCT algorithm involves two major steps: (1) developing the 
LTSSs predicated on images ready for immediate use and (2) applying 
preprocessing, classification, and postprocessing algorithmic proce­
dures (Fig. 5 flowchart displays where VCT fits in our broad processing ' 
scheme). Suitable LTSSs must include high quality Landsat Thematic 
Mapper (TM) and/or Enhanced Thematic Mapper Plus (ETM +) 
imagery, contain few or no clouds, stem from a defined peak growing 
season, achieve biennial or near-biennial frequency, and have proper 
geometric registrations and radiometric corrections (Huang et a!., 
2009). The United States Geological Survey (USGS) Global Visualization 
Viewer (GLOVIS) provides access to an extensive archive of Landsat 
imagery, most of which has been heavily processed to meet stringent 
specifications for level one terrain-corrected (LlT) data. VCT performs 
additional automated preprocessing of the Landsat imagery before 
masking clouded pixels, tracing the spectral responses of remaining 
pixels throughout the LTSSs, and commencing with the process of 
identifying persisting nonforest (PNF), persisting forest (PF), persisting 
water (PW), year of disturbance, damage severity (for natural 
disturbances, a combination of storm intensity and tree susceptibility), 
and rate of forest regrowth. Please see Huang eta!. (2010a) for a more 
detailed description of all the necessary steps and relevant algorithms. 

We acquired 574 summer Landsat images from GLOVIS (i.e., 5 TM 
and 7 ETM +) for 36 paths/rows encompassing the Lake Superior and 
Lake Michigan drainage basins at a near-biennial frequency. All imagery 
was L1T-processed, contained few or no clouds, and had a high (i.e., 9) 
quality rating. Undisturbed forests are relatively stable, spectrally, 
throughout much of the main growing season and allow the 
consideration of an array of imagery spanning several months. We 
broadly defined the growing season from early june to late September, 
but constrained collection of imagery to the peak growing season 
months of july and August whenever possible. We utilized imagery from 
earlier or later in the growing season only when cloud-free imagery was 
unavailable from the peak window for three consecutive years and in 
the presence of normal to above normal temperatures in the spring and 
fall, which reduced phenological deviations from peak season imagery. 
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Fig. 4. Spectral-temperature space for a summer Landsat scene with clouds (upper 
panel) and a winter scene blanketed with snow containing no clouds (lower panel). 
Note the figures display identical patterns and that the snow has an even more distinct 
spectral-thermal space because it is consistently colder and highly rellective. 
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These criteria are consistent with established protocols for applyingVCT 
(e.g., Huang eta!., 201 Oa: Stueve eta!., 2011; Thomas eta!., 2011 ). 

2.3. The VG algorithm and constructing LTSSw 

Understanding the selection criteria for imagery comprising the 
LTSSw necessitates an explicit and thorough description because 
there is no existing protocol for this specific application. We 
maintained some requirements analogous to the protocol for 
generating the LTSSs, such as utilizing high quality (i.e., preferably 
9) Landsat TM or ETM + imagery with few or no clouds and assuring 
images contained proper geometric registrations and radiometric 
corrections. Similar to the summer imagery, we acquired imagery for 
the LTSSw from GLOVIS that was LlT-processed. Likewise, VCT 
performed additional preprocessing to ensure the plying of sufficient 
corrections (e.g., Huang et al., 2010a; Thomas et al .. 2011 ). In contrast 
to the summer protocol, every image used to create the LTSSw must 
contain comprehensive terrestrial snow cover because nonforest 
areas lacking snow are highly susceptible to erroneous exclusion from 
the nonforest mask (i.e., not interpreted as "cloud"). Therefore, we 
targeted the winter months of December-February during years with 
average to above average snowfall for our selections. occasionally 
venturing into March at northern latitudes and on windward shores of 
the Great Lakes. We avoided selecting imagery acquired less than one 
week after a major snowstorm in order to mitigate potential 
complications from decreased attenuation of spectral reflectance 
associated with tree limbs blanketed by fresh snow and spectral 
ambiguities associated with freshly fallen snow (i.e., compared to 
"old" snow) on exposed gro\]nd (e.g., Dozier, 1989: Vikhamar & 
Solberg. 2003b). We also tried to avoid selecting winter imagery after 
a major thaw event in order to circumvent exposed ground and the 
shifting spectral-thermal properties associated with melting snow 
(e.g., Vikhamar & Solberg, 2003b). 

The first image in LTSSw must be absolutely cloud free and 
acquired from a date prior to the first image in LTSSs, which provides a 
reliable baseline to compare with subsequent imagery and avoids 
misclassifying forested pixels disturbed before the earliest image 
acquisition elate in the LTSSs (i.e., likely in the midst of regrowth). The 
temporal density of LTSSw is lower in comparison to the summer 
imagery because largely cloud-free images with comprehensive snow 
cover are rare. Mostly cloud-free images were necessary because any 
persisting clouds could be erroneously included in the nonforest mask 

[

A.pply minimum 
mapping unit to 

Pft?duct. · 

Fig. 5. Flowchart depicting the major steps involved in applying VCT to seasonal imagery, constructing a winter non forest mask, validating classes in different strata, and generating 
the final VCTw product. 
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if they persisted in similar forested areas throughout the stack. This 
proved unproblematic because the objective of winter vcr applica­
tions is to identify nonforest areas presumably covered by snow and 
treated as "clouds", as opposed to correctly mapping forest distur­
bances. In most cases, we collected quadrennial imagery distributed 
as uniformly as possible across the LTSSw. Overall, we acquired 281 
winter Landsat images from CLOVIS for 36 paths/rows in the Great 
Lakes region meeting the aforementioned criteria. 

2.4. Acquiring and manipulating ancillary data 

For successful implementation, vcr requires digital land cover, 
elevation, and Landsat data (Fig. 5) at similar spatial resolutions. We 
chose 30-m Landsat imagery as our baseline resolution. In the United 
States, the Multi-Resolution Land Characteristics Consortium (Homer 
et al., 2004, 2007) produced the 2001 NLCD at a 30-m resolution. A 
high quality digital elevation model (OEM) was accessible for both 
Canada and the United States from the USGS, derived from version 2 
of the shuttle radar topography mission (SRTM). The 1-arc SRTM OEM 
available for the United States was already consistent with the 30-m 
Landsat data. In Canada, 1-arc SRTM DEMs are not available. We 
therefore oversampled the 3-arc SRTM to 30-m in order to 
expeditiously generate a suitable OEM encompassing our area of 
interest. We deemed this solution sufficient for the relatively flat 
landscape of the Lake Superior basin in southern Canada (Ontario), 
which has much less topographic variability relative to mountainous 
regions and is ultimately less likely to influence vcr image 
preprocessing algorithms. 

The NLCD is not available in Canada. However, the Earth 
Observation for Sustainable Development of Forests, a joint project 
between the Canadian Forest Service and Canadian Space Agency, 
provided a land cover map of all forested areas in Canada. This land 
cover map encompasses large portions of southern Canada and 
overlaps with the Great Lakes drainage basins at a spatial resolution 
comparable to the NLCD and Landsat data. We recoded forest and 
nonforest pixels from the Canadian land cover map to values 
matching similarly classified pixels from the NLCD. VCf simply 
utilizes land cover data to automatically extract samples of pixels 
from probable forest areas and evaluates their spectral signatures. 
Therefore, discrepancies between the land cover mapping protocols 
for Canada and the United States are unlikely to exert a substantial 
influence on vcr output products. 

2.5. Running va and creating the winter nonforest mask 

Executing vcr for the summer imagery (Fig. 5) produced standard 
outputs denoting PNF, PF, PW, year of disturbance, damage severity, 
and rate of forest regrowth (top row of Fig. 6, examples of PNF, PF, and 
disturbance). For the winter, selectively applied preprocessing and 
cloud mapping algorithms embedded in vcr generated individual 
image outputs denoting "clouds" for all areas sufficiently covered in 
snow (i.e., the raw nonforest mask for each year) (middle and bottom 
rows of Fig. 6). This intentional misapplication ofVCf's cloud masking 
algorithm with LTSSw ultimately resulted in the mapping of snow 
across exposed areas lacking trees, which we subsequently recoded as 
nonforest for use in a post-processing mask of summer vcr outputs. 
Additional steps necessary for refining the winter nonforest mask 
include augmenting vcr with various algorithmic components in a 
processing model. 

The first part of the processing model identifies the common 
spatial extent of all pixels covered by snow throughout the entire 
stack, as determined by the cloud mapping algorithm (middle and 
bottom rows of Fig. 6). The second part identifies and omits pixels 
likely disturbed prior to the year of the first winter image in each 
stack. This is a crucial step in some areas because a slow post­
disturbance forest recovery may erroneously appear as snow-covered 

nonforest throughout much of the winter stack, producing commis­
sion errors in the winter nonforest mask that would ultimately 
contribute to forest disturbance errors of omission. The sum of 
differences between integrated forest z-score (IFZ) (Huang et al.. 
2010a) values from the first summer image and subsequent images in 
the summer stack facilitated the identification of pixels suitable for 
omission, calculated as follows: 

NY 
L (IFZ1 -IFZi) (1) 
i=2 

where NY is the number of years in the LTSSs and /FZ is the integrated 
forest z~score for any pixel from the designated year. IFZ measures the 
distance of a pixel to the center of forest pixels in the spectral domain, 
which is normalized by the standard deviation of forest pixels. 
Integrated values from Landsat TM and ETM + bands 3, 5, and 7 are 
used to calculate IFZ because bands 1 and 2 are correlated with band 3, 
and band 4 (near infrared) sometimes provides inconsistent spectral 
responses in forested landscapes (Huang et al., 2010a). Low IFZ scores 
(i.e., <3) are indicative of forest. Consequently, comparatively low 
sum of differences values likely represent areas of concern in 
wetlands and fields, whereas relatively large values likely identify 
areas of slowly recovering forest suitable for exclusion from the 
nonforest mask. Visual observations and interpretations suggested a 
threshold value of 0.4 was appropriate for the sum of differences 
between IFZ values. Applying the winter nonforest mask to the 
standard vcr forest disturbance output produced an appropriately 
refined product (bottom row of Fig. 6), where any forested or 
disturbed pixels falling within the boundaries of the mask are recoded 
to nonforest. Lastly, a minimum mapping unit (MMU) of 4 pixels 
(0.36 ha) was applied, similar to one of the procedures used by 
Thomas et al. (2011) for postprocessing of standard VCf products. We 
dubbed this combined process vcrw. 

2.6. Assessment procedures 

The accuracies of PNF, PF, PW, disturbed 1985-1999 (01 ), and 
disturbed 2000-2008 (02) were assessed for both vcr and vcrw. Year 
of disturbance was binned into two groups because the cost and 
insufficient coverage of the validation data disallowed a comprehensive 
accuracy assessment at finer temporal resolutions. In order to estimate 
the accuracies of the vcr and vcrw products, we mosaiced all paths/ 
rows and selected a two-stage cluster sample, relying on insight from 
techniques discussed by Nusser and Klaas (2003) and Stehman et al. 
( 2003 ). To initiate this task, we partitioned our entire study area into 
four geographic strata based on land use, seasonality, development, and 
international borders (Fig. 7). Lower Lake Michigan basin (LLMB) has 
sparse forest cover (mostly deciduous), abundant agricultural land, and 
substantial development at the lowest latitude; upper Lake Michigan 
basin (ULMB) has abundant forest (deciduous/coniferous mix), some 
agricultural land, and some development at a relatively low latitude; 
lower Lake Superior basin (LLSB) has abundant forest (more coniferous, 
less deciduous) and some development at a relatively high latitude; and 
upper Lake Superior basin (ULSB) has abundant forest (mostly 
coniferous), widespread disturbances, and some development at the 
highest latitude. LLMB, ULMB, and LLSB are fully confined within the 
USA; ULSB is fully confined within Canada. Some of these factors may 
interact at the regional scale to create distinct patterns of variability in 
accuracy across space (e.g., roody, 2002), which suggested it was 
prudent to draw independent samples from each geographic stratum 
with designs tailored to their individual characteristics. Financial and 
technical constraints prevented us from assessing the ULSB with this 
design. For the three USA strata, we used two-stage cluster sampling to 
reduce the number of aerial photographs necessary for preparation. 
Primary sampling units (PSUs) were constructed from the boundary 
tiles of aerial photography archives ( -13,500 ha each) (Fig. 7). There 
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F1)rest Disturbance (1985-1999) 

ll1IE Trees Piercing Snow I Lack of Snow 

Nonforest Co~ered by Snow 

High 

Low 

Fig. 6. A schematic flow (by row) for procedures involved in enhancing the VCT output product and generating VCTw, beginning with the left panel in the top row. Calculating IFZ 
values relies on Landsat TM or ETM+ bands 3, 5, and 7 (Huan~ eta!., 20\0a). Notice the difference in spectral contrast between forest/nonforest in the summer and winter. 

were 269 PSUs in LLMB, 347 in ULMB, and 173 in LLSB respectively. A 
simple random sample based on the approximate area of each 
geographic stratum was applied to select a corresponding subset of 
PSUs, including 35 in both LLMB and ULMB, and 17 in the LLSB (Fig. 7).ln 
each PSU, we employed a secondary stratified random sample of all 

pixels to facilitate the selection of secondary sampling units (SSUs) 
representing the five defined classes of output products (Table I). In 
each PSU, we assessed a total of 40 (LLSB), 24 (ULMB), or 32 SSUs 
(Ll.MB) respectively. The number of SSUs or pixels corresponding to 
each class varied from two to ten, depending on the class type and basin 
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Fig. 7. Geographic strata utilized in the sampling procedures for the accuracy 
assessments. 

it occupied (Table 1 ). Predicated on this sample, we used ratio 
estimation to generate a confusion matrix, user's accuracies, and 
producer's accuracies for both vcr and vcrw. Linearized variances 
were used to estimate standard errors for all ratio estimators (Siirndal et 
al., 1992). 

In terms of interpreting whether pixels were correctly classified in 
the SSUs, we first visually compared the placement of pixels in the 
PSUs with National Agriculturallmagery Program (NAIP) archives in a 
geographic information system (GIS) environment. NAIP was used as 
a baseline because it provides optimum spatial resolution (1m) for 
determining general class types (i.e., forest. nonforest, and water) 
across large geographic extents. Subsequently, NAIP imagery was 
visually compared with National Aerial Photography Program (NAPP) 
and National High Altitude Program (NHAP) archives to detect any 
potential discrepancies or change. The texture and shape of areas of 
interest in the NAPP and NHAP imagery were most helpful for 
detecting changes because their spatial resolutions are relatively 
coarse (i.e., -2m). In the rare cases where this procedure generated 
any uncertainty, multispectral Landsat imagery was used for 
additional interpretations. Winter Landsat imagery proved most 
useful in detecting forest disturbances that recovered quickly or 
occurred between distant gaps in the aerial reference imagery. 
Although the spatial resolution of the Landsat imagery (i.e., 30m 
multispectral) is coarser than the aerial photography, it was 
invaluable because of superior temporal and spectral resolutions. 
The exploitation of the Landsat archive was strictly limited to cases 
with ambiguous outcomes after interpreting the aerial photography 
or when there was a large gap in the aerial photography archives. 

Table 1 
The number of SSUs selected from each map class during the second sampling phase. 
PF= persisting forest, PNF= persisting non forest, PW =persisting water, 01 =disturbed 
early ( 1985-1999), and 02 =disturbed late (2000-2008). Region codes are Ll.SB =lower 
Lake Superior basin, ULMB =upper Lake Michigan basin, and LLMB =lower Lake Michigan 
basin. 

LLSB 
ULMB 
LLMB 

PNF 

9 
5 
7 

PF PW 

2 
2 
2 

01 

10 
6 
8 

02 

10 
6 
8 

We conducted comparisons between VCf and VCfw outputs by 
computing pairwise difference scores according to the correctness of 
the slassifications made for each pixel sampled. Specifically: 

{ 
+ 1 if vcrw correct, vcr incorrect 

dk = 0 if both correct or both incorect 
-1 if vcrw incorrect, vcr correct 

(2) 

was computed for the k1
h pixel in the sample. Ratio estimators and 

linearized estimated standard errors were used to estimate the mean 
difference in accuracy between vcr and vcrw products, and 95% 
normal-based confidence intervals were computed around these 
estimators. Note that the true coverage probability of normal-based 
confidence intervals is unknown in such a complex sampling design. 

All computations in this section were executed using the statistical 
software R 2.10.0 and the package "survey" (Lumley, 2004, 201 O; R 
Development Core Team, 201 0). Additional details about this section are 
forthcoming (Zimmerman et al., in progress). 

In addition to the site-specific procedures described above, we 
conducted non-site specific comparisons of aerial extent of forest and 
nonforest classes. Map-based counts of pixels were tabulated to produce 
area estimates from vcr- and vcrw-based map categories for the entire 
study area, Lake Superior basin, Lake Michigan basin, LLSB. ULMB. and 
LLMB. No estimates of uncertainty were available for map-based 
estimates of area. Estimates and sampling errors of forest and nonforest 
for LLSB, ULMB, and LLMB also were produced from strategic forest 
inventory data obtained from the USDA Forest Service FIA program. A 
comparison ofVCfw- and FIA-based area estimates was conservatively 
reported as being statistically significantly different if a map-based 
estimate fell outside the bounds of an approximate 95% confidence 
interval surrounding an FIA-based estimate. 

3. Results 

3.1. VCT 

According to output products from VCf, there was approximately 
5.368 million ha of PNF, 15.407 million ha of PF. 1.278 million ha of 
PW, 1.360 million ha of 01, and 1.010 million ha of 02 combined in 
the entire study area throughout the Lake Superior and Lake 
Michigan drainage basins (Figs. 8 and 9). The overall accuracy was 
86.3% (Fig. 10, Table 2) and the standard error was 1.2%. The standard 
error for each class was 2.0% or less (Table 3 ). Commission errors 
(100%-% user's accuracy) ranged from 54.4% (02) to 0.3% (PW) and 
omission errors (100%-% producer's accuracy) varied from 52.9% 
(OJ) to 4.3% (PF) (Table 4). The omission error for PNF was about 
four times greater than the commission error and, conversely, the 
commission error for PF was about three times greater than the 
omission error. Errors of commission and omission were relatively 
consistent for PW, 01, and 02. The standard error for user's and 
producer's accuracies remained low ( <2.5%) for the majority of 
classes (PNF, PF, and PW), but increased above 5% for 01 and 02 
(Table 4). 

When considering each of three geographic strata for vcr, the 
proportion of total area for PNF increased rapidly from the LLSB to the 
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LLMB, while PF decreased rapidly from the LLSB to the LLMB. PW was 
highest in the ULMB and lowest in the LLMB, and disturbed forest (01 
and 02) was slightly lower in the LLMB and identical in the remaining 
two basins (Figs. 8 and 9). The overall accuracy was lowest in the LLSB 
(82.9%) and highest in the LLMB (88.0%) (Fig. 10, Table 5) while the 
standard error never exceeded 3%. The standard error for each class of 
individual strata never surpassed 4% (Table 6). Commission errors 
ranged from 82.3% (02 of the LLMB) to 0.0% (PW of the LLSB) and 
omission errors varied from 62.1% (02 of the LLSB) to 0.5% (PF of the 
LLSB). Once again, the omission error for PNF greatly exceeded the 
commission error and, likewise, the commission error for PF was 
greater than the omission error (Table 7). The commission and 
omission errors for PW were fairly consistent, except for some 
differences in the LLSB and the LLMB. However, large discrepancies 
surfaced in 01 and 02. In the LLSB and the ULMB, the commission 
errors for disturbance were much lower than the omission errors 
(Table 7). In the LLMB, conversely, the commission error for 
disturbance greatly exceeded the omission error. 

3.2. VCTw 

VCTw denoted approximately 6.466 million ha ofPNF, 14.663 million 
ha ofPF, 1.268 million ha ofPW, 1.146 million ha ofD1, and 0.853 million 

ha ofD2 (Figs. 8 and9). The overall accuracy was 91.2% (Fig. 10, Table 2) 
and the standard error was 0.8%. The standard error for each class was 
2.1% or less (Table 3). Commission errors ranged from 25.0% (02) to 0.3% 
(PW) and omission errors varied from 53.5% (02) to 4.3% (PW) (Table 4). 
Errors of commission and omission for PNF. PF. and PW exhibited 
identical values below 10%. Commission errors were generally much 
lower than omission errors for both 01 and 02. The standard error for 
user's and producer's accuracies remained relatively low ( < 3.5%) for most 
classes (PNF, PF, and PW) and the user's accuracies of 01 and 02, but 
increased above 5% for the producer's accuracies of01 and 02 (Table 4). 

When considering each of three geographic strata for VCTw, the 
proportion of total area for PNF increased rapidly from the LLSB to the 
LLMB. PF decreased rapidly from the LLSB to the LLMB, PW was 
highest in the ULMB and lowest in the LLMB, and disturbed forest (01 
and 02) decreased steadily from the LLSB to the LLMB (Figs. 8 and 9). 
The overall accuracy was lowest in the LLSB (87.0%) and highest in the 
LLMB (94.6%) (Fig. 10, Table 5) while the standard error never 
exceeded 2.2%. The standard error for each class of individual strata 
never exceeded 3.8% (Table 6). Commission errors ranged from 59.7% 
(D2 of the LLMB) to 0.0% (PW of the LLSB) and omission errors ranged 
from 63.8% (02 of the LLSB) to 1.1% (PF of the LLSB). Once again, the 
commission and omission errors for PNF, PF, and PW were identical, 
except for the LLSB (Table 7). Commission errors for 01 and 02 were 

ESA ESA' LSB LSB' LMB LMB' LLSB LLSB' ULMB ULMB' LLMB LLMB' 
PF 01 oD2 PNF oPW 

Fig. 8. Comparisons of percent cover for all five classes throughout the entire study area (ESA, 24.378 million ha), Lake Superior basin (LSB, 12.718 million ha), Lake Michigan basin 
(LMB, 11.659 million ha), lower Lake Superior basin (LLSB, 4.378 million ha), upper Lake Michigan basin (ULMB, 6.475 million ha), and lower Lake Michigan basin (LLMB, 

5.184 million ha) for both vcr (no asterisk) and VCTw (with asterisk). 
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Fig. 9. Overview map based on VCTw and subset maps based on both VCT and VCTw. 

less than the omission errors in the LLSB and the ULMB, but were 
somewhat identical in the LLMB (Table 7). 

3.3. vcr versus vcrw 

Compared to VCT, VCTw denoted more PNF ( 1.098 million ha),less 
PF ( -0.744 million ha), similar PW,less 01 ( -0.214 million ha), and 
less 02 (- 0.157 million ha) throughout the entire study area. The 
difference between the overall accuracies of VCTw and VCT was 
estimated to be nearly 5% with a narrow standard error of 0.89 
(Table 8). An analogous trend of improvement materialized in the 
different geographic strata, although VCTw effected the most 
improvement in the LLMB ( + 6.62%) and the least, yet statistically 
significant improvements (as assessed by a Normal-based 95% 
confidence interval), in the LLSB and ULMB ( + 4.09% and + 3.84% 
respectively) (Table 8). Most classes performed similar to the entire 
study area, except for an anomaly in the LLMB where the area of 
disturbed forest (both 01 and 02) denoted by VCT was nearly two 
times higher than denoted by VCTw. 

3.4. Forest area estimates 

FlA estimates of forest land displayed no statistically significant 
difference when comparing the early (1985-1999) and late (2000-
2008) periods for any of the three US strata (LLSB, ULMB, and LLMB). 
Therefore, subsequent results are confined to comparisons within the 
late period. VCT estimates were statistically significantly higher than 
FlA estimates for all three US strata during the late period (Fig. 11 ). 
Compared to VCT, VCTw estimates of forest land area were 5.0, 6.6, 
and 14.3% lower for LLSB, ULMB, and LLMB, respectively (Fig. 11 ). 
VCTw estimates exhibited no statistically significant difference from 
FlA estimates in the LLSB and ULMB, but the VCTw estimate was 
significantly higher for LLMB ( f'ig. 11 ). 

4. Discussion 

This study successfully implemented and validated regional wall-to­
wall applications of VCT and VCTw across a complex and spatially 
heterogeneous forest landscape in the Lake Superior and Lake Michigan 
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Fig. 10. Overall accuracies for VCT (diamonds) and VCTw (squares) with 95% confidence interval bars. 

drainage basins of the western Great Lakes. The superior overall 
performance of VCfw was likely a positive consequence of significant 
spectral-thermal contrast between forest and non forest lands on snow­
covered winter Landsat imagery (figs. 3 and 4). Even the leafless 
deciduous forest attenuated enough of the snow's reflectance to avoid 
confusion with other snow-covered features (Fig. 3), making the 
assumption of a transparent leafless deciduous forest canopy dubious 
(e.g., Vikhamar & Solberg, 2003a). Although, the dissipation of heat from 
bare tree limbs and needles absorbing incoming shortwave radiation 
also was likely a major contributor to enhancing forest-nonforest 
thermal differences during the winter months and creating a reliable 
nonforest mask (Gustafsson et al., 2004; Sicart et al.. 2004). The 
strengths of this basic binary spectral-thermal relationship between 
forest and completely snow-covered nonforest in remote sensing 
applications are well established, a consequence of snow reflectance 
being partially occluded from the sensor by the forest canopy, the 
different physical properties of snow under forest canopies influencing 
spectral reflectance, and the comparatively cooler temperature of snow 
in exposed snow-covered areas (Sicart et al., 2004; Vikhamar et al., 
2004; Vikhamar & Solberg, 2003b; Warren, 1982). Exploiting the sharp 
spectral-thermal contrasts between land cover types during the winter 
season ultimately enabled the efficient mitigation of false positives for 
forest and forest disturbance associated with wetlands and agricultural 
lands. Marked decreases in the percent commission errors (i.e., 100%­
user's accuracy percent) for PF, D1, and D2, and a simultaneous larger 
decrease in the percent omission error (i.e., 1 00%-producer's accuracy 
percent) for PNF indicate that many false positives for forest and forest 
disturbance were removed by the nonforest mask and appropriately 

Table 2 
Confusion matrix estimates for VCT (not shaded) and VCTw (shaded) representing the 
entire study area. Columns repre·5ent the respective VCf or VCTw class and rows 
represent the validation class. 

PNF PF PW 01 02 

PNF 29.6 5.4 0.0 1.0 1.2 

}.4~~ 1,.1,8 6.0 0.~ 0.3 

PF 1.3 51.2 0.0 0.6 0.4 
'z:}·· 5().9 o:o 0.4 0.2 

PW 0.1 0.0 1.7 0.0 0.0 

0.1.: b.o 1.7 0.0 o,o 
01 0.2 1.9 0.0 2.4 0.0 

:,0.3:! h9c I 0.0 2.3 ,o;o, 
02 0.0 1.5 0.0 0.0 1.4 

~o.o_: J;? o:o r·o:oj 1:4' 

coded to non forest. Consistently low commission errors for PNF ( -6%), 
omission errors for PF ( -5%), and commission ( -0%) and omission 
(- 5%) errors for PW when either VCf or VCfw were applied indicate 
that vcrw continued to effectively classify these classes while 
improving the others. 

The influence of landscape variability on accuracy assessments 
across a complex latitudinal landscape gradient is immediately 
apparent when observing the accuracy assessments of the three 
geographic strata. The remote sensing community recognizes the 
potential for spatial variability of accuracy, but seldom provides more 
robust accuracy assessment strategies to address the problem (Foocly, 
2002 ). Dividing large geographic extents into different geographic 
strata within an intuitive landscape ecological framework, as 
employed in this paper, appears to be a justifiable and useful 
approach because disparate land cover and land use types may 
influence spectral reflectance, thermal emissivity, and ultimately 
accuracy (Zimmerman et al., in progress; Duguay, 1995; Sicart et al., 
2004). 

The comparatively high overall accuracy ofVCfw in the LLMB was 
initially perplexing because it appeared counterintuitive to obtain 
optimum vcrw performance in a highly fragmented and sparsely 
forested landscape with few large areas of contiguous forest, 
especially when considering that this was the only stratum where 
VCfw estimates did not precisely correspond with FlA estimates of 
forest land area. One plausible explanation of this observation 
involves the high proportion of deciduous trees that dominate the 
landscape in the LLMB. Deciduous trees shed their leaves every fall 
and exposed limbs and branches are subsequently much less likely to 

Table 3 
Confusion matrix standard error (SE) estimates for VCT (not shaded) and VCTw (shaded) 
representing the entire study area. 

PNF PF PW 01 02 

PNF 1.9 0.8 0.0 0.2 0.3 

.2.1 o.s 0.0 0.0 0.0 
PF 0.3 2.0 0.0 0.2 0.2 

6:4 2.0_ .(}.0 1 ~Qj I o§ 
PW 0.0 0.0 0.3 0.0 0.0 

0.0 6.0 0.3 Q.O I "o:o 
01 0.1 0.5 0.0 0.4 0.0 

,o:z:: 0._5 _Q.O : Q.3 ~-Q,Q: 
02 0.0 0.5 0.0 0.0 0.2 

6:6 l 0.5 6.0;3 o.o:: I .QJ. 
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Table 4 
User's and producer's accuracy estimates for VCT (not shaded) and VCTw (shaded) 
representing the entire study area. 

User's accuracy Producer's accuracy 

Estimate SE Estimate SE 

PNF 79.5 2.2 
~j]' 1,3 

PF 85.3 1.7 95.7 0.7 
:.~!J~t~ C:l. §~.Q 0.8 

PW 99.7 0.2 94.7 
r~s~z; o,L g$,1_ 

01 59.4 5.2 53.2 7.5 
7Q:3; I3' S'1.1• 7:3· 

02 45.6 6.4 47.1 7.6 
1,75:6~ .. xs~ 46.:s ·?.~,;, 

intercept snowfall throughout the winter (Suzuki el al., 2008: 
Vikhamar & Solberg, 2003b). Additionally, if snow accumulates on a 
deciduous tree, their structural branch pattern prevents large 
quantities of snow from collecting in a common area that could 
dramatically increase reflectance (Suzuki et al., 2003, 2008; Vikhamar 
& Solberg, 2003b). Conversely, the propensity for evergreen conifer 
trees to intercept snowfall is higher because their needles persist 
throughout the winter, and snowfall is more apt to accumulate in a 
common conical area that may greatly increase reflectance (Suzuki et al., 
2008; Vikhamar & Solberg, 2003b). Therefore, increased snowfall 
interception in the canopies of the relatively abundant coniferous forest 
in the ULMB and LLSB may have slightly tempered the overall accuracy 
of VCTw because of potential spectral confusion with snow-covered 
nonforest lands. This phenomenon was likely exacerbated where 
stunted coniferous trees intermix with exposed bedrock that has been 

Table 5 
Confusion matrix estimates for VCT (not shaded) and VCTw (shaded) representing the 
lower Lake Superior basin 1, upper Lake Michigan basin', and lower Lake Michigan 
basin3

. Columns represent the respective VCT or VCTw class and rows represent the 
validation class. 

PNF PF PW 01 02 
PNF1 6.4 6.4 D.D D.7 1.7 

11J':o, ti3:9' ;D.O •D:1· 0.2. 
PF1 D.1 68.2 D.D D.2 D.D 

·o:s.; ~67.8 •·o.o· 0.1• D:D 
PW' D.1 D.1 2.2 D.D D.D 

:0:1' ·D.O 2.3 '.D.O 'D.D 
01' D.1 4.5 O.D 4.1 D.D 

.0:2.) .4.4: o:o r4.D O.D 
021 O.D 3.2 D.O D.D 2.D 

D.lr 3:Z D.D D.O 1.9' 
PNF' 19.1 5.3 0.0 D.6 D.S 

23:5• .1.6 O.D o:1 D.2 
PF2 1.4 61.4 D.D D.8 D.7 

2.9 60.8 D.O OA 0.2 
PW' O.D D.O 1.5 D.O D.D 

D.D D.D: 1:5 D.D D.D 
01 2 0.3 1.9 D.D 2.8 D.D 

'0,3 .. 1.9 .o:D 2.8· D.D 
022 D.O 1.9 O.D D.D 1.9 

D.O. '1:9 D:o 0.0 1.9 
PNF' 56.1 4.9 D.D 1.7 1.9 

62.9 D.9• 0.0 D.3 0.4 
PF' 1.9 28.8 0.0 D.7 D.2 

2.1 28.8 D.O 0.5 D.2 
PW3 D.1 0.0 1.7 D.D D.D 

0.1' .O.D 1.7 0.0 D.O 
01 3 D.3 D.2 D.O 0.9 D.D 

0.6 D.2 0.0 0.7 D.D 
023 D.O 0.1 D.O D.D 0.5 

o.o. 0.1. D.O. O.D D.S 

Table 6 
Confusion matrix standard error (SE) estimates for VCT (not shaded) and VCTw (shaded) 
representing the lower Lake Superior basin 1, upper Lake Michigan basin2

, and lower Lake 
Michigan basin3 

PNF PF PW 01 02 

PNF1 1.9 1.4 D.O 0.3 0.8 
2:6: '1.4. .Q;Q~ ~Q.t; ;q:Q· 

PF1 0.1 2.7 0.0 0.1 0.0 
.0.2,. 2.6 '0:0:' f0:1~ co@; 

PW1 0.1 0.0 1.1 O.D 0.0 
•.0~1 o.o• Tl? ro:o; :o:o: 

01 1 0.1 1.8 0.0 1.4 0.0 
o:r .J:s 'a:o; ~.1~4:1 r:o:o: 

021 0.0 1.1 0.0 0.0 0.5 
.0.1 1.1 ·.o:~ 1@.; ~o~; 

PNF' 3.2 1.5 0.0 0.2 0.2 
'3;'6] o.s• [Q.Qj' ta:!JJ ;;o;t; 

PF2 0.4 3.6 0.0 D.3 0.5 
·o:s· .. ''3.8' 'ii:b'' ttl.t:' [(),1j 

PW2 D.O 0.0 0.4 0.0 O.D 
.o:o~: .Q.b, .Q:it,.l ~o;o; )Q;O; 

01 2 0.2 0.8 0.0 0.3 0.0 
•o:z': ~o:s .. o:o~ ~o:;31 ~M' 

022 0.0 1.0 0.0 0.0 0.2 
•0.0 ,l.Q. o:o: ~<UH toT~ 

PNF' 3.7 1.2 0.0 0.5 0.5 
3:4 0.3' M.: ~ LQ;£ 

PF3 0.6 2.9 D.O 0.2 O.D 
•6:6:1 2.9 ''ll:O:· 'o.E LO& 

PW3 0.1 0.0 D.4 0.0 O.D 
o:t. ·o.o. 'O)f ~Q;Ql ].9. 

01 3 0.2 0.2 0.0 0.3 O.D 
0.3 .. 0.2 • o:o, t6.2; ~o.o; 

023 D.O 0.1 0.0 0.0 0.1 
Q.bj 0.1 .o.o., W.Di •D:'Jl 

heavily scoured by glaciers, blurring the forest-nonforest boundary 
(less common in the LLMB ). A slight increase in the commission error for 
PNF and corresponding decrease in the omission error for PF in both the 
LLSB and ULMB lend credence to this claim. Thermal differences 
between snow-covered deciduous and coniferous trees likely did not 
enhance this spectral effect because corresponding radiation balances 
are identical (Suzuki et al., 2003). A second possible contributing factor 
is that VCTw performed better on agricultural lands as opposed to 
wetlands. Agriculture is comparatively abundant in the LLMB whereas 
wetlands especially dominate many nonforest landscapes in the LLSB. 
Wetland vegetation, unlike most agricultural lands, may regularly 
protrude from an otherwise comprehensive snow cover (e.g., Ozesmi & 
Bauer. 2002). Relatively high omission errors for PNF and high 
commission errors for PF, 01, and 02 in the mostly coniferous forest 
of the LLSB support this claim. It is probable that a combination of the 
aforementioned factors slightly suppressed the overall accuracy of 
VCTw in the ULMB and LLSB, but the evidence presented here is purely 
circumstantial. Regardless, VCfw continually outperformed VCf in 
every geographic stratum. 

vcrw did not improve the omission errors for 01 and 02 and, in 
some cases (i.e., LLMB) VCTw only decreased the commission errors 
for 01 and 02 to a still unsatisfactory 50-60%. When considering most 
of the other classes exhibited commission or omission errors of 10% or 
much less in each geographic stratum and throughout the entire study 
area, these observations suggest VCTw had difficulty detecting forest 
disturbances and/or that there was some confusion between manual 
interpretations of validation data and VCTw disturbance classes. 
Partial forest disturbances are especially problematic in terms of 
aligning visual interpretations of aerial photography or satellite 
imagery with a VCT disturbance class (Huang et al., 2010a). This is a 
known hindrance when validating data, especially when precluding 
the use of ground reference points and exclusively relying on 
remotely sensed imagery (Foody, 2002). To complicate matters 
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Table 7 
User's and producer's accuracy estimates for VCT (not shaded) and VCTw (shaded) 
representmg the lower Lake Superior basin 1, upper Lake Michigan basin', and lower Lake 
Michigan basin3 

User's accuracy Producer's accuracy 

Estimate SE Estimate SE 

PNF1 95.9 2.2 42.1 8.5 
c92:2, .3A. 72.3 7.4 

pfl 82.8 2.4 99.5 0.2 
.85.4 2.6 98.9 0.4. 

PW 1 100.0 0.0 91.2 5.2 
,100,0 0.0 94.7 2.8 

D1t 82.5 8.3 47.4 13.1 
''93.5' 3.3 46.5 13 .. 0 

021 52.5 14.5 37.9 10.6 
89:9 3.9 . 36.2. 1'0.1 

PNF2 91.9 2.4 74.9 4.9 
88:0 2.8. ,92.3 3.2 

PF2 87.0 2.8 95.5 1.1 
91.8 :2:o. t9~t6 1.3 

PW2 99.4 0.7 97.3 2.3 
99:4 .0.7 9T?: 2:3 

01 2 55.5 5.9 55.9 10.7 
83.3 3.1 55,9 10.7 

022 50.7 12.0 49.0 11.5 
82.4 3.0 .49:o 11.6. 

PNF3 95.0 1.2 85.9 2.2 
95:8 1.1 97:5 0.5 

PF3 84.8 3.2 91.0 2.1 
96.2 1.2 91.1 1.9 

PW3 99.9 0.1 94.9 3.5 
99.9. 0.1 94.9 3.5 

OJl 28.1 8.5 62.8 13.5 
45.7 8.6 47.8 11.6 

023 17.7 4.5 85.5 11.5 
40.3 5.0 85.5 .11.5 

further, VCT, and hence VCTw, excels at detecting stand-clearing 
disturbances that remove all or most of the forest canopy but has 
difficulty consistently mapping partial canopy disturbances and/or 
tree defoliation (Huang et al.. 2010a). As expected, VCTw successfully 
mapped some of the partial forest disturbances and excluded others, 
which created systematic inconsistencies in the validation procedures 
for D1 and D2. Post-accuracy assessment analysis identified multiple 
instances where a partial canopy disturbance was classified as the 
beginning year for a disturbance class that was not properly denoted 
by VCfw until the full canopy was removed. There were also 
additional scenarios where VCfw did not detect a partial canopy 
disturbance that appeared significant on aerial photography. There­
fore, we suspect many of the disturbance class errors simply represent 
incongruities between m<mual and computerized interpretations of 
disturbances, and are ultimately overestimated. We did not refine 
manual interpretations of disturbances in order to maintain the 
integrity of an objective and unbiased accuracy assessment. Never­
theless, the suppressed accuracies of D1 and D2 remain statistically 
significant within the context of a complex sampling scheme 
containing thousands of points, indicating the proper coding of 
many disturbances. 

Table 8 
Differences between the overall accuracies of VCT and VCTw with the corresponding 
standard error (SE) and 95% confidence interval (CI). 

Difference SE Cl 

Entire study area +4.89 0.89 3.14 
6.63 

Lower Lake Superior basin +4.09 1.49 1.47 
6.71 

Upper Lake Michigan basin +3.84 1.52 0.87 
6.81 

Lower Lake Michigan basin +6.62 1.34 3.71 
9.54 

Most land cover products are used for conducting assessments of 
large geographic extents (e.g., the Great Lakes basins). Thus, it is not 
only the site-specific (per-pixel) accuracy that is important, but also 
the non-site specific accuracy of the resulting land area estimates. 
VCTw estimates of forest land area, unlike vcr, compared favorably 
with FlA's strategic forest inventory estimates for the two most 
heavily forested strata (LLSB, ULMB), adding validity to the 
approach of using VCfw to augment sample-based inventories 
with spatially explicit information on forest cover and forest 
dis~urbance. Compared with FIA, VCTw produced slightly higher 
estimates of forest land area in the LLMB, a stratum of sparse and 
fragmented forest cover. Causes of this deviation are not known but 
could include one or more of the following: 1) definiti~nal 
differences, for example, FIA's exclusion of some tree cover not 
defined as forest land use, 2) local misclassification of the input 
NLCD forest land cover class, resulting in incorrect assignment of 
training pixels in the VCT algorithm, and 3) inconsistent cover and 
quality of snow in the lowest latitudes of the study. 

5. Conclusion 

VCTw clearly outperformed VCT on a complex regional landscape 
of deciduous, mixed, and coniferous forests in the western Great Lakes 
to produce improved forest disturbance products. Similar VCTw and 
FIA·based estimates of forest land lend additional credence to the 
validity of the approach. VCTw also remains attractive from proces­
sing and application perspectives because it efficiently exploits only 
two seasons of imagery, as opposed to the three required seasons for 
NLC:D. Furthermore, the LTSSw only require approximately quadren­
nial temporal frequency that consumes much less processing time 
than the approximately biennial LTSSs. VCTw ultimately relies upon 
hardware, software, algorithms, and data similar to the already 
extremely efficient VCT and only extends processing time about 2 h 
per path/row on a standard desktop computer. Indeed, VCTw appears 
poised to provide improved assessments of spatially explicit changes 
in forest and forest disturbances at landscape scales throughout 
geographic extents with adequate seasonal snow cover. This may 
provide crucial data-driven momentum encouraging abundant 
landscape ecological investigations (e.g., Stueve et al., 2011 ). 

However, additional research remains necessary. For example, 
mapping snow with an internal VCTw algorithm originally designed to 
map clouds may not suffice in mountainous regions with complex 
topographic features and/or low winter sun angles. Financial constraints 
prevented us from experimenting with algorithms specifically designed 
for mapping snow, but these will be explored and incorporated in a 
future version of VCTw. It would also be beneficial to develop and 
improve techniques for constructing surrogate LTSSs and LTSSw from 
other remote sensing platforms where coverage from the Landsat 
archive is insufficient (e.g., as discussed by Huang et al., 2010a). This is 
particularly relevant for Landsat paths/rows in the northern reaches of 
the boreal forest, where there is a paucity of summer and especially 
winter Landsat coverage. If these obstacles can be surmounted, this novel 
approach has potential for widespread international applications and 
may be a worthwhile endeavor for the approximately 34% of the world's 
forest that receives sufficient snowfall to cover the ground, particularly 
the boreal and temperate forest with an estimated 100% and 70% snow 
coverage, respectively, during peak winter months (Fig. 12). The success 
of VCTw ultimately suggests the need for future research investigating 
the potential benefits of integrating multitemporal imagery from 
different seasons in automated disturbance mapping approaches. 
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Michigan basin (ULMB). and lower Lake Michigan basin (LLMB), USA. 
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